1238) Ibid.. 41. 1673 11969).
(239j Rizzb, H. F., Gordon, R. S., Cutler, I. B., Nut. Bur. Stand., (U.S.) Spec. Publ., (1967), 296, 129 (1968). (240) Rizzo, F. E.. Smith,. J. V., J . Phws. ‘ Chem., 72; 485 (1968). (241) Robin. J.. Ed.. “Introduction to \ - -
Elkctrochemica1 fifethods,” Masson, Paris, 1967. (242) Rollmann, L. D., Iwamoto, R. T., J . Amer. Chem. SOC.,90, 1455 (1968). (243) Sadler, J. L., Bard, A. J., ibid., p
1979. (244) Sadler. J. L., Bard, A. J., J . Electrochem. SOC.,115, 343 (1968). (245) Sambucetti, C. J., Deuringer, R., U . S . Patent 3,377,256 (April 9, 1968). (246) Sambucetti, C. J., Hersch, P. A., U. S. Patent 3,411,993 (November 19, 1968). (247) Santhanam, K. S. V., Bard, A. J., J . Amer. Chem. Soc., 90, 1118 (1968). (248) Santhanam, K. S. V., Krishnan, V. K., 2. Anal. Chem., 234,256 (1968). (249) Sarkar, S. K., Chowdhury, A. P., Tech. J., 8, 26 (1966). (250) Sasin, E. &I., Mironov, A. A., U.S.S.R. Patent 226,201 (September 5, 1968). (251) Scaringelli, F. P., Rehme, K. A., ANAL.CHEM.,41, 707 (1969). (252) Schaefer, E. A., Hibbits, J. O., Talanta. 15. 129 11968). (253) Schmid; E., Oesterr. Chem. Ztg., 68, 329 (1967). (254) Schoenberger, E., Bahmueller, S., Stud. Univ. Babes-Bolyai, Ser. Chem., 13, 121 (1968). (255) Schroeder, R. R., Shain, I., Chem. Instrum., 1 , 233 (1969). (256) Shvedov, 5’. P., Solovev, V. B., Proc. Conf. Appl. Phys.-Chem. Methods Chem. Anal., Budapest, 1. 279 (1966). (257) Sivaramaiah, G., Krishnan, V. R., Indian J . Chem., 5, 635 (1967). (258) Smith, P. J., hIann, C. K., J . Org. Chcm., 34, 1821 (1969). (259) Sockel, H. G., Schmalzried, H., Ber. Bunsenges. Phys., Chem., 72, 745 (1968). (260) St,ack, V. T., Jr., U. S . Patent 3,360,451 (December 26, 1967). (261) Ibid., 3,372,103 (March 5, 1968).
(262) Stamm,J. A,, Led. Gas Chromatogr., 1.966. 1067. 55. I - - - - I
(263)Stepin, B. D., Zh. Vses. Khim. Obshchest, 13, 529 (1968). (264) Stock, J. T., J . Chem. Educ.,. 45..
736 (1968). (265) Ibid., 46, 859 (1969). (266) Stock, J. T., Microchem. J., 13, 656 (1968). (267) Stokely, J. R., Jr., Shults, W. D., Anal. Chim. Acta, 45, 417 (1969). (268) Ibid., p 528. (269) Stojkovic, D. J., Glas. Hem. Drus., Beograd, 31, 265 (1966). (270) Swanepoel, 0. A., Van Rensburg, N. J. J., Scanes, S. G., J . S. Afr. Chem. Inst., 22, 57 (1969). (271) Su, Y., Campbell, D. E., Anal. Chim. Acta, 47, 261 (1969). (272) Takata, Y., Kuwabara, T., Muto, G., Bunseki Kagaku, 17, 1491 (1968). (273) Takemori, Y., Suzuki, S., Niki, E., Shirai, H., Bunseki Kagaku, Shinpo Sosetsu, 1966, 1R. (274) Takeuchi, T., Yamazaki, M., Hada, H., Yabuki, T., Bunseki Kagaku, 18, 387 (1969). (275) Talasek, V., Eliasek, J., Sb. Vys. Sk. Chem. Technol. Praze, Technol. Paliv., 15, 5 (1967). (276) Tallec, A., Ann. Chim., 3, 347 (1968). (277) Tatwawadi, S. V., Santhanam, K. S. V., Bard, A. J., J . Electroanal. Chem., 17, 411 (1968). (278) Taylor, R. S., Sykes, A. G., J . Chem. SOC.,19698,2419. (279) Tenygl, J., (2011. Czech. Chem. Commun., 33,4141 (1968). (280) Tenygl, J., Czech. Patent 128,345 (July 15, 1968). (281) Terent’ev, A. P., Bondarevskaya, E. A., Kirillova, T. V., Zh. Anal. Khim., 23, 625 (1968). (282) Thiele, R., Born, H. J., Radiochem. Conf., Abstr. Pap. Bratislaua, 1966, 65. (283) Timofeeva, T. G., Sayun, M. G., Itv. Akad. Nauk Kaz. SSR, Ser. Khim., 17, 90 (1967). (284) Tribalat, S., Piolet, C., Mofidi, D., Bull. SOC.Chim. Fr., 1968, 844. (285) Tsuji, K., Elving, P. J., ANAL. CHEM.,41,286 (1969).
(286) Tutundzic, P. S., Paunovic, M . M., Talanta, 16, 733 (1969). (287) Vajgand, V. J., Mihajlovic, R., ibid., p 1311. (288) Vanachayangkul, A,, Morris, M. D., Anal. Lett., 1 , 885 (1968). (289) Van der Hulst, A. J., ANAL. CHEM., 41, 207 (1969). (290) Vijayalakshamma, S. K.,Subrahmanya, R. S., J . Electroanal. Chem., 23, 99 (1969). (291) Vijayavalli R., Rao, P. V. V., Udupa, H. V. k.,Bull. Acad. Pol. Sci., 17, 359 (1969). (292) Vincent, C. A., Ward, J. G., J. Chem. Educ., 46,613 (1969). (293) Vukanovic, V. SI.,Todorovic, M. R., Vajgand, V. J., Svilar, N. M., Glas. Hem. Drus., Beograd, 31, 83 (1966). (294) Waclawik, J., Waszak, S., Chem. Anal., 12,877 (1967). (295) Wallace, R. M., Propst, R. C., J . Amer. Chem. Soc., 91, 3779 (1969). (296) Warzansky, W., Moreno, A. D., Almagro, V., J . Electroanal. Chem., 18, 107 (1968). (297) Weininger, J. L., J . Electrochem. SOC.,116, 1480 (1969). (298) Weldrick, G., Phillips, G., hIilner, G. W. C., Analyst, 94, 840 (1969). (299) Will, F. G., Electrochim. Acta, 14, 749 (1969). (300) Yakovlev, P. Ya., Orzhekhovskaya, A. I., Zauod. Lab., 33, 425 (1967). (301) Yasumori, Z., Kagaku to Seibutsu, 3, 492 (1965). (302) Yoshimori. T.. Hikawa. I.. Bunseki Kagaku, 16, 927 (i967). (303) Yoshimori, T., Ishiwari, S., Bull. Chem. SOC.Japan, 42, 1282 (1969). (304) Yoshimori, T., Arai, &I.,Ikeda, Y., Nivvon Kinzoku Gakkaishi., 31.. 1258 (1967). (305) Yousefzadeh, P., Mann, C. K., J . Org. Chem., 33, 2716 (1968). (306) Zarinskii, V. A., Zh. Anal. Khim., 22, 1669 (1967). (307) Zhdanov, A. K Naroditskaya, A. A., Tr. Tashkent. Uniu., 288,42 (1967). I
,
~
THE support of the Robert A Welch Foundation and the Natipnal Science Foundation (GP-6688X) IS gratefully acknowledged.
Electrophoresis R. D. Strickland, Research Service, Veterans Adminisfrafion Hospifal, Albuquerque,
B
limitations, it has been necessary to curtail the number of references in this review. Those given have been selected from more than 3000 articles, most of which seemed to deserve notice. I n choosing the articles to be cited, preference has been given to those concerned with analytical advances through electrophoresis. Industrial applications, patents on apparatus, and iontophoresis have been entirely excluded on this basis, despite the fact that each of these categories included important contributions. Other topics that have been severely restricted are hemoglobin research and enzymology. It is believed that the list of newly disECAUSE OF SPACE
32 R
covered hemoglobins is comprehensive, but examples of advances in hemoglobin analysis are merely representative. I n enzymology the literature has been so extensive that only papers of outstanding importance have been mentioned, and even some of these have been omitted. Considerable weight has been given to the accessibility of journals to chemists in the United States, but exclusion of papers on this basis has sometimes been undesirable; in such instances the Chemical Abstracts reference number accompanies the listing. Reviews are mentioned in the appropriate sections rather than being grouped under a single heading.
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
N. M. The wide scope of electrophoresis makes a comprehensive critical review impractical; selected sections where important progress has been made include discussions, while others where progress has been less dramatic are treated in bibliographic style. This writer thanks all persons who responded t o the request for reprints made in the 1968 review, and asks once again for reprints from authors who would like to have their work considered for citation in the next review. This review extends the coverage of a previous one (l243), with most of the references dating between the latter part of 1967 and the first half of 1969.
BOOKS
I n addition to books on the general subject of electrophoresis (137, 1173, 1208), there are books devoted to paper electrophoresis (1511), disk electrophoresis (851), free zone electrophoresis @?'I), immunoelectrophoresis (967),and the electrophoresis and immunoelectrophoresis of biological materials (259). An immunoelectrophoretic study of pig serum proteins has appeared (204). FUNDAMENTAL DEVELOPMENTS
The pore size of gels can be varied continuously to form a preparation that sorts out particles in the order of their decreasing molecular size. While the relationship between molecular weight and depth of penetration into a porosity gradient is not a simple one (1418), a number of workers have devised empirical relationships that give good apprositnations for determining molecular weights of such substances as proteins and peptides (555, 607, 992, 11 70, 11 71, 1278), ribonucleic acid (783), and ribonucleic acid fragments (509). Molecular weight determinations are most often done with polyacrylamide gel, but a mixture of agarose and polyacrylamide has been used ( 9 8 9 ) ; agarose alone has been employed to classify deoxyribonucleic acid molecules with respect to their molecular length (1263). The temperature distribution in columns (942, 943) and the dissipation of heat from paper (62) have been studied. Equations are presented which describe the zone mobilities of weak acids as a function of p H (680) and of strong acids and bases (739). A proteolytic enzyme of Clostridium has been separated into two fractions by a magnetic field applied a t right angles to the direction of electrophoretic migration (1409). Certain serum proteins also display paramagnetic properties (915). An apparatus for studying combined magnetic and electrophoretic effects has been used to develop a theoretical description of the influence of the two vectors upon particles (711). APPARATUS
Radial electrophoresis, a technique in which samples are caused to migrate toward the periphery of a circular bed, is reported to give good results when cellulose acetate gel is the supporting medium (917, 1039). Several apparatuses for electrophoresis in density gradients (78, 185, 310), combined density and p H gradients ( l a g s ) , and gel concentration gradients (813) have been devised. An apparatus for twodimensional electrophoresis lets the second migration occur in a different gel (1259). Gravitational flow of buffer is used to compensate for electro-
osmosis during vertical electrophoresis on paper ( 3 ) . Vertical electrophoresis on a thin sheet of polyacrylamide gel is easier than in slabs or cylinders (1056). Starch-gel electrophoresis (193) and high-voltage two-dimensional paper electrophoresis (671) may be performed under inert liquids which serve to cool the bed. An agar-bed apparatus with a circulating buffer system is reported to give superior fractionations (647). A moving-boundary apparatus makes use of changes in capacitance or conductance to detect and measure the ion concentrations (560). An improved double-tube apparatus with rectangular capillaries for particle electrophoresis (539) and one that makes i t possible to distinguish between electrophoretic motion and dielectric polarization effects (982) have been described. Won-gassing electrodes are available for particle electrophoresis (922). Polyacrylamide gel can be used for preparative electrophoresis (171, 200, 572, 1134, 1211, 1251). Differential migration rates of solutes into and out of a gel separates fractions on the principle of counter-current extraction (196). An improved column for particulate supporting media has been designed (1255). A large apparatus using a starch paste bed permits fractionation of 200 ml of serum in a single run; extremely high resolution is claimed (1006). Dilute solutions of protein can be concentrated by electromigration (384). One apparatus for carrier-free continuous electrophoresis (542) yields impure fractions of serum proteins (453). Continuous-electrophoresis apparatuses have been designed to use polyacrylamide gels (117, 507) or a thin gelatin plate (1260). A preparative apparatus (1018) uses the Preetz countercurrent principle [cf. previous review (1243)1. Scanning densitometers provide a means for rapid quantitation of electrophoregrams (544, 1320); quantitation can also be accomplished with a spectrophotometer (517). Dimethyl phthalate enhances the transparency of paper for densitometry (1388). . 4 fluid mixture of dilute agarose and dextrin spread over a quartz plate provides a n electrophoretic bed on which electrophoregrams can be evaluated by direct ultraviolet photometry (455); separations can be followed during the electrophoretic process by ultraviolet photography (794) or by measuring variations in potential gradient caused by the presence of a zone between two electrodes (1344). A scanning apparatus detects radioactivity and allows the rapid elution of radioactive spots (545). A highly automated apparatus detects I4C and *H in electrophoregrams (1378). Destaining can be accomplished electrically (1024) or automatically with a programmable machine (1348). Several
apparatuses have been devised for slicing polyacrylamide gels for analysis (141,506,525). STABILIZING MEDIA
The use of cellulose acetate in zone electrophoresis has been reviewed (276); its performance varies depending on the manufacturer (879). Gelatinized cellulose acetate has been recommended (346,757). Cellulose acetate membranes have been used as a binder for preparing ion exchange membranes (848). A commercially available polythenecoated ion exchange paper is a good medium for separating mono-, di-, and trinucleotides of a single base (1168). Thin-layer silica gel is suitable for separating serum proteins (1121). Anhydrous acetic acid is preferred to cetylpyridinium chloride for preparing agarose (1254). Agarose has a much lower mobility in salicylate buffer than does agaropectin (662); this suggests the possibility of preparing agarose by continuous electrophoresis. Electroosmosis in agarose can be controlled by a small admixture of carrageenan (87). Background staining of starch gel can be minimized by using starch freed from traces of protein by enzyme hydrolysis then acetylated to block end-groups (1321). Diethylaminoethyl (1132) or carboxymethyl (487) end groups can be chemically combined with agarose, giving ion exchange properties to gels made from these preparations; cation exchange material has been added to agar for the same purpose (1355). Polyacrylamide gel films formed on a polyester backing can be dried and stored for future use (949). A technique for producing pore-size gradients in polyacrylamide gel improves resolution of globulins (401); gels with pore gradients yield better resolutions than ordinary disk electrophoresis (1200). The persulfate used as a catalyst for polymerizing acrylamide can cause difficulties during electrophoresis, such as splitting trypsinogen into two fractions (1155),oxidizing sulfhydryl groups (876),and deactivating interferon (485) as well as other biologically active substances (408). Persulfate in polyacrylamide gels can be detected by the blue color which develops when the gel is dipped in a solution of benzidine in 10% acetic acid (106). Riboflavin (408) or a preparation containing ascorbic acid, ferrous sulfate, and hydrogen peroxide (633) can be substituted for persulfate in forming polyacrylamide gels; sodium hydrogen sulfite can replace 3-dimethylaminopropionitrile to initiate polymerization of acrylamide (1I S ) . A poly(viny1 alcohol) gel has been tried for electrophoresis; it has properties similar to polyacrylamide but is harder to prepare and less transparent (1050). Plaster of paris can be cast into wide,
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
33 R
thin blocks that are suitable for preparative electrophoresis of serum proteins (11). A commercial preparation of microcrystalline cellulose has been recommended for separating nucleic acid derivatives (51). BUFFERS AND SOLVENTS
The cyanate often present in urea can carbamoylate the N-terminal groups of globin, yielding an artifact with fast mobility (261). Paraproteins of high molecular weight that do not ordinarily migrate in agar gel do so when strong (0.lM) Verona1 buffer is used (600). Electrophoretic focusing, also called electrofocusing and displacement electrophoresis, is a technique by which ions are caused to migrate between two added ions, one with greater and one with lesser mobility than those of the ions to be separated; this causes the ions to line up in sharply defined contiguous zones in the order of their electrophoretic mobilities; it is not to be confused with isoelectric focusing, which depends upon a different principle. Electrophoretic focusing has been applied successfully to separating fission products (529, 986), rare earths (957), radioactive sodium and potassium (1338), beet juice pigments (1337), and the components of insect hemolymph (403). T h e method of isoelectric fractionation has received remarkably rapid acceptance and at this time appears to be well esLablished. It has often been called isoelectric focusing, a term to which there is no serious objection, but it has also frequently been called electrofocusing, which appropriates a term already used to designate a different technique. Variant names include isofocusing, which seems unlikely to gain currency, and isoelectric separation. The term microisoelectric focusing has inevitably been coined, and is unobjectionable except that it is difficult to locate in subject indexes concerned with isoelectric fractionation. A related term, immunoelectrofocusing, is objectionable because i t does not specify that the isoelectric process is involved. Isoelectric fractionation depends upon the use of a proprietary preparation of synthetic aliphatic aminocarboxylic polymers varying between 300 and 600 in molecular weight and having a wide range of isoelectric points. When used for electrophoresis, a solution of these substances is called a carrier ampholyte. I n a voltage gradient, the components arrange themselves in stationary bands in the order of their isoelectric points. Sample substances migrating in this milieu cease to move when they arrive at the regions corresponding to their own isoelectric points. The classification of fractions is upon the basis of 34R
