22 Electromotive Forces and Thermodynamic Functions of the Cell Pt, H | HBr(m), X% Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 25, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch022
2
Alcohol, Y% Water | AgBr-Ag in Pure and Mixed Solvents 1
A L L E N F. ROBINETTE and EDWARD S. AMIS Dunhall Pharmaceuticals, Inc., Gravette, Arkansas 72736
Electromotive force measurements of the cell Pt, H | HBr(m), X% alcohol, Y% water | AgBr-Ag were made at 25°, 35°, and 45°C in the following solvent systems: (1) water, (2) water-ethanol (30%, 60%, 90%, 99% ethanol), (3) anhydrous ethanol, (4) water-tert-butanol(30%, 60%, 91% and 99% tert-butanol), and (5) anhydrous tert-butanol. Calculations of standard cell potential were made using the Debye-Huckel theory as extended by Gronwall, LaMer, and Sandved. Gibbs free energy, enthalpy, entropy changes, and mean ionic activity coefficients were calculated for each solvent mixture and temperature. Relationships of the standard potentials and thermodynamic functons with respect to solvent compositions in the two mixed-solvent systems and the pure solvents were discussed. 2
M a n y studies o f e l e c t r o m o t i v e forces o f t h e cells H
2
(1 a t m ) I H + X -
(m) | A g X - A g , where X is CI", B r " , o r I" (1)
r e c e n t l y h a v e b e e n m a d e i n p u r e a n d m i x e d solvents (1-10). associates (8,9,10)
i n v o l v i n g p u r e a n d m i x e d h y d r o x y l i c solvents. 1
Amis and
h a v e i n v e s t i g a t e d t h e p r o p e r t i e s o f t h e a b o v e cells U n u s u a l results w e r e
To whom inquiries should be addressed. 0-8412-0428-4/79/33-177-355$05.75/l © 1979 American Chemical Society Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
356
T H E R M O D Y N A M I C BEHAVIOR O F E L E C T R O L Y T E S
II
o b s e r v e d i n these systems, a n d i t w a s d e e m e d i m p o r t a n t to e x t e n d t h e w o r k i n other h y d r o x y l i c solvent systems t o a s c e r t a i n w h e t h e r t h e effects n o t e d are of a g e n e r a l n a t u r e . I n a d d i t i o n , a c a r e f u l s t u d y w a s m a d e of e x p e r i m e n t a l t e c h n i q u e s necessary f o r p r e p a r i n g a stable s i l v e r - s i l v e r bromide
electrode.
T h e c e l l w h e r e X " is B r " has b e e n i n v e s t i g a t e d i n a n h y d r o u s e t h a n o l b u t n o t i n m i x e d e t h a n o l - w a t e r systems.
T h i s study involves the cell
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 25, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch022
using water, 3 0 % , 6 0 % , 9 0 % , a n d 9 9 % ethanol-water, a n d anhydrous e t h a n o l at 2 5 ° , 3 5 ° , a n d 4 5 ° C , a n d s i m i l a r c o m p o s i t i o n s a n d t e m p e r a t u r e s f o r t h e w a t e r - t e r f - b u t a n o l system a n d a n h y d r o u s
terf-butanol.
This cell
h a d n o t b e e n s t u d i e d p r e v i o u s l y i n this l a t t e r solvent system. Experimental Purification of Nitrogen and Hydrogen Gases. H y d r o g e n a n d n i t r o g e n w e r e o b t a i n e d f r o m t h e A i r R e d u c t i o n C o m p a n y . B o t h gases w e r e p u r i f i e d b y b e i n g p a s s e d t h r o u g h a p u r i f i c a t i o n t r a i n of c o p p e r t u r n i n g s h e a t e d to 6 0 0 ° C , t h r o u g h a d r y i n g t o w e r filled w i t h c o n c e n t r a t e d s u l f u r i c a c i d , t h e n t h r o u g h a n e m p t y d r y i n g t o w e r to t r a p d r o p l e t s of s u l f u r i c a c i d , a n d finally t h r o u g h tubes c o n t a i n i n g D r i e r i t e , A s c a r i t e , a n d a g a i n D r i e r i t e . T e s t s for t h e presence of c a r b o n d i o x i d e i n t h e p u r i f i e d gas w e r e m a d e b y b u b b l i n g a r a p i d s t r e a m of the gas t h r o u g h a s a t u r a t e d s o l u t i o n of b a r i u m h y d r o x i d e . I f n o t u r b i d i t y o c c u r r e d after 1 h r , t h e gas w a s a s s u m e d to b e free of c a r b o n d i o x i d e . T h e p a s s i n g of a r a p i d s t r e a m of t h e gas t h r o u g h a n a l k a l i n e p y r o g a l l o l s o l u t i o n for 1 h r , w i t h n o c h a n g e i n c o l o r of t h e p y r o g a l l o l , together w i t h s t a b i l i t y i n t h e e l e c t r o m o t i v e force of the g a l v a n i c cells b e i n g s t u d i e d , i n d i c a t e d the a b s e n c e of o x y g e n i n t h e gas. T h e effectiveness of D r i e r i t e a n d c o n c e n t r a t e d s u l f u r i c a c i d i n r e m o v i n g m o i s t u r e f r o m a stream of gas is w e l l k n o w n , so n o s p e c i a l test w a s m a d e f o r m o i s t u r e i n the p u r i f i e d gas. Purification of Electrode Materials'. C h e m i c a l l y p u r e s i l v e r b r o m a t e f r o m A . D . M a c k a y , Inc. was recrystallized eight times f r o m conductivity w a t e r i n near t o t a l darkness. T h e s m a l l , s n o w y w h i t e crystals of p u r i f i e d m a t e r i a l w e r e s t o r e d i n a v a c u u m d e s i c c a t o r over D r i e r i t e i n t h e d a r k u n t i l u s e d . T h e m e t h o d of Ives a n d J a n z (11) w a s u s e d i n p r e p a r i n g t h e h i g h - p u r i t y s i l v e r o x i d e u s e d i n m a k i n g the electrodes. S i l v e r o x i d e was precipitated from silver nitrate by dilute sodium hydroxide. It was p u r i f i e d b y d e c a n t i n g several t i m e s , t h e n e x t r a c t i n g i n a Soxhlet e x t r a c t o r w i t h conductivity water for t w o days, w i t h the conductivity water b e i n g changed twice each day. T h i s procedure y i e l d e d a w a s h water w i t h a specific c o n d u c t a n c e of 10" o h m " c m " . T h e p u r i f i e d m a t e r i a l w a s s t o r e d i n the dark over Ascarite i n a v a c u u m desiccator u n t i l used. Electrode-Preparation and A g i n g . E l e c t r o d e p r e p a r a t i o n p r o c e dures are g i v e n b y K e s t o n (14) a n d b y Ives a n d J a n z (11). Electrodes w e r e p r e p a r e d f r o m a paste c o n t a i n i n g 9 0 % s i l v e r o x i d e a n d 1 0 % s i l v e r bromate placed on a p l a t i n u m spiral a n d heated i n a furnace for 7 m i n at 6 5 0 ° C . J a n z a n d T a n i g u c h i (12) have reviewed the preparation, r e p r o d u c i b i l i t y , a n d s t a b i l i t y of this electrode. T a y l o r a n d S m i t h (13) f o u n d the e q u i l i b r i u m p o t e n t i a l to b e stable w i t h i n 0.02 m V . E l e c t r o d e s 5
1
1
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 25, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch022
22.
