Anal. Chem. 1990, 62, 255 R-267 R (112) Rfereton, R. (3. Anal. Roc. (London) 1989, 26, 311-2. (113) Park, M. K.; Hye, R.; Kim, K. H.; Cho, J. H. Arch. phemcal Res. 1988, 1 1 , SS-113. (114) Cahn, F.; Compton. S. Appl. Spechsc. 1988, 42, 865-72. (115) Johnston,R. E.; Fayer, M.; DeShnone, S. Lubr. Eng. 1988, 44. 775-7. (116) Donahue, S. M.; Brown, C. W.; Obremskl, R. J. Appl. Spectrosc. 1988,42,353-S. (117) Y i g , L.; Levhe. S. P. Anal. Chem. 1989. 61. 677-83. (116) Mahowski, E. R. ASTM Spec. Tech. M l . 1987, 934 (Cornput. Quant. Infrared Anal.), 155-68. (119) Pldgeon, C.; Apostol, G.; Markovich, R. Anal. Blochem. 1989. 18, 28-32. (1110) Beamhemin, B. T., Jr.; Brown, P. R. Anal. Chem. 1989, 61, 615-8. (1111) Rekrecke. D.: Jansen, A.; Fister, F.; Schernau, U. Anal. Chem. 1988, 60, 1221-4. (1112) Lanser, A. C.; Emken. E. A. J. Am. 011 Chem. Soc. 1988, 65, 1483-7. (1113) cde,K. C.; Rkn, A.; Noel, D.; Hechler. J. J.; Chouliotis, A.; Overbury, K. C. Appl. speclrosc.1988, 42, 761-9. (1114) Braue, E. H.. Jr.; Pannella, M. G. Mkrochlrn. Acta 1987, 7 , 11-16. (1115) Chatti, E. 0.;Urban, M. W.; Ishida, H.; Koenig. J. L.; Laschewski, A.; RhgSdOIf. H. L B m 1988, 4, 846-55. (1116) Belton, P. S.; Saffa, A. M.; Wilson, R. H. Roc. SPIE-Int. Soc. Opt. Eng. 1988, 9 7 7 ( R m t Dev. Appl. Infrared Anal. Instrum.), 72-7. (1117) HerteUer, K. F.; aiullkry, J. K. phenn. R w . 1989, 6 . 608-11. (1118) Sketer, I?.1.;Matlock, M. G. JAOCS, J. Am. OilChem. Soc. 1989, 85. - - , 121-7. .- . . . (1119) Moesoba. M. M.; Nlemann, R. A.; Chen, J. Y. T. Anal. Chem. 1989, 61. 187685. (1120)’ Qurka, D. F.; Farnham, I.; Potter, B. B.; Pyle, S.; Titus, R.; Duncan, W. Anel. Chem. 1989. 61, 15644. (1121) Uklcl, B. mt.Res. Techno/. 1985, 20, 1133-9. (1122) Sapersteln, D. D. Langmuk 1987, 3, 81-5. (1123) Regoilnl, J. L.; Stoquert. J. P.; Ganter, C.; Slffert, P. J. €/&rochem. SOC. 1988, 733, 2165-8. (1124) Ogbs, A. S.; Newman, R. C.; Wodley, R.; Davies, 0.;Llghtowlers, E. C.; Blnns. M. J.; Wllkes, J. G. Appl. Phys. Lett. 1985, 47, 705-7.
(JJ) FT-RAMAN AND NEAR-IR RAMAN SPECTROSCOPY
(JJ1) fnt. Conl. Ramen Spectfosc. Roc., 1 fth, Clark, R. J. H., Long, D. A., Eds.; Wlley: Chichester, UK, 1988; 1034 pp. (JJ2) Vibrational Spectra and Structure, Vol. 17A : Raman Spectroscopy SLxfy Years On; Bist, H. D.,Durig, J. R., Sullivan, J. R., Eds.; Elsevier: Amsterdam, Neth., 1989; 630 pp. (JJ3) Gerrard, D. L.; Bowley, H. J. Anal. Chem. 1988. 60, 368R-377R. (JJ4) Schrader, B.; Simon, A. h4krochim. Acta 1987, 2, 227-30. (JJ5) Buljs, H.; Guy, H.; kdeleau, A.; Dlon, S.; Ismaei, A. Am. Lab. 1989. 27, 62, 64, 66, 68-9. (JJ6) Chase, D. B. FT-Raman Spectroscopy. Int. Conf. Ramen Spectrm., Proc., 71th; Clark, R. J. H., Long, D. A., Eds.; Wlley: Chichester. UK, 1988; pp 39-42. (JJ7) EveraH, N. J.; Howard, J. Appl. Spectrosc. 1989, 43, 778-81. (JJ8) Willlamson, J. M.; Bowling, R. J.; McCrwry, R. L. Appl. Spectrosc. 1989, 43, 372-5. (JJS) Trip, C.; Buijs, H. Mikrochim. Acta 1987, 2, 209-13. (JJ10) Archibald. D. D.; Lin, L. T.; Honlgs, D.E. Appl. Spectrosc. 1988. 42, 1558-63. (JJ11) Bergin, F. J.; Shurvell, H. F., Appl. Spectrosc. 1989. 43, 516-22. (JJ12) Hanniet, M.; Jawhari, T.; Rogaud, I . A. M. J. Chim. Phys. Phys.Chim. Biol. 1989, 86, 431-50. (JJ13) Williams, K. P. J.; Parker, S. F.; Hendra, P. J.; Turner, A. J. Mkrochim. Acta 1987, 2 , 231-4. (JJ14) Hendra, P. J.; LeBarazer, P.;Crookell, A. J. Ramen Spectrosc. 1989, 20, 35-40. (JJ15) Purcell. F. J.: Heinz. R. E. Am. Lab. 1988. 20. 34-8. iJJl6j Crodteil, A.; Fleihmann, M.; Hamlet, M.; liendra, P. J. Chem. Phys. Let!. 1968. 749. 123-7. (JJ17) Lewis.’E. N.1 K b i n s k y , V. F.; Levln, I . W. Appl. Spectrosc. 1989, 43, 156-9. (JJ18) Lewis. E. N.; Kalasinsky. V. F.; Levin, I. W. Appl. Spectrosc. 1988, 42, 1188-93. (JJlS) Lewis, E. N.; Kalaslnsky, V. F.; Levin, I . W. Anal. Chem. 1988. 60, 2658-61.
Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry Linda B.McGown Department of Chemistry, Duke University, Durham, North Carolina 27706
Isiah M.Warner* Department of Chemistry, Emory University, Atlanta, Georgia 30322
A. INTRODUCTION This review covers the two-year period since our last review (AI), roughly from October, 1987, through November, 1989. A computer search of Chemical Abstracts provided most of the references, supplemented by contributionsof reprints from individual research groups and manual searches of ’ournal contents. Coverage is limited to articles that describe new developments in the theory and practice of molecular luminescence for chemical analysis in the UV-visible region. Citations may be duplicated between sections due to content that spans several topics. In general, citations are limited to journal articles and do not include proceedings reports and dissertations. Although we are not able to provide extensive covera e of developments in broad areas such as chromatograpEy and biological sciences, we have tried to include major review articles and chapters relevant to these topics.
B. BOOKS, REVIEWS, AND CHAPTERS OF GENERAL INTEREST The second volume in a series on methods and applications of molecular luminescence by Schulman (BI)includes chapters on solid-surface luminescence, time- and phase-resolved QQQ3-27QQl9QlQ362-255R~Q9.5Qf Q
spectroscopies, fiber ogt ical fluvosensors, high-resolution luminescence spectroscopy, lanthanide ion luminescence from inorganic solids, and luminescence studies of proton-transfer kinetics in excited-stateacids and bases. A new ASTM volume on analytical luminescence, edited by Eastwood and Cline Love (B2),offers discussions of the optimization of fluorescence measurements, frequency-domain fluorescence lifetime detection for HPLC, photochemical reaction detection in HPLC, the use of chiral support electrolytesfor the resolution of DL-amino acids in capillary zone electrophoresis, fluorescence techniques for studying of olycyclic aromatic carcinogen-DNA adducts, the use of cfemiluminescence for the excitation and determination of protein-fluorophore complexes, proton-transfer kinetics of very weak bases, a review of selective fluorescence derivatization for chromatographic detection, and fiber optics in fluorescence analysis. A new volume in the ACS symposium series (B3)includes applications of luminescence in a variety of fields, including biology, chemistry, environmental science, and hydrology. Other conference Droceedings described luminescence spectroscopy __ in technoldgy (BI-BG). Articles reviewed multidimensional fluorescence (B7), fluorescence spectrometry in chemical analysis and color science (B), highly resolved molecular luminescence (B9),and 1990 American Chemical Society
255 R
MOLECULAR FLUORESCENCE
the 1986 literature in bioluminescence and chemiluminescence
(BIO).
C. GENERAL INSTRUMENTATION General considerations related to luminescence instrumentation are covered in this section. Particular emphasis is placed on im rovements in conventional instrumentation as well as deve opments in new instrumentation. Winefordner and co-workers ( C l ) recently described a rather simple fluorometer consisting of a light-emitting diode as an excitation source and a photodiode as a detector. The stability of this system allowed concentration measurements with a precision of better than 0.002%. Others described a simple silicon photodiode-based luminometer for measuring luminescence from chemiluminescent and bioluminescent reactions (C2). An improved ower suppl circuit for xenon flash lamps was described (83). Most ofthe important parameters for control of the flash lam are programmable directly from the interfaced computer. he versatility of this new system is demonstrated by usin an 8.3-W xenon flash lamp. A model for predicting the abso ute radiative emission and absorption spectra of xenon flash lamps was also described ((24). A simple and inexpensive fluorometer, which uses an inexpensive nitrogen laser source, was developed (C5). Detection limits on this system are comparable to those obtained with a conventional fluorometer. Theisen recently described a procedure for eliminating or minimizing the effects of stray and scattered light through a combination of improved optical ath, filterin , and comuter processing (C6). A new met od for wavefength caliThis Eration of monochromators was also described (0. rocedure is based on the distortion in fluorescence introduced y glass filters, which are commonly used in calibration of spectro hotometers. Burrell and Hurtubise described a novel sampleRolder for easy positioning of solid and liquid samples (C8). Multichannel detectors continue to be used for luminescence measurements. Denton and co-workers described a novel fluorometer that uses a charge-coupled device as a two-dimensional detector and a mercury pen lamp as an excitation source (C9). Various characteristics of the system are described, including limits of detection, dynamic range, and drift compensation for the excitation source. Another article by the same group describes the process of selectively combining photogenerated charge from several detector elements into a single charge packet ((210). This process, referred to as “binning”, allows an increase in effective detector dynamic range and sensitivity for spectroscopic measurements. Other articles from Denton’s grou are also relevant to our discussion (CII-C15). A review articE that outlines the utility of image intensifier-vidicon systems for current research problems in physics and biology was published (C16). Another article outlines the utility of photodiode array detection for highresolution luminescence measurements (CI 7). Vickers and co-workers described a procedure for simultaneous spectral measurement of analyte and reference sample using a linear photodiode array detector (C18). The utility of an intensified hotodiode arra fluorometer for pharmaceutical analysis has Eeen described l y Clark and Fell (C19). Particular emphasis is placed on the analysis of drugs and toxins. The design of an imaging spectrometer, suitable for a wide range of biological measurements, has been described (C20). This sytem can be used for ima e measurements with both fluorescence and absorbance proses. A rapid scanning fluorometer based on the use of an acoustooptic tunable filter has been developed (C21). Excitation and emission spectra of a probe molecule were acquired in 17 ms with a spectral resolution of 4 nm. A number of miscellaneous articles relevant to this section can also be cited. For example, Munoz de la Peiia and coworkers described a simple interface for coupling a fluorometer to a low-cost computer (C22). An article by Crouch and co-workers describes a computer-controlled luminescence spectrometer for room-temperature hosphorescence spectral and lifetime measurements (C23). fngle and co-workers described a spectrometer that uses optical fibers to simultaneously measure absorbance and fluorescence or chemiluminescence (C24).
P
&
s
R
E
256R
ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990
Two systems for photon counting were described. The fiit
(CW) couples photon-counting techniques with a new low-cost
streak camera readout system to achieve high sensitivity and wide dynamic range. A second system (C26) uses a doublemicrochannel plate in combination with photon counting for simultaneous quantitation of luminescence from multiple samples. Ingle and co-workers described an automated sample cell cleaner (C27) and a method for monitoring and compensating for temperature and pH fluctuations between sample runs using kinetic-based measurements (C28).
D. LASER-BASED TECHNIQUES Despite the high initial investment, continued improvements and developments in laser technology have made lasers viable excitation sources and probes of molecular luminescence. This section reports the development and application of lasers in luminescence measurements. Reviews. Several reviews can be cited regarding laser applications in luminescence over the past two years. Small and Jankowiak reviewed the principles and instrumentation critical to fluorescence line-narrowing spectroscopy with particular emphasis on applications to the study of cellular damage and chemical carcinogenesis (01).Mukamel reviewed the solvation effects in four-wave mixing and spontaneous Raman and fluorescence line shapes (02). The utility of laser spectroscopy in energy, environmental, and medical research has also been reviewed (03). Another review covers the experimental and spectroscopic as ects of laser-induced fluorescence and high-resolution ourier transform spectroscopy (04). The detection limits for amino acids in environmental samples have been reviewed with particular emphasis on fluorescent derivatives in liquid chromatography and laser-induced fluorescence (05). The use of laser-excited luminescence for detection of latent fingerprints has also been reviewed with citation to eight references (06). In the area of semiconductor laser fluorometry for biochemical analysis, Imasaka and Ishibashi provided a review with eight references (07). Applications. A new system of laser dyes was discovered (08). These dyes belong to two groups of quasi-aromatic heterocyclic compounds. A tunable dye laser for spectroscopic applications was described (09). This computer-controlled system delivers radiation in the spectral ranges of 260-300 and 400-600 nm. Lytle and co-workers described a ring dye laser as a source for two-photon excited fluorescence (010). Other studies in two-photon excited fluorescence re orted multipoint measurements in optically dense media ( E l l )and remote sensing in an optically dense environment usin a single multimode fiber optic (012). Other workers descrited a new method of Dop ler-free two-photon spectroscopy (013). T i e electrothermal vaporization and laser-induced fluorescence of polyaromatic hydrocarbons was reported by Winefordner’s group (014). This study was conducted using a graphite furnace for vaporization, and the utility of this technique for screening polyaromatic hydrocarbons was evaluated. Laser-based studies of fluorescence line-narrowing spectroscopy (FLNS) continue to receive attention. The analytical implicationsof laser intensity effects in FLNS were evaluated (015). Two related studies reported the anal ical utility of hole-burning in FLNS (016,017). Riebe and right reported on four-wave mixin FLNS, which is described as the nonlinear analogue of #LNS (018). A number of studies in the area of supersonic jet spectroscopy can also be cited. Stiller and Johnston have examined the mechanism of coolin in sheath-flow-focused supersonic jet expansions (D19). ?h is same research group has also performed su rsonic jet spectrosco of compounds dissolved in liquids anrsupercritical fluids rA20). In related studies, Goates et al. examined the analytical potential of supersonic expansions of supercritical fluids of polycyclic aromatic hydrocarbons (021). Wehry’s group continues to exploit the advantages of laser photofragmentation for the analysis of several species including nitromethane (022), ammonia and aliphatic amines (023),and volatile 6-diketonate metal chelates (024). Other studies from this same group demonstrate the utility of tunable laser excitation for site-selection fluorescence spectrom-
P
#
MOLECULAR FLUORESCENCE Idsh Manuel Warner is Samuel Candler 4 Dobbs Professor 01 Chemistry at Emory 1 Universny. He received his B.S. degree from Sournern Universily at Baton Rouge in 1968. From 1968 10 1973. he wwked for Banelle Norlhwest In Richland. WA. as a Research Chemist. He entered graduate school at the University of Washington in 1973 and received his W.D. in 1977. He was on the chemistry tacuity at Texas A&M Universily lor 5 years from 1977 to 1982 and was granted tenure and promolion effective September. 1982. HOWBYW.he pined the chemistry d e p a m n t of Emory i University in 1982. In 1984, he was one of . . \ ..'\ 200 scientists awarded PresMentiil Young Investigator awards. His Current research interests include (1) iuminescence SpeCtrOSCopy. (2) analyiical chemistw in oroanlred media. 13) chemomehics. and 14) environmental chemisI&. He holds two palen%.reiated to these areas 0; kearch. He is COBdiIor wilh pTo1esso1Linda McOown of an upcoming monograph on Muftidimensional Luninescence &aswemnS. He is a member of lhe American Chemical Saciely. Sociely for Applied Spec@oscopy. National OraaniratDn of Black Chemists and Chemical Engineers. and Sigma Xi.