isoelectric points, and is independent of electrophoretic mobility. As would be expected, the fractionation is often different from that obtained by ordinary electrophoresis. I n many cases, the separation obtained by the isoelectric fractionation method has been supplemented by normal electrophoresis, or by immunoelectrophoresis (250-253). One difficulty with the method has been that precipitates occur between dyes and the carrier ampholyte, thus obscuring the fractionation pattern. Electrophoresis subsequent to isoelectric fractionation obviates this difficulty (324, 1065). It has also been reported that material in sucrose can form artifactual zones when isoelectric fractionation is done in a density gradient (386), and that electrolysis of carrier ampholyte is a source of artifacts (387). The history and theory of isoelectric fractionation has been reviewed (1256, 1336). It can be performed in free solution (1310) or in a density gradient (386, 478), but it has most often been done in gels (53, 248, 325, 755, 1394). It has been applied to a wide variety of biological substances including serum albumin, which separates into two distinct components and several poorly resolved one (1053), serum yglobulins (324, 1309), serum 0-globulins (1312), transferrins (621, 1376), human pituitary gonadotropins (IN), salivary proteins (98) and glyco-proteins (1077), Bence-Jones proteins (478), a-crystallins (144, 149, 1146), human (418, 755) and fish (697, 1027), hemoglobins, snake yenoms (1109, lass), vitamin B12 (1) and vitamin B12-binding substances (484, 518), egg and wheat proteins (1398), soybean proteins (254, 255, 257), plant pigments (631), ribosomal proteins from Streptococcus (199), a-toxins from Staphylococcus (1350) and Clostridium (121), and various enzymes, including proteases (877, logs), cellulases ( 1 5 ) , glycosidases (777), gangliosidases (1116), hyaluronate lyases (1335), deoxyribonucleases (1349), lactate dehydrogenases (1374), lactoperoxidases (241), lipoxidases (249), lactases (632), and carbonic anhydrase (630). BIOLOGICAL APPLICATIONS
Biological Fluids. I n addition to improved methods for separating milk proteins (476, 854), special procedures have been devised for separating the glycoproteins of whey (130) and for separating a,-casein by treating milk with polyphosphate (858). A previously unreported glycoprotein (523) and a variant of p-lactoglobulin (102) have been discovered in cow milk. Milk from Red Danish cows lacks two protein fractions that are present in other breeds (864). Factors affecting milk composition, including breed, loca-
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
tion, season, and stage in the lactation cycle, have been investigated (366, 676, 677, 709, 932). Genetically determined variations in milk proteins have been demonstrated in cows (46, 394, 496,524,862, 1114),zebus (47),buffalos (463, 832), sheep (103, 287, 675), and possibly sows (495). The proteins of milk from sheep (18), goat (1248), and buffalo (29) are similar to the point of giving immunological cross reactions, although the as- and K-caseins from buffalos differ markedly from bovine casein (48). Milk from Rocky Mountain Bighorn sheep differs from that of domesticated sheep (69). The plasma protein content of colostrum and mature milk of humans includes albumin, a-lipoprotein, a-glycoprotein, ceruloplasmin, haptoglobin, transferrin, I g h , IgG, and IgM, with IgA especially concentrated (234, 258, 731, 948). Similar findings have been reported for cows (821, 946), sows (768), and rats (889). Human milk lacks a,-casein (933). Polar bear (70), quokka (634), and gray kangaroo (762) milks have been analyzed. Rennin acts only upon K-casein (395), yielding electrophoretically separable macropeptides which vary with genetic background (41). Other references relating to milk and its products are cited in the section on Food. Urinary protein patterns are useful in diagnosing various diseases (12, 170, 1290). The a2-,P2-, and post-y-proteins found typically in tubular proteinuria are also present in low concentration in normal urine (1366). Urine yglobulin is elevated in lupus erythematosus (288). Heavy-chain immunoglobulin fragments may accompany BenceJones proteins in myeloma (961). Normal urinary mucoprotein patterns by immunoelectrophoresis have been described (355). Two previously unreported glycopeptide fractions have been found in urine from normal men (844). A slow-moving glycoprotein is characteristically present in the urine of cancer patients (663). R a t urine normally contains five serum proteins as well as two originating in the kidney (339); measurement of these proteins is useful for evaluating glomerular filtration (656). Rabbits selectively concentrate and excrete several molecular species of interferon (1103). Young men excrete a t least fifteen peptides including cross-linked fragments traceable to collagen catabolism (1371). Systems of screening for aminoacidurias (409, 958) and for abnormal excretion of amino acids and sugars (1400) have been proposed. Radioiodine can be used to detect and measure picogram amounts of proteins and other urinary constituents (648). The normal excretion of vanilmandelic acid ranges between two and six mg per 24 hours (219); a method for measuring vanil-
mandelic acid by electrophoresis on cellulose acetate gel is available (965). High-voltage electrophoresis reveals eight catecholamine catabolites (57). Xanthurenic acid can be measured by diazotization after it is isolated by high-voltage electrophoresis (730). Parotid saliva contains thirty proteins (1234) which can readily be stained by Wool Fast Blue B L (863). Normal saliva contains no IgG, IgM, or IgD, but only IgA which originates in the parotid gland (289); however, IgM, IgA, and IgD have been reported from saliva in Sjogren's syndrome (429), which is a condition characterized by insufficient salivation and a marked reduction of salivary proteins of serum origin and of blood-group antibodies (405). Techniques for separating salivary glycoproteins have been improved (239, 648). Saliva can be separated into twelve components by continuous electrophoresis (38). There are five amylolytic proteins in saliva (736); amylase in immunoelectrophoregrams can be detected by its activity (1059). Most gastric juice proteins come from serum, but four are specific (162). Gastric juice albumin is elevated in anemia, gastric cancer, and gastritis (856). ,hfeasurements of intrinsic factor by immunoelectrophoresis agree well with the results obtained by immunoassay following charcoal absorption, but the simplicity of charcoal absorption makes it preferable for routine use (79). There are fifteen different proteins and mucoproteins in duodenal fluid; the distribution of these changes markedly in cystic fibrosis (693). Bile contains a chloroform-soluble peptide with characteristic electrophoretic behavior (546). Bile proteins include the serum proteins prealbumin, albumin, cuL-macroglobulin siderophilin, complement, fibrinogen, IgG, I g d , Ighl, CY]- and az-lipoproteins; three non-serum proteins and an antitrypsin are also present (980). Fecal loss of serum proteins by children with diarrhea, malnutrition, and hypoproteinemia is many times higher than that by healthy children (536). Free amino acids in stools of children vary with the age of the child (1013). The normal values for cerebrospinal fluid proteins on polyacrylamide gel (418) and cellulose acetate (653) have been reported. Changes having diagnostic significance have been discussed (83) with respect to glycoproteins (741) and encephalitides (116, 263, 702). There is new evidence that multiple sclerosis is caused by auto-immunity (973); in the active phase of multiple sclerosis, cells from the cerebrospinal fluid produce a unique IgG which is not found during remission:, (1115). The proteins of cerebrospinal fluid can be concentrated by absorbing excess water into Sephadex (134). Human seminal plasma proteins de-
teriorate during storage but can be preserved for 48 hours below 2 OC. (1184, 1295) ; there are approximately fifteen protein fractions, many of which are immunologically identical to serum proteins (564,1023,1186). No abnormality in the electrophoretic patterns of reproductive fluids appears to be associated with either male or female sterility (331). Cervical mucus can be solubilized for electrophoresis by using Ficoll and dimethyl sulfoxide (398); methods for its electrophoresis have been reviewed (1149); its albumin' and mucoproteins vary during the menstrual cycle (883). A specific cul-glycoprotein occurs in amniotic fluid (736); amniotic fluid and maternal and fetal blood serum display abnormal protein distributions in toxemia, congenital fetal malformation, and diabetes mellitus (246). Immunoelectrophoresis shows t h a t sixteen plasma proteins are present in sweat (1313). Human tears contain a specific prealbumin (167, 636) and a n I g h that differs from that of serum (636). The protein pattern of synovial fluid is essentially that of serum (1166) ; the concentrations of most synovial proteins increase after traumatic injury to a joint (1084); in arthritis, haptoglobin increases and the lactic dehydro,uenases are abnormally distributed (704); two extra acid phosphatases appear in joint inflammation (39); measuring the degree of polymerization of hyaluronic acid is useful for assessing the effects of anti-inflammatory drugs (595). Aqueous humor yields twenty-five proteins by disk electrophoresis (561); its 7s yglobulins tend t o be diminished in iridiocyclitis (412). No variation in the protein content of nasal washings develops in allergies (1261). A new immunoglobulin has been detected in lung fluid from fetal lambs (665, 666). H u m a n Serum. A comprehensive review of methods for protein separation has appeared (1318). Other reviews deal with the interpretation of electrophoretic patterns in starch gel (84) and with advances in theory and practice of immunoelectrophoresis (235). The densitometry of dyed proteins following disk electrophoresis tends to be inaccurate because of non-uniform dye uptake (721). Coomassie Blue is preferable to Amido Black (682) and several other commonly used dyes (825) for staining proteins. Amido Black may contain as much as 50YC impurity, which leads to non-uniform staining (368). Of seven commonly used dyes, only Ponceau S is chromatographically pure (226). Optimum staining with Bromophenol Blue can be obtained only with a O.5Yc solution of the dye (34). Procion Blue is said to bind with the peptide linkage, yielding uniform staining with all proteins (664). Picric acid is a superior fixative for proteins in electrophoregrams (334). Sulfur in
protein fractions can be determined directly by X-ray spectrometry (920). Fluorescent labeling of proteins with 1-dimethy laminonaphthalene-5-sulfonyl chloride or with fluorescein affects mobilities and can lead to false fractions if the degree of labeling is not uniform (673). A technique for immunoelectrophoresis with fluorescein isothiocyanatelabeled antigen and antibodies has been described (486). Radioisotopes from tagged protein fractions in polyacrylamide gel can be measured following combustion of the gel (843) or after dissolving it in ammonia (230, 1218) or hydrogen peroxide (758, 1281); densitometry of autoradiographs from intact electrophoregrams also gives satisfactory results (533, 778). Detection and quantitation of proteins with antisera can be accomplished economically on cellulose acetate membranes (1 11, 715) or after microdisk electrophoresis in polyacrylamide gel (924). Immunoelectrophoresis on a microscale can be done in polyacrylamide gels (1317) or on cellulose acetate (511). A rapid method of countercurrent immunoelectrophoresis makes use of endosmosis to bring antigen and antibody into contact (1035). The antibody diffusion process can be expedited electrophoretically (293, 372, 753, 866), with results that correlate well with those obtained by radial immunodiffusion (93, 1156), in contrast to the results with ordinary immunoelectrophoresis (1412). Estimating human immunoglobulins in antibody-containing agarose is difficult because antibodies and immunoglobulins have similar mobilities; this can be corrected by partially carbamoylating the immunoglobulins to increase their mobility (1365,1366). Extremely dilute antibodies in serum, as well as dilute antigens such as gonadotropins, can be detected by adsorbing one reactive material on a metallized slide which acts as an electrode and causing the other reactive substance to migrate into contact with it,; the quantity of the reaction product is estimated by optical measurement of the thickness of the deposit on the slide (1087). Following electrophoresis in polyacrylamide gel, antigens can be detected by allowing them to diffuse into an overlay of agar that contains antiserum (96, 329, 417). Visualization of precipitation arcs in agar can be improved by infusing with water-soluble polyethylene oxide polymers (262). Immune ascites fluid from mice can be used instead of antiserum for immunoelectrophoresis (1351). Methods for making immunoelectrophoresis quantitative have been described (58, 716, 717). Two-dimensional electrophoresis may entail niigration through agarose followed by acrylamide-agarose (562), disk electrophoresis on polyacrylamide followed by a gel with a porosity gradient (814), or
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
35
R
migration at different p H values (1293). Sephadex gel chromatograms of serum proteins can be absorbed directly into cellulose acetate sheets and subjected to electrophoresis (1331). Bisalbuminemias continue to be reported (855, 987, 1143); a study of nineteen unrelated families revealed five albumin types (1372) ; subfractions of albumin in polyacrylamide gel include mercaptalbumin, albumin, and albumin polymers resulting from the formation of disulfide bridges from sulfhydryl groups (383). One report described age-related changes in serum protein distribution (330), but another investigation yielded no such finding (1064). p-Globulins treated with trypsin can be differentiated into fast, intermediate, and slow moving type (1314); /31c-globulin forms several conversion products during storage (793). Cholesterolbinding a,- and az-globulins have been detected (779). The so-called pregnancy zone (213) is rich is cystine aminopeptidase (1070); medication lyith synthetic estrogens causes changes in serum proteins that are identical to those seen in pregnancy (906). Fetal albumin is distinguishable from that of adults (882); serum a-fetoprotein apparently is synthesized in the liver (493); there are eight antigens present in fetal serum that do not appear in adults (224). Starch-gel serum protein patterns of children change progressively with age; the adult pattern is reached a t eleven years (85). The general diagnostic value of serum electrophoresis has frequently been discussed (112, 236, 672, 993, 1135, 1142). The light chains of cold agglutinins separate into three or four bands instead of the eight to ten bands found in normal immunoglobulins (308); IgG and IgA are elevated in thalassemia (125). Pneumocystic pneumonia causes production of y l l I and yl.l globulins as an immune response (207); variations in serum proteins with all forms of tuberculosis have been studied (1298); asthmatic patients show elevated p- and a-globulins (851). The first sign of liver cirrhosis is a rise in p2A-globulin (304); a new zone in the y-globulin region of cirrhotics is seen when starch gel is used with a discontinuous buffer system (577); ceruloplasmin oxidase activity diminishes in cirrhotic disease but increases in neoplasms (1169). Variations in immunoglobulins must be studied immunochemically, since quantitative variations in the p- and y-zones do not correlate with the immunoglobulins; in hepatitis IgM values are consistently high, while IgA and IgG vary (784). Three types of hypergammaglobulinemia occur in liver disease; the significance of these has been reviewed (169). Typhoid carriers are notably low in y M antibodies in contrast to persons who 36R
are immune; they do have a high level of y G (274); pzM and yG are high in all phases of the disease (1062). I n ulcerative colitis al-and a2-proteins are elevated and cryoproteins containing IgG and Ighl are present (941, 1009). Periodic electrophoresis of maternal serum aids in anticipating toxemia of pregnancy (195). I n pemphigus, IgA is elevated, I g X is diminished, and IgG remains normal (518). Immunoelectrophoresis is useless in diagnosing rheumatoid arthritis (158, 294). Immunoelectrophoresis of serum from patients with myasthenia gravis reveals two additional precipitation arcs in the pl-zone (268). An extensive review of the dysproteinemia of diabetes mellitus includes electrophoretic findings (277). I n rabies encephalitis, seromucoid, haptoglobin, C-reactive protein, and aand p-globulins all increase, while albumin is diminished; IgAI and IgA are detectable (609). I n subacute inflammatory and demyelinating diseases of the central nervous system, immunoelectrophoresis of serum IgG may give a single abnormal precipitation arc, a split precipitation arc, or two or more distinctly separate arcs (703). I n sciatica, albumin diminishes according to the duration of the disease and p- and y-globulins are usually elevated (281). There are quantitative but no qualitative differences between the serum proteins of normals and mongoloids (1092). I n children with systemic lupus erythematosus, immunoelectrophoretic abnormalities appear in the a1- and yglobulins as well as in a region between the p- and y-globulins (1225). The effects of trauma upon plasma protein patterns have been reviewed (968, 1379). I n hypogammaglobulinemia, the IgG pattern differs from normal (585,586). I n Banti’s disease, albumin is low while globulins are elevated (1123). Lipoproteins are greatly diminished in Niemann-Pick’s disease (1221). I n leishmaniasis, y G is high and yA and yl‘l are slightly elevated (819). Acute tetanus causes a great increase in a2-, p-, and y-globulins (1414). -4unique antigen is present in leukemia leukocytes (602); reversal in the ratio of al-to p-globulin vitamin B12 binding is diagnostic of chronic myelogenous leukemia (867); albumin decreases and all globulins increase in cancer (411, 1061); a protein designated pS has been detected only in carcinomatous and umbilical cord serum (1262); efforts continue toward developing a way to differentiate between myeloma and Waldenstrom’s macroglobulinemia by electrophoresis (326,1071);a scheme for diagnosing myeloma has been advanced (981); studies on paraproteins have been numerous (92,dl1 , 611, 652,