ROBiNETTE
AND AMIS
Electromotive
Forces
357
so p r e p a r e d are v e r y stable a n d r e p r o d u c i b l e (14). Electrode prepara t i o n w a s c a r r i e d o u t i n n e a r darkness since u s i n g fluorescent l i g h t i n g g a v e electrodes a g r a y i s h c o l o r a n d a p o t e n t i a l n o r m a l l y several milli-« volts h i g h e r t h a n those p r e p a r e d i n n e a r darkness. S m a l l a m o u n t s of l i g h t c o u l d b e t o l e r a t e d w i t h o u t a n o t i c e a b l e effect. T h e f r e s h l y p r e p a r e d electrodes w e r e a g e d (16) b y i m m e r s i o n i n d i l u t e H B r s o l u t i o n i n t h e a g i n g c e l l . T h e electrodes w e r e i n t e r c o n n e c t e d w i t h c o p p e r w i r e a n d t h e c e l l a n d its contents s l o w l y w e r e h e a t e d to 75 ° C , s l o w l y c o o l e d to r o o m t e m p e r a t u r e , a n d left to s t a n d i n t h e d a r k for 12 to 18 h r w i t h p u r i f i e d n i t r o g e n flowing t h r o u g h t h e c e l l . T h e m e a s u r e d b i a s p o t e n t i a l b e t w e e n p a i r s of electrodes w a s n o r m a l l y ± 0 . 0 1 m V . A n y electrodes h a v i n g bias p o t e n t i a l s greater t h a n ± 0 . 0 2 m V w e r e d i s c a r d e d . R u l e a n d L a M e r (17) r e p o r t e d t h a t s i l v e r - s i l v e r c h l o r i d e s h o w e d a n increase of b i a s p o t e n t i a l s of n o m o r e t h a n ± 0 . 0 4 m V after s t a n d i n g f o r 6 w e e k s . T h e h y d r o g e n electrodes u s e d w e r e of t h e c l a s s i c a l H i l d e b r a n d electrode t y p e ( 18), as m o d i f i e d b y H i l l s a n d Ives (19) a n d Popoff et a l . (20). Bâtes p r o c e d u r e (15) f o r c l e a n i n g t h e electrode surface p r i o r to p l a t i n i z i n g w a s chosen. T h e p l a t i n g s o l u t i o n a n d t h e p r o c e d u r e for p l a t i n g t h e electrodes w e r e d e s c r i b e d b y H i l l s a n d Ives (19). The resulting l i g h t l y p l a t i n i z e d electrodes u s e d i n w a t e r a n d terf-butanol-water sys tems h a d a d a r k g r a y a p p e a r a n c e w i t h t h e o r i g i n a l m e t a l l i c sheen s t i l l c l e a r l y v i s i b l e . I n t h i s w o r k greater electrode s t a b i l i t y i n e t h a n o l - w a t e r a n d i n a n h y d r o u s e t h a n o l solutions w a s o b t a i n e d b y electrodes h a v i n g h e a v i e r p l a t i n u m b l a c k coatings. B e f o r e use, t h e electrode p o t e n t i a l w a s m e a s u r e d against a n o l d e r h y d r o g e n electrode (21). After aging i n the d e s i r e d solvent for several h o u r s at r o o m t e m p e r a t u r e , t h e bias p o t e n t i a l s m e a s u r e d i n this w a y w e r e r o u t i n e l y less t h a n ± 0 . 0 1 m V . Preparation of Reagents. P u r e d r y h y d r o g e n b r o m i d e w a s p r e p a r e d b y t h e m e t h o d of B o o t h ( 2 2 ) f r o m t e t r a h y d r o n a p h t h a l e n e a n d b r o m i n e a c c o r d i n g to the r e a c t i o n : C10H12 + 4 B r -> C i o H B r + 4 H B r 2
8
4
(2)
T h e H B r p u r i f i e d as d e s c r i b e d (22) w a s b u b b l e d t h r o u g h a b o t t l e c o n t a i n i n g the solvent u n d e r i n v e s t i g a t i o n b y p e r m i t t i n g t h e H B r to e v a p o rate f r o m the c o l l e c t i n g c o l d t r a p a n d d i s s o l v i n g i n a b o t t l e c o n t a i n i n g t h e selected solvent u n t i l t h e d e s i r e d c o n c e n t r a t i o n of h y d r o b r o m i c a c i d w a s r e a c h e d . T h e o u t l e t of t h e s o l u t i o n b o t t l e w a s p r o t e c t e d b y means of a c a p i l l a r y t u b e e n d i n g i n a g u a r d t u b e c o n t a i n i n g D r i e r i t e a n d Ascarite. T h e s o l u t i o n w a s s t a n d a r d i z e d , either g r a v i m e t r i c a l l y as s i l v e r b r o m i d e , or b y t i t r a t i o n w i t h s o d i u m h y d r o x i d e t o a p h e n o l p h t h a l e i n e n d p o i n t . S u c h h y d r o b r o m i c a c i d has b e e n sufficiently p u r e for a c c u r a t e e l e c t r o c h e m i c a l measurements ( 9 ) . E t h a n o l w a s d r i e d b y t h e m e t h o d of R i d d i c k a n d B u n g e r (23). The dry ethanol was forced b y dry pure nitrogen into a still previously flushed w i t h d r y n i t r o g e n . T h e e t h a n o l w a s d i s t i l l e d u n d e r a constant s t r e a m of p u r e d r y n i t r o g e n , a n d the m i d d l e f r a c t i o n c o l l e c t e d i n a d i l u t i o n b o t t l e e q u i p p e d w i t h a g r o u n d glass j o i n t h a v i n g a T e f l o n s t o p p e r a n d T e f l o n stop cocks. A g u a r d t u b e h a v i n g a l a y e r of A s c a r i t e s a n d w i c h e d b e t w e e n layers of D r i e r i t e , a n d t e r m i n a t i n g i n several inches of
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 25, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch022
358
T H E R M O D Y N A M I C BEHAVIOR O F E L E C T R O L Y T E S
II