I
!
~
Linda Bslne McGown is an Associate Prw fessor of Chemism at Duke Universily. She received her B s. degree from me state
etry of polycyclic aromatic hydrocarbons in vapor-deposited argon matrices (025)and dibenzacridine isomers (026). Pace and Maple reported the analytical utility of laser-induced phosphorescence of halogenated naphthalene derivatives (027). Lasers continue to he important sources for picosecond spectroscopic measurements. Spano and Warren recently demonstrated the utility of picosecond, phase-shifted laser pulses for fluorescence measurements (028). Berndt et al. recently reported new approaches to picosecond laser fluorescence spectroscopy using Si avalanche photodiodes as optoelectronic cross-correlators (029). Laser diodes are being used as excitation sources for fluorescence measurements. Winefordner and co-workers reported ultralow detection limits for an organic dye using laser diode excitation (030). Another study has reported low detection limits for rhodamine 800 using a visible semiconductor laser (031). A few miscellaneous studies should also be cited. Verdieck et al. have used exciplex fluorescence to provide real-time visualization of fuel spray liquid/vapor distribution (032). Peterson et al. have used the anomalous fluorescenceof pyrene to measure flame temperature (033). Finally, Lytle and coworkers have used time-resolved fluorometry to identify immobilized bacteria by aminopeptidase profiling (034). With this procedure, the total turnaround time for the assay can he shortened by a factor of 8-20.
E. FIBER-OPTIC-BASED TECHNIQUES Applications of luminescence analysis with fiber optics continue to expand. As noted in our previous review, this trend is likely to continue, and accordinglywe have designated a separate section for these applications. Reviews. A number of reviews on fiber optics can be cited. Burgess et al. reviewed the operating principles and optical configurations of typical fiber optic fluorescent sensors ( E l ) .
Seitz provided a review with 108 references on fiber optic sensors based on immobilized indicators (E2). Heiman et al. reviewed fiber optics for spectroscopicmeasurements including luminescence, reflectance, Faraday rotation, optical transmission, and Raman scattering (E3). Harmer also reviewed chemical sensors based on optical detection methods ( E 4 ) . Wolfbeis provided an extensive review with 253 references on fiber optical fluoroesensors in analytical and clinical chemistry (ES).Another review by Wolfbeis highlights the use of immobilized fluorescence probes for fiber-optic sensing (E6). Schlager provided a short review on the utility of fiber fluorometric analyzers for on-line analytical measurements (E7). Narayanaswamy and Russell reviewed the developments of fiber-optic sensors for sensing ionic chemical species in solution (Ea). Applications. Applications of optical fibers in luminescence measurements are extensive. However, Hieftje and co-workers showed that background luminescence can originate from the optical fiber (E9). Louch and Ingle did an experimental comparison of remote fiber-optic fluorescence using single- and double-fiber configurations (EIO). Many improvements in fiber-optic sensors for traditional measurements can he cited. These improvements include new sensors for glucose (EII-EZ3), oxygen (EM,E15), temperature ( E X ) ,and humidity (EI7). Wolfbeis and Marhold evaluated a new series of fluorescent pH-indicators as potential sensors for fiber-optic measurements (EJ8). Flow injection analysis has been combined with fiber optics for pH measurements (EZ9). Fiber-optic sensors have been widely employed for biological measurements. An enzyme-basedfluorescence sensor has been described (E20). A sensor based on the micellar-mediated chemiluminescence reaction of luminol was also described (E21). Seitz and co-workers described the use of cross-linked poly(viny1 alcohol) as a substrate for fiber-optic indicator immobilization (E22). Blum et al. developed a fiber-optic probe based on the use of immobilized bioluminescence enzymes (E23). Trettnak and Wolfbeis reported a reversible sensor for lactate (E24). A similar system for measuring lactate and pyruvate was reported by Wangsa and Arnold (EW). A very sophisticated fiber-optic system was combined with phosphorus-31 NMR to monitor the in vivo intracellular energy state (E26). Vo-Dinh reported the development of an improved fiber optics luminescence skin monitor (E27). The new system incorporates an electronic nulling system for background correction. This instrument has also been employed for fluorescence detection of phototoxic psoralens in various vegetable products (E28). King et al. reported the development of a fiber-optic probe for in vivo determination of photosensitizing drugs used in photochemotherapy (E29). Wolfbeis reported the development of an ion-selectiveoptrode for measurement of calcium ions (E30). A number of instrumental configurations have been designed to exploit the advantages of fiber-optic measurements. For example, Reichert et al. developed a system for measurement of emission spectroscopy using an optrode-based UV-vis spectrophotometer (E3I). Hieftje and co-workers developed a new phase-resolved phosphorescence spectrometer based on the use of fiber-optic measurement (E32). This system employs a CW UV Ar ion laser as an excitation source. Bright described a fiber-optic based multifrequency phasemodulation fluorometer (E33, E34). Winefordner and coworkers described the development of a new technique of fluorescence detection using liquid core fibers (E35). In this approach, the dissolved analyte is pumped through a hollow core fiber that is excited at one end by using laser excitation and detected at the other end. Bright and Litwiler described the multicomponent analytical capabilities of a fiber-opticbased single-frequency phase-resolved fluorometer (E36). The capabilities for measuring ions in solution have received considerable attention from the fiber-optic research community. Christian and Seitz have developed an optical ionic strength sensor based on polyelectrolyte association and energy transfer (E37). This same group has described a general approach for the development of luminescent sensors for cations (E38). Hieftje and co-workers characterized and compared three fiber-optic sensors for measurement of iodide ion (E39). This group has also evaluated the fluorescence spectra and lifetimes of several fluorophores immobilized on nonionic resins (E4O). It was determined that these systems ANALYTICAL CHEMISTRY. VOL. 62, NO. 12. JUNE 15. 1990
-
257R
MOLECULAR FLUORESCENCE
may beptentially ugeful as fiber-optic sensors. A fiber-optic sensor or determmabon of tnvalent aluminum, gallium, and indium ions was also reported (E41). This system is based on the immobilization of metal ion chelators. A few miscellaneous applications of fiber optics should also be cited. Ping and Walt developed a mathematical calculation for describing different mechanisms of fluorescence modulation by absorbing s ecies, as applicable to fiber-optic measurements (E42). Figer optics have also been used to measure the column profile of a fluorescent dye (E43). A two-fiber o tical cod1 ation was used to measure the electrochemical e fects on tcfluorescence and chemiluminescence of an ethenium bromideDNA fluorescent system (E#). Finally, Whalen and Martyak described a fiber-optic-based luminescence spectrometer (E45).
F
F. SAMPLE PREPARATION, SOLUTION EQUILIBRIA, QUENCHING, AND RELATED PHENOMENA Sample Deoxygenation. Deoxygenation of solutions for
fluorescence measurements continues to be of interest. Barboy and Feitelson described an all- lass vessel for deoxygenation of solutions for transient stuiies (FI). MacCrehan et al. described an on-line oxygen scrubber for liquid chromatography (F2). This system has particular utility for electrochemical and fluorescence detection in liquid chromatography. Bacon and Demas described a method for measurement of oxy en in solution (F3)that is based on oxygen quenching of the Yuminescence of a transition-metal complex immobilized in silicone rubber. Quenching and Energy Transfer. Wolfbeis and Trettnak described a detailed study of the quenching of cationic derivatives of acridine and 6-methoxyquinoline by various heavy metals and hydrogen sulfide (F4). This group also studied the sulfur dioxide quenching of several polycyclic aromatic hydrocarbons (F5).A recent pa r from the research group of Patonay outlined a detailed s t u g o f the fluorescence quenching of near-infrared fluorophores (F6). Wolfbeis and co-workers reported on the possible utility of l-aminop ene-3,6,&trisulfonate as a probe for thiamine and pyridine (&.This u8e is based on the quenching of the pyrene moiety in the presence of these species. Lakowicz and co-workers reported a new method for recovering the distribution of distances between two sites on flexible molecules by using steady-state fluorescence measurements (F8). Miscellaneous. Schulman and co-workers re rted on the hydrolysis kinetica of 6-methoxyquinoline in the E e s t excited singlet state (F9). A chapter from this grou reviews the kinetics of proton transfer of weak bases in the rowest excited singlet state (FIO).
G. DATA REDUCTION Corrected Spectra. A set of standards for correction of fluorescence spectra was produced and calibrated at the National Institute of Standards and Technology (GI). These standards may be used to correct for a number of instrumental artifacts, inclu those produced by optics, monochromators, and detectors. C ilds has described a procedure for removal of the instrument function from fluorescence spectra (G2). Yappert and Ingle have described a procedure for correction of inner filter effects in luminescence based on the use of a multiple detector spectrometer (G3). They also applied this procedure to correction of absorption and luminescence measurements of the lucigenin chemiluminescencereaction (G4). Quantum Yields. Velapoldi of the National Institute of Standards and Technology reviewed the status of liquid standards for use in fluorescence spectrometry with particular attention to problems with the use of such standards (G5). Velapoldi and Epstein also discussed the requirements for luminescence standards used in macro- and microspectrofluorometry (G6). A methods package for measurement of key Jablonski diagram arameters was described (0. A method was also descriged for accurate determination of relative quantum yields of the conformational species of autoassociating pol ptide gramicidin A in organic solvent (G8). This ap roach i x a s e d on the combined use of fluorescence and higg-performance liquid chromatography.
9
258R
ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990
Chemometrics. Rutan and co-workers described a Kalman filteri technique for analysis of polyaromatic hydrocarbons (G9).T h i s approach combines thin-layer chromatography (TLC) with fluorescence measurements. The same research roup also described the utility of the Kalman filter for %ackgroundcorrection in TLC ((210)and characterization of the effect of peak shifts ( C I I ) . Burdick and Tu recently described a procedure for resolving the luminescence spectra of binary mixtures ((712). This procedure is presented as a tool for deciding when and how to relax nonnegativity constraints in the resolution of overlapping spectra. Mathematical algorithms for the resolution of fluorescence lifetime data continues to receive attention. Wong and Harris described an al orithm for quantitative estimation of component amplitufes in time-resolved fluorescence spectroscopy (GI3). James et al. discussed the problem of fluorescent molecular systems that give rise to a distribution of decay times as a result of the complexity of the molecule or its environment ((214, G15). A procedure for recovery of these distributions is described. Demas provided a detailed discussion of errors in multicomponent analysis by use of phase-resolved luminescence spectracopy (GI6). Siemiarczuk and Ware used the maximum-entro y method to investigate the temperature dependence of t e fluorescence lifetime distributions in l,&bis(l-pyreny1)propane ((317).This study was performed to evaluate the excited-state equilibria that give rise to lifetime distributions. Miscellaneous. A Marquardt nonlinear algorithm for the resolution of the laser-induced excitation spectra of Eu(II1) was described (GI8). A method for characterizing molecular aggregation has been described (GI9). This algorithm has potential utility for study of biol 'calsystems. Sun et al. have described a self-modeling proc8ure for resolution of multicomponent luminescence spectral data (C20). Chatelier and Sa er described an isoparametric method for analysis of b i g n g and partitioning processes (6'21). Flom and Fendler reported the use of lobal analysis of the time de endencies of fluorescence depofarizations (G22). Warner et a! discussed the utility of data reduction strategies in combination with instrumental improvements for optimizing fluorescence measurements (G23).
h"
H. LUMINESCENCE I N ORGANIZED MEDIA Reviews. A number of reviews pertinent to organized media can be cited. Ramis Ramos et al. reviewed the utility of fluorescence spectroscopy for the study of micelles, reversed micelles, and microemulsions (HI). Eaton et al. discussed the general aspects of guest-host inclusion complexes with particular em hasis on aromatic chromophores as ests (H2). Demas a n tDeGraff discussed the interactions of K i n e s c e n t platinum metal complexes with various forms of or anized media (H3). Warner et al. discussed the use of cycdextrins to enhance selective detection in the emission-excitation matrix (H4). Cyclodextrins. Cyclodextrins are fiiding increas' for improved luminescence measurements. In a dition, utility fluorescence was used as a probe of the cyclodextrin cavity. For example, Nelson et al. described the general utilization of lifetime measurements to study cyclodextrin complexes with pyrene (H5). This group has also discussed the use of cyclodextrin complexation in combination with data reduction to achieve resolution of multicomponent samples (H6). Blais et al. evaluated the binding of 5-methoxypsoralen and 8methoxypsoralen with 8-cyclodextrin as a model for the study of lipophilic interactions in biological systems (H7). Patonay et al. investigated the influence of third components on cyclodextrin guest-host interactions with pyrene (H8). Kusumot0 described a fluorescence method for estimatin the formation constants of p ene with cyclodextrins (H9). &+e and co-workers descridmethods for enhancing the solubihty of cyclodextrins in aqueous solutions (HIO).Catena and Bright used steady-state fluorescence and anisotropy measurements to evaluate the binding of anilinonaphthalenesulfonates with 8-cyclodextrin (HII). Surfactants/Micelles. A number of interesting studies in the area of luminescence in surfactant/micellar media are noted here. Wolfbeis and co-workers used new superior lipid probes to evaluate the critical micelle concentration of nonionic surfactants (H12). This research group also evaluated
"li
MOLECULAR FLUORESCENCE
the fluorescence properties of four cabocyanine robes using He-Ne laser excitation (H13). De Schryver used f d - n c e techniques to study su ramolecular stmc€ures such as micelles and microemulsions (f)14). Armstron et al. (H15) and Spin0 et al. (H16) reported the use of mice es for enhancing resonance Raman signals. Siemiarczuk and Ware used the maximum entropy method to evaluate pyrene fluorescence in micellar media (H17).Micellar media were also used to as well as to enhance the determination of mazindol (H18) improve chemiluminescence measurement in the lucigenin Micellar enhancement of the fluororeaction system (H19). metric determinationof benzodiazepine has also been reported (H20). Nugara and King have evaluated the problems in room-temperature phosphorescence measurements that arise from precipitation of surfactant salts at high thallium concentrations (H21). The concluded that many of these problems can be avoided gy using mixed-surfactant systems that include a short-chain alkyl sulfate. An evaluation of the enhanced fluorescence detection limits of metal complexes in micellar media was reported (H22). Remarkable changes in the emission spectra of the complexes were observed near the critical micelle concentration. Demas and co-workers reported the interactions of ruthenium(1) (H23) and ruthenium(II) (H24) photosensitizers in surfactant media. Fendler and co-workers have used hologra hic interferometry to evaluate lipid bilayer membranes (&5). This approach apears to be very promising for topological evaluation of lipid ilayer membranes. McGown and Nithipatikom evaluated sodium taurocholate micelles for fluorometric analysis (H26). They also evaluated the effect of metal cations on the fluorescence intensity of polycyclic aromatic hydrocarbons in the micellar media (H27) as well as com ared ener transfer in this media to that in sodium dodecyrmicelles (&). Tran has reported a very novel use of micelles to enhance thermal lensing in aqueous media (H29, H30). The decay characteristics of the triplet state of metal chelates were evaluated by use of room-temperature phosphorescence (H31). Micellar enhancement of chemiluminescence has received considerable attention. Hinze and co-workers reported improvements in the lucigenin chemiluminescence reaction system in micellar media (H32). Haa akka et al. used electrogenerated chemiluminescence to etermine polynuclear aromatic hydrocarbons in micellar media (H33). The aluminum lumogallium system was also studied in surfactant media H34). Reversed micellar media was also used for luminescence measurements. Hinze reported the determination of glucose This group using luminol in a reverse micellar s tem (H35). also reported the use of reverse micegs for the determination of hydro en peroxide (H36) and L-amino acids and glucose (1137). +otal luminescence in an aerosol OT system was also reported (H38).
pi
E
f
1
I. LOW-TEMPERATURE LUMINESCENCE Applications employing low-temperature luminescence measurements continue to receive attention due to increased selectivity of the approach. Wehry and Mamantov reviewed matrix isolation in molecular spectrometry including fluorescence spectroscopy (11). Winefordner and co-workers evaluated a miniature cryogenic system for cooling in low-temperature luminescence measurements (12). This research group also described a self-cleaning continuous cooli belt for low-temperature luand applied it to the meaminescence measurements surement of polyc clic aromatic hydrocarbons in standard samples (14) as we6 as the same species in cooked beef (15). A spectrometer for acquiring low-temperature luminescence spectra was described by Pace et al. (16). Shpol'skii spectroscopy continues to f i d general utility for luminescence measurements. Garrigues et al. applied this a roach to the trace analysis of aromatic compounds (17). dymsjo and Ostman used the approach to isolate and fingerprint some high molecular weight polynuclear aromatic compounds (18). A fiber-optic-based ap roach to measurement of Sh ol'skii spectra was describefby Hieftje and coworkers (197 MacDonaid and Wehry recently reported the use of laser-induced site-selection matrix isolation for studying di-
(8
benzacridine isomers (110). Vo-Dinh and Lamotte used siteselection phosphorimetry to analyze mixtures of polycyclic aromatic compounds in Shpol'skii matrices (11I). Colmsjo recently investigated the low-temperature fluorescence of polynuclear aromatic hydrocarbons of molecular weights 328 (112) and 378 (113). Winefordner and co-workers reported room- and low-temperature phosphorescence studies of biphenyls and polychlorinated biphenyls (114) as well as various pharmaceutical compounds (115).This grou also reported the room- and low-temperature luminescence cEaracteristics of dibenzofuran, several polychlorinated dibenzofurans, and dibenzo-p-dioxins (116).