898,1091) * Mammalian Serum. T h e genetics of serum protein polymorphism in
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
cattle has been investigated (436, 556, 1138). A new a-globulin has been detected in calf fetus (684). The isoelectric point of bovine albumin varies b e tween 4.3 and 4.6 depending upon the ionic strength of the electrophoretic buffer (784). The serum electrophoretic patterns of moose, mountain goat, sheep, elk, and reindeer, including transferrin patterns, have been studied (909,911);sheep (718) and sheep and goats (1139) have many transferrin phenotypes. Serum proteins of ewes vary in relation to pregnancy (570)and lactation (419). A number of studies have been made on serum proteins of deer (1191, 1519), buffalos (660,850), pigs (86,152, 497, 596, 1287),Equidae (164,593, 963), dogs (952,1076), cats (953),mice (14,977, 1058, 1098), rats (72,373, 557, 1096, 1136, 1305, 1367), rabbits (151,158, 414), hamsters (649), squirrels (910),voles (1164), and nonhuman primates (35,318, 776). Analyses of serums from unusual mammals include hedgehogs (100Q), bats (206), dolphins (352),grampuses ( 3 5 4 , opossums (1094), kangaroos (1045), and echidnas (635). Studies have been made on the serum proteins of many varieties of domestic animals (500,608). The y-globulins increase when cattle are immunized against foot-and-mouth disease and brucellosis (954,1186); 7-4 increases during hyperimmunization against Erysipelothrix and Escherichia coli (40); immunoglobulins of cattle rise in trypanosomiasis (133). Sera from animals infested with Schistosoma mansoni contain an antigen originating from the parasite (115, 1213). Extensive studies of alterations in serum protein distribution caused by experimentally induced tumors have been made using hamsters (375,582, 1153), rats (1152, 1403), mice (189),and rabbits (361). Interactions with Plasma Proteins. Heparin forms complexes with yglobulin and thrombin, but not with albumin and fibrinogen (1012). Above p H 7.1, hyaluronic acid forms a complex with serum albumin that appears as a new electrophoretic peak (929). Fluoride in serum is preferentially and irreversibly bound t o albumin (1270). Plasma proteins tagged with SgFelose the iron irreversibly to ethylenediaminetetraacetic acid, which itself may be bound to albumin (33). The binding of calcium by serum proteins is an equilibrium reaction, the extent of which depends upon both Ca2+ and protein concentrations (640). Hemoglobin. Blood samples absorbed on filter paper disks impregnated with a hemolyzing agent can be applied directly to a polyacrylamide column (1106). Hemoglobin standards provide a simple method for correcting errors caused by nonlinear dye uptake (138). Direct densitometry reportedly is more accurate than elution techniques
for H b A2 quantitation (616). Procedures for mass screening to detect hemoglobin diseases (188) and improved methods for hemoglobin separation on agar (1326), cellulose acetate (701, 1175), and Cellogel (969) have been described. A survey in Saskatchewan indicates that 0.03% of the population has abnormal hemoglobins (1327); by contrast, 20% of East Africans have abnormal hemoglobins (296). Among Slovaks the total hemoglobin normally contains less than 0.75% H b F and less than 2.5% H b As (835). hIany new hemoglobin variants not associated with disease have been reported (146, 182, 345, 612,729,748,881,999,1011,1112,1188, 1267, 1328). Variants associated with disease include a hemoglobin acquired following severe hemolysis (820), one associated with hemolytic anemia (1118), and one occurring in diabetics (1034). A new variant of H b S is not associated with sickle-cell anemia (705). Two hemoglobins with diminished (165, 950) and one with enhanced oxygen affinity (538) have been found in clinically normal individuals. Hemoglobin Babinga has been detected in an American negro (598), Hemoglobin hfexico in a Sardinian woman (1028), and H b hIrr,d, Park in a Japanese (1176). There is a significantly different distribution of hemoglobins A I , As, and A3 in individuals deficient in glucose-6-phosphate dehydrogenase (1405). Hemoglobin distribution has been studied in primates (579, 682), cows (576, 1165), bovine hybrids (865),water buffalos (670), sheep (719), goats (QYO), sheep-goat hybrids (66), deer (597, 683, 830), various domestic animals (75, 687), cats (769, 1265), rats ( l 2 9 l ) , mice (316, 438, 1.842, 1347, 1353), dolphins (353), porpoises and sea lions (594), chickens (80, 231, 1150), geese (1250), quail (1361),frogs (267, 896, 896, l271), toads (531), axolotls (285), turtles (l253), turtles and eels (283),eels (978), lampreys ( l O l 4 ) , and fish (232,613,698, 699,1044, 1385,1386). Lipoproteins. Numerous methods for separating serum lipoproteins on cellulose acetate (266, 278, 279, SO$), agarose (646, 845, 937, 1040), and paper (457) have been described. Usually serum lipoproteins separate into four fractions, but polyacrylamide gel with a concentration gradient gives further resolution (1017). Results of paper electrophoresis and ultracentrifugal analysis have been compared with the results obtained by electrophoresis in agarose (938) and starch gel (772); the different methods contribute supplementary information. Prealbumin phospholipids are distinctly different from those of other lipoprotein fractions (622). Evans Blue combines preferentially with al-lipoprotein and the product migrates as a prealbumin (1031,
1133). Luxol Blue is a specific stain for phospholipids and lipoproteins rich in phospholipids (348), Nile Blue has been recommended for staining triglycerides and lipoproteins (347),and a new staining technique uses CoClz and 3-(4,5dimethyl - 2 - thiazolyl) - 2,5 -diphenyltetrazolium bromide (781). Several investigators have reported polymorphism in human serum lipoproteins (302, 448, 1315). There are two polypeptide subunits in serum high-density lipoproteins; their carboxyl terminal amino acid sequences have been partially elucidated (1181). Lipoproteins in humans, pigs, rabbits, and guinea pigs are predominantly /+type, while in cows, horses, rats, cats, and dogs they are predominantly a-type (221). No correlation is reported between liver function tests and serum lipoproteins in patients with viral hepatitis (321); lipoprotein variations do occur in obstructive jaundice (222, 223), hepatocholecystitis (139), kwashiorkor (1294), and rheumatism (891). When hyperlipemia is induced in rabbits, a doubled as-lipoprotein arc can be demonstrated by immunoelectrophoresis (1130).
Glycoproteins. Serum glycoproteins can be located on cellulose acetate by infrared spectrophotometry (1099) or with a reagent containing 2thiobarbituric acid (888). Significant changes in the serum glycoprotein pattern occur in rheumatoid arthritis (120), malaria (685), cancer, where the level reaches almost twice normal ( 5 4 ) ,bronchial asthma (852), and pregnancy ( 4 ) . The al-acid glycoproteins in serum do not stain with Ponceau S, but Amido Black is satisfactory (742). Polypeptide chains of orosomucoid have a tertiary structure held together by disulfide bridging (720). al-Acid glycoprotein variants can be identified rapidly by a new method (601); two variants occur in human plasma (1137). Glycoprotein polymorphism occurs in humans and other animals (140,1286) and immunological cross reactions occur among a wide variety of mammalian species (1368). There are several subfractions of the Pi-glycoproteins from human serum (428, 1164). Cats have a single submaxillary mucin, but cows, dogs, and rats all have several components (323). Fetuin has seven electrophoretic components; much of this heterogeneity is owing to variations in sialic acid content (962). Aortas from bulls contain a glycoprotein that is not present in cows (431). Homogenates of rat genital tracts yield as many as fifteen glycoproteins; one which is rich in sialic acid moves faster than albumin (440). Human costal cartilage contains two protein polysaccharides; one, rich in chondroitin sulfate, migrates rapidly in comparkon to the other, which is rich in keratosulfate (991). Protein poly-
saccharides from bovine cartilage vary in chondroitin sulfate content (681). Several methods for estimating acid mucopolysaccharides have been proposed (563,589,674),including methods adapted for vascular tissue (1126, l230), and gastric secretions (341).
Nuclear Proteins and Derivatives. Purine and pyrimidine bases can easily be separated electrophoretically (5, 172, 1195, 1407). Base-pair ratios can be determined accurately by spectrophotometry following electrophoresis (1160). Diazotized sulfanilic acid can be used to detect xanthine and guanine (1066). Nucleotides and their derivatives have been separated on a preparative scale by continuous free-flow electrophoresis (1252) and for analytical purposes by a number of techniques (397, 471, 695, 885, 1167). Adenine nucleotides can be resolved in eight to ten minutes (1370). Cyclic adenosine 3’,5‘-monophosphate can be separated from adenosine mono-, di-, and triphosphate by paper electrophoresis (1117). Polyacrylamide gel has been preferred for fractionating and purifying ribonucleic acid (391, 521, 569, 603, 732, 746, 988, 1129,1369), but agarose-polyacrylamide (1067), Sephadex-agarose (1330), and agarose (327) gels have also been used. Ribonucleic acid migrates freely on nitrocellulose filters but deoxyribonucleic acid does not (1020). Deoxyribonucleic acid can be purified by carrier-free electrophoresis (669). I n polyacrylamide gel, nucleic acids migrate a t a rate proportional to their molecular weights (143). hlethods for isolating and characterizing nucleoproteins and their derivatives have been extensively reviewed (168).
Other Proteins of Special Interest. Improved methods have been developed for estimating haptoglobins (122, 338, 667) and for distinguishing between heme-binding proteins and haptoglobins (528). .4 new haptoglobin staining technique uses a mixture of reduced phenolphthalein and hydrogen peroxide (247). The nature of haptoglobin-hemoglobin complexes has been investigated (276, 1421). The tryptic peptides of three haptoglobin phenotypes have been compared (297). An excellent method for determining transferrins by electrophoresis in antibody-containing agarose has been devised (956). The aggregation of transferrin in the presence of urea is probably the result of thiol bridging (194). hlanganese is bound exclusively by transferrin (975, 976), but magnesium is nonspecifically bound (437); plutonium is bound principally by transferrin (lado, 1301); a t p H 8 in uitro, transferrin loses plutonium to ferritin (203). Malnutrition reduces transferrin levels in infants (712); infants have the same transferrin group system (1021) as adults (484, 1101). Transferrin poly-
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
*
37 R
morphisms have been described in bovines (76,271, 589, 474, 1299, 1587), buffalos (1416), reindeer and elk (1185), sheep (S96), horses (68),burros (928), rabbits (7S), marsupial mice (687), chickens (320), dogfish (155), and eels (425).
Both human (459) and rabbit (460) bone marrows contain two kinds of ferritin, of which the fast-moving variety binds more iron. The suitability of ferritin immunoelectrophoresis as a technique for genetic studies has been affirmed (998). Ferritins from a variety of sources have been fractionated (985, 1411). The optimum conditions for determining group-specific (Gc) types have been established (667); Gc, Gm and haptcglobin types among Eskimos have been classified (489); Gc proteins occur in cerebrospinal and cystic fluids (715). A system for uniform notation of IgG subclasses compatible with World Health Organization terminology has been proposed (726). Such subclasses are frequently reported (974, 1072, 1120). The general field of immunoglobulin research has been reviewed (69, 886). It is possible to obtain semiquantitative estimates of the amounts of IgG, IgA, and IgM from the conformation of the p-7 region of a cellulose acetate electrophoregram (475). With a new technique, it is possible to analyze the antibodies produced by a single cell; these resemble myeloma proteins (806). The Fc fragment of IgG is normally present in both serum and urine (114). Much progress has been made in determining and classifying the chain structure of immunoglobulins (2, 166, 1019, 1065). The apparent binding of antigen by light chains is probably caused by contamination with heavy chains (872), A method for measuring plasma fibrinogen has been described (791). Agarose with added fibrinogen can be used for demonstrating and identifying prothrombin, thrombin, antithrombin, and plasmin (668). A complement component C’3 is polymorphic in humans (28, 757, 1384). The deficiency of the &A-C component of complement in autoimmune diseases can be demonstrated by immunoelectrophoresis (1032). Factor VI11 appears to be a pl-globulin (1806). Ceruloplasmin exists as several genetically-determined kinds; pathological processes, such as myeloma, may also produce variants (1016). A hemebinding protein called hemopexin exists in two forms, one being a polymer of the other (901); it occurs in the &-globulin region of serum from infants of diabetic mothers (1198). Available data on histones, including electrophoretic properties, have been reviewed (1829). A new method resolves calf thymus histones into five 38R
zones, three of which display multiple bands; it can also be used for comparing histones from different species (979). Histones from molluscs (S15), wheat (604, 505), Chinese hamsters (650), chicken organs (678), sea urchin sperm (972), and human tissue (798) are all similar to calf thymus histones. Calf thymus histone fractions F2(a) 1 and F2(a)2 can be differentiated by starchgel electrophoresis (625). The F 3 histone of calf thymus aggregates a t high p H (624); it is reported to form polymers by disulfide bridging (1005). Chick erythrocytes contain a specific histone fraction which is high in lysine (266). Bovine leukocytes contain nine distinct histones (515). Two histones found in the livers and spleens of rabbits disappear following hyperimmunization (1189). Ribosomal proteins can be fractionated on polyacrylamide gel (155, 456, 592, 884, 1375) or on gelatinized cellulose acetate (1259). Ribosomes and their subunits can be fractionated on agar gel (569). Continuous carrierfree electrophoresis has been used to purify rat liver ribosomes (1151). Techniques for separating collagen polymer components (292) and collagen breakdown products (360, 995) have been described. Protein polysaccharides from human, shark, and calf cartilage contain much collagen (823). Cells. The electrophoretic mobility of erythrocytes, leukocytes, and thrombocytes is reduced in the presence of their specific heteroagglutinins (1276) The clinical significance of erythrocyte electrophoresis has been reviewed (1108). The nature of the surface charges on erythrocytes has been studied (550). Osmium fixation increases erythrocyte mobility (245). Bovine anaplasmosis causes increased erythrocyte mobility because the cells accumulate sialic acid (574). An erythrocyte-specific protein comprises 20% of stromal proteins (808). Spherocytosis and paroxysmal nocturnal hemoglobinuria cause no alteration in stromal proteins ( I 406) ; neither does thalassemia, but malaria does (124). The protein patterns of erythrocyte stroma vary greatly depending upon the p H a t which electrophoresis is performed (1144). Stromal proteins differ widely among mammalian species (1417). A method for separating leukocytes into four classes by continuous electrophoresis has been developed (643). Four basic proteins have been isolated from rabbit neutrophils (1087). Factors affecting mobility of thrombocytes have been discussed; in general, any illness causing increased adherence of platelets to glass also affects mobility (640). Isoantibodies in thrombocytcpenia can be detected by incubating the patient’s serum with normal thrombocytes and observing their resultant
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
I
diminished mobility (1161). Increasing concentrations of adenosine di- and triphosphates or of noradrenaline enhance thrombocyte mobility until concentrations that cause aggregation are reached (747). Fibrinogen and adenosine diphosphate act together in affecting the mobility of platelets (12Q). The protein content of platelets has been determined (464,1466). The mobility of lymph node cells of mice with lymphoblastic leukemia is altered by a dissociable basic component not present in normal cells (507). 3, CBenzpyrene causes increased mobility of cultured fibroblasts (615). The nuclei of malignant lung tumor cells contain a protein not found in healthy tissue or benign tumors (104). In the presence of urea the microsomal membranes of endoplasmic reticulum can be separated into fifteen bands (119). Methods for isolating structural proteins of mitochondria have been described (765, 140.4). Mammalian Tissues. Tritium labeling i n vivo followed by electrophoresis permits the investigation of brain proteins that are synthesized during the learning process (604). Synaptic plasma membranes can be separated into five major and five minor bands on polyacrylamide (812 ) ; synaptic membranes can be isolated from other intracellular membranes by density gradient electrophoresis because they are highest in acetylneuraminic acid and acetylcholinesterase (1163). Optimum conditions for polyacrylamide electrophoresis of brain tissue give reproducible patterns (462) and yield twenty-five protein fractions (923). Human brain tissue contains an organspecific protein moving in the (3-region and a brain-specific az-glycoprotein which is rich in neuraminic acid (1560). The 5-100 brain-specific protein in mammalian brain has two electrophoretic components in a ratio that is constant within a species (1268). The basic brain protein, PI 9.0-9.4, molecular weight 31,500, shows seven zones on polyacrylamide (725). The acidic proteins of rat brain nuclei are similar whether the nuclear source is neuronal, astrocytic, or glial, but the nuclei from the brain stem have a different pattern (376). A technique has been proposed for classifying and identifying encephalitogens (242). Brains from persons with multiple sclerosis are high in IgG (1289); could this be related to the observation that cells from the cerebrospinal fluid of multiple sclerosis patients produce a unique IgG during the active phase (1116)? New methods for starch-gel electrcphoresis of sarcoplasmic proteins, including the glycolytic enzymes, have been developed (1167). The myoglobin from heart and skeletal muscle is identical in both adult and fetal tissue (148);