c a p i l l a r y t u b i n g , p r o t e c t e d t h e s o l u t i o n f r o m the a t m o s p h e r e . T h e p o t e n tials of cells are n o t i n f l u e n c e d b y traces of b e n z e n e present i n a b s o l u t e e t h a n o l (12), h e n c e i t w a s n o t c o n s i d e r e d necessary to r e m o v e t h e traces of b e n z e n e i n t h e e t h a n o l u s e d . W a t e r ( 0 . 0 5 % ) w a s f o u n d i n t h e a l c o h o l u s i n g a P r e c i s i o n K a r l F i s c h e r T i t r a t o r a n d a P e r k i n - E l m e r M o d e l 900 gas c h r o m o t o g r a p h e q u i p p e d w i t h a flame i o n i z a t i o n detector a n d a P o r a p a k - q s c o l u m n . U s i n g t h e gas c h r o m a t o g r a p h a n d a 4 % S E - 3 0 c o l u m n , a t r a c e of b e n z e n e w a s d e t e c t e d i n t h e e t h a n o l . T h e s m a l l a m o u n t of w a t e r a n d t h e t r a c e of b e n z e n e w e r e the o n l y i m p u r i t i e s detected. f e r f - B u t a n o l w a s p u r i f i e d b y the same p r o c e d u r e s u s e d f o r e t h a n o l . It contained no measurable water b y K a r l F i s h e r titration a n d no i m p u r i ties w e r e d e t e c t e d b y gas c h r o m a t o g r a p h i c a n a l y s i s . W a t e r was purified b y passing distilled water through two Barnstead d e m i n e r a l i z e r c a r t r i d g e s c o n n e c t e d i n series. T h e w a t e r w a s p u r i f i e d further b y a second distillation using an all-Pyrex still e q u i p p e d w i t h g r o u n d glass a n d T e f l o n connections. A s m a l l a m o u n t of p o t a s s i u m p e r m a n g a n a t e w a s a d d e d to t h e w a t e r i n the s t i l l . A s t r e a m of d r y n i t r o g e n w a s p a s s e d c o n t i n u o u s l y t h r o u g h the s t i l l d u r i n g t h e d i s t i l l a t i o n process. T h e water passed from the still condenser into a solution bottle; the o u t l e t w a s p r o t e c t e d w i t h a g u a r d t u b e to p r e v e n t e n t r y of a t m o s p h e r i c gases i n t o t h e b o t t l e . T h e c o n d u c t a n c e of t h e c o l l e c t e d w a t e r w a s 2.4 X 10~ o h m " at r o o m t e m p e r a t u r e . 7
1
Solution Preparation. A l l s o l u t i o n bottles w e r e fitted w i t h g r o u n d glass joints e q u i p p e d w i t h T e f l o n cuffs a n d T e f l o n stop cocks. W h e n n o t i n use a l l outlet tubes w e r e p l u g g e d w i t h g r o u n d glass stoppers. I n a d d i t i o n a p o s i t i v e pressure of p u r e d r y n i t r o g e n w a s m a i n t a i n e d i n the s o l u t i o n bottles at a l l t i m e s to p r e v e n t e n t r y of a t m o s p h e r i c gases of w a t e r v a p o r . E t h a n o l - w a t e r a n d f e r f - b u t a n o l - w a t e r solvents of 3 0 % , 6 0 % , 9 0 % , a n d 9 9 % b y w e i g h t of t h e r e s p e c t i v e a l c o h o l s w e r e p r e p a r e d using a large solution balance. T h e desired pure alcohol a n d water solu tions w e r e f o r c e d i n t o the s o l u t i o n b o t t l e b y d r y p u r i f i e d n i t r o g e n . C o n t a c t of the solvents w i t h the a i r w a s p r e v e n t e d at a l l times b y k e e p i n g t h e system c l o s e d except for A s c a r i t e - D r i e r i t e g u a r d tubes e n d i n g i n l o n g c a p i l l a r y tubes. Instruments and Methods of Measurements. A Leeds and Northrup T y p e K - 3 universal potentiometer, i n conjunction w i t h a G e n e r a l E l e c t r i c M o d e l 29 g a l v a n o m e t e r , w a s u s e d to m e a s u r e e l e c t r o m o t i v e force. T h e p o t e n t i o m e t e r w a s c a l i b r a t e d b y means of a W e s t o n S t a n d a r d C e l l w h i c h h a d b e e n c a l i b r a t e d against a N a t i o n a l B u r e a u of S t a n d a r d s ( N B S ) c e r t i fied s t a n d a r d c e l l . G a l v a n i c cells w h i c h w e r e m a i n t a i n e d at constant t e m p e r a t u r e s of 2 5 ° , 3 5 ° , a n d 4 5 ° C =b 0.01° b y b e i n g i m m e r s e d i n a w a t e r b a t h at t h e d e s i r e d t e m p e r a t u r e . T h e t e m p e r a t u r e s of t h e b a t h s w e r e set u s i n g a F i s h e r Scientific c a l i b r a t e d s t a n d a r d t h e r m o m e t e r , w i t h c a l i b r a t i o n t r a c e a b l e to t h e N B S . A n a d a p t a t i o n of t h e c e l l s k e t c h e d b y Ives a n d J a n z (11) w a s u s e d . T h e m o d i f i c a t i o n of the c e l l w a s t h a t described by M c l n t r y e and A m i s (10). T h e c e l l c o n t a i n i n g t h e s i l v e r - s i l v e r b r o m i d e a n d h y d r o g e n elec trodes w a s p l a c e d i n the b a t h at the p r o p e r t e m p e r a t u r e a n d w a s p u r g e d b y p a s s i n g p u r e d r y n i t r o g e n t h r o u g h i t f o r 30 m i n . T h e H B r s o l u t i o n of t h e p r o p e r solvent c o m p o s i t i o n p r e v i o u s l y p r e p a r e d a n d s t o r e d u n d e r
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 25, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch022
22.