J. TOTAL LUMINESCENCE AND SYNCHRONOUS EXCITATION SPECTROSCOPIES Total luminescence s ectroscopy was reviewed (J1-J3), focusin on systems exhiliting excitation-dependentemission ( J I ,J2y and on biochemical applications (J3). Applications were demonstrated primarily for synchronous excitation luminescence, including determinations of pesticides b contechniques (J4)and benzo(a)pyrenemetagolites Several applications of derivative synchronous excitation were described (J6-J8), and the effect of solvent on peak resolution was studied (J9). The combination of spectra obtained by synchronous scanning at several different wavelength differences to form a three-dimensional synchronous array was also described for multicomponent analysis (JlO). Imasaka and co-workers described the combination of supersonic jet spectrometry with synchronous luminescence (J11),reporting a detection limit of 70 r M for anthracene and resolution analogous to 1010 theoretical plates in chromatography when a wavelength difference of zero is used in the synchronous scan. Applications to spectral fiigerprintin include synchronous excitation studies of coal extracts an%coal-derived liquids (J12) and total luminescence studies of petroleum-based products (J13). Winefordner and co-workers described gasoline and crude oil fingerprinting by constant-energy synchronous luminescence (J14),both at 77 K and at room temperature on filter paper.
:E;::?&.
K. SOLID-SURFACE LUMINESCENCE Reviews and Experimental Conditions. Hurtubise provided a chapter (Kl)and several review articles (K2-K4) on solid-surface luminescence. Instrumental develo menta include a sample holder for solid and liquid samples (g5)and a sample holder for solid-surfaceroom-temperture fluorescence and photochemical fluorometry (K6). Experimental conditions in room-temperature phosphorescence (RTP) on filter paper substrates were studied, including solvent effects (K7), temperature effects (K8, K9), and various conditions relati to the solid substrate (KIO).Substrates have been e v a l u a 2 including polyamide and crystalline cellulose materials used for thin-layer chromatography (K11)and a cellulose membrane coated with silica microparticles (K12).An inorganic phosphor was evaluated as a reference for RTP (K13). Enhancers and Modifiers. The effect of external heavy atoms for RTP on filter paper was studied (K14, K15),and a model for heavy atom analyte-substrate interactions proposed (K16). Filter aper was treated with thallium lauryl sulfate for the RTP &termination of PAHs at the nanogram level (K17). Vo-Dinh and co-workers studied the enhancement of RTP with cyclodextrin-treated filter paper (K18-K20). Enhancement is selective, depending upon the strength of the binding interactions between the analytes and the particular cyclodextrin. Micellar reagents have also been used in combination with heavy atoms for RTP enhancement (K21, K22). For PAH compounds, anionic surfactants were found to enhance RTP by factors of 2-9, whereas cationic surfactants totally quenched the RTP signal (K21). The RTP signals of phenothiazine derivatives, on the other hand, were enhanced by both cationic and anionic detergents in the presence of TINOB (K22). Applications of cyclodextrins include the use of cyclodextrin enhancement for the characterization of multicomponent
ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990
259R
MOLECULAR FLUORESCENCE
mixtures of PAHs (K23) and the use of cyclodextrin/NaCl mixtures to enhance the RTP signals of a variety of compounds (K24-K27). Miscellaneous Investigations and Applications. The RTP of PAHs in microemulsions and micellar media has been compared with paper-substrate RTP and low-temperature phosphorescence (K28). The RTP of organic molecules in ma netite articles encapsulated in vesicles has also been std i e d (&9). The room-temperature fluorescence and phosphorescence was compared with low-tem erture phosphorescence for dibenzofuran and derivatives ( 30), and the room-temperture luminescence of several organic compounds on a variety of solid surfaces was compared (K31). Carr and Harris described in situ fluorescence detection of PAHs that were preconcentrated on alkylated silica adsorbents (K32) and observed a 200-fold decrease in detectable concentrations for pyrene. Weaver and Harris used in situ fluorescence to study the complexation of aluminum ion by 8-hydroxyquinoline that was covalent1 bound to a silica gel (K33),in order to compare the free an immobilized reagent under flow and steady-state conditions. White and Vo-Dinh used RTP to study the permeation of petroleum products throu h protective clothing materials (K34). Johnson and Vo-DA described the use of amorphous, fumed silica substrates for enhanced fluorescence spot-test analysis of benzo(a)pyrene-DNA adduct products (K35). Several papers described studies and applications of roomtemperature and solid-surface luminescence techniques for pharmaceutical analysis (KCS-K38).
pr
B
L. LUMINESCENCE I N CHROMATOGRAPHY AND FLOW SYSTEMS Chapters and Reviews. One chapter and several reviews
discussed the general area of luminescence detection for liquid chromatograph ( L 1 4 4 ) . Gooijer and coauthors reviewed fluorescence anlchemiluminescence for HPLC detection (W) and liquid-state phosphorescence for detection in flow systems and HPLC (L6). Other articles reviewed liquid chromatoaphic detection b laser-induced fluorescence (LV,indirect Ztection (L8),mukchannel spectroscopy (+9),and derivatization (LlO, L11). Other areas of review include chromatographic interfaces for su ersonic jet spectrosco y (L12), detection for supercritical guid chromatography &13) and fluorodeneitometric detection for thin-layer chromatography (L14). Instrumentation and Techniques. Winefordner and mworkers described a wav de capillary flow cell made from a liquid core fiber ( L 1 5 y a modular, multiwavelength fluorescence detector (L16),and a two-photon photoionization detedor based on a windowless flow cell and a nitrogen laser (L17).An intensified linear photodiode array was used for rapid scanning detection (L18), and a solid state char ecoupled device was used for fluorescence detection of PO ycyclic aromatic hydrocarbons (1519)and for chemiluminescence detection of transition-metal ions (L20). Articles described synchronous excitation detection (L21, L22) and electrochemicalfluorescence detection (L23). Wenzel and Collette described the use of lanthanide ions as luminescent chromo hores for liquid chromatographic detection (L24). Several femonstrations of laser-induced fluorescence detection have been described (L25, L26). Birks and coworkers demonstrated the use of singlet oxygen sensitization for detection of organic compounds that serve as the sensitizers (L27)and the use of photoreduction reactions for the detection of quinones such as vitamin K (L28). "In-column" fluorescence detection has been described for packed fused silica microcolumns (L29). Seitz and co-workers described a general ap roach to the development of luminescent indicators for se ective cation detection (L30);a selective ionophore is noncovalently immobilized on particles of controlled-pore glass and subject to ion-pair formation between the cation-ionophore complex and the luminescent indicator in the mobile phase. Postsuppression ion exchange was used to im rove detection limits in hydroxide eluent sup ressed anion c%omatography (L31). Lytle described timeBomain fluorescence lifetime detection in which the intensity is measured on-the-fly at two delay times following pulsed excitation (L32);lifetimes are calculated from the ratio of the intensities, with the assumption that the
f
P
260R
ANALYTICAL CHEMISTRY, VOL. 62, NO. 12. JUNE 15, 1990
decay is due to a single lifetime component. Cobb and McGown described on-the-fly lifetime detection using frequency-domain measurements (L33,L34);the measurements can be used to determine lifetimea and to indicate the presence of more than one component at any point in the chromatogram. Time-domain lifetime measurements have been used in HPLC for investigations of serum proteins (L35). Carr and Harris used pyrene to study the heterogeneity of reversed-phase chromato aphic surfaces (1536,L37). Other investigations include stud% of organic cation binding to silica surfaces ( L 3 )and studies of the luminescence of adsorbed nitrogen heterocycles on chromatographic surfaces (L39,U O ) . Derivatization reagents and techniques have been described and evaluated for or anic and biol 'cal molecules (U1-L47) and inorganic ions (f48,,549). A c"f;!iral fluorescence reagent for optically active amines has also been described (L50). Several groups described techniques and application of fluorescence for detection in capillary zone electrophoresis, includin laser-induced fluorescence detection (L51-L55), postcapiiar y fluorescence detection (L56, L57), and indirect fluorescence detection (L58,L59). Re orts of techniques and a plications of luminescence for thin-Eyer chromatography inc ude investigations of scanning fluorescence detection (L60),fluorescence imaging analysis (L61), the adaptive Kalman filter and factor analysis for background correction (L62),fluorescence polarization (L63), fluorescence line narrowing (L64),general fluorescence detection (L65, L66) and indirect fluorescence detection (L67L69). Techniques for luminescence detection in gas chromatog raphy include fluorescence detection (L70,L71), supersonic jet fluorescence (L72),and electron impact-induced fluorescence (1573). Chemiluminescence and Bioluminescence Detection. Chapters and reviews have addressed solution-phase chemiluminescence detection (L74), biomedical applications of chemiluminescence detection in HPLC (L75),and chemiluminescence detection in flowing streams with immobilized and solid-state reagents (L76). Applications have been based on luminol chemiluminescence for HPLC (L77, L78), peroxyoxalate luminescence for flow injection analysis and for HPLC (L79, L80), and sulfur chemiluminescence for supercritical fluid chromatography (L81, L82). Electrochemiluminescence (1583) and bioluminescence (L84) have also been described for HPLC detection. A superconductor metal oxide catalyst has been used for detection of organic compounds (L85). Various derivatization reagents also have been described for chemiluminescence detection of organic and biological compounds (L86-L89). Numerous applications of chemiluminescence and bioluminescence have also been described and characterized for flow injection analysis, including the use of reagents in the solution phase (L90, L91) as well as immobilized reagents (L92-L96). Micellar enhancement has also been investigated (L97).
P
M. DYNAMIC MEASUREMENTS OF LUMINESCENCE Reviews. Reviews of general interest include time-resolved and phase-resolved emission s ectroscopy (MI), fluorescence lifetime selectivity for chemidanalysis (M2),and a historical review of the first 20 years of picosecond spectroscopy (M3). Various aspects of time-domain luminescence have been reviewed, including the use of synchrotron radiation for time resolution (M4),applications of time-resolved fluorescence in photobiology (M5),and time-resolved polarized fluorescence in biology and medicine (M6). Frequency-domain lifetime techniques have been reviewed, including gigahertz techniques applications in biochemistry for picosecond processes (M7), (Mi?), and p%ase-resolution techniques in chemical analysis (M9). The concept of fluorescence lifetime filtering has been introduced, and a plications in both the time and frequency domains reviewef (M10). lime-Domain techniques
Note that multidimensional techniques for both time and frequency domains are discussed in a separate section that
MOLECULAR FLUORESCENCE
follows the individual discussions of the two domains. Instrumentation. Several instrumental advances were made, includin a new light-collecting system for time-resolved, laser-infuced fluorescence ( M I I ) that is designed to fit in the cavity of a dye laser, a combined image-intensifier/linear position-sensitive detector system for collecting time-resolved fluorescence and absorption spectra in the 10 ns-1 ms time ran e (MIL’), a femtosecond luminescence spectrometer basef on a synchronous dye laser with 60-fs compressed pulses (M13),and an ultra-high-speed transient digitizer and luminescence lifetime instrument (M14). Time-gated u conversion was described for subpicosecond and subnanosecond resolution in &e ultraviolet region (M15), measurements were achieved by multiple picosecond gating (Ml6). Takagi and Yoshihara described a method of sampling spectroscopy for the far-UV based on two-photon absorption, in which time resolution is limited only by the duration of the pump wave (M17). Theory and Data Analysis. A variety of articles add r d the theory and analysis of timedomain measurements. Chimczak has provided a theoretical description of luminescence during a rectangular excitation pulse for both direct and energy-transfer excitation mechanisms (MI8). Computer simulationswere used to study real-time detection of femtosecond electronic decay dynamics in polyatomic molecules (M19). The concepts of sum-frequency-generation for the measurement of subpicosecond time-resolved spectra with emphasis on optimization of the were discussed (M20), upconversion system. Developments in lifetime measurements and data analysis include a critical discussion of the general validity of using the light-pulse shape as the excitation profile in the decona method based on the La lace volution theorem (M21), transform for lifetime measurements in single-photon-8ecay and a method for the estimation of lifespectroscopy (M22) times from Raman-to-fluorescence intensity ratios (M23). Ross et al. explored a global instrumentation approach for the analysis of time-domain fluorescence data, in which time-resolved spectroscopy was combined with proton NMR to resolve ground-state and excited-state processes in the fluorescence decay of aromatic amino residues in peptides (M24). Ballew and Demas performed an error analysis of the rapid lifetime determination (RLD) method for the evaluation of and found that errors increase nential decays (M25) rat er s owly as one moves away from the optimum fitting regions; RLD is an alternative to the weighted linear leastsquares method, providing must faster calculations of lifetime at a cost of 30-40% increase in standard deviation. Wong and Harris described a reiterative, regression algorithm for the quantitative estimation of component amplitudes in multiexponeneital data (M26); a linear leastsquares fit is used to obtain the amplitudes within a nonlinear least-squares search for the exponential deca times of the components. Sakai and co-workers describecrthe deconvolution of nonex onential decays arising from reabsorption of emitted light &2n. Applications. Winefordner and co-workers explored the use of time-resolution in constant energy, synchronous phosphorimetr for the analysis of simple, binary mixtures (MB-M30), at k t h room temperature and low temperature. Several papers described the application of dynamic, timedomain measurements to the analysis of complex systems and samples. Ware and co-workers studied the fluorescence lifetime distributions of homotryptophan derivatives (M31) and of parinaric acids in phospholipid membranes (M32), reflectin the recent trend toward interpretation of multiexponentii decay kinetics in terms of lifetime “distributions”, rather than several distinct decay processes (M32). Lifetime decay and distributions have also been used to characterize human blood serum (M33),identification of bacteria (M34), and fossil fuels (M35). Other applications include the ideninvestigation tification of viral DNA in clinical samples (M36), of semiconductors and their microstructures (M37),and the analysis of inorganic powders (M38). Frequency-Domaln Techniques
Instrumentation. Wirth and Chou described the use of beat frequencies from a mode-locked dye laser for frequen-
cy-domain lifetime measurements (M39);comparison with time-domain measurements indicated that the frequencydomain results were more recise, due to the high phase stability of the mode-1ocked)laser. The same principle was implemented in a fully automated instrument for multifrequency phase measurements (M40) and resolution demonstrated for a three-componentsystem with extensive s ctral overlap, a minor contribution of one component, an a toal lifetime range of 4.6 ns. In another study, an image dissector tube was used to acquire two-dimensionalarrays of fluorescence spectral and lifetime data (M41). An apparatus for triplet-state lifetimes has been described, in which time-domain resolution is used to suppress the interference from prompt fluorescence in the frequency-domainmeasurements of the slow rotational diffusion of a phosphorescent probe (M42). Theory and Data Analysis. Beechem and Gratton described a second-generation program for global analysis of time- and fre uency-domain fluorescence data and demonstrated its apAcation to multitemperature frequency-domain studies (M43). Lakowicz and co-workers described a general method for correction of contaminant fluorescence in frequency-domainlifetime measurements, based on acquisition of sufficient data to ap roximate the decay characteristics of the contaminant (M447.They also demonstrated the use of frequency domain measurements to indicate the presence of an associated decay of fluorescence anisotropy (M45) and to resolve a distribution of distances by fluorescence energy transfer (M46). Phase Resolution. The theoretical aspects of fluorescence lifetime selectivity in multifrequency phase-resolved fluorescence spectrcscopy have been discussed by Millican and McGown (M47), emphasizing the dependence of phase-resolved intensity on excitation modulation frequency, detector phase, and component lifetime. Demas treated the error analysis of multicomponent phase-resolved measurements (M48)and of the phase-resolved elimination of quenching effects (M49). Applications of phase resolution include the suppression of scattered light in the excitation-emission matrices of complex samples (M50) and the simultaneous determination of metals in two-component mixtures (M51,M52). Lakowicz and co-workers described an approach to the resolution of spectra in two-component systems that involves the measurement of phase and modulation spectra at multiple modulation frequencies, followed by nonlinear least-squares analysis (M53).