it remains normal in muscular dystrophy (1093). Tropomyosin I3 from rabbits is composed of two distinct subunits which differ in amino acid composition (163). Uterine tropomyosin migrates more rapidly than that from skeletal muscles (244). Sulfosalicylic acid extracts of rabbit and rat muscles contain a glycogen-protein complex which can be digested b y trypsin only after amylolysis (853). R a t myoalbumin contains three electrophoretic components that are all immunologically identical to serum albumin (439). A prealbumin different from serum prealbumin has been extracted from human skin (60). I n contrast to the single prealbumin of normal epidermis, psoriatic epidermis yields four to five zones migrating faster than albumin (765). Two proteins from serum not normally present in skin are found in psoriatic skin (812). I n psoriasis, skin proteins wil h globulin-like mobility increase (714). R a t and mouse epidermises have only one antigen in common, but all antigens of mouse epidermis are in common with those of humans ( 1 ~ 4 1 ) . Experiments with mice indicate that the degree of skin carcinogenicity of chemicals with a n electronic K-region correlates with the degree to which they are bound b y only one skin protein (555). Disk electrophoresis has been used to compare hair keratins from human, monkey, dog, rabbit, and guinea pig (1174). Electrophoresis has been used to analyze wool for high-sulfur proteins (639, 1257), lysinoalanine (878), lanthionine (89), alanine, glycine, and lysine (go), cysteinesulfinic acid (91), and cysteic acid (88). A special apparatus has been constructed for starch-gel electrophoresis of adenohypophyseal proteins (77). Ischemic kidneys contain fewer antigens than normal (123). One antigen of kidney cortex is responsible for the production of nephrotic antibody (1177). RIouse submaxillary gland contains a number of growth-regulating substances, a thymolytic factor that destroys lymphoid cells of thymus and mesenteric lymph nodes, a protein promoting cell differentiation, and a mesenchyme-stimulating agent; all these can be demonstrated by a special electrophoretic technique (580). Extracting liver with water and buffer yields more antigens than extraction with alcohol (1131). Forty antigens have been isolated from liver b y immunoelectrophoresis and their relationship to other organ and serum antigens has been carefully investigated (1119). T h e spleen has ten tissue components clemonstrable by agar electrophoresis and fifteen by immunoelectrophoresis (97). A 0.018% solution of sodium chloride is a good solvent for extracting proteins from eye lenses (1204). Optimal con-
ditions for immunoelectrophoresis of bovine lens protein have been established (1043). Bovine lenses yield fifteen zones (921); bovine a-crystallin is made u p of two distinct polypeptides which differ in amino acid composition as well as mobility (1145); bovine ycrystallin contains six zones, none of which coincide with the a-crystallins (319). The lens proteins of mammalia are closely related (145, 301). I n chicks, the various lens proteins may be simply polymers of a few peptide subunits (295). The $-crystallins of rabbit lenses are made u p of three peptide units (1169). Characteristic changes in the P-crystallin zone develop a t the onset of galactose cataract (583). The proportion of disulfide to sulfhydryl groups in lens proteins increases as cataract develops (1273). Proteins from lungs of humans, including tumor proteins (105), and proteins from rat lung (%@), human prostate tissue (829),calf connective tissue (1280), bovine fetal enamel matrix (424), mouse melanoma (385), and human placenta (482) have been studied. Elastin separates into seven fractions by Sephadex chromatography and into two fractions by electrophoresis; one electrophoretic fraction contains no basic amino acid (1008). I n dogs and rabbits, experimental atherosclerosis causes aortal y-globulin to increase and a-globulin to diminish (1214); similar changes appear in human atherosclerotic aortal tissue (37). R a t mitochondrial proteins vary with the organ in which they originate; kidney mitochondria yield thirteen fractions (668). Of seventeen protein components from guinea pig cells, only one can be identified with transplantation antigenic activity (646). Lower Vertebrates. T h e egg white proteins of ratite birds are immunologically related (964). Polymorphism is evident in the egg white proteins of chickens (71). Chicken egg white conalbumins fall into three classes with respect to iron-binding ability; each class has electrophoretic subfractions (1241). The number of proteins in chick embryonic fluids increases as development progresses (475) and a n embryo-specific a~-globulin is formed (494). Changes in egg and plasma proteins during the development of the house sparrow (225), in serum during the reproductive cycle of Passeriform birds (107S),and in serum of chickens as a result of bursectomy (498) are reported. Serum proteins from three species of penguins show many cross reactions (26). Hybrids among pigeons and doves often have both parental types of albumin (868). The lens crystallins of chickens have been extensively analyzed (1292, 1419, 1420). Tortoises lack the serum component corresponding to mammalian albumin
(1038); they form immunities with both y M and y G globulins (797); the composition of extracts from their chin glands has been studied (1081). White from the eggs of loggerhead turtles has seven components, of which only albumin moves anodically (36). L9erum from six species of Iranian snakes has been subjected to paper and starch-gel electrophoresis (761). Serum (1063), lymph (1051), sarcoplasmic (1266), oocyte (SSS), and lens (842) proteins of frogs have been analyzed. Lenses of African toads contain twenty-two antigens (233). The lenses of amphibians, like those of reptiles and birds, have only traces of components comparable to mammalian a-crystallin; y-crystallins predominate (300). Salamanders exhibit extremely diversified serum protein patterns (264, 298, 426, 472). I n general the serum proteins of amphibians include fewer globulins than those of mammals (269);their antibodies appear in the y-region (SO). Normal serum protein distributions of cyclostomes (157, 580),lampreys and salmon (S79), sturgeon (792),and South American catfish (1111) have been reported, as have those of sharks, skates, and stingrays, whose blood serum contains no albumin (565). The electrophoretic pattern of trout serum can be altered by the trauma of capture and by exposure to copper sulfate; serum from sexually ripe females has a distinctive zone (1279). Different species of trout have different lipo- and glycoprotein patterns but are immunochemically closely related (586). Carp serum contains three heme-binding proteins (1194). Ulcerative dermal necrosis in Atlantic salmon causes extensive serum protein changes (900). Muscle proteins of lampreys (1S07), swordtails (516), and the Nile fishes denis and bolti (1110) have been investigated. The eye lenses of fish contain no component with the mobility of a-crystallin (299). Lens proteins are useful for establishing relationships (804) and differences (1205) among fish. The protein patterns of salmon-trout hybrids are not simple mixtures of the parental proteins (555). Miscellaneous electrophoretic studies on fishes include sea horse marsupial fluid (161), the pituitary proteins of starving the function of acid mucogoldfish (159), polysaccharides in otolith formation (899),brain amino acids (1215), salmon egg proteins (817), and lactic dehydrogenase isoenzymes of trout (65). Invertebrates. Insect hemolymph proteins t h a t habe been fractionated include those of locusts (822, 8S4, 1284), crickets (1558), cockroaches (7, 9, 930), ants (205), cabbage butterflies (758), silkworms (4SW),webworms (1363), bollworms (IS&?), boll weevils (878), mosquitos (270), midges (1395), and various insects (1357). Bee hemolymph contains twenty-two free amino
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
39
R
acids (499). Harlequin flies have at least six hemoglobins (186) while their larvae have ten (187). Miscellaneous insect substances that have been studied include proteins of the colleterial gland (8) and ovary (344) from cockroaches; seminal plasma and spermatheca fluid from honeybees (461); silkworm tissues (423) including midgut (1361) ; whole mosquitos (131); and enzymes from various insects (44),including silkworms (390) and cockroaches (306,818). Millipede blood contains six different proteins; no component has the mobility of albumin (1036). Scorpions do have a major component with the mobility of albumin, otherwise the pattern differs from that of human serum (718). -The blood of adult female crabs contains twelve protein fractions, five of which appear also in the yolk proteins and one of which is sex-specific (10). Blue crabs have two hemocyanins, one occurring only in females (588). There are three principal proteins in the hemolymph of the woodlouse; one of these is absent in the male and increases in the female during vitellogenesis (126). Proteins of the crystalline style in molluscs can be used to establish taxonomic relationships (95). Ten antigens can be detected in pond mussels by electrophoresis (488). There are several proteins in the lenses of octopi (163). Rock whelks have a single hemocyanin which dissociates into two subunits in the presence of ethylenediaminetetraacetic acid (1391). Whole-body homogenates of some nematodes contain twelve different proteins, may of which show esterase and acid phosphatase activity; alkaline phosphatase activity is absent (109). Electrophoresis of whole-body extracts of nematodes has some taxonomic value (532). The hemoglobin of nematodes that are parasitic in birds is a single protein distinguishable from host hemoglobins (1082). Hemoglobin of Fasciola also is distinguishable from that of the host (796). Studies on sea urchins include the proteins of sperm flagella and unfertilized eggs (512), sperm agglutinins from eggs (1237), histones from early cleavage stages (959),and the ribosomal and nuclear proteins from embryos (331). The collagens of some marine invertebrates are made up of a single a-component resembling that of lampreys ( I 005). Plants. T h e uses of electrophoresis for studying proteins and enzymes of plants have been reviewed (800). Glutenin and gliadin are distinctly different even though both are soluble in ethanol (931); both the albumins and globulins of wheat are extremely heterogeneous (399, 415, 537, 1192); the protein patterns can be related to wheat varieties and their genetic structures 40R
(626, 627, 861). Barley proteins also are very heterogeneous (836); they can be separated into six fractions on a preparative scale b y continuous electrophoresis (614). The embryonic axis of corn contains fifteen antigens which decrease to seven following germination (13, 24). Soybean proteins are extremely heterogene ous (256, 749, 1026, 1107, 1308), as are those of mung beans ( l l 2 7 ) ,peas (869), cotton seed ( l d O l ) , sorghum seed (1415), and hemp seed (657). Amphidiploidy in certain species of Brassica results in seed proteins that are composites of those found in the parent species (1324). Amandin, a protein from almonds, has four fractions which dissociate into eight subunits in the presence of urea (1227). Fungus infections of seeds can be detected by electrophoresis because infected seeds have more protein fractions than normal (519). Relations of tuber proteins from twenty-two species of Solanum have been studied (358). Seven soluble proteins can be separated from the common potato (944); potato varieties can be identified electrophoretically (357). Improved methods for separating proteins of plant tissues (503, 840, 1106) and studies describing optimum conditions for their separation (1010, 1120) have appeared. Application of electrophoresis to nonprotein plant substances include the separations of metal-organic complexes (576),phosphate esters (178), and amino acid, organic acids, and neutral fractions (305). Proteins from the leaves of beets infected with mosaic or yellows virus are unusually high in bound carbohydrates; this causes a characteristic zone distortion owing to complex formation when borate buffers are used (766). The hemoglobinlike pigments of legume root nodules have eight to eleven components (994); the literature on this subject has been reviewed (1249). Cold-hardiness in alfalfa roots entails only increased concentration of soluble proteins (481), but woody species show qualitative changes (317 ) . Nale-sterile Sudan grass has a much simpler protein structure than the male-fertile type (19). I n starch gel, meadow grass yields thirteen proteins, alfalfa has eighteen, and clover has sixteen (686). The different root zones of broad bean show no qualitative differences in their protein patterns (534). Digitonin breaks down the chloroplast lipoprotein-chlorophyll complex, yielding definite soluble subunits (690). Lamellar proteins of chloroplasts separate into three bands (1140). The intermediate compounds formed in chloroplastids during photosynthesis, with I4CO2as the source of carbon, have been completely fractionated by combining thin-layer electrophoresis and chromatography (1147). Chlorella cells contain about twenty
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
acid-soluble basic proteins (660); availability of nitrogen greatly affects their protein composition (1007). Proteins in blue-green algae (366) and amino acid composition of numerous kinds of algae (916) have been investigated. Humic acids from various types of soil have been studied (177, 642); they can be detected by autoradiography of their 5gFe complexes (689). Cobalt complexes with organic acids in the soil have also been investigated (13). A system for analyzing plant nutrient solutions has been described (706). Microorganisms. Electrophoresis is useful for classifying Penicillium (IO?), Mycoplasma (1047, l o g o ) , Verticillium (1382), Phytophthora (490), and dermatophytes (31). Races of Phytophthora cannot be distinguished electrophoretically (491). Neurospora crassa proteins have been investigated extensively (136, 452, 688, 1088). Toxic pigments from Verticillium dahliae contain sugars (272). The number of soluble proteins in a culture of low-temperature basidiomycetes diminishes with the age of the culture (1162). Sporotrichum filaments have twenty-two protein bands, while the yeast-like stage contains twentyfour (336). Yeast cells display diminished electrophoretic mobility when they differentiate (1105). Malaria parasites on acrylamide gel give twelve protein fractions (427); trypanosomes give twenty-two on starch gel (935). Clostridium (661, 681, 790, 11 13) and Shigella (1216) toxins; antigens of paratyphoid (lass), or streptococci (760),of Bacillus megaterium (826, 874), and of mycobacteria (1086); proteins of Erwinia (1210); and heme proteins of photosynthetic bacteria (960) have been studied. Bacterial conductivity must be taken into account when estimating surface charges by electrophoresis (392). It is possible to separate a mutant form of bacteriophage fd by electrophoresis (673, 574) ; the bacteriophage R17 has a structural protein that is marked by containing histidine, with only four histidines present in a phage particle (1235). The virulent form of bacteriophage contains less deoxyribonucleic acid than the non-virulent form (1341). The bacteriophage QPreplicase reaction has been studied in detail (142, 970). Herpes simplex causes a t least twenty-five proteins to be synthesized by a cell culture that it infects (1219). HeLa cell cultures infected with polio virus contain three forms of virus-specific ribonucleic acid (936). The proteins of Newcastle virus (404), herpes virus (l364), fowl-plague virus (637), vesicular stomatitis virus (651, 1354), tobacco mosaic virus (839), adenoviruses (764, 1333), and reoviruses (760, 785, 1172) have been fractionated. Infectious ribonucleic acid from footand-mouth disease virus can be isolated
by continuous carrier-free electrophoresis (827). Taxonomy. Electrophoretic analysis has proved useful for classifying microorganisms (939), including enteric bacteria (180), mycobacteria (914), Vibrios ( 6 ) ,thermophilic aerobic sporeformers (6?), Endameba (1049), and Candida (110); and in the classification of larger organisms such as myxomycetes (446), fungi (291, 990), , plants (179, 1500, 1522, 1323), and insects (197). Each species of primate has a characteristic distribution of blood and urine indoles, amino acids, and imidazoles (1207). There are many cross reactions among the classes Amphibia, Aves, and hlammalia (280). Enzymes. T h e general subject of isoenzymes, including diagnostic significance (1283) and methodology for their determination, has been reviewed (752, 816, 1396). General methods for isoenzymes (1325) and for demonstrating isoenzyme polymorphism in plants (191, 1388) have been published. One review discusses both significance and methods for isoenzymes of carboxypeptidase and lactic dehydrogenase (1305). Detailed procedures for measuring the activit’y of glycosidases, thymidine diphosphoglucose oxidoreductase, and sucrose phosphorylase have been described (458). Isoenzymes of salivary amylase can be located with respect to the positions of salivary proteins after electrophoresis on a polyacrylamide slab (154). Polymorphism has been demonstrated in the amylase of human parotid saliva (1390). Parotid amylase differs from pancreatic and bacterial amylase; pancreatic amylase predominates in the urine (502). Amylases of salivary and pancreatic origin in the urine can be distinguished, a fact which is diagnostically useful (52). Human colostrum contains at least four isoamylases (508). Drosophila amylase polymorphism (370) has been investigated from the genetic point of view (64). Techniques have been reported for measuring isoenzymes of amylase and lysozynie (1389), p-galactosidase of Escherichia coli (807), and polygalacturonase (1232). Tear and egg lysozymes differ greatly even though they catalyze the same reaction (166). A general method for detecting multiple forms of proteolytic enzymes by starch-gel electrophoresis uses hemoglobin degradation to detect activity (649). Chymotrypsinogens A and B have the same pattern of disulfide bridges (1201). Proteases of gastric juice and gastric mucosa are constant for a given mammalian species (275). Insulinase fractions following polyacrylamide-gel electrophoresis can be detected by allowing them to act upon lalI-labeled insulin (1122). Angiotensinase from serum, liver, and kidney can be assayed in starch-gel electro-