ROBINETTE AND
Electromotive
AMIS
Forces
p u r e d r y n i t r o g e n , w a s a d d e d to the c e l l . P o t e n t i a l m e a s u r e m e n t s w e r e m a d e at i n t e r v a l s u n t i l three d e t e r m i n a t i o n s m a d e over a 3 0 - m i n p e r i o d a g r e e d w i t h i n 0.05 m V . A s a m p l e of the c e l l s o l u t i o n w a s f o r c e d b y d r y n i t r o g e n i n t o a t a r e d w e i g h i n g b o t t l e , t h e b o t t l e a n d contents w e r e weighed, a n d the solution was titrated w i t h standard s o d i u m hydroxide s o l u t i o n t o a p h e n o l p h t h a l e i n e n d p o i n t . P u r e solvent of t h e correct c o m p o s i t i o n w a s a d d e d to the g a l v a n i c c e l l b y means of a s i m i l a r w e i g h i n g b o t t l e , a n e w h y d r o g e n electrode w a s i n s e r t e d , the c e l l w a s p u r g e d w i t h p u r e d r y n i t r o g e n , a n d a n e w series of p o t e n t i a l measurements w a s m a d e at a l o w e r H B r c o n c e n t r a t i o n . U s i n g t h i s p r o c e d u r e s e v e r a l p o t e n t i a l m e a s u r e m e n t s c o u l d b e m a d e at a g i v e n solvent c o m p o s i t i o n a n d t e m p e r a t u r e b e f o r e t h e H B r b e c a m e too d i l u t e to t i t r a t e a c c u r a t e l y .
Data
and
Its
Treatment
T h e m e a s u r e d e l e c t r o m o t i v e forces of t h e c e l l H
(1 a t m ) I H B r ( m ) , X%
2
a l c o h o l , Y%
water | A g B r - A g
at 2 5 ° C , 3 5 ° C , a n d 4 5 ° C , a n d v a r i o u s m o l a l i t i e s of H B r i n 0 % ,
(3) 30%,
6 0 % , 9 0 % , 9 9 % , a n d 100% ethanol and i n 0 % , 6 0 % , 9 1 % , 9 9 % , a n d 1 0 0 % tert-butanol
w e r e m e a s u r e d a n d are r e c o r d e d i n T a b l e I .
T h e s t a n d a r d c e l l p o t e n t i a l is c a l c u l a t e d b y E °' m
where γ
—
E°
-
2k log y
(4)
±
is the square of the m e a n a c t i v i t y coefficient. E q u a t i o n
= γ γ.
2
±
= Ε + 2k log m
+
4 is u s e d to d e t e r m i n e the s t a n d a r d p o t e n t i a l of the s i l v e r - s i l v e r b r o m i d e e l e c t r o d e f r o m the i n t e r c e p t o n t h e E° axis of E 2k l o g γ . ±
or Ε +
2k l o g m vs.
Ε i n E q u a t i o n 4 is o b t a i n e d f r o m t h e o b s e r v e d
electromotive
w
0
/
f o r c e E bs u s i n g t h e e q u a t i o n 0
E = E
ohB
where P
+ —
In - — — 5 *bar * solvent
(5)
is t h e o b s e r v e d b a r o m e t r i c pressure a n d P ivent is t h e v a p o r
b a r
so
pressure of the solvent b e i n g s t u d i e d at a b s o l u t e t e m p e r a t u r e T . y
±
is t a k e n as 1 at ra =
Since
1, a d e t e r m i n a t i o n of the s t a n d a r d p o t e n t i a l E°
m a y b e m a d e b y e v a l u a t i n g E° at infinite d i l u t i o n . T h e D e b y e - H i i c k e l theory
(24)
is u s e d to e v a l u a t e t h e a c t i v i t y
coefficients b y a d d i n g a t e r m l i n e a r i n m ( 2 5 ) .
l 0 g
Ύ
±
=
~
1 +Bâ(Im)*
~
l 0 g
( 1
+
°'°
T h e e q u a t i o n is
0 2
m
^
+
b
m
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
( 6 )
360
T H E R M O D Y N A M I C BEHAVIOR O F E L E C T R O L Y T E S
Table I. Electromotive Force Measurements of the Galvanic Cell Containing Hydrobromic A c i d in Ethanol—Water and tertButanol—Water Solvents, and in the Separate Solvent Components
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 25, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch022
25° C
45°C
85°C
Concentration (m)
emf (V)
Concentration (m)
0.085483 0.059188 0.034959 0.022188 0.013918 0.009329 0.007403
0.20840 0.22642 0.25254 0.27361 0.29669 0.31624 0.33356
0.089895 0.059766 0.033960 0.021088 0.012914 0.008424 0.005759
0.009879 0.005096 0.002660 0.001578 0.001005 0.000437
0.30278 0.33647 0.36889 0.39598 0.42349 0.45676
0.010119 0.005149 0.002572 0.001340 0.000732 0.000323
emf (V)
Concentration (m)
emf (V)
0.086646 0.060899 0.035871 0.023375 0.015066 0.010279 0.007343
0.20671 0.22525 0.25280 0.27409 0.29690 0.31671 0.33452
0.010040 0.005345 0.002992 0.001757 0.001075 0.000585
0.30572 0.34055 0.37229 0.40067 0.42834 0.46150
0.010932 0.005779 0.003178 0.002029 0.001224 0.000639
0.27552 0.30982 0.34171 0.36740 0.39501 0.43141
0.013153 0.007418 0.004541 0.003101 0.001859 0.000983
0.19435 0.22310 0.24837 0.26681 0.29449 0.32902
0.005636 0.003151 0.002053 0.001399 0.000926
0.14310 0.16405 0.18514 0.20487 0.22414
100% Water
30%
60% 0.011112 0.O06784 0.002561 0.001770 0.001199 0.000679
0.27875 0.30326 0.33956 0.36392 0.39030 0.42160
0.010622 0.004646 0.002361 0.001335 0.000776 0.000407
0.012672 0.006644 0.003808 0.002267 0.001412 0.000756
0.20951 0.24148 0.26788 0.29374 0.31861 0.35128
0.014138 0.009071 0.004221 0.003010 0.001349 0.000961
90%
99% 0.014212 0.007495 0.003917 0.002166 0.001368 0.000790
0.11326 0.14364 0.16760 0.19347 0.21812 0.24363
0.007031 0.003390 0.001724 0.000911 0.000537
0.020801 0.22645 0.25510 0.27818 0.30289 0.32449 0.34433 Ethanol 0.30387 0.33924 0.37529 0.40976 0.42256 0.48759 Ethanol 0.27950 0.32264 0.35637 0.38739 0.41255 0.44657 Ethanol 0.17621 0.20755 0.25713 0.27538 0.29949 0.33441 Ethanol 0.13925 0.16619 0.19929 0.23295 0.26829
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
II
22.