8“
Dynamic, Multidimensional Data Arrays
The addition of fluorescence lifetime selectivity to total luminescence spectra (Le., two-way excitation-emission arrays) enerates a three-way array of dynamic spectral information. !‘he introduction of the third independent dimension allows spectral resolution by principal-component factor analysis, which yields unique solutions in the absence of noise. In the time-domain, excitation-emission-time arrays and their analysis by principal component factor analysis were described by Gouterman and co-workers (M54)and applied to synthetic model systems (M55) and to the resolution of real two- and three-component mixtures of porphyrins (M56). In the frequenc domain, excitation-emission-frequency arrays have been iescribed (M57, M58) and applied to the spectral resolution of two-component systems (M58, M59) and the characterization of complex samples (M60)by McGown and co-workers.
N. FLUORESCENCE POLARIZATION, MOLECULAR DYNAMICS, AND RELATED PHENOMENA Reviews. Thulstrup and Michl recently reviewed and ave a simple introduction to applications of absorption and luminescence spectroscopy with polarized light on aligned Dale reviewed the many potential applications samples (N1). of time-resolved fluorescence depolarization in biology (N2). Instrumentation and Techniques. Bright recently demonstrated the selectivity of fluorescence anisotropy measurements for anal sis of multicomponent samples (N3). Russell described a duorescence polarization method for analysis of phospholipid in amniotic fluid (N4). It was proANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990
281 R
MOLECULAR FLUORESCENCE
p"d that thisapprqach may be useful for y m e n t of f e w ung maturity. A s& system has been described by Dcmw
et al. (N5). Shimizu described a polarization spectrometer for measurement of polarized emission and absorption spectra
0").
A number of miscellaneous articles are also relevant to our discussion. For example, Herman et al. described a method for measuring plasma protein in the eye using polarization (N7). Palmer and Thom son investigated the use of highorder autocorrelation in uorescence spectroscopy for measurin molecular Bgation (N8). Morrison and Weber used totaf internal re ection in combination with steady-state fluorescence and polarization to probe the mobility and environment of biological membranes (N9). Weber also presented an alternative formulation of the familiar Perrin equation for polarization measurements (NIO).
Y
K
0. CHEMILUMINESCENCE Reviews. Grayeski provided a general review of chemiluminescence analysis (01).Kricka reviewed clinical and biochemical applications of luciferases and luciferins (02). Campbell reviewed the principles and a lications of chemiluminescence in biology and medicine &).A brief history of chemiluminescenceanalysis was given with emphasis on recent applications (04). Baeyens reviewed the utility of chemiluminescence in high-performance liquid chromatography. (OS)., Coulet and Blum discussed the utility of immobilized biolo ical compounds for bio- and chemiluminescence analysis f06). This review with 39 references covers the past 10 years of work in this area. Instrumentation and Techniques. Jalkian and Denton reported the use of a solid-state two-dimensional chargecou led device for detection of luminol chemiluminescence (03. Chemiluminescencehas been combined with flow in'ection measurements. Several examples of such studies can Le cited, including one on bioluminescent and chemiluminescent assays (08)and another on immobilized and solidstate reagent systems (09). Chemiluminescence measurements have also been done in the stopped-flow mode (010). Applications in the areas of routine clinical anal sis and biomedical research are also of interest. Kather and bieland discussed a variety of stable reactions that find utility in these areas (011). Frei et al. evaluated an isoluminol method for measurement of hydroperoxides in blood plasma (012). A chemiluminescence method for determining roteins with hydrophobic sites has also been described (0137. Ugarova et al. develged a coimmobilhd enzyme method for the analysls of NAD ,AND, and FMN, lucose 6-phosp.hate, and glucose 1-phosphate (Old).Humme en et al. mvestigated the stable, chemiluminescent com ounds for chemical analysis (015), while Bouchikhi et al. :iscussed precautions to be taken in the chemiluminescent analysis of N-nitrm compounds (016). Naka am et al., described screening tests for developing chemi uminescence systems for detecting biologically important compounds (017). Electrogenerated Chemiluminescence, A number of studies are relevant in this area, which is given a separate heading. Kim and Faulkner examined the anomalous transient behavior of electro enerated chemiluminescence of 9,lO-diphenylanthracene 7018) and used this property to examine c clohexane as a scavenger of electrolyticall generated hyckde at platinum electrodes (019). Seung-do and Faulkner used luminescent and redox probes to examine the properties of uartinized poly(4-vinylpyridine) films on electrodes (028. Ouyang and Bard examined the electroenerated chemiluminescence of micelle solubilized Os(bpy),2+ 021). This group has also studied the electrogenerated chemiluminescence from an or anized monolayer of a surTwo other studies from factant derivative of R ~ ( b p y ) $(822). ~ this group relate the electrogenerated chemiluminescence of the bis(2,4,&tri&lomphenyl) oxalatelumineacersystem (023) and the tris(2,2'-bipyrazine)osmium(II) system (024).
f
!
f
P. FLUORESCENCE I N IMMUNOCHEMICAL TECHNIQUES Articles reviewed time-resolved fluoroimmunoassay (PI1, chemiluminescentlabels for steroid immunoassays (P2)and bioluminescence immunoassays (P3).Guilbault discussed the 262R
ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990
use of fluorescence immunoassay methods, including enzymatic, polarization, and solid- hase techniques, for the determination of pharmaceutic3compounds (P4). Studies investigated a new europium chelate as a label for the immunofluorimetric determination of human choriogonadotropin (P5)and the rotational dynamics of hapten-antibody complexation (P6).
Q. LUMINESCENCE TECHNIQUES I N BIOLOGICAL SYSTEMS Texts and Reviews. Books include conference proceedings on quantitative luminescence in biomecial sciences (Q1)and
a volume on quantitative fluorescence microsco y imaging and spectroscopy (82).General reviews discusse bioanalytical applications of fluorescence spectroscopy (83)and a plications of fluorescence in biological and medical research (44).Other reviews of more specific topics in biolo ical and medical sciences include polarized luminescence fQ5),site-selective excitation (861,sensors for bio rocessing (Q7),real-time spectroscopic analysis of ligan -receptor dynamics (QS), systems for photon-counting detection with superhigh sensitivity for spectral studies of ultraweak emission from biological samples (Q9),applications of fluorescence for studying lysosomes (QIO),and prokaryotic membranes (811). Other reviews are mentioned throughout the remainder of this section, in discussions of particular topics. Instrumental Advances. Picosecond coherent Raman and fluorescence spectrosco ies have been used for studies of biol i d objects such as t i e membranes of living cells and of the &&ty of biological macromolecules in solution (Q12). Photoelectronic streak cameras have been used to resolve picosecond electronic and molecular processes in DNA and proteins (Q13). Microprobing of biological samples with multichannel and microtechniques has also been discussed (Q14). Applications. Several traditional methods have been applied to biological systems. Warner and co-workers used multidimensional methods (quenching, lifetime, fluorescence-detected circular dichroism quenchin ) to study drug binding sites on human serum albumin (Q1& Fluorescence quenching was also applied to the study of proteins (816)and the determination of lectin in very dilute solution ( 17). Energy transfer was used for DNA sequence detection ( 18). Reviews discussed the use of lanthanide ions to robe the structure and function of various biological systems (819,Q20); the properties of these ions that make them well-suited to such applications have been explored (Q21).The use of fluorescent molecules as indicators of ion concentration has also been reviewed (922). Geacintov reviewed fluorescence techniques for studying the adducts formed between polycyclic aromatic carcinogens and DNA (Q23),and both time-dependent and steady-state techniques, including the use of quenchers, have been used in recent studies (Q24).Fluorescence has also been used in techniques for sequencing DNA (82.5) and for determination of DNA and nucleic acids ( 26-Q28). Synchronous fluorescence has been used for the i entification and characterization of alkaloids in cell cultures (829). Bioluminescence. The analytical applications of luciferases was reviewed (Q30).Bioluminescence methods have been used for determination of yridine nucleotides in cell monolayers (Q31)and in protein botting (632).Immobilized polyenzymic systems involvin luciferase have been used for the determination of various kological analytes (Q33). The bioluminescent determination of estrogens has also been described (Q34). Correlation Spectroscopy. Biophysical applications of fluorescencecorrelation s m p y have been reviewed (Q35, Q36). Applications include simultaneous measurement of aggregation and diffusion of molecules in solutions and in membranes (Q37),studies of rotational diffusion of carbonic anhydrase (Q38),and single-molecule detection (Q39). Palmer and Thom son have studied high-order autocorrelation functions (&O, Q41)and demonstrated the use of fluorescence correlation spectroscopy for detecting submicroscopic clusters of fluorescent molecules in membranes (642). Flow Cytometry. Reviews addressed applications of flow cytometry for studying cellular derangements (Q43),determining molecular and cellular probes in populations of single
tl
B
8
3
1
MOLECULAR FLUORESCENCE
cells (Q44)and in clinical diagnosis and therapeutic decision-making (845). A conference proceedings describes new technologies in flow cytometry (846). A modular detector has been described for multicolor measurements (647).Specific applications include studies of the nuclear matrix (Q48)and detection of lymphocytotoxic antibodies (Q49).
R. OTHER TECHNIQUES AND APPLICATIONS Wehry and co-workers continued their exploration of fragmentation fluorescence for the determination of nonfluorescent organic and organometallic com ounds (R1,R2), including a comparison of laser photolysis anx electron impact as techniques for producing fluorescent fragments (RI). In the area of optical sensing, surface-boundfluorescent probes have been used as reversible indicators (R3) that exhibit spectral shifts when they are displaced from the surface by analyte molecules. Total internal reflection fluorescence of probe molecules has been used for surface-selective studies of liquid/solid interfacial microenvironments (R4). Fractals have been applied to the study of luminescence phenomena, including spatial, temporal, and energetical asof luminescence decay (Rs).Spaceresolved fluorescence as been used to study concentration fluctuations in a continuous-stirred-tank reactor (R6). Fluorescence drainage profdes have been used to study the effeds of system variables (electrolyte concentration, dye concentration, film environment, and solution viscosity) on the formation of thin liquid films in surfactant solutions of rhodamine (R7). Fetzer and co-workers studied the fluorescence of very large polycyclic aromatic hydrocarbons in a variety of solvents (R8).
P
ACKNOWLEDGMENT We atefull acknowled e the assistance of Lorna Clarke, Kitty &ter ((!hemistry Litrarian of Duke University),and
(C12) Sweedler, J. V.; Denton, M. 8.; Sims, 0.R.; Aikens. R. S. Opt. Eng. 1987, 26, 1020-1028. (C13) Bilhorn, R. 8.; Sweedler, J. V.; Epperson, P. M.; Denton, M. B. Appl. sp8CffosC. 1987, 1114-1125. (C14) Bilhorn. R. B.; Epperson, P. M.; Sweedier, J. V.; Denton, M. 8. Appl. Specfrosc. 1987, 47, 1125-1136. (C15) Sweedler, J. V.; Bilhorn, R. B.; Epperson, P. M.; Sims, G. R.; Denton, M. B. Anal. Chem. 1988, 60,282A-288A. (C16) Reynolds, 0.T.; Eisen, A.; Walton. A. J.; Crum, L. A. A&. Electron. Electron Phys. 1988. 74,119-127. (C17) Hofstraat, J. W.; Engelsma, M.; De Roo, J. H.; Gooljer, C.; Velthorst, N. H. Appl. Spe~frO~c. 1987, 47,625-631. (Cl8) Zhu, J.; Mann, C. K.; Vlckers, T. J. Appl. Specfrosc. 1988, 42, 1567-157 1. (C19) Clark, B. J.; Fell, A. F. Anal. Appi. Specfrosc., Meetcng Date 7987; Creaser, C. S., Davies, A. M. C.. Eds.; Royal Society of Chemistry: London, UK, 1988; pp 383-387. (C20) Stockbridge, N. Brain Res. Bull. 1988. 20,611-618. Dwelle. R.; Katzka, P. Rev. Sci. Insfrum. 1987, 58. (C21) Kurtz, I.; 1996-2003. (C22) Munoz de la P e k , A.; Muriilo, J. A.; Vega, J. M.; Baringo, F. Compuf. Chem. 1988. 72,213-217. (C23) Kim, H.; Zabik, M. J.; Crouch, S. R. Appl. Specfrosc. 1989. 43, 611-616. (C24) Yappert, M. C.; Schuyler, M. W.; Ingle, J. D., Jr. Anal. Chem. 1980, 67, 593-600. (C25) Eccleston, R.; Phillips. C. C. J. Phys. E : Sei. Insfrum. 1989, 22, 405-409. (C26) Maly, F. E.; Urwyler, A.; Rolli, H. P.; Dahinden, C. A.; De Weck, A. L. Anal. B k h e m . 1988, 768, 462-469. (C27) B a a . D. E.; Ingle, J. D., Jr. Anal. Chem. 1987, 59, 2534-2535. (C28) Campi, G. L.; Ingle, J. D., Jr. Anal. Chim. Acta 1989, 224,275-287. D. LASER-BASED TECHNIQUES (Dl) Jankowiak, R.; Small, 0.J. Anal. Chem. 1989, 67, 1023A-I024A, 1026A, 1028A- 1029A, 103I A- 1032A. (D2) Mukamel, S. A&. Chem. Phys. 1988, 70. 165-230. (D3) Svanberg, S. Appl. Phys. B 1988, 46. 271-282. (D4) Verges, J.; Amiot, C. J. Phys.. Colloq. 1987, C7, C7-595lC7-600. (D5) Hare, P. E.; St. John. P. A. ACS Symp. Ser. 1988, 367,275-285. (D6) Menzei, E. R. Anal. Chem. 1989, 67, 557A-561A. (D7) Imasaka, T.; Ishibashi, N. Am. Biotechnol. Lab. 1988, 6 , 34-35. (De) Pavlopoulos, T. G.; Boyer, J. H. Proc. SPIE-Int. Soc. Opt. Eng.
taaa. 217-223. .- . .. 1054. . ..- . .-
LITERATURE CITED A. INT'ROOUCTION (AI) Warner, I.M.; McGown, L. B. Anal. Chem. 1988, 60, 162R-175. E. -8,
REVIEWS, AND CHAPTERS OF QENERAL INTEREST
(BI) Schulman, S. 0. I n Mbcular Luminescence Spectroscqy: Mthods end A p p h b b n s , PI. 2;Wiley: New York, 1988; 528 pp. (82) Eastwood, D., Cline Love, L. J., Eds. proSress in Analyticai Luminescence;ASTM Phlladdphla, PA, 1988; 112 pp. (83) addberg, M. C., Ed. ACS symposium Series 383: LUmh8SC8nC8 App r u C r r t h ~In -1, chSm(ca1, Envkonmental, and IljdrologkaI Seiences;Amadcan Chemlcal Society: Washington, DC, 1989: 251 pp. (84) Grsfffths. J. E., Adar, F.. Eds. Roc. SPIE-Int. Soc. Opt. Eng. 1987, 822,200 pp. (B5) Struck, C. W.; DI Bartolo, B.; Yen. W. M., Eds. ProceedW of the Symposium on Luminescence Science and Technology ; The Electrochemical Society Inc.: Pennington, NJ. 1988 303 pp. (B6) Ader, F.. Grsfffths, J. E., Lemer, J. M.. Eds. Roc. SPIE-Int. Soc. Opt. Eng. 1889, 7055,381 pp. (87) Patonay, G.; Nelson, 0.; Warner, I.M. Prog. Anal. Spechosc. 1987, 70. 561-571. (B8) MbbiU. K. D. Anal. S ~ ~ C ~ ~ Lib. C S C1987, . 2 , 49-68. (B9) Hofstraat, J. W.; Gooljer. C.; Velthcfst, N. H. Chem. Anal. 1988, 77, 283-400. (BlO) Kricka, L. J.; Stanley, P. E. J. Blolumin. Chemlumln. 1987, 7 , 223-246. C. QENERAL INSTRUMENTATION (C1) Smlth. B. W.; Jones. B. T.: Winefordner. J. D. ADD/. S~8ctrosc. 1988. , 42,1469-1472. (C2) Marks, K.; Klleen, P.; Goundry. J.; Gibbons, J.; Bunce, R. J. Blolumin. WWIlWlM. 1987, 7 , 173-179. (C3) Wegrzyn. J.; Patonay, 0.; Warner, I. M. Rev. Sei. Insfrum. 1989, 60, 90-95. .. ._ (c4) Jancab, K. S.; Powell, H. T. Energy Res. Ab&. 7988 1087, 73, Abstr. No. 4032. (C5) Jones, B. T.; Smith, B. W.; Leong, M. B.; Mlgnardl, A.; Winefordner, J. D. J . them. E a . 1989. 66, 357-358. (C6) Thdsen. A. F. Spscffoscopy 1987, 2,48, 50-52. (C7) Paladinl, A. A.; Erljman, L. J. Biochem. Nophys. Methods 1988, 77, 61-66. (C8) Bwrell, 0.J.; Hurtublse, R. J. Appl. Specfrosc. 1988, 42, 173-174. (c9) Epwson, P. M.; Jalklan, R. D.; Denton, M. B. Anal. Chem. 1989, 67, 282-285. (CIO) Epperson. P. M.; Denton. M. B. Anal. Chem. 1989, 67, 1513-1519. (C11) Epperson. P. M.; Sweedler, J. V.; Bllhorn, R. B.; Sims, 0. R.; Denton, M. 8. Anal. Chem. 1988, 60, 327A-333A.