phoregrams (49) Prothrombin separates into five fractions on polyacrylamide gel (82). Profibrinolysin can be assayed by applying to the electrophoregram a fibrin-impregnated cellulose acetate strip containing urokinase (552). Electrophoresis separates profibrinolysin from inhibitors in blood serum; unless this is done, assays based on enzyme activity are unreliable (468). The p-lytic protease of Sorangium migrates as two components, the slower of which is the apoenzyme (1381). A method has been devised for visualizing inhibitors of trypsin and chymotrypsin following separation in (1304). Human acrylamide-agarose serum contains three trypsin inhibitors (466). Proteinase inhibitors from soybeans can be purified by electrophoresis on a preparative scale (447). Complexing with Methyl Orange reduces the susceptibility of albumin to enzymolysis, apparently by occupying two strong binding sites (818). A new method demonstrates that human erythrocytes contain five peptidases, the distribution of which is genetically determined (775). Measurement of isoenzymes of alanine aminopeptidase (100) and leucine aminopeptidase (1282) is useful for diagnosing hepatobiliary disease. The heterogeneity of y-glutamyl transpeptidase has been demonstrated (619, 754). Isoenzymes of aspartate aminotransferase should not be estimated in phosphate buffer because phosphate inhibits the cationic enzyme and accelerates the anionic enzyme (934). Aspartate aminotransferase is strongly bound to a2-macroglobulin when borate buffer is present (181). Measurements of isoenzymes of amino acid arylamidase are a more sensitive indicator of pancreatic disease than measurements of alkaline phosphatase (101). Fetal brain esterases are fewer in number than those of the adult; the adult pattern develops approximately a week after birth (81). Diseases cause only quantitative changes in cholinesterases but can cause striking qualitative changes in the aliesterase pattern (501). Twelve cholinesterase isoenzymes have been demonstrated in human plasma (643). Serum phenyl acetate esterase (1264) and serum carboxylesterase of hepatic origin are both greatly diminished as a consequence of liver damage (367). Five carboxylesterase isoenzymes are present in human cerebrospinal fluid (451). There are six esterase isoenzymes demonstrable in human sperm but no more than three of these are found in any individual (94). Sephadex G-200 gel has been recommended as a medium for electrophoresis of serum alkaline phosphatases (606). Phenolphthalein monophosphate is a suitable substrate for alkaline phosphatases; t h e color of released alkaline phenolphthalein is a measure of activity I
(1078); if naphthyl AS-MX phosphate is used as a substrate, activity can be detected fluorometrically (628). Regions of activity of alkaline phosphatase isoenzymes can be detected by using 45Ca to precipitate liberated phosphate, followed b y autoradiography (441). A system for determining the organs from which serum alkaline phosphatases originate has been developed (1399). The significance of elevated serum alkaline phosphatase in obstructive hepatobiliary disease and in osteoblastic bone disease has been discussed (568); determination of isoenzyme patterns aids in detecting the change of a uterine tumor from benign to malignant (770). Alkaline phosphatase patterns are characteristic for different human tissues (1209). Alkaline phosphatase isoenzymes of the small intestine and of the liver have been separated on a preparative scale by electrophoresis in polyacrylamide columns (1212). A clinically useful procedure for measuring the isoenzymes of alkaline and acid phosphatases has been described (527). Indolyl phosphate used as a substrate for acid phosphatase isoenzymes yields blue areas in regions of activity (402). Variations in serum acid phosphatase isoenzyme patterns in relation to Gaucher’s disease, prostatic carcinoma, and multiple myeloma have been discussed (1097). A method for detecting acyl phosphatase using p-nitrobenzyl phosphate as a substrate and developing with FeC13SH20H has been described (918). Variations in distributions of creatine kinase isoenzymes occur in myocardial infarctions, muscular dystrophy, hypothyroidism, brain neoplasms, and several neurological disorders of children (257, 859, 1128, 1296). A number of new isoenzymes of fructose phosphate aldolase appear in hepatitis, leukemia, and muscular dystrophy (362, 365). Conditions for separating and measuring the two hexose kinases of rat adipose tissue have been outlined (1375). An extremely sensitive method for demonstrating phosphorylases has been developed (1231). The pronase fragment of an adenosine triphosphatase has been shown by electrophoresis at different p H values to have five dissociation constants (620). I t has been postulated that each lactic dehydrogenase isoenzyme is a n aggregation of four polypeptide subunits. These subunits are of two kinds: one, which is designated hf because it predominates in the lactic dehydrogenase of skeletal muscle, has a lower mobility than does the other, which is designated H because it predominates in the lactic dehydrogenase extractable from heart muscle. Using combinations of these two peptides, five isoenzymes having the formulas H4,H3MJH2M2,HAT3,and 114 are possible. These five isoenzymes are
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
41 R
arranged in the order of decreasing mobility toward the anode, and are usually designated LDHI, LDH2, LDHs, LDH,, and LDH5 according to their order of appearance on electrophoregrams. LDH5 is the slowest moving-Le., appears closest to the cathode, and corresponds to the formula M4. However, a sixth isoenzyme of lactic dehydrogenase occurs in the kidney and heart of Mongolian gerbils (617) as well as in human sperm and testicular tissue (410); this indicates that the structure of lactic dehydrogenase isoenzymes needs further clarification. The isoenzymes of lactic dehydrogenase can be demonstrated b y methods using polyacrylamide (27, 343) and agar and starch gels (605), but the activity of the slowmoving fractions deteriorates on cellulose acetate unless protein is present to protect them (1079, 1222). Re-electrophoresis of lactic dehydrogenase isoenzymes separated on starch gel causes the bands to separate into subfractions (700); the isoenzymes also separate into subfractions after they are acted upon by formalin (1057). The socalled “nothing dehydrogenase” patterns that appear in the position of lactic dehydrogenase isoenzymes following tetrazolium staining, even though no lactate substrate is available, have been explained as resulting from lactate-like materials insolubly bound to the supporting media, which may be starch, polyacrylamide gel, or cellulose acetate (407). A technique for differentiating between lactic dehydrogenase isoenzymes of muscle (AI) and heart (H) types in various tissues has been described (400). The ratio of thrombocytic H to h1 subunits of lactic dehydrogenase in patients with liver disease and polycythemia vera is elevated, while it is reduced in cancer, phlebothrombosis, myelofibrosis, and myelomatosis (694). A review of variations in lactic dehydrogenase in response to various diseases of the central nervous system (480), and a n extensive investigation and review of lactic dehydrogenase changes as a result of many internal diseases (761) have appeared. Significant variations in lactic dehydrogenase patterns have beenassociated with schizophrenia (696), cirrhosis (467, 1332), myocardial infarction (541, 1359), psoriasis (520), circulatory insufficiency (1402), neonatal hyperbilirubinemia (237), bone healing (ZOZ), and vasectomy (887). I n the malignant tissue of carcinoma of the colon, the M-rich forms of lactic dehydrogenase predominate (744). Characteristically, in malignant tissues the slowmigrating lactic dehydrogenase isoenzymes that remain closest to the cathode are elevated (610, 644, 940,951 , 1223); this pattern represents a metabolic change that may develop before the tumor occurs (743). The total serum lactic dehydrogenase in acute 42 R
leukemics is twice that of normals (49); the isoenzyme pattern of leukemia leukocytes differs depending upon whether the leukemia is lymphatic or myeloid (599). I n blood diseases characterized by high granulocytosis, elevated slowmoving leukocyte lactic dehydrogenase is typical, while lymphocytosis characteristically displays elevated leukocyte lactic dehydrogenases of intermediate mobility (803). When leukemia leukocytes are electrophoretically fractionated into mature and immature cells, the immature cells are found to have elevated total lactic dehydrogenase because of increased L D H l ; it seems probable that the lactic dehydrogenase pattern of leukocytes depends upon maturity rather than upon pathology (1033). Certain isoenzymes of malic dehydrogenase appear in serum only during acute hepatitis (366). hlethods for separating glucose-6-phosphate dehydrogenase isoenzymes on cellulose acetate (1217) and on agar using a glycylglycine-ethylenediaminetetraacetic acid buffer (551) have been described. A technique for detecting cytochrome oxidase is useful in investigating mutations of Drosophila (1244). Human malignant melanomas contain three forms of tyrosinase (219). hfyeloperoxidase has been separated into ten components by disk (416) and free-flow (1148) electrophoresis. -4 method for locating red cell NADH- and NADPHdiaphorases following starch-gel electrophoresis has been described (654). Serum from patients with viral hepatitis contains two glutamic-oxalacetic transaminases, one from cytoplasm and one from mitochondria; in myocardial infarction, only the cytoplasmic form is found (32). The activity of phosphoglucose isomerase from the erythrocytes of patientswith progressive scleroderma is oneand-a-half times normal (584). A method for separating and measuring two carbonic anhydrase isoenzymes in hemolyzates uses cellulose acetate as a supporting medium (1100). Hormones. T h e general methodology of separating free and antibodybound hormones has been reviewed (1C85). Growth hormone can be analyzed b y disk electrophoresis (1398), or immunologically after starch-gel e1ectrophores;s (1O74), and in serum by a radioimmunoassay method (1199) ; in starch gel and agar it migrates as several fractions which are probably polymers (1075) ; however on gelatinous cellulose acetate it moves as a single band (150). Both growth hormone and prolactin from bovine (773) and rat (526) pituitaries can be purified by polyacrylamide gel electrophoresis; they migrate as prealbumins in the presence of palmitic, oleic, and stearic acids (774). Human thyrotropin is more electronegative than
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
porcine and bovine forms because it has a greater sialic acid content (1180). The gonadotropic activity in starchgel electrophoregrams of mouse pituitary homogenates has been located (782). Pig follicle-stimulating hormone can be assayed by immunoelectrophoresis (1258). Luteinizing hormone of human plasma can be measured by radioimmunoassay after excess antibody is removed by paper electrophoresis (216). Blood oxytocin can be separated b y paper electrophoresis from the pressor substances that interfere with its bioassay (198). The antidiuretic principle of Pitressin can be purified by paper electrophoresis in borate buffer (340). Thyroxine is bound by prealbumin, albumin, cyl-protein, and by a protein in the region between c y p and ,?-lipoproteins as well as by the thyroxine-binding globulin of serum (479, 559, 801, 880). The thyroxine-binding globulin of human plasma has been isolated by chromatography supplemented by repeated electrophoresis (492). Thyroxine-binding capacity of serum can be measured in vitro, thus avoiding exposure of pregnant women to radioiodine (127). Thyroid blocking agents, e.g., thiocyanate, displace iodine from prealbumin in vitro (1397). Thyroglobulin constitutes 80% of the SaC1-extractable protein of hog thyroid (1377); it is heterogeneous to electrophoresis in polyacrylamide gel (1288) and in the presence of high concentrations of urea (795).
Proinsulin and insulin precursors have beenisolated from crystalline bovine insulin (1233); four commercial preparations of insulin were found to have several slowly-migrating fractions (55). The reduction products of the S-sulfonated insulin chains can be separated from each other electrophoretically (824). I t is easy to separate insulin and glucagon from each other by electrophoresis (1413). Circulating insulin is bound mainly by wglobulin but a small amount adheres to albumin (1226). The serum from guinea pigs that have been immunized to insulin contains three anti-insulin antibodies (201). Bradykinin, methionyl-lysyl-bradykinin, and kallidin can be separated b y chromatography combined with paper electrophoresis (469). Erythropoietin can be purified on polyacrylamide gel ($5).
Aldosterone can be separated from most corticosteroids by electrophoresis in borate but molybdate or arsenate is needed to separate it from deoxycorticosterone (420). Testosterone is bound mainly by serum ,?-globulins and to a limited extent by albumin and aglobulins; other steroids compete for the same binding sites (1083). Biochemicals. T h e methods for separating amino acids and peptides
have been reviewed (902). Numerous procedures for separating amino acids have been proposed (61, 378, 707, 903905) including special techniques for acidic (1002) and basic (444,786,847)amino acids and amino acid derivatives with phenylthiohydantoin (913) or l-dimethylaminonaphthalene-5-sulfonic acid (42). Special techniques are available for free amino acids in blood and urine (313) and in plant extracts (328). Sephadex G-25 has been proposed as a stabilizing medium for separating amino acids and oligopeptides (286). Bromophenol Blue can be used as a specific stain for imidazoles including histidine and its derivatives (984). Rapid methods for separating peptides in protein hydrolyzates on filter paper (678) and silicagel(919) havebeen developed. Anew method of diagonal electrophoresis has proved fruitful for separating peptides obtained by enzymatic hydrolysis (228, 870, 871, 996, 997). The application of zone electrophoresis to carbohydrate research has been reviewed (875). A combination of chromatography and electrophoresis permits less than 100 micrograms of allose to be measured in a solution containing glucose (1182). Carbohydrates can be separated in borate buffer (1190, 1229) or as bisulfite addition compounds following periodate oxidation (1158). Submilligram amounts of radioactive polysaccharide mixtures can be analyzed b y electrophoresis on glass paper follored by scintillation counting (1258). Procion dyes can be used to stain bacterial polysaccharides prior to electrophoresis (581). There is evidence that carbohydrates and polyols form carbonate half-esters in a carbon dioxide atmosphere under alkaline conditions (442). The heparin from pig mucosa has two components which differ in sulfate and carboxyl content (590). Heparins from various sources can be identified by their mobility relative to a reference heparin (618). The B isomer of chondroitin sulfate can be separated from the A and C isomers b y electrophoresis in zinc acetate (1023). Barium salts used as a n electrolyte give superior separations of acidic glycosaminoglycans (1380). Amine sugars can be separated and measured in borate (240)and molybdate (853) buffers. Most vitamins are bound by the a: and P plasma proteins, but albumin transports most of the biotin and pantothenate and all of the P-carotene (74). Four isomeric myoino-itol pentaphosphates can be separated by paper electrophoresis (1269). Thiamine and many of its derivatives can be separated from each other by electrophoresis in 551 acetic acid (454). Four L-ascorbic acid phosphates, formed by synthesis, can be separated by paper electrophoresis in borate buffer (1178). One-hundred-and-four nitrogen com-