ROBINETTE AND AMIS
Electromotive Table I .
Continued 45°C
S5°C
St Concentration (m)
emf (V)
Concentration (m)
0.017322 0.009832 0.005333 0.002993 0.001441 0.000616
0.05074 0.07368 0.09821 0.12333 0.15975 0.20283
0.017747 0.009951 0.005515 0.003293 0.001269 0.000492
0.027814 0.010590 0.012989 0.007930 0.005447 0.003772
0.25044 0.26729 0.28690 0.31145 0.32873 0.34810
0.018571 0.011179 0.006587 0.004252 0.002921
0.24378 0.26572 0.28890 0.30946 0.32729
0.018580 0.009837 0.005817 0.003742 0.002528
0.014874 0.007811 0.004531 0.002971 0.001915 0.001073 0.000555
0.15629 0.17395 0.18993 0.20374 0.21714 0.23631 0.26125
0.013665 0.007881 0.004075 0.002971 0.001801 0.000963 0.000439
0.024563 0.014660 0.009112 0.005836 0.003898 0.002766
0.05703 0.06532 0.07456 0.08481 0.09384 0.10511
0.024387 0.014389 0.008112 0.004273 0.002279 0.001231
100%
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 25, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch022
361
Forces
emf (V)
Concentration (m)
emf (V)
0.007541 0.003697 0.001409 0.000525
0.08014 0.10696 0.15469 0.21975
0.028229 0.019798 0.014506 0.010419 0.007082
0.25036 0.26817 0.28374 0.30096 0.32587
0.018623 0.010505 0.006424 0.004245 0.002937 0.002126
0.23781 0.26428 0.28733 0.30726 0.32506 0.34245
0.014951 0.005945 0.003491 0.002122 0.001340 0.000645 0.000283
0.13716 0.16180 0.17831 0.19371 0.21025 0.23666 0.27864
0.024582 0.014614 0.008322 0.004803 0.002600 0.001520
0.02683 0.03442 0.05213 0.06711 0.08287 0.00931
0.005133 0.002291 0.000613 0.000163
0.03806 0.06078 0.09603 0.14720
Ethanol 0.03449 0.06710 0.09339 0.11915 0.16238 0.22115
30% tert-•Butanol 0.25275 0.027275 0.26572 0.019989 0.013850 0.28485 0.30861 0.008456 0.33047 0.005553 60% tert-•Butanol
91%
99%
tert-•Butanol
0.05692 0.06387 0.10454
0.14601 0.16384 0.18052 0.19532 0.21024 0.23182 0.26223
tert-•Butanol
100% 0.005092 0.002882 0.001324
0.24124 0.26976 0.29402 0.34164 0.33352
0.005642 0.002455 O.0O0856 0.000233
0.04412 0.05314 0.16512 0.07961 0.09703 0.11362 tert-Butanol 0.06496 0.11527 0.094:0 0.14587
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
362
T H E R M O D Y N A M I C BEHAVIOR OF E L E C T R O L Y T E S
T h e term log (1 +
0.002 m M ) xy
r a t i o n a l a c t i v i t y coefficient,
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 25, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch022
arises f r o m the c o n v e r s i o n of t h e
m e a s u r e d o n t h e m o l e - f r a c t i o n scale, t o
t h e m o l a l a c t i v i t y coefficient y
l o g r
a c c o r d i n g to t h e r e l a t i o n s h i p
±
= l o g / , - ^ [ l + ^
±
II
(7)
]
w h e r e ν is 2 for a 1-1 e l e c t r o l y t e , m is the m o l a l c o n c e n t r a t i o n , a n d
M
xy
is the average m o l e c u l a r w e i g h t of the solvent system g i v e n b y γιτ M
100 = (X/M +Y/M )
=
xy
x
/ Q X
= ~
(8)
y
w h e r e X a n d Y are the r e s p e c t i v e w e i g h t percentages of the solvent c o m p o n e n t s χ a n d y of m o l e c u l a r w e i g h t s
a n d M„, respectively.
I n E q u a t i o n 6, A a n d Β are constants f o r a g i v e n solvent a n d t e m p e r a t u r e a n d are g i v e n b y the equations 1
Γ
ErNe"
1»
m
2 k In 10 L l O O 0 ( D f c D J 3
K
and _ B
Γ 8Ne ~l* LïÔ0ÔDfcrJ
/m\
2
=
( 1 0 )
I n E q u a t i o n s 6 - 1 0 d is the d e n s i t y of the solvent w h i c h w a s m e a s u r e d at 0
e a c h solvent c o m p o s i t i o n at e a c h t e m p e r a t u r e , à is the i o n - s i z e p a r a m e t e r , ζ is a n e m p i r i c a l constant, Ν is A v a g a d r o ' s n u m b e r , D is the d i e l e c t r i c constant of the solvent, k is the B o l t z m a n constant, a n d e is the e l e c t r o n i c c h a r g e . O t h e r terms h a v e b e e n d e f i n e d a l r e a d y . T h e v a l u e s of E , l o g y
± y
M
xy>
A , and Β from Equations 5-10 substi
t u t e d i n t o E q u a t i o n 4, m a k e i t p o s s i b l e to c a l c u l a t e E
c/
m
at k n o w n m o l a l i
ties of h y d r o b r o m i c a c i d , solvent c o m p o s i t i o n s , a n d t e m p e r a t u r e s . p l o t t i n g values of E °' m
By
at a g i v e n solvent c o m p o s i t i o n a n d t e m p e r a t u r e
vs. m o l a l i t y , one c a n find t h e s t a n d a r d e l e c t r o d e p o t e n t i a l E°
of
the
A g - A g B r e l e c t r o d e at t h a t solvent c o m p o s i t i o n a n d t e m p e r a t u r e f r o m t h e v a l u e of E °' m
extrapolated to infinite dilution.