..
(D9) Pascu, M. L.; Pascu, A.; Dumbraveanu, G.; Enescu, M.; Muntfanu, M. Rev. Roum. phvs. 1988, 33, 787-790. (D10) Hassinger, M. J.; Kennedy, S. M.;Lytle, F. E. Anid. Insfrum. 1987, 76. 487-502. ( ~ 1 1 )Stefen, . R. L.; ~ytle,F. E. Anal. Chem. ~ c t em a , 275,203-210. (D12) Stefen, R. L.; Lytle, F. E. Anal. Chim. Acta 1987, 200, 491-502. (D13) Bramwell, S. R.; Ferguson. A. I.; Kane, D. M. Opt. Lett. 1987, 72, 666-668. (D14) Kirsch, B. A.; Winefordner. J. D. Anal. Chem. 1987, 59,1874-1879. (D15) Hofstraat, J. W.; Engelsma, M.; Gooijer, C.; Velthorst. N. H. SpecfroCMm. Acte 1988, 44A, 1267-1272. (D16) Hofstraat. J. W.; Engelsma, M.; Oooijer, C.; Veithorst, N. H. Specfrochim. Acta 1989, 45A,491-497. (D17) Jankowiak, R.; Cooper, R. S.; Zamzow. D.; Small, 0.J.; Doskocil, 0.; Jeffrey, A. M. Chem. Res. Toxlco. 1988, 7 , 60-68. (D18) Rebe, M. T.; Wright, J. C. J. Lumin. 1988, 40-47, 549-550. (D19) Stiller, S. W.; Johnston, M. V. Appi. Spectrosc. 1987, 47, 1351-1357. (D20) Anderson, B. D.; Johnston, M. V. Appi. Specfrosc. 1987, 47, 1358-1361. (D21) b t e s , S. R.;Barker, A. J.; Zakharia, H. S.; Khoobehl. B.; Sheen, C. W. Appi. Specfrosc. 1987, 47, 1392-1397. (D22) Schendel, J.; Hohmann, R.; Wehry. E. L. Appl. Specfrosc. 1987, 47, 640-644. (D23) Jinklns, J. 0.; Wehry, E. L. Appi. Spectrosc. 1989, 43, 861-865. (D24) Schendel, J.; Wehry, E. L. Anal. Chem. 1988, 60, 1759. (D25) MacDonaM, B. F.; Hammons. J. L.; Gore, R. R.; Maple, J. R.; Wehry, E. L. Appi. Spectrosc. 1988, 42. 1079-1083. (026) MacDonald. B. F.; Wehry, E. L. Talenfa 1980, 36, 213-218. (027) Pace, C. F.; Maple, J. R. Anal. Chem. 1989, 67, 872-876. (D28) Spano, F.; Haner, M.; Warren, W. S. Chem. phvs. Lett. 1987, 735, 97-102. (D29) Berndt, K.; Dum, H.; Palme, D. R o c . SPIE-Int. Soc. Opt. Eng. 1888. 909,209-215. (030) Johnson, P. A.; Barber. T. E.; Smith. B. W.; Wlnefordner. J. D. Anal. Chem. 1989, 67, 861-863. (D31) Imasaka, T.; Tsukamoto, A.; Ishibashi, N. Anal. Chem. 1989, 67, 2255-2288. -_ - . _- - -. (D32) Verdleck, J. F.; Rotunno, A. A.; Mitoton, L. A. NTIS-Gov. Rep. Announce. Index 1988. 88, 89p. (D33) Peterson, D. L.; Lytle. F. E.; Laurendeau, N. M. Appl. Opt. 1088, 27, 2768. (034) H W s , K. D.; Lytle, F. E.; Huber. D. M. Anal. Chem. 1989. 67, 1656- 1660. E. FIBERQ~ICBASED
TECHNIOUES
(El) Burgess. L. W.; Fuh, M.-R. S.; Christian, G. I n Progress in Analytical Lumhscence; Eastwood, D., Cline Love, L. J., Eds.; ASTM phlladelphla. PA, 1988; pp 100-110. (€2) S e k , W. R. CRCCfif. Rev. Anal. Chem. 1988, 79. 135-173. (€3) Heiman. D.; Zheng. X. L.; Sprunt. S.; Goldberg, B. 9.; Isaacs, E. D. Proc. SPIE-Int. Opt. Eng. 1989, 7055,96-104. ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15,
1990 263R
MOLECULAR FLUORESCENCE (€4) Harmer, A. L. Roc.-Ektrochem. Soo. 1987, 87-89, 409-427. (€5) Wolfbeis, 0. S.chem. Anal. 1988, 77, 129-281. (€6) Woltbels. 0. S. I n Ana&tkaI L(sss of I m e d Bbkgical for Detection , -1 and Industrial ; Wlbault, G. G., Mascini, M., Eds.; D. Reidel: Dordrecht. Holland, 1988; pp 219-226. (€7) Schlager, K. J. A&. Instwm. 1987. 42, 1279-1289. (€8) Narayanaswamy, R.; Russell, D. A. Sens. Actuators 1988, 73, 293-298. (€9) Carroll, M. K.; Bright, F. V.; Hieftje, G. M. Appl. Spectrosc. 1989, 43, 176-178. .. - . . - . (€10) Louch. J.; Ingle, J. D., Jr. Anal. Cbem. 1988, 60, 2537-2540. ( E l l ) AWeKatH, M. S.;Guibault, G. 0. Anal. Chem. 1988, 60, 2671-2674. (€12) Trettnak, W.; Wolfbeis, 0. S. Anal. Chim. Acta 1989, 227, 195-203. (E13 AWsKatlf, M. S.; Sulelman, A. A.; Guilbault, G. G. Anal. Len. 1988, 27. 943-951. (€14) 'Sherma, A.; Wolfbels, 0. S. Anal. Cbim. Acta 1988, 272, 261-265. (€15) Llppnsch, M. E.; Pusterhofer, J.: Leiner, M. J. P.; Wolfbeis, 0. S. Anal. Cbim. Acta 1988, 205, 1-8. (€16) Zhu, C.; Hleftje, 0. M. Appl. Spectrosc. 1989, 43, 1333-1336. (€17) Zhu. C.; Brlght, F. V.; Wyatt, W. A.; Hieftje, G. M. J . Electrochem. SOC. 1989, 136, 567-570. (€18) Wdfbeis, 0. S.; Marhold, H. Fresenlus' 2 Anal. Chem. 1987, 327, 347-350. (€19) Pla, S.H.; Waltman, D. P.; Hillman, D. C. NTIS-Gov. Rep. Announce. Index 1988, 88. 55 pp. (€20) Fuh. M A . S.: Burae~s.L. W.: Christian. G. D. Anal. C b m . 1988, 60. 433-435. (€21) Abdel-Latlf. M. S.; Guilbault, G. G. Anal. Cbim. Acta 1989, 227, 11-17 . (€22) Zhujun, 2.; Zhang, Y.; Wangbai, M.; Russell, R.; Shakhsher, 2. M.; Grant, C. L.; Seb, W. R. Anal. Chem. 1989, 6 1 , 202-205. (€23) Blum, L. J.; Gavtler, S. M.; Coulet, P. R. Anal. Len. 1988. 27, 717-726. (€24) Trettnak, W.; Wolfbeis, 0. S. Fresenlus' 2.Anal. Cbem. 1989, 334, 427-430. (€25) Wangsa, J.; Arnold, M. A. Anal. Cbem. 1988, 60, 1080-1062. (€26) Meyevsky, A.; Nloka, S.;Chance, B. A&. Exp. W .Bid. 1988, 222, 365-374. (€27) Vo-Dlnh, T. Am. Ind. w g . Assoc. J . 1987, 48, 594-598. (€28) V m n h , T.; Whlte, D.A.; OMaley, M. A.; Seligman, P. J.; Beler, R. C. J . Agrlc. FwdCbem. 1988, 36. 333-337. (€29) King, P. R.; Dawson, J. 8.; Drhrer, I.; Ellis, D. J.; Feather, J. W. R o c . SPIE-Int. Soc. Opt. Eng. 1987, 798, 214-217. (€30) Schaffar, B. P. H.; Wolfbeis, 0.S. Anal. Chlm. Acta 1989, 277, 1-9. (€31) Rekhert, W. M.; Ives, J. T.; Suci, P. A. Appl. Spectrosc. 1987, 4 7 , 1347-1350. (€32) BrlgM, F. V.; Monnig, C. A.; Hleftje, G. M. NTIS-Gov. Rep. Announce. Index 1988, 88, 31 pp. (E33) Bright, F. V. Appl. Spectrosc. 1988, 42, 1531-1537. (€34) Bright, F. V. Roc. SPIE-Int. Soc. Opt. Eng. 1988. 909, 23-28. (€35) Fujkara. K.; Simeonsson, J. 6.; Smlth, 6. W.; Whrefordner, J. D. Anal. Cbem. 1988, 60, 1065-1066. (€36) Brlght, F. V.; Lltwller, K. S. Anal. Cbem. 1989, 67, 1510-1513. (€37) Christian, L. M.; Seitz, W. R. Talenta 1988, 35, 119-122. (€38) Werner, T. C.; Cummings, J. G.; Seb, W. R. Anal. Chem. 1989, 67, 211-215. (€39) Wvatt. W. A.: Brlaht. F. V.: Hieftle. G. M. Anal. C b m . 1987, 59, ' 2272-2276. (€40) Wyatt, W. A.; Polrier, G. E.; Bright, F. V.; Hieftle, G. M. Anal. Cbem. . 1987,-59, 572-576. (€41) Carroll, M. K.; Bright, F. V.; Hieftje, G. M. Anal. Cbem. 1989, 67, 1768. . - - 1772 . . . -. (€42) Yuan, P.; Walt, D. R. Anal. Cbem. 1987, 59, 2391-1394. (€43) Kulp, T. J.; Bishop, D.; Angel, S.M. Soil Scl. Soc. Am. J . 1988, 52, 624-627. (€44) VanDyke, D. A.; Cheng, H. Y. Anal. Cbem. 1989, 67, 633-636. (€45) Whalen, M. S.; Martyak, M. J. R. Appl. Pbys. Len. 1988, 53, 1162-1164.
-
.
. ...
F. SAMPLE PREPARATION, SOLUTION EQUILIBRIA, WENCWINQ, AND RELATED PCIENDMENA
(F1) Barboy. N.; Feltelson, J. Anal. Blochem. 1989, 780, 384-386. (F2) MacCrehan, W. A.; Yang, S. D.; Benner, B. A., Jr. Anal. Cbem. 1988, 60, 284-286. (F3) BeCOn, J. R.; D e t l ~ S J. , N. AMI. Chem. 1987, 59, 2780-2785. (F4) Wdfbek, S. W.; Trettnek, W. Specirochim. Acta 1987, 43A. 405-408. (F5) Sharma, A.; Wolfbeis, 0. S. Spectrocbim. Acta 1987, 43A, 1417-1421. (F6) Andrews-Wllberforce. D.; Patonay, G. Appl. Spectrosc. 1989, 43, 1450- 1455. (F7) Koller, E.; Kriechbaum, M.; Wolfbeis, 0. S. Spectroscopy 1989, 3 , 37-39. (F8) Oryczynskl, I.; Wiczk. W.; Johnson, M. L.: Lakowlcz, J. R. & e m . Pbys. Lett. 1988. 145, 439-446. (F9) Schuknen, S.G.; Townsend, R.; Kimua, S.; Chen, S. Anal. Cb/m. Acta i989, 227, 165-172. (F10) Kelly, R. N.; Schuiman, S.G. I n Rogess In Ana&thl L u m i n e s m ; Eastwood, D., Cline Love. L. J., Eds.; ASTM: Phlladelphia. PA, 1988 pp 74-82. Q. DATA REDUCTION (G1) Th~mpson,A.; Eckerle. K. L. Roc. SPIE-Int. Soc. Opt. Eng. 1989, 7054, 20-25. (G2) CWs, A. F. Proc. SPIE-Int. Soc. Opt. Eng. 1989, 7054, 8-19. (m) Yappert, M. C.; Ingle, J. D., Jr. Appl. Spectrosc. 1989, 43,759-767. (04) Yappert, M. C.; Ingle, J. D., Jr. Appl. Spectrosc. 1989, 43, 767-771.