pounds, including amines, amino acids, amino alcohols, and guanidine, can be identified on the basis of their electrophoretic and chromatographic behavior (788). Thirty-two choline derivatives are separable when a strong mixture of acetic and formic acids is used as the electrolyte (1015). A salicylate buffer with added orthoboric acid gives superior results in fractionating adenosine tri-, di-, and monophosphates, glycerophosphate, propanediol phosphate, acetol phosphate, and 2-phospholactic acid (723). Determination of serum phosphatides is useful in diagnosing rheumatism, pneumonia, malignancy, and diseases of the kidneys, liver, and nervous system (1060). Ketoacids can conveniently be separated in the form of their 2,4-dinitrophenylhydrazone derivatives (258). Four isomers of cytochrome c have been separated from beef heart and rat tissues (432, 435). Forensic, Toxicological, and Pharmaceutical Applications. Typing of enzymes (1392), including acid phosphatase (554), pseudocholinesterase (1302), catalase (483), and adenylate kinase (322) has proved useful for legal establishment of identity. A rapid method for identifying bloodstains by immunochemical reaction has been developed (337). Sperm can be identified by demonstrating the presence of spermine (215), by its characteristic electrophoretic pattern (1540), or by demonstrating the presence of lactic dehydrogenase X, an enzyme specific for sperm (410). Electrophoresis is superior to chromatography for resolving the components of ink (1276). Organophosphorus insecticides can be detected by diminished cholinesterase activity, which can be demonstrated as long as twelve days after death (214). The detergent used for dispersing oil from a wrecked tanker has been shown to have disastrous effects upon fish (806). The distribution of isomers of N-oxalyl-a,j+diaminopropionic acid, the toxic agents from chickpeas that cause lathyrism, has been studied (1095). Electrophoresis of drugs originating in plants (1056), including the alkaloids (1539),has been reviewed. Among the alkaloids to which electrophoresis has been applied are those from Ruuwolj'iu (1000, 1345), purine alkaloids (1245), isoquinoline alkaloids (1247), harmine and harmaline (S4S), berberine derivatives (655), pholcodine and codeine (1025), strychnine in mixtures with phenothiazine drugs ( I r k ) , quinine (173), and alkaloids from belladonna, opium, and nux vomica (1274). Digitoxin can be separated from autopsy material by paper electrophoresis; it is most concentrated in heart, blood, and intestine, and it disappears within ninety days after death (176). Streptomycin and its derivatives can be separated by electrophoresis on silica gel
(659) or paper (658). Erythromycins A, B, and C have been separated on talc in borate buffer (710). Electrophoresis has proved useful for separating the salicylates, barbiturates, and alkaloids in compound medicinals (56), primidone and phenobarbital from biological material (175), thiobarbiturates and their copper complexes (894), phenethylamine derivatives (1054, ephedrine derivatives (927), sulfonamides (IO@), and imipramine metabolites (1141). The binding of thalidomide by fetal and maternal macromolecules of rats has been studied (68). Eleven dyes used for coloring medicines can be separated by electrophoresis in pyridine or acetic acid (371). Commercial preparations of human albumin contain undesirable polymers which can be detected by electrophoresis, immunoelectrophoresis, and gel filtration (908). Analyses have been made of venoms from bees (108, 547), spiders (756, 841, 947), tarantulas and scorpions (lZ24), and scorpions (846,1102), as well as from many kinds of snakes (185, 184, 349-351, 430, 623, 638, 692, 722, 1179, 1297, 1408). Food. Adulteration of one milk with t h a t from another species can be detected in t h e cases of human with cow (449), human or cow wit,h goat (450), buffalo with cow (22, 595), goat with cow (451,and cow with sheep or goat (190). Passing milk through a cation exchanger alters its protein composition (160). Each cheese has a characteristic electrophoretic pattern (926), so that' the addition of corn to buffalo milk in the preparation of mozzarella can be detected (21), as can the adulteration of Roquefort (sheep) with Bleu (cow) cheese (50). The aging of Swiss cheese can be followed by observing the variations of its proteins (364). Casein used as an additive in sausage can be detected by electrophoresis (1196). The egg content of noodles can be determined electrophoretically ( I 195). Egg white can be detected in cornmercia1 preparations of egg yolk (925). Electrophoresis has been widely used t o distinguish between species of fish in commercial products (284,514, 740, 799, 1277). A precise electrophoretic system is proposed to replace the inexact "dropping number" method of evaluating bread grains (956). The electrophoretic properties of food thickening agents, including gums, cellulose derivatives, carrageenan, alginate, gelatin, pectin, and dextrin, have been studied (566,971). Thirty-six food dyes can be identified by electrophoresis (1272). The changes undergone by barley proteins in the process of beer formation have been studied (510). Sparklingwines can be distinguished from carbonated wines by their higher aspartic
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
43 R
and glutamic acid content (811). A method which has been proposed for separating and measuring phenolic substances in beverages (217) also serves to detect apple cider adulteration of wine (218). Both white and red wines contain approximately one milligram of histamine per liter (802). GENERAL CHEMICAL APPLICATIONS
Analyses of carboxylic (945),aromatic carboxylic and nitrobenzenesulfonic (446), indole-2-carboxylic (708), and phenylphosphinic and phenylphosphonic (679) acids have been accomplished. Electrophoregrams of polyaminocarboxylic acids can be colored by FolinCiocalteau reagent for quantitative measurement (745). Pyridine bases can be separated by electrophoresis and identified by the color they produce with copper (907). Combined electrophoresis and chromatography can be used to identify aryloxyalkylammonium compounds (1246) and forty-nine guanidine derivatives (787). hlonohydric alcohols can be separated as their xanthate derivatives (443). Separation of poly01s by electrophoresis as well as by other methods has been reviewed (771). Polycyclic aromatic hydrocarbons can be separated as their caffeine complexes (1089). Methods for separating and identifying polynuclear phenols have been described (1125). Polynuclear aza heterocyclic compounds (1124), nitro dyes (309), dyes for vinyl sulfone (ZSO), and the common histological dyes (591) have been separated. Rose Bengal contains a t least ten electrophoretically separable components (1197). Kitrotetrazolium Chloride Blue contains a red component (522). The structures of phosphonium compounds used to kill fungi and insects have been investigated (857, 1346). Diphenyliodonium, tetraphenylarsonium, tetraphenylphosphonium, and thallium cations can be separated on paper in a citric acid buffer (220). Paper impregnated with tin(1V) phosphate (1030),and thin layers composed of heteropoly acid salts (767), are new media useful for separating a wide variety of cations. The general field of separating inorganic ions by electrophoresis on paper (1104) and in fused salts (20) has been reviewed. Many cations can be separated on paper using acetate buffer (837) and on cellulose acetate using a-hydroxyisobutyric acid (212), or as complexes in AT-(2-hydroxyethy1)iminodiacetic acid (629). The mobilities and transfer numbers of radioisotopes of the alkali metals in fused nitrates have been measured (1187). The mobilities of numerous anions and cations on filter paper have been determined (734) and the effect on mobility of varying electrolyte concentrations has been studied (733, 1202, 44R
1208). Ferrous and ferric iron can be separated using combined chromatography and electrophoresis (780). The structures of cobalt complexes have been investigated (759, 838, 1080). Radioactive isotopes of iron, manganese, cobalt, zinc, and cadmium can be separated in carrier-free form from the cyclotron target metals by continuous electrophoresis (1022). Traces of iron, zinc, copper, and mercury in gallium can be detected on paper using ethylene diaminetetraacetic acid or tartaric acid as complexing agents (691). Strontium90 and yttrium-90, as well as lead-212 and bismuth-212, can be separated in five minutes using 0.15Jf citric acid on silica gel (890); yttrium-90 and strontium-90 as well as lanthanum-140 and barium-140 can be rapidly separated as their citrates on Dowex-50 (335). Radioactive arsenic in various oxidation states has been separated from the parent germanium on paper using 0.5N KOH as electrolyte (477). Various oxidation states of rhenium also have been separated and the products, which appear to be chlororhenium complexes, detected by neutron activation (406). The hydrolysis products of titanium(1V) can be separated by electrophoresis; the equilibrium between them depends upon the concentration of the solvent acid (641). Hydrolysis products of europium and americium as a function of p H have also been investigated (815). Neutron activation studies on electrophoregrams of iridium(II1) and (IV) aquahalo complexes indicate that sixteen anions, four neutral products, and a cation are present (1316). Several ruthenium nitratoaquonitrosyl complexes are present in 0.LV HSO3, but only one is present in more concentrated "03; polymerization may occur in very dilute solutions (892). Scandium and yttrium form a variety of complexes with acetate (1334). There are many papers describing the separation of rare earths, usually in the form of their radioactive isotopes (16, 208-211, 514, 811, 860, 893, 1343). Mixtures of cesium, barium, strontium, calcium, cerium, lanthanum, yttrium, and zirconium radioisotopes can be separated by highvoltage electrophoresis in pyridineacetic acid buffer (1001). The heavy radioactive metals, as colored complexes with Alizarin or other substances, can be separated on cellulose acetate (290). Cerium, iron, cobalt, nickel, and copper complexes with UOQ2+can be separated by electrophoresis on paper (809); traces of promethium, plutonium, americium, and curium can be separated from large amounts of uranium by paper electrophoresis (810). The decay products of actinium can be separated on gelatinized cellulose (17). Structural studies of the heteropoly compounds of zinc, iron, nickel (1069), and cobalt (1068) have been made. The chemical
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5 , APRIL 1970
properties of the halogens, including astatine (912), iodine (99, 456), and LiBrs and K13 (789) have been investigated by means of electrophoresis. Electrophoresis is preferable to other methods for measuring carrier-free la11 purity (985). S0a2-, Sod2-, and S*can easily be separated by electrophoresis (1410). The formation of selenopolythionates has been investigated using a double labeling technique involving *% and '%e (147). Polyphosphates can be separated by combined electrophoresis and chromatography (1352); this subject has been reviewed (388). Investigations into particle electrophoresis include nonlinear electrokinetic phenomena (1046), measurements of thixotropy (118), electrophoretic filtration (897), and particle classification (377) of clays, flotation of talc ( I @ ) , flocculation of silica (369), mobility variations with respect to electrolyte concentration (966), mobilities of metal and glass spheres in transformer oils (727), and mobilities of dispersions of long-chain aliphatic acids and amines (849). LITERATURE CITED
(1) Aares, E., Closs, K., Lehmann, V.,
Scz. Tools 15, 36 (1968). (2) . , Abel, C. A,, Grey, H. hl., Biochemistry 7; 2682 (i968).(3) Achiwa, S., Denki Kagaku 35, 470 (1968); CA 69,89961j. (4) Adams, J. B., Wacher, A,, Clin. Chim. Acta21, 155 (1968). (5) Adams, W. S., Nakatani, M., J . Chromatogr. 37,343 (1968). (6) Adeyemo, V. I., Ellingsen, N. H., Colwell. R. R.. Develov. Znd. Microbiol.
(10) Adiyodi, 6, 144 (1968). (11) Affonso, A., Afonso, E., Clin. Chim. Acta21,315 (1968). (12) Afonso, E., ibid., 17,239 (1967). (13) Agapov, A. I., Agrokhimiya 1968, 106; CA 69, 18282~. (14'1 hhl. A. S.. Comv. Biochem. Phusiol. ' 24, 427 (i968j. (15) Ahlgren, E., Eriksson, K. E., Vesterberg, O., Acta Chem. Scand. 21, 937 (1967). (16) Aitzetmueller, K., Buchtela, K., Grass, F.. Anal. Chim. Acta 38, 249 (1967). (17) Aitzetmueller, K., Buchtela, K., Grass, F., Atomkernergie 10, 269 (1965). (18) Alais, C., Jolles, P., J . Dairy Sci. 50, 1555 (1967). (19) Alam, S., Sandal, P. C., Crop. Sci. 9, 157 (1969). (20) Alberti, G., Allulli, S., Chromatogr. Rev. 10, 99 (1968). (21) Albonico, F., Resmini, P., Boll. Lab. Chim. Prov. (Bologna) 18, 143 (1967); C A 67, 107452j. (22) Albonico, F., Resmini, P., Znd. Agr. (Florence) 4,539 (1966); CA 67,51786b. (23) Alexandrescu, V., Stud. Cercet. Biochim. 11,233 (1968). (24) Alexandrescu, V., Calin, I., Stud. Cercet. Biochim. 11, 239 (1968).
(25) Allen, R. C., hloore, D. J., Fisher, J. W.. Ann. N.Y. Acad. Scz. 149, 63 (1968). (26) Allison, R. G., Feeney, R. E., Arch. Biochem. Biophys. 124, 548 (1968). (27) Allred, R. J., Keutel, H. J., J . Lab. Clin. Med. 71, 179 (1968). (28) Alper, C. A., Propp, R. P., Watson, L., J . Clin. Invest. 47, 2181 (1968). (29) Ambrosino, C., Liberatori, J., La Vecchia, L., Sarra, C., Ubertalle, A,, Ric. Sci. 37,873 (1967). (30) Amirante, G. A., Parisi, V., Atti Accad. A-az. Lzncei, Rend., Cl. Sei. Fzs. Mat. Nat. 42, 88 (1967); CA 67, 62597s. (31) Andrieu, S., Biguet, J., Laloux, B., Mycopathol. Mycol. Appl. 34,161 (1968). (32) Angelino, P. F., Vacca, G., Trovati, C., Mznrrva Med. 58, 3047 (1967). (33) Anghileri, L. J., Int. Z . Klin. Pharmakol. Ther. Toxikol. 1, 523 (1968); CA 70,46028~. 134) Annenkov. G. A.. Pachaliva. " , N. A,. Ihb. Del0 1967.274. ' (35) Annenkov, G. A., Uspenskaya, V. D., Pleskova, &I.V., Byull. Eksp. Biol. Mrd. 63, 56 (1967). (36) Aoki, K., Kaneshina, S., Bull. Fac. Eno.. Tokishima Univ.. 3. 95 (1966): CA-67.30096m. (37) Apostolakis, hl., Werber, U., Voigt, K. D., J . Atheroscler. Res. 8 , 847 (1968). (38) Apostolopoulos, A. X., Arch. Oral Biol. 12, 1275 (1967). (39) Arai. hl.. Iaaku to Seibutsuaaku 73. 93 (1966): CA"69. 84876~. " ~
I
,
~
Biophys. Acia 140, 123 (1967). (42) Arnott, 11. S., Ward, D. K., Anal. Biochem. 21, 50 (1967). (43) Artamonova, 0. P., Yurkov, Yu. A., Pediatriya (Moscow) 1967, 35. (44) Arurkar, S. K., Knowles, C. O., Ann. Entomol. SOC.Amer. 61, 686 (1968). (45) Aschaffenburg, R., Dance, J. E., J . Dairy Res. 35, 383 (1968). (46) Aschaffenburg, R., hlichalak, W., J . Dairy Sci. 51, 1849 (1968). (47) Aschaffenburg, It., Sen, A., Thompson, AI. P., Comp. Biochem. Physiol. 25, 177 (1968). (48) Aschaffenburg, R., Sen, A., Thompson, hl. P., ibid., 27, 621 (1968). (49) Ascheim, R. S.,Hammel, E. C., hlearles, R. .J., Lu.bash, G. D., Biochem. Med. 1, 288 (1967). (50) Assenat', L., Lait 47,495 (1967). (51) Augusti-Tocco, G., Carestia, C., Grippo, P., Parisi, E., Scarano, E., Biochim. Biophys. Acta 155, 8 (1968). (52) Aw, S. E., Hobbs, J. R., Wootton, I. D. P., Gut 8, 402 (1967). (53) Awdeh, Z. L., Williamson, A. R., Askonas, B. A., iVature 219, 66 (1968). (54) Babaev, T. A., f i l e d . Zh. Uzb. 1966, 3; CA 67, 19570r. (55) Babich, P. A., Safonov, V. I., Plekhan, AI. I.,Dokl. Akad. Xauk SSSR 174,1443 (1967). (56) Babich, S. Kh., Mendibaev, B. T., Farm. Zh. (Kiev)23, 14 (1968); CA 68, 117158~. (57) Baciu, I., Derevenco, P., Sovrea, I., Radulescu, S.,Cordea, I., Porutiu, D., J . Physiol. (Paris)59, 225 (1967). (58) Backhausz, R.,Ann. Immunol. Hung. 10, 133 (1967). (59) Backhausz, R., Orv. Hetil. 109, 2241 (1988). (60, Baden, H. P., J . Lab. Clin. Med. 73, 229 (1969). (61) Badzio, T., Pompowski, T., Chem. Anal. (Warsaw) 12, 409 (1967). (62) Badzio, T., Pompowski, T., J . Chromatogr.39,344 (1969). (63) Baer, A., Schweiz, Arch. Tierheilk. 110, 463 (1968); CA 70,34437h.
(64) Bahn, E., Hereditas 58, 1 (1967). (65) Bailey, G. S., Wilson, A. C., J . Biol. Chem. 243, 5843 (1968). (66) Bailey, L. F., Alexander, G., Williams, D., Aust. J . Biol. Sci. 20, 953 (1967). (67) Baillie, A., Walker, P. D., J . A p p l . Bacteriol. 31, 114 (1968). (68) Bakay, B., Nyhan, W. L., J . Pharmacol. Exp. Ther. 161, 348 (1968). (69) Baker, B. E., Blood, D. A., Chen, E. C. H., Can. J . Zool. 45, 369 (1967). (70) Baker, B. E., Hatcher, V. B., Harington, C. R., Can. J . Zool. 45, 1205 (1967). (71) Baker, C. hl. A., Genetics 58, 211 (1968). (72) Baker, D. G., hlcFadyen, D. M., Carsten, A. L., Can. J . Physiol. Pharmacol. 45,873 (1967). (73) Baker, E., Shaw, D. C., Morgan, E. H., Biochemistry 7, 1371 (1968). (74) Baker, H., Frank, O., Feingold, S., Leevy, C. AI., A'ature 215, 84 (1967). (75) Balani, A. S.,Ranjekar, P. K., Barnabas, J., Comp. Biochem. Physiol. 24, 809 (1968). (76) Balbierz, H., Nikolajczuk, M., Zesz. Nauk Wyzsz. Szk. Roln. Wroclawiu, Wet. 20, 111 (1967); CA 67, 71578~. (77) Baranyai, P., Nagy, I., Kurcz, &I., Clin. Chim. Acta 16, 449 (1967). (78) Barclay, R. W., J . Chromatogr. 31, 145 (1967). (79) Bardhan, K . D., Wangel, A. G., Callender, S.T., J . Clin. Pathol. 20, 693 (1967). (80) Bargellesi, A., Callegarini, C., Conconi, F., Experimtia 25, 137 (1969). (81) Barron, K. D., Bernsohn, J., J . ATeurochem.15, 273 (1968). (82) Baskova, I. P., Zalesskii, hl. Z., Strukova, S. M., Biokhimiya 33, 1087 f 1Q88). \ - - - - I .
(83) Battistini, A., Bobbio, L., Laftante39, 169 (1968). (84) Battistini, A., Casa, F., ibid., 38, 1 (1967). (85, Ibid.. D 189. (86j Baumstark, J. S., Arch. Biochem. Biophys. 125,837 (1968). (87) Bausch & Lomb Inc. (by Rand, R. N., hlueller, G. P.), Fr. 1,479,801 (Cl. B Olk), hlay 5, 1967; U. S. Appl. May 21, 1965; 4 p p ; CA 68, 8519. (88) Bauters, M., Lefebvre, L., van Overbeke, M., Bull. Inst. Text. Fr. 21, 425 (1967). (89) Ibid., p 435. (90) Ibid., p 445. (91) Ibid.. 22. 567 (1968). (92) Becker, W., Frksenitk' Z . Anal. Chem. 243,442 (1968). (93) Becker, W., Klin. Wochenschr. 45, 389 (1967). (94) Beckman, L., Kjessler, B., Acta Genet. Statist. Med. 18, 55 (1968). (95) Bedford, J. J., Reid, hl. S., Comp. Biochem. Physiol. 29, 659 (1969). (96) Bednarik, T., Clin. Chim. Acta 17, 132 (1967). (97) Bednarik, T., Cajthamlova, H., Physiol. Bohemoslov. 16, 337 (1967); CA 68.10857~. (98) Beeley, J. A,, Arch. Oral Biol. 14, ,559 (1969). --,\ - -
t9d< - kehrens. - ---- ---- H., Fresenius' 2. Anal. \ -
I
Chem. 236, '396 (1968). (100) Beier, L., Beier, I., Haschen, R. J., Clin. Chim. Acta 24, 405 (1969). (101) Beier, L., Haschen, R. J., Deut. 2. Verdau.-Sto~wechselkr.28, 139 (1968); CA 71. 15640. (102) Elell, K.; Biochim. Biophys. Acta 147, 100 (1967). (103) Bell, K., hlcKenzie, H. A., ibid., p 123. (104) Belousov, A. P., Mant'ev, V. A,, Strukt. Funkts. Kletochnogo Yadra, Tr. Simp., Moscow 1966, 125 (Pub. 1967); CA 68, 103303j.