T h i s m e t h o d has b e e n
u s e d successfully i n w a t e r a n d i n o r g a n i c solvent—water m i x t u r e s of h i g h e r d i e l e c t r i c constants, b u t i f the m i x e d solvents h a v e l o w d i e l e c t r i c c o n stants, c a . 50 or b e l o w , t h e c u r v a t u r e s of t h e E °' m
to p r e v e n t a c c u r a t e d e t e r m i n a t i o n s of E
0/
m
vs. m p l o t s a r e sufficient
a n d h e n c e of
E°.
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
22.
ROBINETTE AND AMIS
Electromotive
363
Forces
T o o v e r c o m e this difficulty the D e b y e - H i i c k e l t h e o r y w a s for s y m m e t r i c a l v a l e n c e - t y p e the expansion ( 1 / 2 X l i s h e d (26).
— 2Y ) and (1/2 X
3
expanded
electrolytes, a n d t h e c o m p l e x f u n c t i o n s i n 3
— 4 Y ) calculated and pub
5
5
T h e r e s u l t of these expansions is to a d d a t e r m E
to t h e
e x t
e q u a t i o n for t h e a c t i v i t y coefficient g i v e n i n E q u a t i o n 2. F o r s y m m e t r i c v a l e n c e - t y p e electrolytes s u c h as h y d r o b r o m i c a c i d this t e r m is
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 25, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch022
£
ϊ η 1 ο { ( ^ )
- =
3
Ι ^ - 2 7 3
( ^ )
+
5
μ
5
- 4 Γ
5
} . (H)
T h e terms 1 / 2 X
-
3
p l i c a t e d f u n c t i o n s of ^
2 Y a n d 1/2 X 3
where ^
-
5
4 Y i n E q u a t i o n 11 are c o m 5
is d e f i n e d as
r&re Nd m~p
j.
2
^
|_
0
1 0 0 0 D f c 3
n
2
>
J '
T h e s t a n d a r d p o t e n t i a l of t h e g a l v a n i c c e l l ( E q u a t i o n 3 ) w h i c h is also t h e s t a n d a r d p o t e n t i a l of t h e s i l v e r - s i l v e r b r o m i d e e l e c t r o d e is g i v e n by E° =E °
=E °'
m
(13)
+ E .
m
ext
W h e n t h e p r o p e r c h o i c e of the constants â a n d b are m a d e , t h e f u n c t i o n (E °' m
-f- E
e x t
)
should be
constant
w i t h i n t h e l i m i t s of t h e
extended
D e b y e - H u c k e l theory. I n c a l c u l a t i n g E ° ' t h e v a l u e of t h e e q u a t i o n f o r m
l ° g Ύ± ( E q u a t i o n 6) w h i c h m u s t b e s u b s t i t u t e d i n t o E q u a t i o n 4 b e c o m e s A (n î » ) i 7
l 0 g
J
±
=
1 + Bâ°(d m ) * "
l 0 g
+ °-
( 1
0 0 2
m
M
x
y
)
+
b
m
+
E e x t
-
(14)
F o r t h e t h e r m o d y n a m i c f u n c t i o n s for t h e process o c c u r r i n g i n t h e c e l l at s t a n d a r d state, the s t a n d a r d free energy, A G ° , s t a n d a r d e n t h a l p y , AH°,
a n d s t a n d a r d e n t r o p y , A S ° , are g i v e n b y the respective AG
0
°
AH
(cal/mol) ;
— -nFE°
=
f(T/T)
d
equations:
)
( / >; cal
mol
(15)
(
16)
and A S ° ~
A
H
° - *
F
°
(eu).
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(17)
364
T H E R M O D Y N A M I C BEHAVIOR O F E L E C T R O L Y T E S
H
T h e s y m b o l η is t h e n u m b e r of F a r a d a y s p e r m o l e of c e l l e l e c t r o l y t e reacting: η =
1 f o r the c e l l i n v o l v i n g H B r . T a b l e I I contains t h e c a l c u
l a t e d v a l u e s f o r E°
( V ) , AG°
(cal/mol), ΔΗ°
( c a l / m o l ) , a n d AS°
(eu)
f o r t h e c e l l d e f i n e d b y E q u a t i o n 3 w h e n i t contains t h e i n d i c a t e d solvents. T a b l e I I I contains t h e e x p e r i m e n t a l q u a n t i t i e s ( e x c e p t t h e p o t e n t i a l , E ) a n d the constants u s e d t o d e t e r m i n e t h e s t a n d a r d p o t e n t i a l s of t h e c e l l ( E q u a t i o n 3 ). T h e i o n - s i z e p a r a m e t e r â for w a t e r a n d
terf-butanol-
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 25, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch022
w a t e r solvents is 5.50 Â, a n d f o r e t h a n o l a n d e t h a n o l - w a t e r i t is 5.00 A .
Discussion T h e v a l u e f o r E ° at 25 ° C i n w a t e r solvent f o r t h e c e l l r e p r e s e n t e d i n E q u a t i o n 6 is 0.07104 V , w h i c h is i n g o o d a g r e e m e n t w i t h t h e v a l u e s r e c o r d e d i n t h e l i t e r a t u r e : 0.07105 V ( J ) ; 0.07106 V ( 5 ) ; 0.07118 V a n d 0.07111 V (14).
(9);
A t 3 5 ° C t h e s t a n d a r d p o t e n t i a l of t h e c e l l i n w a t e r
w a s 0.06584 V c o m p a r e d w i t h t h e l i t e r a t u r e v a l u e s of 0.06577 V (1) 0,06585 V ( 5 ) .
and
A t 4 5 ° C i n w a t e r E ° w a s 0.06104 V w h i l e v a l u e s f r o m
t h e l i t e r a t u r e are 0.05999 ( 1 )
a n d 0.06102
(5).
I n 1 0 0 % e t h a n o l at 2 5 ° C , E ° f o r t h e c e l l r e p r e s e n t e d b y E q u a t i o n 6 w a s - 0 . 1 9 3 0 1 V w h i l e N u n e z a n d D a y ( 2 7 ) r e p o r t e d t h e v a l u e of
E°
t o b e - 0 . 1 8 1 6 V . T h e t w o v a l u e s differ b y 11.4 m V . T h e w o r k of W o o l c o c k a n d H a r t l e y (28)
agree w i t h o u r v a l u e of E°.