264R
ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990
(05) Velapddi. R. A. Anal. Specbpsc. Llbr. 1987. 2 . 175-193. (GB) Velapoldl. R. A.; Epstein, M. S. ACS Symp.Ser. 1989, 383, 98-126. (G7) Daehne, S.; Leupdd, D.; Stlel, H. Acta Pbys. Pol. 1987. A77, 777-785. (G8) Braco, L.; Chillaron, F.; Bano. M. C.; De la Guardla, M.; Abad, C. Spectrmbim. Acta 1987, 43A, 1365-1370. (G9) Rutan, S. C.; @row, D. D.; Hartmann, 0. Chemom. Intell. Lab. Syst. 1988, 3 , 61-71. (010) @row, D. D.; Rutan. S. C. Anal. Chem. 1988, 60, 847-852. (G11) Webster, G. H.; Cecil, T. L.; Rutan, S. C. J . Cbemom. 1988, 3 , 21-32. (G12) Bwdick, D. S.; TU, X. M. J . Chemom. 1989, 3. 431-4~1. (G13) Wong. A. L.; Harris, J. M. Anal. Cham. 1989. 67, 2310. (G14) A m ,D. R.; Liu, Y.hS.; Slemlarczuk, A.; Wagner, B. D.; Ware, W. R. Prm. SPIE-Int. Soc.Opt. Eng. 1988, 909, 90-96. (G15) James. D. R.; Liu, Y.-S.; Petersen, N. 0.; Siemiaruuk, A.; Wagner, 6. D.; Ware, W. R. Proc. SPIE-Int. Soc. Opt. Eng. 1987, 743, 117-122. (G16) D e m s , J. N. Roc. SpIE-Int. Soc. Opt. Eng. 1987, 743, 9-14. (G17) Slellllerczuk, A.; Ware. W. R. J. Phys. Cbem. 1989, 93, 7609-7618. (G18) McNemar, C. W.; Horrocks, W. D., Jr. Appl. Spectrosc. 1989, 43, 816-821. (G19) Qian, H.; Elson, E. L. J. Appl. Polym. Sc/. lS89, 43, 305-314. (G20) 2515-2519. Sun, Y. P.; Sears, D. F., Jr.; Saltlel, J. Anal. Cbem. 1987, 59. (G21) ChaNIier, R. C.; Sawyer, W. H. J . Biochsrn. Blopbys. Methods 1987, 75, 49-61. (G22) Fiom, S. R.; Fendler, J. H. J . mys. Cbem. 1988, 92, 5908-5913. (G23) Warner, I. M.; Patonay, 0.; Rdlle, M. E.; Thomas, M.; Nelson, 0. I n ROWS in Analytical Lminescence; Eastwood, D., Cline Love, L. J., Eds.; ASTM: Philadelphia, PA, 1988; pp 1-11, H. LUMINESCENCE I N ORGANIZED MEDIA (Hl) Ramis Rams, 0.; Garcia AlvarezCoque, M. C.; Berthcd, A.; Wineforb ner. J. D. Anal. Cbim. Acta 1988, 208, 1-19. (H2) Eaton, D. F.; Caspar, J. V.; Tam, W. hoc. Int. Conf. photochem. COnVwS. Stwage Sokr Energy. 7tb Meethg; Norris, J. R., Jr.. Meisel, D., Eds.; Elsevier: New York. 1988 pp 122-134. (H3) Demas, J. N.; DeGraff, B. A. J. Macromol. Sci.-Cbem. 1988, A25, 1189-1214. (H4) Warner, I. M.; Nelson, G.; Patonay, G.; Blyshak, L.; Neal, S.L. J . Res. Natl. Bur. Stand. 1988, 93, 438-439. (H5) Nelson, G.; Patonay, G.; Warner, I. M. Ta&nta 1989, 36, 199-203. (H6) Nekon, G.; Neal, S. L.; Warner, I.M. Specrrarcopy 1988, 3 , 24-28. (H7) Blais, J.; Prognon. P.; Mahuzier, 0.; Vlgny, P. J . photochem , phorobiol., B 1988, 2 , 455-465. (H8) Patonay, G.; Fowler, K.; Nelson, G.; Warner, I.M. AMI. Cbim. Acta 1988, 207, 251-258. (H9) Kusumoto, Y. Cbem. Fhys. Len. 1987, ~736, 535-538. (H10) Pharr, D. Y.; Fu, 2. S.; SmW, T. K.;Hlnze, W. L. Anal. Cbem. 1989, 6 - .1 .. 275-279. - - -(H11) Catena, G. C.; Bright, F. V. Anal. Cbem. 1989. 67, 905-909. (H12) Kriechbaum, M.; Wolfbeis, 0. S.; Koller, E. Cbem. Pbys. LIpMs 1987, 4 4 , 19-29. (H13) Kessler, M. A.; Wolfbeis, 0. S. Ber. Bunsen-as. mys. Cbem. 1989, 93, 927-931. (H14) De Schryver, F. C. NTIS-Gov. Rep. Announce. Index 1987, 7 , 26 PP. (H15) Armstrong, D. W.; Spino, L. A.; Vo-Dlnh, T.; Alak, A. M. Spectroscopy 18878 2, 6 p. (H16) Spino. L. A.; Armstrong, D. W.; Alak. A. M.; Vo-Dinh, T. Appl. SpectrOSC. 1987, 41, 771-773. (H17) Siemiarczuk, A.; Ware, W. R. Cbem. mys. Len. 1989, 160. 285-290. (H18) De la Guardla Clruaeda. M.; GaMu. M. V. Smtrocbim. Acta 1988, ' 44A. 403-407. (H19) Inparsson, A.; Fiwer, C. L.; Rlehl, T. E.; TMmmalah, K. N.; Wlillams, J. M.; Hlnze, W. L. Anal. Cbem. 1988, 60, 2047-2055. (H20) De la Guardia Cirugeda, M.; Rodilla Sorlano, F. Analyst 1989, 774, 77-82. .. (H21) Nugara, N. E.; King, A. D., Jr. Anal. Cbem. 1989, 67, 1431-1435. (H22) Carrion-Dominguez, J. L.; De la Guardla Chugeda, M. Micfocbem. J. 1989, 39, 50-58. (H23) Reltz, G. A.; Demas, J. N.; DeGraff, B. A,; Stephens, E. M. J. Am. Cbem. SOC.1988, 770, 5051-5059. (H24) Snyder, S. W.; Buell, S. L.; Demas, J. N.; DeGraff, 6. A. J . mys. chem. 1989, 93, 5265-5271. (H25) Z b o , X. K.; Picard, G.; Fendler, J. H. J. Pbys. Cbem. 1988, 92, 7161-7163. (H26) McGown. L. 6.; Nithipatikom. K. J. Res. Natl. Bur. Stand. 1988, 93, 443-444. (H27) Nithipatikm, K.; McGown, L. 8. Anal. chem. 1988, 60. 1043-1045. (H28) Nlthipetikom. K.; McGown. L. B. Anal. Chem. 1989. 67, 1405-1410. (H29) Tran, C. D. Anal. Chem. 1988, 60, 182-185. (H30) Tran. C. D. Roc. SPIE-Int. Soc. Opt. Eng. 1988, 970, 86-72. (H31) Dlaz Garcla. M. E.; Fernandez de la Campa, M. R.; Hlnze, W. L.; SanzMedel, A. Mikrocbim. Acta 1988, 3 7 , 269-282. (H32) Ingvarsson, A.; Flurer, C. L.; R M , T. E.; Thbnmalah, K. N.; Wlillams, J. M.; Hlnze, W. L. Anal. a m . 1988, 60, 2047-2055. (H33) Wpakka, K.; Kankare, J.; Liplainen, K. Anal. C b h . Acta 1988, 275, 341-345. (H34) Carrion Domhguez. J. L.; De la Guardla Chugeda, M. Anal. Cblm. Acta 1987, 798, 53-61. (H35) Igarashi, S.; Hhze. W. L. Anal. Chem. 1988, 60, 446-450. (H36) Hoshno. H.: Hinze, W. L. Anal. Chem. 1987, 59, 498-504. (H37) Igarashi, S.; Hinze, W. L. Anal. Chim. Acta 1989, 225, 147-157. (H36) Sahyun, M. R. V. J . Fhys. Cbem. 1888, 92, 6028-6032. ~
-
MOLECULAR FLUORESCENCE I. LOW-TEMPERATURELUMINESCENCE (11) Wehw, E. L.; Mamantov, 0. frog. Anal. Spectrosc. 1987, 70, . 507-527: (12) Lshotey, S. J.; Jones, B. T.; Mlgnardi, M. A.; Files, L. A.; Wlnefordner, J. D. k#crochem. J . 1987, 3 6 , 235-239. (13) Jones, B. T.; Wlnefordner, J. D. Anal. Chem. 1988, 6 0 , 412-415. (14) Jones. B. T.; Mullins. N. J.; Wlnefordner. J. D. Anal. Chem. 1989. 6 7 , 1i82- 1i84. (15) J k - 8 . T.; Glick, M. R.; Nignardi, M. A.; Winefordner, J. D. Appl. SpectroSC. 1988, 42, 850-853. (18) Pace, C. F.; Thornberg, S. M.; Maple, J. R. Appl. Spectrosc. 1988, 42, 891-896. (17) Garriguss, P.; Parlanti, E.; Ewald, M. J . Res. Mat/. Bur. Stand. 1988, 93, 441-443. (18) ColmsJo, A. L.; Oshan, C. E. Anal. Chim. Acta 1988,208, 183-193. (19) Madlson, R. T.; Carroll, M. K.; Hiaftje, 0. M. Appl. Spectrosc. 1989, 43, 422-425. (110) MacDonaM. B. F.; Wehry, E. L. Talent8 1989, 36, 213-218. ( I l l ) Vo-Dinh, T.; Lamotte, M. Appl. Spectrosc. 1988, 42, 65-68. (112) ColmsJo, A. L. Anal. Chlm. Acta 1987, 797. 76-70. (113) ColmsJo, A. L. Anal. Chim. Acta 1987, 797, 1-5. (114) Khasawneh, I.M.; Winefordner, J. D. Mlcmctrem. J . 1988, 37, 86-92. (115) Khasawneh. I.M.; Garcia Alvarez-Coque, M. C.; Ramis Ramos. 0.; Wlnefordner, J. D. J . Flmnn. Bkmed. Anal. 1989, 7 , 29-38. (116) Khasawneh, 1. M.; Winefwdner, J. D. Talanta 1988, 3 5 , 267-270.
J. TOTAL LUMINESCENCE AND SYNCHRONOUS EXCITATION SPECTROSCOPIES (Jl) Kalilr, A. J.; Suter, 0. W.; Bucher, S. E.;Melster, E.; Lueonnd, M.; Wild, U. P. Acta. Phys. Pol. 1987, A 7 7 , 755-785. (J2) Suter, G. W.; Meister, E. C.; Wild, U. P. froc. SfI€-Int. Soc. Opt. Eng. 1988. 970, 81-86. (J3) Leiner, M. J. P.; Wolfbeis, 0. S. Roc. S f E - I n t . Soc. Opt. Eng. 1988, 909, 134-138. (J4) Files, L. A.; Winefordner, J. D. J . Agric. Food Chem. 1987, 35, 471-474. (J5) Uzkl, M.; Ward, R. J.; Vo-Dlnh, T. Anal. Lett. 1987, 20. 761-776. (J6) Valcarcei, M.; Gomez-Hens, A.; Rubio, S.; Petidler, A. Clin. Chem. 1987, 3 3 , 1826-1831. (J7) Gutierrez. M. C.; Rubio, S.; Gomez-Hens, A.; Valcarcei, M. Anal. Chim. Acta 1987, 793, 349-354. (J8) Kabbani, M. W.; RubbBorroso, S.; Polo-Diez, L. M. Anal. Chim. Acta 1989, 278, 167-171. (J9) Tachlbana, M.; Koshiishi. K.; Furusawa, M. Anal. Chim. Acta 1988, 275, 347-352. (J10) Garcia Sanchez, F.; Cruces Blanco, C.; Ramos Rubio, A. L.; Hernandez Lopez, M.; MarQuez Gomez, J. C.; Carnero, C. Anal. Chlm. Acta 1988, 205, 144-1591 (J11) Imasaka, T.; Tsukamoto, A.; Ishbashi, N. Anal. Chem. 1988, 60, 1382. - 1365. .- - . . (J12) Mille, G.; Klster, J.; Aune, J. P. J. Chim. Phys. fhys-Chlm. Biol. 1989. 8 6 . 277-294. (J13) GugeL’J.; Siegei, J. A. J. Forensic. Sci. 1988, 3 3 , 1405-1414. (J14) Files, L. A.; Moore, M.; Kerkhoff, M. J.; Winefordner, J. D. Microchem. J . 1987. 3 5 , 305-314. K. SOLIPSURFACE LUMINESCENCE
(Kl) Hurtubise, R. J. I n Molecular Luminescence Spectroscopy: Methods andApplhtbns: Part,?; Schuiman, S. G., Ed.; Wiby: New York, 1988; pp 1-77. (K2) Su, W. Y.; Asafu-Adjaye, E. 6.; Long, W. J. Am. Lab. 1987, 79, 26-28, 30, 32. (K3) Hwtubise, R. J. Anal. Chem. 1989, 67, 889A-892A, 894A-895A. (K4) Hwtublse. R. J.; Ramasamy, S. M.; Bello, J. M.; Buneli, G. J.; Citta, L. A. ACS Symp. Ser. 1989, 155-188. (K5) Burrell, G. J.; Hurtublse. R. J. Appl. Spectrosc. 1988, 42, 173-174. (K6) Aaron, J. J.; Fidanza, J. Analyst 1988, 76, 353-354. (K7) Hilsenbeck, S. J.; Haustein, C. J . Iowa Aced. Sci. 1988, 9 5 , 38-42. (K8) Ramasamy, S. M.; Hurtublse, R. J. Talenta 1989, 36, 315-320. (K9) Ramasamy, S. M.; Hurtubise, R. Jj. Appl. Spectrosc. 1989, 43, 816-621. (K10) Khasawneh, 1. M.; Wlnefordner, J. D. Microchem. J. 1988, 3 7 , 77-85. ( K l l ) Long, W. J.; Su, S. Y. Microchem. J . 1988, 3 7 , 59-84. (K12) Vo-Dinh, T.; Miller, G. H.; Bello, J.; Johnson, R.; Moody, R. L.; Aiak, A. Talent8 1989, 3 6 , 227-234. (K13) Campigiia, A. D.; De Lima. C. G. Anal. Chem. 1988, 6 0 , 2165-2167. (K14) Suter, G. W.; Kaiiir, A. J.; Wild, U. P.; Vo-Dinh, T. Anal. Chem. 1987, 5 9 , 1844-1646. (K15) Khasawneh, I.M.; Chamsaz, M.; Wlnefordner, J. D. Anal. Lett. 1988, 27. 125-144. (K16) Su, S. Y.; Winefordner, J. D. Microchem. J. 1987, 36. 118-121. fK17) Perrv. L. M.: Camoiaiia. A. D.: Wlnefordner. J. D. Anal. Chem. 1889, ’ 67, 2328-2330. ‘ . (K18) Vo-Dinh, T.; Aiak, A. Appl. Spectrosc. 1987, 47, 963-966. (K19) Alak, A. M.; Vo-Dlnh, T. Anal. Chem. 1988, 60, 596-600. (K20) Alak, A. M.; Contiiini, N.; Vo-Dlnh, T. Anal. Chlm. Act8 1989, 277, 17 1-176. (K21) Ramis Ramos, G.; Garcia Aivarez-Coque, M. C.; O’Reiily, A. M.; Khasawneh, I.M.; Wlnefordner. J. D. Anal. Chem. 1988, 6 0 , 416-420. (K22) Garcia Alvarez-Coque, M. C.; Ramis Ramos, 0.; OReiily, A. M.; Winefordner, J. D. Anal. Chlm. Acta 1988, 204, 247-258. (K23) Bello. J. M.; Hurtubise, R. J. Anal. Chem. 1988, 6 0 , 1285-1290. (K24) Bello, J. M.; Hurtubise, R. J. Appl. Spectrosc. 1988, 4 2 , 819-624.