- --
(105) Belousov, A. P., Shurina, N. A., Vop. Med. Khim. 13,251 (1967). (106) Bennick, A., Anal. Biochem. 26, 453 (1968). --, (107) Bent, K. J., J . Gen. Microbiol. 49, 195 (1967). (108) Benton, A. W., J . Apicult. Res. 6,91 (1967). (109) Benton, A. W., Myers, R. F., Nematologica 12, 495 (1966). (110) Berchev, K., Izmirov, I., Experientia 23, 961 (1967). (111) Berg, G., Grabner, W., Clin. Chim. Acta 17,265 (1967). (112) Berg, G., Pash, Th., Fortschr. Med. 85, 363 (1967). (113) Berg, Yu. N., Markina, E. A , , Lab. Delo 1969, 29. (114) Berggard, I., Bennich, H., Nature 214, 697 (1967). (115) Berggren, W. L., Weller, T. H., Amer. J . Trop. Med. Hyg. 16,606 (1967). (116) Bergmann, L., Dencker, S. J., Johansson, B. G., Svennerholm, L., J . Neurochem. 15, 781 (1968). (117) Bergrahm, B., Harlestam, R., Sci. Tools 15,26 (1968). (118) Bergseth, H., Kcram. Z . 19, 702 (1967); CA 70, 6850u. (119) Berkman, P. hl., Pastewka, J. V., Peacock, A. C., Biochim. Biophys. Acta 181, 159 (1969). (120) Bernacka, K., Pol. Arch. Med. Wewn. 38,267 (1967); CA 67,7191510. (121) Bernheimer, A. W., Grushoff, P., Avigad, L. S., J . Bacteriol. 95, 2439 \ - -
(,l-Q-6-8~ ) ,.
(122) Bernier, G. >I., Clin. Chim. Acta 18, 309 (1967). (123) Berti. G.. Boll Ist. Sieroter. Milan (124j Be& G.', Pathologica 60,107 (1968). (125) Berti, G., Bonanni, N. V., Boll. Soc. Ital. Biol. Sper. 42, 1573 (1966). (126) Besse, G., hlocquard, J. P., C. R. Acad. Sci., Paris, Ser. D 267, 2017 (1968). (127) Besson, R., Monogr. Annu. SOC.Fr. Biol. Clin. 1968, 157; CA 70, 103648s. (128) Bettendorf, G., Breckwoldt, M., Czygan, P. J., Fock, A., Kumasaka, T., Gonadotropins, Proc. Workshop Conf., 3rd, 1968,13; Geron-X, Inc., Los Altos, Calif.; CA 70, 111935~. (129) Betts, J. J., Betts, J. P., Nicholson, J. T., A'ature 2!9, 1280 (1968): (130) Bezkorovainy, A,, J . Dazry Sci. 50, 1368 (1967). (131) Bianchi, U., Atti Ass. Genet. Ifal. 10, 231 (1965). (132) Bickhardt, K., Glawischnig, E., Z. Tierphysiol., Tierernaehr. Futtermiltelk. 24, 230 (1968); CA 70, 759888. (133) Bideau, J., Gidel, R., Moity, J., Bull. SOC.Pathol. Exot. 59, 817 (1!366). (134) Bielik, E., Spenikova, P., Sztankay, P., 2. Med. Labortech. 9, 35 (1968). (135) Bielka, H., Welfle, H., Mol. Gen. Genet. 102, 128 (1968). (136) Bienengraeber, V., Friemel, H., Brock, J., Kleist, H., hluecke, D., Eur. J . Biochem. 6, 365 (1968). (137) Bier, 311, Ed., "Electrophoresis, Vol. 2," Academic Press, New York, 1967, 533 pp. (138) Bierman, A. H., Zettner, A,, Amer. J. Clzn. Pathol. 48, 139 (1967). (139) Bilousov, Yu. V., Pediat. Akush. Ginekol. 27,8 (1965). (140) Binette, J. P., Biochim. Biophys. Acta 154, 234 (1968). (141) Birnboim, H. C., Anal. Biochem. 29, 498 (1969). (142) Bishop, D. H. L., Claybrook, J. R., Pace, K. R., Spiegelman, S.,Proc. Nut. Acad. Sci. U.S. 57, 1474 (1967). (143) Bishop, D. H. L., Claybrook, J. R., Spiegelman, S., J . Mol. Biol. 26, 373 (1967).
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
45 R
(144) Bjork, I., Acta Chem. Scand. 22, 1355 (1968). (145) Bjork, I., Exp. Eye Res. 7, 129 (1968). (146) Blackwell, R. Q., Huang, J. TungHsiang, Ro, I. H., Science 158, 1056 (1967). (147) Blasius, E., Schoenhard, G., J . Chromatogr. 28, 385 (1967). (148) Blessing, 11. H., Goette, H., Z . Gesamte Exp. Med. 148, 90 (1968). (149) Bloemendal. H.. Schoenmakers. J. G.’. Sci. Tools 15. 6 (1968). (150j Bluem, V., Acta’Endocrinol. (Copenhagen) 59,379 (1968). (151) Bocci, V., Boll. SOC.Ital. Biol. Spher. 43, 595 (1967). (152) Ibid., p 597. (1531 Bodxell. C. E.. Arch. Biochem. Biophys. 122, 246 (1967). (154) Boettcher, B., De la Lande, F. A., Anal. Biochem. 28, 510 (1969). (15.5) Boffa, G. A., Drilhon, A., Faure, A., Faure, A., Zakin, AI. M.,Fine, J. &I., C. R. Acad. Sci., Paris, Ser. D 267, 1067 (1968). (156) Boffa. G. A.. Faure. A.. Zakin. ‘ hI: AI., Rkv. Tr. Tiansfus. 11, 33 (1968): (157) Boffa, G. A., Fine, J. M., Drilhon, A., Amouch, P., Suture 214, 700 (1967). (158) Bogdanikowa, B., Bernacka, K., Acta Rheumatol. Scand. 14, 55 (1968). (159) Bogenschutz, K. P., Clemens, H. P., Comp. Biochem. Physzol. 22, 157 (1967). (160) Bogolyubova, A. Y.,Vop. Pitan. 26, 69 (1967); CA 67, 99009~. (161) Boisseau, J. P., Le 3lenn, F., C. R. Acad. Scz., Paras, Ser. D 265, 2036 (1967). (162) Bolkova, A , , Paluska, E., 2. Immunitaetsforsch., Allergie Klzn. Immunol. 130, 444 (1966). (163) Bon, W. F., Dohrn, A., Batink, H., Bzochzm. Bzophys. Acta 140, 312 (1967). (164) Bonadonna, T., Fornaroli, D., Succi, G.. Ric. Sci. 37. 376 (1967). (165j Bonaventura, J.,’Riggk, A , , J . Biol. Chem. 243, 982 (1968). (166) Bonavida, B., Sapse, A. T., Sercarz, E. E., J . Lab. Clin. Med. 70,951 (1967). (167) Bonavida, B., Sapse, A. T., Sercarz, E. E., Nature 221, 373 (1969). (168) Bonner, J., et al., Xethods Enzymol. 12, 3 (1968). (169) Bonomo, L., Gillardi, U., Acta Hepato-Splenol. 14, 142 (1967). (170) Bonomo, L., Gillardi, U., Schena, F. P., Pinto, L., Dammacco, F., Recenti Progr. N e d . 42, 215 (1967). (171) Bont, W. S., Geels, J., Rezelman, G., Anal. Biochem. 27,99 (1969). (172) Borkowski, T., Fv’ojcierowski, J., Kulesza, S., ibid., p 58. (173) Bors, Gh., Popa, I., Voicu, A., Can. J . Pharm. Sci. 2, 50 (1967). (174) Bors, Gh., Popa, I., Voicu, A., Farmacia (Bucharest) 15, 521 (1967). (175) Ibid., 16, 613 (1968). (176) Bors, Gh., Popa, I., Voicu, A , , Ioanid, N., ibid., 15, 269 (1967). (177) Bottner, P., C. R. Acad. Sci., Paris, Ser. D 265. 1468 11967). (178) Bouillenne-Comnaire, F., Bull. SOC. Roy. Sci. Liege - 36.. 56 11967). 79) Boulter, D., Thurman, D. A , , Chemotaxon. Serolaxon., Proc. Symp. 2, 39 (1967) (Pub. 1968), Academic Press, London, England: CA 71, 610q. 8 0 ) Bowman, J. E., Brubaker, R. R., Frischer, H., Carson, P. E., J . Bacteriol. 94, 544 (1967). 81) Boyde, T. 11. C., Biochem. J . 111,59 (19691. (182) Boyer, S. H., Crosby, E. F., Fuller, G. F., Ulenurm, L., Buck, A. A., Amer. J . Hum. Genet. 20, 570 (1968). (183) Braganca, B. hl., Patel, N. T., Badrinath, P. G., Biochim. Bzophys. Acta 136, 508 (1967).
46R
(184) Braganca, B. AI., Sambray, Y. hl., Nature 216, 1210 (1967). (185) Brakke, hl. K., Allington, R. W., Langille, F. A,, Anal. Biochem. 25, 30 (1968). (186) Braun, V., Formanek. H., Braunitzer, G., Hoppe-Seyler’s Z . Physiol. Chem. 349. 45 11968). (187) ‘Braunitzer, G., Glossmann, H., Horst, J., ibid., p 1789. (188) Breen, hl., Weinstein, H. G., Schap, F. D., Biochem. Med. 2, 35 (1968). (1891 Brenneman. M.. Rigbv, P.. Cancer G.. ‘Ann;. Bull..‘ Int. Dairu il90l Brit. \ - - - ,
-
Fed. 1968, ( P t . 7), 39 pp. (191) Brewbaker, J. L., Upadhya, 31. D., Makinen, Y., hlacdonald, T., Phvsiol. Plant 2 1,’ 930 (1968). (192) Brien. F. B.. Kar. G.. Trend Ena. liniv. Wash. 20,s (1968). (193) Brody, J. I., hlobarak, hl. A., Haidar, M., Clin. Chim. Acta 18, 205 (1967). (194) Bron, C., Blanc, B., Isliker, H., Biochim. Biophys. Acta 154, 61 (1968). (195) Bronsema, A , , Pregnancy 1965, 131. (196) Broome, J., Raymond, S., Xaturc 214, 849 (1967). (197) Brosemer, R. W., Grosso, D. S., Estes, G., Carlson, C. W., J . Insect Physiol. 13, 1757 (1967). (198) Brovetto, J., Olhaberry, J., Gioia de Coch. h l . N.. Coda. H.. Fielitz. C.. CabI., La Cavera, A., N e d . Leg. Assicurazioni 14, 499 (1966); CA 67, 88824~. 1235) Cann. J. R.. Immunochemistru ” 5.107 . (1968). ’ (236) Cannavo, L., Ferlazzo, B., Ricciardi, It., G. M a l . Infet. Parassit. 19, 115 (1967); CA 67, 71714e. (237) Cao, A., De Virgiliis, ,S., Lippi, C., Trabalea. X . , Clin. Chzm. Acta 23, 475 (1969). ‘ (238) Caravaggi, C., Lab. Pract. 16, 873 (1967). (239) Carlier, C., Bull. Group. Int. Rech. Sci. Sfomatol. 10, 253 (1967); CA 68, 1354j. 1240) Carlson. D. &I..Anal. Biochem. 20, ‘ 19:; 19’; 119671. (1967). ‘ (241) earlsirom, Carlstrom, A, .4.,Acta Chem. Scand. 23, 171 (1969). (242) Carnegie, P. R., Lamoureux, G., Bencina, B., Suture 214,407 (1967). 1243) Carreras. L.. Gonzalez Alonso. hl.. ‘ J.’Chromatogr. 29, 388 (1967). (244) Carsten, hI. E., Biochemistry 7, 960 (1968). (245) Carstensen, E. L., Fuhrmann, G. F., Smearing, R. W., Klein, L. A., Biochim. Biophys. Acta 156, 394 (1968). (246) Castelazo-Ayala, L., Karchmer K. S., J . Int. Fed. Gynaecol. Obstet. 6, 67 (1968). (247) Castilla, J., Villanueva, E., GisbertCalabuig, J. A., Ann. Med. Leg. 47, 811 (1967). (248) Catsimpoolas, K., Anal. Biochem. 26, 480 (1968). (249) Catsimpoolas, K., Arch. Biochem. Biophys. 131, 185 (1969). (250) Catsimpoolas, N., Biochim. Biophys. Acta 175,214 (1969). (251) Catsimpoolas, N., Clin. Chim. Acta 23, 237 (1969). (252) Cat,simpoolas, N., Immunochemistry 6, 501 (1969). (253) Catsimpoolas, N., Sci. Tools 16, 1 (1969). (254) Catsimpoolas, N., Ekenstam, C., Meyer, E. C., Biochim. Biophys. Acta 175, 76 (1969). (25.5) Catsimpoolas, N., Leuthner, E., Biochim. Biophys. Acta 181,404 (1969). (256) Catsimpoolas, N., Leut,hner, E., h’leyer, E. W., Arch. Biochem. Biophys. 127, 338 (1968). (257) Catsimpoolas, N., Meyer, E. W., ibid., 132, 279 (1969). (258) Cattaneo, R., Cat,taneo, G., Bazzi, C., Besana, C., Boll. Ist. Sieroter. Milan 46, 310 (1967). (259) Cawley, L. P., “Electrophoresis and Immunoelectrophoresis (Laboratory Medicine, Vol. 1),” Little Brown, and Co., Boston, Mass., 1969, 360 pp. \ - - - I
-
I
~
,
I
(260) Cee A., Gasparic, J., Collect. Czech. Chem. dommun. 33, 1091 (1968). (261) Cejka, J., Vodrazka, Z., Salak, J., Biochim. Biophys. Acta 154, 589 (1968). (262) Ceska, h,l., Biochim. Biophys. Acta 177, 625 (1969), (263) Chabudzinska, S., Rudkowski, Z., Pediat. Pol. 41, 933 (1966); CA 67, 309213. (264) Chalumeau-Le Foulgoc, M . Th., Gallien, C1. L., Comp. Biochem. Physiol. 23,679 (1967). (265) Champagne, hl., hlazen, A,, Wilhelm, X., Bull. SOC.Chim. Biol. 50, 1261 (1968). (266) Charman, R. C., Landowne, R. A., Anal. Biochem. 19, 177 (1967). (267) Chauvet, J. P., Acher, R., C. R . Acad. Sci., Paris, Ser. D 265, 2084 (1967). (268) Chelmicka-Kizlich, E., hlazurczak, J., Life Sei (Oxford) 7, 323 (1968). (269) Chen, P. S.,Experzentaa 23, 483 (1967). IYature 215, 316 (1967). (270) Chen, P. S,., (271) Chen, Shi-Han, Sutton, H. E., Genetics 56, 425 (1967). (272) Chepenko, L. I., Runov, V. I., Borodin, G. I., Uzb. Biol. Zh. 13, 13 (1969): C A 71,9734r. (273) Cheret, A. RI., Bonfils, S.,Pathol. Biol. 16, 1061 (1968). (274) Chernokhvostova, E. V., Lyuksemburg. K. I.. German. G. P.. Shandalov. B. -Ya.. Zh. Mikiobiol..’ Ewidemiol: Zmmunobiol. 45, 82 (1968): ‘ (275) Cherrey, H., Cherrey, C., Siest, G., Pharm. Biol. 5, 163 (1967); CA 67, 1141911j. (276) Chiancone, E., Alfsen, A., Ioppolo, C., Vecchini, P., Finazzi Agro, A,, Vr’yman, J., Antonini, E., J . M o l . Biol. 34, 347 (1968). (277) Chiarioni, T., Nardi, E., Med. Clin. Sper. 18, 113 (1968). 1278) Chin. H. P.. Blarikenhorn. D. H.. C l h . Chlm. ActL20, 305 Cl968j. (279) Zbid.. 23. 239 (1969) (280j Ch’m,,u , N. Si., Stud. Cercet. Biochim. 10, 105 (1967). (281) Chmielewski, H., Pol. Tyg. Lek. 22, 1966 (1967); CA 68, 112944~. (282) Chrambach, A , , Reisfeld, R. A., Wyckoff, AI., Zaccari, J., Anal. Biochem. 20, 150 (1967). (283) Christomanos, A. A, Pavlopulu, C., Enzymoiogia 34, 51 (1968). (284) Chu, R., J . Ass. Of. Anal. Chem. 51, 743 (1968). (285) Chudoba, S.,Kubicz, A,, Zoo/. Pol. 18, 233 (1968); CA 70, 26670~. (286) Chudzik, J., Klein, A., J . Chromatogr. 36, 262 (1968). (287) Cianci, D., Ciruzzi, B., Bufano, G., Ann. Fac. Agr., Univ. Bari 20, 411 (1966); CA 68,27874d. (288) Cirla, E., Ligniere, G. C., Vergani, C., Rcztmatismo 18, 513 (1966). (289) Claman, H. N., blerrill, D. A., Hartley, T. F., J . Allergy 40, 151 (1967). (200) Clanet, F. E., Commis. Energ. At. (Fr.), Rapp. 1968, CEA-R 3411, 133 pp; CA 69, 73611j. (291) Clare, B. G., Flentje, K.T., Atkinson, 31. It., Aust. J . Biol. Sci. 21, 275 ~
\ - -
>
~~I
(1968). \ - - - - ,
(292) Clark, C. C., Veis, A., Biochim. Bzophys. Acta 154, 175 (1968). (293) Clarke, H. G. R l . , Freeman, T., Clin. Sei. 35. 403 11968). (294) Clausen,’ J., Raaschou, F., Soerensen, A. W. S., Acta Rheumatol. Scand. 14, 43 il96S’i. (295)‘Claiton, R. AI., Truman, D. E. S., Suture 214, 1201 (1967). (296) Clerc, LI., Bertrand, E., Sem. Hop. Paris 44, 505 (1968). (297) Cleve, H., Gordon, S.,Bowman, B. H., Bearn, A. G., Amer. J . Hum. Genet. 19, 713 (1967).