S c a t c h a r d (29)
found
that 0 . 1 % water contamination i n absolute ethanol caused a change
of
12 m V i n E ° of t h e c e l l d e f i n e d b y E q u a t i o n 3. T h e s e results w e r e s u b s t a n t i a t e d f u r t h e r b y G o l d e n b e r g a n d A m i s w h o reported sharp drops i n the equivalent conductance a c i d w h e n 0.3 w t %
(30),
of p e r c h l o r i c
water was a d d e d to either anhydrous ethanol or
a n h y d r o u s m e t h a n o l . T h e s e authors p o s t u l a t e d t h a t t h e c o n d u c t a n c e
drop
c o u l d be caused b y a decreased Grothous conductance along the h y d r o g e n - b o n d e d c h a i n s i n the p u r e a l c o h o l s , w h i c h r e s u l t e d f r o m t h e r u p t u r e of t h e c h a i n s b y p r e f e r e n t i a l s o l v a t i o n of t h e a l c o h o l m o l e c u l e s b y w a t e r r a t h e r t h a n b y other a l c o h o l m o l e c u l e s .
I t , therefore, seems r e a s o n a b l e
to assume t h a t a s m a l l a m o u n t of w a t e r c o n t a m i n a t i o n ( ^ 1 m L of w a t e r p e r 25.5 L of e t h a n o l ) w a s p o s s i b l y present i n the a l c o h o l u s e d b y N u n e z a n d D a y , a n d t h a t t h e c o r r e c t v a l u e of E° f o r t h e c e l l at 4 5 ° C i n 1 0 0 % e t h a n o l s h o u l d be —0.19301 V (expressed o n the m o l a l s c a l e ) as r e p o r t e d here. N o c o m p a r i s o n exists f o r the s t a n d a r d p o t e n t i a l s i n w a t e r m i x t u r e s or i n a n h y d r o u s d a t a o b t a i n e d here i n
terf-butanol
tert-butanol.
terf-butanol-
H o w e v e r , t h e trends i n t h e
are s i m i l a r to t h e trends o b s e r v e d i n
this w o r k i n e t h a n o l - w a t e r a n d i n a n h y d r o u s e t h a n o l . See F i g u r e s 1 a n d 2 i n w h i c h t h e s t a n d a r d p o t e n t i a l s E ° f o r t h e s i l v e r - s i l v e r b r o m i d e elec-
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
22.
ROBINETTE AND AMIS
Electromotive
365
Forces
Table II Calculated Values of E ° , A G , Δ Η , and A S for the Galvanic Cell Containing Hydrobromic ^Acid in Ethanol—Water, ferf-Butanol—Water Solvents, and i n the Separate Solvent Components 0
0
Τ (Κ)
E° m
(cal/mol)
100% H 0
298 308 318
0.07104 0.06584 0.06014
-1632 -1524 -1382
-5356
-12.44
30% Ethanol
298 308 318
0.06355 0.05714 0.05083
-1488 -1346 -1176
-6146
-15.58
60% Ethanol
298 308 318
0.03457 0.02932 0.02292
-870 -672 -537
-5844
-16.79
90% Ethanol
298 308 318
-0.02690 -0.04486 -0.06107
605 1036 1396
-11182
-39.67
99% Ethanol
298 308 318
-0-13294 -0.14653 -0.16877
3081 3334 3893
-9020
-40.11
100% Ethanol
298 308 318
-0.19301 -0.20182 -0.21082
4467 4648 4085
-561
-16.91
298 308 318 298 308 318
0.05516 0.04663 0.04441 0.11401 0.00252 -0.00952
-1278 -1072 -1051 -324 -55 216
-4650
-11.62
-8366
-26.98
9 1 % ieri-Butanol
298 308 318
-0.14864 -0.17402 -0.20090
3502 4110 4693
-14256
-59.63
99%
298 308 318
-0.27377 -0.31084 -0.34358
6533 7489 8370
-20850
-92.01
298 308 318
-0.30069 -0.33884 -0.36929
7164 7992 8675
-15367
-75.84
Solvent
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 25, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch022
0
2
30%
feri-Butanol
60%
(eri-Butanol
feri-Butanol
100% feri-Butanol
AG°
ΔΗ° (cal/mol)
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
AS (eu)
0
366
THERMODYNAMIC
BEHAVIOR O F E L E C T R O L Y T E S
Table III. Experimental Quantities Except the Potential Ε and the Constants Used in Calculating the Standard Potentials £ ° of the Cell i n Equation 3. Radius is 5.00 Â for Water, Ethanol and Ethanol-Water and 5.50 Â for tert-6 Butanol and ferf-Butanol—Water Solvent Τ (Κ)
D
d ( g/mL)
~Pvapor (mm)
b
100% Water
298.16 308.16 318.16
78.34 75.00 71.59
0.99708 0.99406 0.99025
23.76 42.18 71.88
0.00 0.00 0.00
30% ieri-Butanol
298.16 308.16 318.16
52.71 49.79 46.88
0.94600 0.93868 0.93088
25.48 45.39 77.72
0.90 1.20 1.50
60% ieri-Butanol
298.16 308.16 318.16
27.94 25.99 24.02
0.87559 0.86717 0.85802
28.63 51.29 88.42
1.40 1.70 2.10
9 1 % ieri-Butanol
298.16 308.16 318.16
12.46 11.44 10.46
0.80146 0.79200 0.78223
36.72 66.43 115.89
-3.70 -1.80 -0.70
99% ieri-Butanol
298.16 308.16 318.16
10.08 9.07 8.30
0.78350 0.77348 0.76201
41.27 74.93 131.33
-5.00 -3.50 -1.50
100% ieri-Butanol
298.16 308.16 318.16
9.90 8.85 8.30
0.78150 0.77090 0.76043
42.00 76.30 133.80
1.20 1.40 1.60
30% Ethanol
298.16 308.16 318.16
60.98 58.04 55.16
0.95117 0.94427 0.93701
28.82 51.01 86.54
3.00 3.30 3.70
60% Ethanol
298.16 308.16 318.16
43.38 40.96 38.66
0.88404 0.87874 0.86972
36.79 64.92 109.64
6.50 7.00 7.90
90% Ethanol
298.16 308.16 318.16
28.12 26.44 24.86
0.81401 0.80507 0.79560
51.20 90.09 151.40
9.70 10.10 11.00
99% Ethanol
298.16 308.16 318.16
24.57 23.15 21.79
0.78759 0.77852 0.76947
58.11 102.20 171.40
0.30 1.70 4.60
100% Ethanol
298.16 308.16 318.16
24.20 22.79 21.53
0.78506 0.77641 0.76761
59.00 103.70 174.00
2.70 5.80 14.30
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 25, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch022
Solvent
0
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
II
22.