-
(K25) Bello, J. M.; Hurtubise, R. J. Anal. Chem. 1988, 6 0 , 1291-1296. (K26) Richmond, M. D.; Hurtubise, R. J. Appl. Spectrosc. 1989. 43, 810-8 12. (K27) Bello, J. M.; Hurtublse. R. J. Anal. Chem. 1987, 5 9 , 2395-2400. (K28) Ramis Ramos, G.; Khasawneh. 1. M.; Garcia-Alvarez-Coque. M. C.; Winefordner, J. D. Talanta 1988, 35, 41-46. (K29) O’Reflly, A. M.; Winefordner. J. D. Spectrochim. Acta 1988, 44A, 1395-1401. (K30) Khasawneh. I.M.; Winefordner, J. D. Talanta 1988, 3 5 , 267-270. (K31) Purdy, B. 6.; Hurtubise. R. J. Microchem. J . 1989, 3 9 , 330-335. (K32) Carr, J. W.; Harris, J. M. Anal. Chem. 1988, 6 0 , 698-702. (K33) Weaver, M. R.; Harris, J. M. Anal. Chem. 1989, 67, 1001-1010. (K34) White, D. A.; Vo-Dinh. T. Appl. Spectrosc. 1988, 42, 285-288. (K35) Johnson, R. W.; Vo-Dinh, T. Anal. Chem. 1989, 6 7 , 2768-2769. (K36) Fkianza, J.; Aaron, J. J. J . fharm. Blomed. Anal. 1987, 5 . 619-623. (K37) Long, W. J.; Su, S. Y.; Karnes, H. T. Anal. Chim. Acta 1988, 205, 279-284. (K38) Khasawneh. I.M.; Garcia-Aivarez-Coque, M. C.; Ramis Ramos, 0.; Winefordner, J. D. J.Ph8rm. Biomed. Anal. 1989, 7 , 29-38. L. LUMINESCENCE I N CHROMATOGRAPHYAND FLOW SYSTEMS (L1) Baeyens, W. R. G.; Ling, B. L.; Brinkman. U. A. T.; Schulman, S. G. J . Biolumin . Chemllumin . 1989, 4 , 484-499. (L2) Froehiich, P. BWhr’omatogmphy 1987, 2 , 144-147. fL3) Brinkman, U. A. T.; De Jona. G. J.; Gooiier, C. Pure Appl. . . Chem. 1987, . 59, 625-637. (LA) Weinberger. R. Lab. fract. 1987, 3 6 , 65-66, 69. (L5) Brinkman, U. A. T.; De Jong, 0. J.; Gooijer, C. Methodol. Sum. Biochem. Anal. 1988, 78, 321-338. (L6) Oooijer, C.; Baumann, R. A.; Velthorst, N. H. frog. Anal. Spectrosc. lg87. .- - ., 70. .- 573-599. - . - - ... (L7) Van den Beld, C. M. 6.; Lingeman, H.; Tjaden, U. R.; Van der e e f f , J. Chim. Oggll988, 7 7 , 33-34, 37. (LE) Yeung, E. S. Acc. Chem. Res. 1989, 2 2 , 125-130. (L9) Clark, B. J.; Fell, A. F. Chem. Br. 1987, 2 3 , 1066, 1069-1071. (L10) Baeyens, W. R. G.; Imal, K.; Ling, B. L. I n Rogress in Analytcel Luminescence; Eastwood, D., Cline Love, L. J., Eds.; ASTM: Philadelphia, PA, 1988; pp 83-99. (L11) Ohkura, Y. Anal. Sci. 1989, 5 . 371-388. (L12) Johnston, M. V. Trends Anal. Chem. 1988, 7 , 94-98. (L13) Bornhop. D. J.; Wangsgaard. J. G. J . Chromatogr. Sci. 1989, 2 7 , 293-302. -. . ..-. (L14) Baeyens, W. R. G.; Ling, B. L. J . Planar. Chromatogr.-Mod. 7ZC 1988. 1. 198-213. (L15) Fujiwara, K.; Simeonsson, J. 6.; Smith, B. W.; Winefwdner, J. D. Anal. Chem. 1988, 6 0 , 1065-1068. (L16) Glick, M. R.; Tanabe. K.; Berthod, A.; Winefordner, J. D. Anal. Inst. rum. 1988, 77, 277-290. (L17) Berthod, A.; Milone, T.; Voigtman, E.; Winefordner, J. D. Anal. Scl. 1987, 3 . 405-411. (L18) Clark, B. J.; Fell, A. F.; Jones, D. G. J . fharm. Biomed. Anal. 1988, 6 , 843-852. (L19) Jaikian, R. D.; Denton, M. B. h o c . SPIE-Int. Soc. Opt. Eng. 1989. 7054. 91-102. (L20) Jalkan, RT D.; Ratziaff. K. L.; Denton, M. B. Roc. SPIE-Int. Soc. Opt. Eng. 1989, 7055, 123-134. (L21) Splno, L. A.; Armstrong, D. W.; Vo-Dinh, T. J. Chromatogr. 1987. 409. 147-154. (L22) Tanaka, K.; Saito, M. Analyst 1988, 773, 509-510. (L23) Watanabe, N.; Toyooka, T.; Imal, K. Biomed. Chromatogr. 1987. 2 , 99-103. (L24) Wenzel, T. J.; Coiiette, L. M. J . Chromatogr. 1988, 436, 299-307. (L25) Roach, M. C.; Harmony, M. D. J. Chromatogr. 1988, 455, 332-335. (L26) Komori, S.; Kanzakl, T.; Murakami, Y.; Ueda, H. Phys. F/uMs A 1989, 7 , 349-352. (L27) Shellum, C. L.; Birks, J. W. Anal. Chem. 1987. 5 9 , 1834-1841. (L28) Pouisen, J. R.; Birks, J. W. Anal. Chem. 1989, 67, 2267-2276. (L29) Verzeie, M.; Dewaele. C. J . Chromatogr. 1987, 395, 85-89. (L30) Werner, T. C.; Cummings, J. G.; Seltz, W. R. Anal. Chem. 1989, 6 7 , 211-215. (L31) Shlntanl, H.; Dasgupta, P. K. Anal. Chem. 1987, 5 9 , 1963-1969. (L32) Desliats, D. J.; Kissinger, P. T.; Lytie, F. E. Anal. Chem. 1987, 5 9 , 1830-1834. (L33) Cobb, W. T.; Nithipatlkom, K.; McGown, L. 8. I n Progress in Analytcel Luminescence; Eastwood, D., Cline Love, L. J., Eds.; ASTM: Philadelphia, PA, 1988; pp 12-25. (L34) Cobb, W. T.; McGown, L. B. Appl. Spectrosc. 1987, 4 7 , 1275-1279. (L35) Kawabata, Y.; Sauda, K.; Imasaka, T.; Ishibashi, N. Anal. Chhn. Acta 1988, 208, 255-262. (L36) Carr, J. W.; Harris, J. M. Anal. Chem. 1987, 5 9 , 2546-2550. (L37) b r r , J. W.; Harris, J. M. J . Chromatogr. 1989, 487. 135-146. (L38) Shaksher, 2. M.; Sew. W. R. Anal. Chem. 1989, 6 7 , 590-593. (L39) Burrell, G. J.; Hurtubise. R. J. Anal. Chem. 1988,60, 584-588. (L40) Burrell, G. J.; Hurtublse, R. J. Anal. Chem. 1988. 60. 2178-2182. (L41) Heindorf, M. A.; McGuffin, V. L. J. Chromcrtogr. 1989, 464, 186-194. (L42) Yamaguchi, M.; Takehlro, 0.; Hara, S.; Nakamura. M.; Ohkura, Y. Chem. fharm. Bull. 1988, 3 6 , 2263-2266. (l-43) Beale, S. C.; Savage, J. C.; Wlesler, D.; Wietstock. S. M.; Novotny. M. Anal. Chem. 1988, 60, 1765-1769. (L44) Van den Beld, C. M. 6.; Lingeman, H.; Van Ringen. G. J.; Tjaden, U. R.; Van der Greff, J. Anal. Chim. Acta 1988, 205, 15-27. (L45) Fujiwara. M.; Ishlda. Y.; Nlmura, N.; Toyama, A.: Kinoshita, T. Anal. B h h e m . 1987, 766, 72-78. (L46) Price, J. R.; Metz, P. A.; Veening, H. Chromatographla 1887, 2 4 , 795-799. (L47) Akasaka, K.; Ohrui, H.; Meguro, H. Anal. Lett. 1988, 2 7 , 965-975.
.
ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990
265 R
MOLECULAR FLUORESCENCE (L48) Tanabe, S.; Kbhara, M.; Nawata, M.; Kawanabe, K. J. C M m t o g r . 1960. 424. 29-37. (L49) Karcher, B. D.; Krull, I.S. J . chromatcgr. S d . 1987, 25, 472-478. 1988, 427(1),131-137. (L50) Spahn, H. J. (L51) Gozei, P.; Gassmann, E.; Michelsen, H.; Zare, R. N. Anal. Chem. 1987. 59,44-49. (L52) Pentoney, S. L., Jr.; Huang, X.; Burgi, D. S.; Zare, R. N. Anal. Chem. 1988, 60,2625-2829. (L53) Roach, M. C.; Gozel. P.; Zare, R. N. J. Chromatogr. 1988, 426, 129-140. (L54) DoVicM, N. J.: cheng, Y. F. Am. Blotechnd. L8b. 1989, 7,10, 12, 14. (L55) Cheng, Y. F.; Dovichl, N. J. Science 1988, 242,562-564. (L56) Rose, D. J., Jr.; Jorgenson, J. W. J. C h m t o g r . 1988, 447, 117-131. . . . .- .. (L57) Tsuda, T.: Kobayashi, Y.; Hori, A.; Matsumoto, T.; Suzukl, 0. J. Chrom t m . 1988, 456,375-381. (L58) Kuhr, W. 0.;Yeung, E. S. Anal. Chem. 1988, 60.2642-2646. (L59) Kuhr, W. 0.;Yeung, E. Anal. Chem. 1988, 60, 1832-1834. (LBO) W h a n , E. W. J. Plenar Chromatog.--Mod. TLC 1988, 7, 81-85. (L61) Wettleufer, S. H.; Welnstein, L. H. J. Chromatogr. 1988, 441, 381-366. (L82) Gerow, D. D.; Rutan, S. C. Anal. Chem. 1988, 60, 847-852. (L63) Beknkii, B. G.; Adamovlch, T. 6.; Aseva, T. N.; Mostovnkov, V. A,; Nechaev, S. V.; Sdonenko, M. G. J. %nar Chromatogr.--Mod. TLC 1989, 2,49-52. (L64) cooper, R. S.; Jankowlak. R.; Hayes, J. M.; Lu, P.; Small, G. J. Anal. Chem. 1988, 60, 2692-2694. (L65) Hofstraet, J. W.; Engelsma, M.; Van de Nesse. R. J.; Brinkman, U. A. T.: Oodjer, C.; Ve)thorst, N. H. Anal. Chim. Acta 1987. 793,193-207. (L68) Hobtraat, J. W.; Gooljer, C.; Velthorst, N. H. Appl. Spectrosc. 1988, 42, 814-819. (L67) Ma, Y.; Yeung, E. S. J. Chrmfogr. 1988, 455,382-390. (L68) Ma, Y.; Koutny, L. 8.; Yeung, E. S. Anal. Chem. 1989, 67, 1931- 1933. (L69) Hogan, B. L.; Yeung. E. S. Appl. Spectrosc. 1989. 43, 349-350. (L70) Begherl, H.; Creaser. C. S. Anal. Appl. Specirasc.; Proc. Int. Conf.; Creaser, C. S., Davles, A. M. C., Eds.; Royal Society of Chemistry: London, UK, 1988; pp 388-391. (L71) Bagherl. H.: Creaser, C. S. Analyst 1988, 7 73,1175-1 177. (L72) Imasaka, T.; Tanaka, K.; Ishlbashl, N. Anal. Scl. 1988, 4 , 31-35. (L73) (Mlbeult, L. F.; Hohmann, R.; Wehry, E. L. J. CMomatogr. 1989, 475, 237-245. (L74) N b m n , T. A. In #em//uMescence and Photodwmical Reaction Detecnbn In Chrometwa&W; Blrks. J. W.. Ed.: VCH Publishers: New York, 1989; pp 99-125. ' (L75) De Jong, G. J.; Kwakman, P. J. M. J. Chromatogr. 1989, 492, 319-343. - .. - -. (L76) Nieman, T. A. J . Res. Naatl. BW. stend. 1988, 93,501-502. (L77) K w n e r , P. J., Jr.; Nieman, T. A. h4krochlrn. Acta 1987, 2, 79-90. (L78) Koerner, P. J., Jr.; Nleman, T. A. J. Chrombtogr. 1988. 449, 217-228. (L79) Van Zoonen, P.; GoolJer, C.; Velthorst, N. H.; Frel. R. W. I n Proc. Int. Bldrrmlh. ChmLbmh. Symp., 4th.kkseth$Deta 7986;Schoelmerich, J., Ed.; Wlley: ChlCheStW, UK, 1987; pp 423-426. (LBO) Hanadta, N.; Givens, R. S.; Schowen, R. L.; Kuwana. T. Anal. Chem. 1988, 60,2193-2197. (L81) Foreman, W. T.; Shellum, C. L.; Birks, J. W.; Sbvers, R. R. J. ChroIMtOgr. 1989. 465, 23-33. (L82) Bornhop, D. J.; Murphy. B. J.; KrlegerJones, L. Anal. Chem. 1989, 67 . 797-800. (L83) 'Hili, E.; Humphreys, E.; Malcolme-Lawes, D. J. J. Chromatogr. 1988, 44 7 , 394-399. (L84) Ruijten, H. M.; Tlmmerman, B. E.; De Bree, H. Methodol. Surv. Biochem.A M / . 1988, 76, 397-399. (L85) McNamara, E. A.; Montzka, S. A.; Barkley, R. M.; Sievers. R. E. J . c)uometogr. 1988, 452,75-83. (L86) (Layeski, M. L.; DeVasto, J. K. Anal. Chem. 1987, 59, 1203-1206. (L87) Imal, K.; Metsunage, Y.; Tsukamoto, Y.; Nishiteni, A. J . Chromatogr. 1987, 400, 169-178. (L88) -me, K.; Umekewa, C.; Nakatsuli, S.; Akiyama. S.; Givens, R. S. c ) u o m a w . 1989, 3,39-42. (L89) Kawasaki, T.; Wong, 0.; Wang, C.; Kuwana. T. J . Res. Natl. Bur. Stand. 1988, 93,504-506. (L90) ACTamrah. S. A.; Townshend, A. Anal. Chim. Acta 1987, 202, 247-250. (L9l) Lancaster, J. S.; Worsfold. P. J. Anal. Proc. 1989, 26. 19-20. (L92) KUMjarvi, K.; T M . P.; Winonen, T.; Kolhinen, 0.; Raunio, R.; Lundin, A.; Lovgren, T. Methods EnIymol. 1988, 737. 171-181. (L93) Glrottl, S.; R e , A,; Ohini. S.; Mcentlnl, A.; Carrea, G.; Bovara, R.; AngeHottl. M. A. Ann. CMm. 1987, 77,625-636. (L94) , R e , A.; Glrotti, S.; Ghinl. S.; Carrea, G. Methods Enzymol. 1988. 737,161-171. (L95) (Koemer) Swindlehurst. C. A.; Nieman, T. A. Anal. Chim. Acta 1988, 205,195-205. (L96) Niemen. T. A. MWVCMT.Acta 1988. 3. 239-247. (L97) Yamada, M.; Suzukl, S. Anal. Chim. Acta 1987, 793,337-341.
m w .
M. DYNAMIC MEASUREMENTS OF LUMINESCENCE
(MI) DemaS, J. N. Chsm. Anal. 1988, 77.79-127. (M2) McQwn. L. B. plog. Anal. spectrosc. 1988, 11. 383-415. (M3) R m H s , P. M. Roc. WIE-Int. Soc. opr. Eng. 1987. 742,72-81. (M4) Brockkhust. 8. Chem. Er. 1987. 23. 853-856. ... iM5j Schneckenburger, H.; Seldillz, H. K.; Eberz. J. J. Rwtochem. Photobffl., B 1988, 2, 1-19. (M6) Van Hoek, A.: Vos, K.; Visser, A. J. W. G. I€€€ J. Quantum Electron. 1987, 015-23,1812-1820.
266R
ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990
(M7) Lakowicz. J. R.; Laczko. G.; Gryczynski, I.; Szmacinski, H.; Wlczk, W. J . Rwtochem. photobiol., B 1988, 295-311. (ME) LakoMcz, J. R.; Laczko, G.; Gryczymkl, I.Szmacinski, ; H.; Wbzk. W.; Johnson, M. L. Ber. Bunsen-Ges. P h p . Chem. 1989, 93. 316-327. (M9) McGown, L. B.; Bright, F. V. CRC Cdt. Rev. Anal. Chem. 1987, 78, 245-298. (M10) McGown, L. B. Anal. Chem. 1989, 67. 839A-840A, 842A-845AS 847A. (M11) Vogel, 0. Uppsak Univ., Inst. Phys.; Tech. Rep. UUIP1987, UUIP-7777,21 pp. (M12) Ushida, K.; Nakayama, T.; Nakazawa, T.; Hamanoue, K.; Nagamura, T.; Mugishima. A.; Sekimukai, S. Rev. Scl. Instrom. 1989, 60, 817-623. (M13) Damen, T. C.; Shah, J. Appl. Phys. Lett. 1988, 52, 1291-1293. (M14) Twley, T. J.; Demas, J. N. Demas, D. J. An8/. Chlm. Acta 1987, 797, 121- 128. (M15) Kahlow, M. A.; Jarzeba, W.; DuBruil. T. P.; Barbara, P. F. Rev. Scl. Instrum. 1 ~ 8 8 .59, 1098-1109. (M16) Cubeddu, R.; Docchlo, F.; Liu, W. Q.; Ramponi, R.; Taroni, P. Rev. Sci. Instrum. 1988, 59,2254-2259. (M17) Takagi, Y.; Yoshihara, K. Springer Ser. Chem. Phys. 1988, 48, 407-409. (M18) Chimczak, E. J. Lumin. 1988, 39. 247-250. (M19) Stock. G.; Schneider, R.; Domcke, W. J. Chem. Wys. 1989, 90, 7184-7 194. (M20) Shah, J. I€€€ J. Quantum Electron. 1988, E - 2 4 ,276-288. (M21) Capek, V.; Jelinek, 0. Czech, J. Phys. 1989, 839, 218-223. (M22) Moreno, F.; Lopez, R. J. Appl. Spectrosc. 1987, 47, 1307-1311. (M23) Kinoshta, S.; Kushlda, T. Chem. Phys. Lett. 1988, 748, 502-508. (M24) Ross, J. B. A.; Laws, W. R.; Wyssbrod, H. R. Roc. SPIE-Int. SOC. Opt. Eng. 1988, 909,82-89. (M25) Balbw, R. M.; Demas, J. N. Anal. Chem. 1989, 67, 30-33. (M26) Wong, A. L.; Harris, J. M. Anal. Chem. 1989, 67, 2310-2315. (M27) .Sekai, Y.; Kawahlgeshi, M.; Minami, T.; Inoue, T.; Hirayama, S. J. L m n . 1989, 42. 317-324. (M28) Files, L. A.; Mignardi, M. A.; Winefordner, J. D. Mlcrochem. J. 1987, 36,122-127. (M29) Mignardi, M. A.; Laserna, J. J.; Winefordner, J. D. M/crochem. J. 1988. 38,313-321. (M30) Laserfla, J. J.; Mlgnardi, M. A.; Von Wandruska, R.; Winefordner, J. D. Appl. Spectro~c.1988. 42, 1112-1117. (M31) Wagner, B. D.; James, D. R.; Ware, W. R. Chem. Phys. Lett. 1987, 738.181- 184. (M32) Jams, D. R.; Turnbull, J. R.; Wagner, B. D.; Ware, W. R.; Petersen, N. 0. Biochemistry 1987, 26,8272-6277. (M33) Milbr. N. A.; Gangopadhyay, S.; Borst, W. L. Roc. SPIE-Int. SOC. ODt. €no. 1988. 909.200-206. (M34) Ne&, W. H. NTIS-Oov. Rep. Announce. I M x 1988, 88, 22 pp. (M35) Pldl, M. W.; Gangopadhyay, S.; L a d s , C.; Borst, W. ROC. SPIEInt. SOC. Opt. Eng. 1987. 743,86-93. (M36) DaMen, P.; Hurskainen, P.; Lovgren, T.; Hyypia, T. J . Clln. Microbial. 1988. 26,2434-2436. (M37) Shah, J.; Damen, T. C.; Deveaud, 8. springer Ssr. Chem. Phys. 1988, 48,288-293. (M38) Paski, E. F.; Blades, M. W. Anal. Chem. 1988. 60, 1224-1230. (M39) Wlrth, M. J.; ChOu, S. H. APpl. S F S C ~ ~ S 1988, C. 42,483-486. (M40) Clays, K.; Jannes, J.; Engelborghs, Y.; Persoons, A. J. Phys. E: Sc/. Instrum. 1989,22,297-305. (M41) Wang, X. F.; Uchida, T.; Minami, S. Appl. Spectrosc. 1989, 43, 840-845. (M42) Birmingham, J. J.; Garland, P. B. Roc. SPIE-Int. Soc. Opt. Eng. 1988, 909,370-376. (M43) Beechem, J. M.; Gratton, E. Roc. SPIE-rnt. Soc. Opt. Eng. 1988, 909,70-81. (M44) Lakowicz, J. R.; Jayaweera, R.; Joshi, N.; Gryczynski, I . Anal. Biochem.1987, 760, 471-479. (M45) Szmacinski, H.;Jayaweera. R.; Cherek, H.; Lakowicz, J. R. Blophys. Chem. lS87, 27,233-241. (M46) Lakowicz, J. R.; Johnson, M. L.; Wlczk, W.; Bhat, A.; Steiner, R. F. Cham. Phys. Lett. 1987, 738,587-593. (M47) McGown, L. B.; Millican, D. W. Appl. Spectrosc. 1988, 42, 1084- 1089. (M48) b m a s . J. N. ROC. SPIE-Int. SOC. Opt. Eng. 1987. 743,9-14. (M49) Demas, J. N. R o c . SPIE-Int. SOC. Opt. Eng. 1988, 970, 162- 167. (M50) Nithipatikom, K.; McGown, L. B. Appl. Spectrosc. l987,, 4 7 , 1080-1082. (M51) Vitense, K. R.; McGown. L. B. Anal. Chim. Acta 1987, 793, 119-125. (M52) Vltense, K. R. Diss. Abstr. Int. E 1989, 49. 4277. (M53) Lakowicz, J. R.; Jayaweera, R.; Szmacinski, H.; Wiczk, W. photoChem. Rwtobld. 1989, 50,541-546. (M54) Russell, M. D.; Gouterman, M. Spectrochlm. Acta 1988, 44A, 857-861. (M55) Russell, M. D.; Gouterman, M. Spectrochim. Act8 1988, 44A, 863-872. (M56) Russell. M. D.; Gouterman, M.; Van Zee, J. A. Spectrochlm. Acta 1988. U A , 873-882. (M57) Millican. D. W.; Nithlpatikom. K.; McGown, L. B. Spectrochim. Acta 1988, 438, 829-637. (M58) McQwn, L. 6.; Mlliican, D. W. Roc. SPIE-Int. SOC. Opt. Eng. 1988, 909,360-385. (M59) MilliMn, D. W.; McGoWn, L. B. Anal. Chsm. 1988, 67. 580-583. (M60) McGown, L. B.; Kreiss, D. S. Roc. SPIE-Int. Soc. Opt. Eng. 1988, 910, 73-80.