ROBINETTE AND AMIS
Electromotive
367
Forces
t r o d e are p l o t t e d a g a i n s t w e i g h t - p e r c e n t e t h a n o l a n d w e i g h t - p e r c e n t tertbutanol, respectively.
T h e plots i n t h e t w o
figures
are q u i t e s i m i l a r .
S i m i l a r trends w e r e o b s e r v e d f o r t h e s i l v e r - s i l v e r b r o m i d e electrodes i n the m e t h a n o l - w a t e r system ( 9 )
a n d f o r t h e s i l v e r - s i l v e r i o d i d e electrode
i n the m e t h a n o l - w a t e r system ( J O ) . M a c l n n e s ( 3 1 ) also p o i n t s o u t s i m i lar trends. A l l c e l l p o t e n t i a l s r e a c h e d e q u i l i b r i u m i n 1 or 2 h r , except w h e n t h e Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 25, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch022
solvent w a s a n h y d r o u s
terf-butanol,
i n w h i c h t h e electrodes r e a c h e d e q u i
l i b r i u m o n l y i n d i l u t e soltuions of H B r a n d e v e n t h e n o n l y i n a s l u g g i s h m a n n e r . T h i s s l u g g i s h b e h a v i o r has b e e n r e p o r t e d ( 2 7 )
f o r the s i l v e r -
silver b r o m i d e electrode i n anhydrous ethanol w h e n the a c i d was con c e n t r a t e d . I n t h e d i l u t e h y d r o b r o m i c a c i d solutions u s e d h e r e , t h i s p h e n o m e n a w a s n o t o b s e r v e d i n a n h y d r o u s e t h a n o l . I t is e s t i m a t e d t h a t t h e s t a n d a r d electrode p o t e n t i a l of t h e s i l v e r - s i l v e r b r o m i d e electrode anhydrous
terf-butanol
in
is a c c u r a t e to o n l y ± 1 m V . H o w e v e r , these d a t a
are r e p o r t e d to t h e same degree of p r e c i s i o n f o u n d i n t h e other
terf-buta-
n o l - w a t e r solvents i n o r d e r to f a c i l i t a t e c o m p a r i s o n s of t h e e m f s i n t h e v a r i o u s d i l u t i o n s of f e r f - b u t a n o l u s e d .
Ό.00
20.00
40.00
60.00
80.00
100.00
WEIGHT PERCENT ETHANOL
Figure 1. Standard potentials of the cell Pt, \ H Y % water \ AgBr-Ag in ethanol-water (radius = 35°C; (A), 45°C.
2
HBr(m), X % alcohol, 5.00): (Π), 25°C; (O),
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 25, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch022
368
T H E R M O D Y N A M I C BEHAVIOR OF E L E C T R O L Y T E S
?i
1
0.00
1
20.00
40.00
1
β0.00
II
1 100.00
1
80.00
HEIGHT PERCENT T-BUTYL ALCOHOL
Figure 2. Standard potentials of the cell Pt, H« | HBr(m), X% alcohol, Y % water \ AgBr-Ag in teri-butanol-water (radius = 5.50): (Π), 25°C; (O), 35°C; (A), 45°C. F i g u r e s 3 a n d 4 c o n t a i n g r a p h s of t h e f u n c t i o n s AG°/T the
ethanol-water
These plots were
and
the
terf-butanol-water
systems,
VS. 1 / Γ
for
respectively.
used i n calculating the standard enthalpies,
ΔΗ°,
( E q u a t i o n 16) f o r t h e r e s p e c t i v e solvent systems. T h e c u r v e s s h o w slopes of the same g e n e r a l signs a n d orders as f o u n d f o r t h e s i l v e r - s i l v e r b r o m i d e electrode
(9)
a n d for the s i l v e r - s i l v e r iodide electrode
m e t h a n o l - w a t e r solvents. F i g u r e 5 is a p l o t of AH° alcohol for the respective e t h a n o l - w a t e r a n d systems. T h e
tert-butanol
a n d c o - w o r k e r s (8,10). (10,38).
in
terf-butanol-water
solvent
d a t a s h o w t h e same t r e n d s as t h e c o r r e s p o n d i n g
data for the s i l v e r - s i l v e r chloride electrode solvent system ( 3 2 ) .
(10)
vs. w e i g h t - p e r c e n t
i n the
teri-butanol-water
T h e y are also of t h e same t y p e as those b y A m i s T h e s e d a t a c a n b e e x p l a i n e d p o s s i b l y as f o l l o w s
A f t e r a n i n i t i a l decrease i n t h e s t r u c t u r e of h i g h l y h y d r o g e n -
b o n d e d w a t e r c a u s e d b y t h e a d d i t i o n of s m a l l a m o u n t s of
teri-butanol,
f u r t h e r a d d i t i o n of a l c o h o l increases the s t r u c t u r e of the solvent s y s t e m , p r o b a b l y b y t h e selective s o l v a t i o n of t h e a c i d ions b y a l c o h o l . A l c o h o l m o l e c u l e s w i l l fit i n t o the l a t t i c e s t r u c t u r e of w a t e r u n t i l t h e c o m p o s i t i o n of a l c o h o l b e c o m e s greater t h a n t h a t of w a t e r (34). at 8 0 - 9 0 w t %
terf-butanol
(49.3-68.6 m o l %
This should occur
terf-butanol).
A
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
change
22.
ROBINETTE AND AMIS
Electromotive
369
Forces
i n slope of t h e e n t h a l p y c u r v e s occurs at 90 w t %
terf-butanol
indicating
a p o s s i b l e c h a n g e i n i o n s o l v a t i o n at t h i s s o l v e n t c o m p o s i t i o n . T h e r a p i d r i s e i n e n t h a l p y b e t w e e n 99 a n d 100 w t %
terf-butanol
m a y arise f r o m t h e b r e a k i n g d o w n of l o n g c h a i n associations f o u n d i n p u r e a l c o h o l b y a d d i n g a v e r y s m a l l a m o u n t of w a t e r ( 3 0 , 3 5 ) . T h e effect of w a t e r o n t h e s t r u c t u r e of a l c o h o l s m u s t d e p e n d l a r g e l y o n c o m p e t i t i v e hydrogen b o n d i n g similar to that f o u n d i n a c i d - b a s e e q u i l i b r i u m ( 3 6 ) . T h e o r d e r o f i n c r e a s i n g b a s i c s t r e n g t h of a l c o h o l s is ( 3 7 , 3 8 ) : C H O H