MOLECULAR FLUORESCENCE N. FLUORESCENCE POURIUTION, MOLECULAR DYNAMICS, AND RELATED PHEMOMCNA
(Nl) ThUlStrUP, E. W.; Mlchl, J. NATO ASI SW., SW. C 1988, 242, 1-24. (N2) Dale, R. E. Shrd. Bkphv~.1987, 727, 5-24. (N3) BrlgM, Fa V. A H . Speclrosc. 1988, 42, 1245-1250. (N4) Rwssll, J. C. CHn. t%m. 1987. 33, 1177-1184. (N5) Koszegi, T.; Szabo, 1.; Jobst, K. 2.W .LaboratorkKnsdiegn. 1987, 28. 283-287. (N6) Shimlzu, 0. Roc. SPIE-Int. Soc. Opt. Eng. 1988, 970, 198-203. (N7) Herman, D. C.; McLaren, J. W.; Brubaker, R. F. Invest. Ophthalmoi. VkMl SCi. 1988. 2 9 , 133-137. (N8) Palmer, A. G.. 111; Thompson, N. L. Biophys. J . 1987, 5 2 , 257-270. (N9) Morrison, L. E.; Weber, 0. Bkphys. J . 1987, 52, 387-379. (NlO) W W , G. J . MYS.Chem. 1989, 93, 6069-6073. 0. CHEMILUMINESCENCE
(01) Grayeskl. M. L. Anal. Chem. 1987, 59. 1243-1244A, 1246A, 1248A. 1250A, 1252A. 1254A, 1256A. (02) Kricka, L. J. Anal. Blochem. 1988, 775, 14-21. (03) Campbell, A. K. Chemllumlnescence: Wncipies and Applications in BiobQy and Medlclns; VCH: Welnhelm. FRG. 1988; 608 pp. (04) Baeyens, W. R. 0.;Nakashlma, K.; Imai, K.; Ling, 8. L.; Tsukamoto, Y. J . mrm.Bbmed. Anal. 1989, 7 , 407-412. ( 0 5 ) Baeyens, W. R. G. An. R . Acad. Farm. 1987, 53, 547-552. (06)Coulet, P. R.: Blum, L. J. NATO ASI Ser., Ser. C 1988. 226. 237-248. (07) Jalklan, R. D.; Denton, M. B. Appl. Spectrosc. 1988. 42, 1194-1199. (08) WorsfM, P. J.; Nabl, A. I n Proc. Int. Bblumin. Chemliumin. Symp. 4th, W M g Date 7986; Schoelmerich, J., Ed.; Wiley: Chichester, UK, 1987; pp 543-546. (09) Nleman, T. A.; Mlkrochlm. Acta 1988. 3, 239-247. (010) Gonzalezdobledo, D.; Silva, M.; Perez-Bendlto. D. Anal. Chem. Acta 1989. 277, 239-247. (011) Kather, H.; Wleland, E. I n Roc. Int. Biolumin. Chemilumin. Symp. 4th, W V n g Date 7986; Schoelmerlch, J., Ed.; Wiley: Chichester, UK, 1987; pp 473-479. (012) Frel, 6.; Yamamoto, Y.; Nlclas, D.; Ames, B. N. Anal. Blochem. 1988, 775, 120-130. (013) Woolf, E. J.; Qayeskl, M. L. I n Progress in Analytical Luminescence; Eastwood, D., Cline Love. L. J., Eds.; ASTM Philadelphia, PA, 1988; pp 87-7A
(016)' Bouchkhl, 6.; Mavelle, T.; Debry, G. Food AMit. Contam. 1989, 6 , 209-217. (017) Nakagama, T.; Yamada, M.; Suzukl, S. Anal. Chim. Acta 1989, 277, 37 1-376. (018) Kim, J.; Faulkner, L. R. J . EiectroaMI. Chem. 1988, 242, 107-121. (019) Kim, J.; Fauikner, L. R. J . Ekctroanal. Chem. 1988, 242, 123-129. (021) Ouyang, J.; Bard, A. J. Bull. Chem. Soc. Jpn. 1988, 67, 17-24. (022) Zhang, X.; Bard, A. J. J . phvs. Chem. 1988, 92, 5568-5569. (023) Brlna, R.; Bard, A. J. J . Electroanel. Chem. 1987. 238, 277-295. (024) Lee, C.-W.; Ouyang, J.; Bard, A. J. J . Electroenel. Chem. 1988, 244, 319-324.
P. FLUORESCENCE I N IMMUNOCHEMICALTECHNIQUES
( P I ) Diamandls, E. P. Clh. Biochem. 1988, 2 7 , 139-150. (P2) Klkrgbr, W.; Wlegand, 0.; Knuppen, R. J. SteroM Blochem. 1987, 2 7 , 41-45. (P3) Dauca, M. Rog. Clln. Bld. Res. 1988. 285, 47-60. (P4) GuWbault, 0. 0. J. pylerm. Blomed. Anal. 1988. 4 , 771-775. (P5) Khosravl, M. J.; Diamandls, E. P. CMn. Chem. 1987, 33, 1994-1999. (P6) Slegler, R.; Stemson, L. A.; Stobaugh. J. F. J. Pharm. Bbmed. Anal. 1989, 7 , 45-55. (P7) Bright, F. V. Anal. Chem. 1889, 67, 309-313; 67, 1472.
a.
LUMINESCENCE TECHNIQUES I N BIOLOGICAL SYSTEMS
(01) MacDonaid, A. M. G., Ed. Second Internatbnal Symposlum on Quantitathe Luminescence Spectrometry in Blomedical Sciences; Blackwell: Oxford, UK, 1987; 105 pp. (02) Taylor, D. L.;Wang, Y. L., Eds. I n Methods In Cell BhMgy; Academic: San Diego, CA, 1989; Vol. 30, 503 pp. (Q3) Bright, F. V. Anal. Chem. 1988. 60. 1031-1032A, 1034A, 10361039A. ((24) Yguerabide. J.; YguerabMe. E. E. Radiat. Phys. Chem. 1988, 32, 457-464. (05) Szalay, L.; Laczko. 0.; Maroti, P. I n Roc. Congr. Cur. Soc. Photobld., 2nd, Wtlng Date 7987; Douglas, R. H.; Moan, J., Dall'Acqua, F., Eds.; Plenum: New York, 1988; pp 11-19. (06) Demchenko, A. P. Trends Blochem. Sei. 1988. 73,374-377. (07) PhlHlpS, J. A.. AIChE S w p . SW. 1989, 85. 87-77. (Q8) Skler, L. A. Annu. Rev. Blophvs. B w y s . Chem. 1987, 16, 479-506.
(09) Inaba. H. Experkntia 1988, 44, 550-559. (010) Robinson, D. B(0Chem. Soc. Trans. 1888, 76, 11-16. ( a l l ) Proulx. P. Subceu. Biochem. 1888, 73,281-321. (012) Akhmanov, S. A.; Kamalov, V. F.; Koroteev, N. I.shrd. h y s . Theor. Chem. 1987, 45, 67-94. (013) Nordlund, T. M. Roc. SPIE-Int. Soc. Opt. Eng. 1888, 909,35-50. (014) Merlin, J. C.; Delhaye, M. Stud. phvs. Theor. Chem. 1987, 45, AQ-66. ._ (015) Thomas. M. P.; Nelson, G.; Patonay. G.; Warner, I.M. Spectrochim. Acta 1988, 438. 651-680. (016) Wasylewski, 2.; Koloczek, H.; Wasnlowska, A. Eur. J . Biochern. 1988. 772, 719-724. (017) Datta, P. K.; b r a , S. C. Anal. Chim. Acta 1989, 220, 225-233. ((218) Kobayashi, S.; Tamiya, E.; Karube, I.Proc.-€lectrodwwn. Soc. 1987, 87-89, 370-377. (019) O'Hara, P. B. Photoehem. Photobld. 1987, 46, 1067-1070. (020) Buenzli, J. C. 0. Inorg. Chim. Acta 1987, 739, 219-222. (021) Buenzli. J. C. G. J . fhys Cdloq. 1987, C7, 607, 610. (022) Tsien, R. Y. Methods Cell. Bbl. 1989, 30, 127-156. (023) Geacintov, N. E. I n Progress In Analytical Luminescence; Eastwood, D., Cline Love, L. J., Eds.; ASTM: PhlladelpMa, PA, 1988; pp 54-66. (Q24) Becker, J. F.; Strunk, S. J.; Martinez, K. G.; Meehan, T. Proc. SPIEInt. Soc.Opt. Eng. 1987, 743, 127-136. (025) Prober, J. M.; Trainor, G. L.; Dam, R. J.; Hobbs, F. W.; Robertson, C. W.; Zagursky, R. J.; Cocuzza, A. J.; Jensen, M. A,; Baumelster, K. Science 1987, 238, 336-341. (026) Kennedy, D. G.; Nelson, J.; Van den Berg, H. W.; Murphy, R. F. Anal. Biochem. 1987, 767, 124-127. ((227) Perry, W. L., 111; Sirotkin, K. Anal. Biochem. 1987, 764, 236-239. (028) Holl, W. W.; Webb, R. L. ACS Symp. Ser. 1989, 383, 45-51. (029) Montagu, M.; Petit-Paiy, G.; Levillain, P.; Baumert, A,; Groger, D.; Chenleux, J. C.; Rideau, M. pharmazk 1989, 44, 342-344. (030) Kricka, L. J. Anai. Proc. 1987, 2 4 , 142. (Q31) Lane, D. A.; Nadeau, D. J . Blochem. Blophys. Methods 1988, 77, 107-117. (032) Hauber, R.; Miska, W.; Schleinkofer, L.; Geiger. R. J . Clin. Chem. Clin. Biochem. 1988, 2 6 , 147-148. (Q33) Ugarova, N. N.; Brovko, L. Y.; Lebedeva, 0. V.; Kutuzova, 0. D.; Berezin, I.V. I n Proc. Int. Bbiumin. Chemllumln. Symp., 4th, Meethg Date 7986; Schoeimerich, J., Ed.; Wiley: Chichester, UK, 1987; pp 583-588. ... ... (034) Nlcolas, J. C.; Boussioux, A. M.; Crastes de Paulet, A. Meth4als Enzymol. 1988. 733. 209-215. (035) Kask, ?. St&. Blophys. 1987, 778, 7-24. (036) Qian, H.; Elson, E. L. Proc.-Annu. Meet.. Electron Microsc. Soc. Am. 1988. 48, 38-39. (037) Meyer, T.; Schindler, H. Blophys. J . 1988, 54, 983-993. (038) Kask, P.; Plksaw. P.; Mets, U.; Pooga, M.; Llppmaa, E. Eur. Biophys. J. 1987, 74, 257-261. (039) Peck, K.; Stryer, L.; Glazer. A. N.; Mathies, R. A. Proc. Met/. Aced. SCi. U . S . A . 1989. 86. 4087-4091. (040) Palmer, A. G., 111; Thompson, N. L. Appl. Opt. 1989, 2 8 , 12 14-1220. (041) Palmer, A. G., 111; Thompson, N. L. Rev. Sei. Instrum. 1989, 60, 624-633. (042) Palmer, A. G., 111; Thompson, N. L. Chem. Fttys. Lipus 1989, 50, 253-270. (043) Ormerod, M. G. Methodd. Swv. Bhwhem. Anal. 1987, 77. 161-170. (044) Watson, J. V. Mi. Cell. Probes 1987, 7 , 121-136. (045) Ryan, D. H.; Fallon, M. A.; Horan. P. K. Clin. Chim. Acta 1888, 77, 125-1 73. (048) Salzman, G. C., Ed. Proc. SPIE-Int. Soc. Opt. Eng. 1989, 7063, 207 pp. (047) Steinkamp, J. A.; Habbersett, R. C.; Stewart, C. C. C y t m t r y 1987, 8 , 353-365. (048) Wright, W. D.; Higashikubo, R.; Roti, J. L. R. Cytometry 1989, 70, 303-311. (Q49) Talbot, D.; Shenton, B. K.; Givan, A. L.; Proud, 0.;Taylor, R. M. R. J . Immunol. Methods 1987, 99, 137-140.
...
R. OTHER TECHNIWES AND APPLICATIONS
(Rl) Wehry, E. L.; Hohmann, R.; Gates, J. K.; GuHbault, L. F.; Johnson, P. M.; Schendei, J. S.; Radspinner, D. A. Appl. Opt. 1987, 2 6 , 3559-3565. (R2) Wehry, E. L. J. Res. MeV. Bur. Stand. 1980. 93, 437. (k3) Shakhsher. 2.; Zhang, Y.; Sundberg, D.; Grant, C. L.; Sek, W. R. Proc.-EleCtrochem. Soc. 1987, 87- 75, 54-62. (n4) Hartner, K. C.; Carr, ,I. W.; Harris, J. M. Appl. S p e c m c . 1989, 43, 81-87. (R5) Blumen, A.; Klafter, J.; Zumofen, G. J . Lumln. 1988. 40-47, 80-83. (R6) askey, S.; Vacus. P.; David, R.; Andre, J. C.; Vlllermaux. J. Proc. E u . Conf. Mixing 1988. &h, 129-136. (R7) Von Wandruszka, R.; Wlnefordner, J. D. Taienta 1988, 35. 221-225. (R8) Fetzer, J. C.; Biggs, W. R.; Slnclalr, T. C. Proc. SPIE-Int. Soc.Opt. Eng. 1988, 970. 102-105.
ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990
267R