(298) Coates, M. L., Twitty, V. C., Proc. Nat. Acad. Sci. U.S. 58, 173 (1967). (299) Cobb. B. F.. 111.Carter, L., Koenig, V.’L.. C0m.n. Blochem. Phisioi. 24. 8lli (i968j. * (300) Zbid., 26,519 (1968). (301) Cobb, B. F., 111, Price, J. E., Koenig, V. L., zbid., 28, 841 (1969). (302) Cohen, L., Djordjevich, J., Lipids 3, 420 (1968). (303) Colfs, B., Verheyden, J., Clan. Chim. Acta 18, 325 (1967). (304) Comoli, G., Castelletta, L., Arch. Ztal. Mal. App. Diger. 32, 353 (1965). (305) Cook, A. R., Bieleski, R. L., Anal. Biochem. 28, 428 (1969). (306) Cook, B. J., Nelson, D. R., Hipps, P., J . Insect Phusiol. 15, 581 (1969). (307) Cook, G. &I. W., Jacobson, W., Biochem. J . 107, 549 (1968). (308) Cooper, A. G., Clin. Exp. Zmmunol. 3, 691 (1968). (309) Corbett, J. F., Fooks, A. G., J . SOC.Cosmet. Chem. 18, 693 (1967). (310) Corre, F., Claude, J. R., Ann. Biol. Clin. (Paris)25, 677 (1967). (311) Correia, E. &I Parro, ., A. da C., Bull. 0.Z.V. ( O f l c e Znt. Figne V i n ) 40, 607, discussion 609 (1967): CA 67. 89729~. (312) Cotman. C. W.. Vahler. H. R.. Hugli, T. E., Arch. ’Biochem.‘Biophys: 126, 821 (1968). (313) Cotte, J., Collombel, C., Baltassat, P., Routier, P., Pathoi. Biol. 16, 339 (1968). (314) Cowie, W. P., J . Sci. Food Agr. 19, 226 (1968). (315) Cozcolluela, C., Subirana, J. A,, Biochim. Biophys. Acta 154, 242 (1968). (316) Craig. M . L.. Southard.’ J. L.. ‘ Develo.n.Bio1. 16. 331 ll9671. (317) Ciaker, L. E:, Gusta, L. V., Weiser, C. J., Can. J . Plant Sci. 49, 279 (1969). (318) Cresseri, A., Chiarelli. B.. Conti. A. M., Bonilauri,’ A., Boll. Soc. Ztal. Biol: S.ner. 43. 1097 (1967). (316) Crisbni, G., Negroni, L., Ezp. Eye Res. 7, 216 (1968). (320) Croizier, G., Harscoat, J. P., Ann. Biol. Anim. Biochim. Biophys. 7, 173 (1967). (321) Crosato. RI.. Cocuzza. S.. Afinerva ‘ Pediat. 19. 305 (1967). (322) Culliford, B‘.-J., Wraxall, B. G. D., Forensic Sci. SOC., J . 8 , 79 (1968). (323) Dabbous, hI. Kh., Draus. F. J., J. Chromatogr.35, 134 (1968). (324) Dale, G., Latner, A. L., Clin. Chim. Acta 2 4 , 6 1 (1969). (325) Dale, G., Latner, A. L., Lancet 1968 (I), 847. (326) Dammacca, F., Pinto, L., Riv. Zst. Sieroter. Ztal. 42, 17 (1967). (327) Daneholt, B., Ringborg, U., Egvhazy, E., Lambert, B., 1Vature 218, 292 (1968). (328) Danze, J. M,, Denoeel, A., GuyauxLamberty, J., J . Pharm. Belg. 23, 3 (1968). (329) Darcy, D. A,, Clin. Chim. Acta 21, 161 (1968). (330) Das, B. C., Exp. Gerontol. 3, 159 (1968). (331) Davajan, V., Kunitake, G. AI., Fert. Steril. 19, 623 (1968). (332) Davenport, R., Acta Embryol. Morphol. Exp. 9, 270 (1967). (333) Davenport, R., Exp. Cell Res. 47, 397 (1967). (334) Davidsen, O., Clin. Chim. Acta 21, 205 (1968). (335) Deak, AI., Magy. Kem. Lapja 23, 65 (1968); CA 68, 7433m. (336) de Bievre, C., C. R. Acad. Sci., Paris, Ser. D 265, 537 (1967). (337) de Boissezon. J. F.. Ducos. J.. Moron, P., Ann.’ Med. Leg. 46,’ 453 (1966). ~
~
I
~
,
(338) de Boissezon, J . F., Vergnes, H., Decea, C., Rev. Fr. Etud. Clin. Biol. 12, 86 (1967). (339) de Braco, M. M. de E., hfanni, J. A,, Acta Physiol. Lat. Amer. 17, 137 (1967). (340) Decker, W. J., Nusynowitz, M. L., Brown, C. Y . E., Arnold, E. C., J. Chromatogr. 34, 278 (1968). (341) DeGraef, J., Glass, G. B. J., Gastroenterology 55, 584 (1968). (342) de Halleux, F., J. Zmmunol. 99, 255 (1967). (343) Deitz, A. A., Lubrano, T., Anal. Biochem. 20, 246 (1967). (344) Dejmal, R. K., Brookes, V. J., J . Insect Physiol. 14, 371 (1968). (345) De Jong, W. W. W., Bernini, L. F., A’ature 219, 1360 (1968). (346) Del Campo, G. B., Clin. Chim. Acta 22. 475 (1968). (347j Delcourt,’R., C. R. SOC.Biol. 161, 1146 (1967). (348) Zbid., p 1480. (349) Delori, P., Gillo, L., J . Chromatogr. 34, 531 (1968). (350) Delori, P., Peeters, J., Gillo, L., Zng. Chim. 49, 29 (1967). (351) Zbid., 50, 17 (1968). (352) De Monte, T., Pilleri, G., Blut 17, 25 (1968). (353) De Monte. T.. Pilleri. G.. Mar. Biol. 1, 178 (1968).’ ’ (354) Zbid., p 182. (355) de Pirosky, R. R., Oisgold, S. R., Rev. SOC.Argent. Biol. 42, 130 (1966). (356) Derbyshire, E., Whitton, B. A., Phytochemistry 7, 1355 (1968). (357) Desborough, S., Peloquin, S. J., Amer. Potato J . 45, 220 (1968). (358) Desborough, S., Peloquin, S. J., Phytochemistry 8 , 425 (1969). (359) Desev, G. N., Venkov, C. D., Tssnev, R., Eur. J . Biochem. 7, 280 I
,
(1969) ,--- ,.
(360) Deyl, Z., Rosmus, J., Chromatogr. Rev. 8,225 (1966). (361) Didenko, G. G., Korotkoruchko, V. P.. Rozhko. 0 . T.. Ukr. Biochim. Zh. (3625 Dikov, A: L., Z . Klin. Chpm. Klin. Biochem. 6, 386 (1968); CA 70, 4,5359k. (363) Dikov, A. L., Chankov, I. A., Samarzhiev, A. Khr., 2. Klin. Chem. Klin. Biochem. 6, 391 (1968). (364) Dilanyan, Z. Kh., Agababyan, A. A., Ioanissyan, J., Zakharyan, I,.,Znt. Dairy Congr., Proc. Iyth, Munich, 1966, 4, 301. (365) Dilanyan, Z. Kh., Saakyan, R. V., Vestn. Sel’skokhoz. N a u k i (Moscow) 12. 69 (1967); CA 67, 41391~. (366) Dioguardi, N., Fiorelli, G., Ideo, G., hlannucci, P. hl., Coghe, A., Arch. Ital. Mal. App. Diger. 31,599 (1964); CA 67, 19786r. (367) Dioguardi, N., Secchi, G. C., Arch. Ztal. M a l . App. Diger. 31, 586 (1964); CA 67, 197859. (368) Dittmer, A,, Tlach, K . F., Kiqze, W., Acta Biol. Med. Ger. 18, 541 (1967). (369) Dixon, J. K . , Laller, V. K., Li, C., hlessinger, S.,Linford, H. B., J . Colloid Interface Sci. 23, 465 (1967). (370) Doane, W. W., J . Exp. Zool. 164, 363 (1967). (371) Dobrecky, J., De Carnevale Bonino, R. C. D., SAFYBZ 8, 67 (1968). (372) Dodin, A., Brygoo, E. R., C. R. SOC. Biol. 162, 1444 (1968). (373) Dolezalova, V., Brada, Z., Comp. Biochem. Physiol. 26, :301 (1968). (374) Dommert, A. R., Dimopoullos, G. T., Amer. J . Vet. Res. 28, 1173 (1967). (375) Donovan, G., Popp, I., Roventa, L., Dumitrescu. S.. Botez, G.. h’eozilasma 15, 117 (1968).‘ (376) Dravid. A. R.. Burdman. J. A.. J.’h\reurochem. 15,25 (1968). ’ (377) Drever, J. I., Amer. Mineral. 54, 937 (1969). ,
I
I
,
~
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
47 R
(378) Dreyer, W. J., Bynum, E,, Methods Eneymol, 11,32 (1967). (379) Drilhon, A,, Annee Biol. 7, 651
‘ (1968). (406) Facetti, J. F., Velez de Santiago, hI., ANAL.CHEM.40, 1726 (1968). (407) Falkenberg, F., Lehmann, F. G., Pfleiderer, G., Clin. Chim. Acta 23, 265 (1969). (408) Fantes, K. H., Furminger, I. G. S., nature 215, 750 (1967). (409) Farrelly, R. O., Watkins, W. B., Clin. Chlm. Acta 20, 291 (1968). (410) Farriaux, J. P., hluller, P. H., Fontaine, G., Lille Med. 12, 687 (1967). (411) Fateh-hloghadam, A., Knedel, hl., hlorell, Ch., Klin. Wochenschr. 45, 1042 (1967). (412) Faure, J. P., Blanck, C., Offret, G., Arch. Ophthalmol. 26, 773 (1966). (413) Fawcett, J. S., FEBS (Feb. Eur. Biochem. SOC.)Lett. 1, 16 (1968). (414) Fedorova, A. P., Korotkoruchko, V. P., Ukr. Biokhim. Zh. 40, 274 (1968). (415) Feillet, P., Bourdet, A , , Berger, D., Gobin, G., Guillemot, F., Ann. Technol. Agr. 17, 217 (1968). (416) Felberg, N., Schultz, J., Anal. Biochem. 23,241 (1968). (417) Felgenhauer, K., Biochim. Biophys. Acta 160,267 (1968). (418) Felgenhauer, K., Bach, S., Stammler, A., Klin. Wochenschr.45,371 (1967). (419) Fell, B. F., hlackie, W. S., Campbell, R. hl., Regoeczi, E., Res. Vet. Sci. 9, 563 (1968). (420) Ferencikova, J., Chem. Listy 61, 1505 (1967).
48 R
(421) Ferlazzo, B., Minutoli, A., Ricriardi. R.. Arch. Ital. Pathol. Clin. T trndri 9,63 (1966); CA 67, 19524d, (422) Filippovich, Yu. B., Alieva, M. I., Prikl. Biokhim. Mikrobiol. 3, 192 (1967). (423) Filippovich, Yu. B., Shchgeoleva, L. I., Dokl. Akad. Nauk SSSR 174, 240 (1967). (424) Fincham, A. G., Calcif. Tissue Res. 2,353 (1968); CA 70,85454~. (425) Fine, J. M., Boffa, G. A., Drilhon, A , , Actes Congr. Nut. Transfus. Sang., 6th 2, 479 (1968); CA 70, 552152. (426) Fine, J. M., Chalumeau-Le Foulgoc, M. T., Amouch, P., C. R. Acad. Sei., Paris, Ser. D 265, 1248 (1967). (427) Finerty, J. F., Dimopoullos, G. T., J . Parasitol. 54, 585 (1968). (428) Finlayson, J. S., hlushinski, J. F., Biochim. Biophys. Acta 147, 413 (1967). (429) Fischer, C. J., Wyshak, G. H., Weisberger, D., Arch. Oral. Biol. 13, 257 (1968). (430) Fischer, G. A., Kabara, J. J., Anim. Toxins, Collect. Pap. Int. Symp., l s t , Atlantic Citu 1966. 283 (Pub. 1967): CA 68. 68, 6677i)m. (431) Fishkin, A. F., Spangler, P. N., A‘ature 218, 577 (1968). (432) Flatmark, T., Hemes Hemoproteins 1966, 411, discussion 414; CA 68, 235j. 1433) Flatmark. T.. Sletten. K.. J . Biol. Chem. 243. 1623 (1968). (434) Flodh,”., Bergrahm, B., Oden, B., Life Sci. (Oxford) 7, 155 (1968). (435) Fogel, S., Sypherd, P. S., Proc. A’at. Acad. Sci. U.S. 59. 1329 (1968). (436) Fomicheva, I. I., Genetika 4,’152 (1968). (437) Foradori, A. C., Bertinchamps, A., Gulibon, J. AT., Cotzias, G. C., J . Gen. Physiol. 50, 2255 (1967). (438) Foreman, C. W., Comp. Biochem. Physiol. 25, 727 (1968). (439) Formanek, K., Kaschitz, R., Patsch, J., Hoppe-Seyler’s Z. Physiol. Chem. 348, 1352 (1967). (440) Fournier, S., C. R . SOC.Biol. 162, 568 (1968). (441) Fox, A. L., Jr., Taswell, H. F., Exp. Cell Res. 51, 504 (1968). (442) Frahn, J. L., Aust. J . Chem. 21, 811 (1968). (443) Frahn, J . L., J . Chromatogr. 37, 279 (1968). (444) Frahn, J. L., hlills, J. A., Anal. Biochem. 23, 546 (1968). (445) Franc, J., Hajkova, RI., J . Chromutogr. 33, 319 (1968). (446) Franke, R. G., Balek, R. W., Valentin, L., Mycologia 60, 331 (1968). (447) Frattali, V., Steiner, R. F., Anal. Biochem. 27, 285 (1969). (448) Fredrickson, D. S., Levy, R. I., Lindgren, F. T., J . Clin. Invest. 47, 2446 (1968). (449) Freimuth, U., Krause, W., iyahrung 11, 729 (1967). (450) Ibid., 12, 881 (1968). (451) Friemel, H., Haase, G., LIeyerRienecker, H., Clin. Chim. Acta 18, 215 (1967). (452) Friemel, H., Peseke, H., Kleist, H., Brock, J., Bienengraeber, V., hluecke, I),, Eur. J. Biochem. 6, 352 (1968). (453) Froehlich., C.,, Klin. I.t”chenschr.45, 461 (1967). (454) Fukuda, T., Kobayashi, K . , hIimura. K.. Eisei Kaaaku 14, 271 (1968); ’CA 70, 54725d. (465) Fuss. K. H.. Fresenius’ 2. Anal. Chem. 243,512 (1968). (456) Futonaka, H., hIochizuki, A., Takahashi, T., Komatsu, s., Komatsu, T., Miyamoto, S., Nippon Kaibumpi Gakkai Zasshi 42, 521 (1966); CA 67, 76564r. (457) Gabl, F., Sailer, S., Sandhofer, F., Aerztl. Lab. 12, 1 (1966). (458) Gabriel, 0 Wang, Shu-Fong, Anal. Biochem. 27,525 (1969). \
-
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
(459) Gabuzda, T. G., Gardner, F. H., Council, A., Blood 29, 770 (1867). (460) Gabuzda. T. G.. Pearson. J.. Nature I
,
220,1234 (1968). ’ (461) Galusaka, H., Kubicz, A,, Zool. Pol. 18, 239 (1968); CA 70, 26671q. (462) Gandini, S., Hyden, H., J . Chromatogr. 32,715 (1968). (463) Ganguli, N. C., Majumder, G. C., J . Dairy Sci. 5 1,796 (1968). (464) Ganguly, P., Clin. Chim. Acta 23, 514 (1969). (465) Ganguly, P., Moore, R., Clin.Chim. Acta 17,153 (1967). (466) Ganrot, P. O., Acta linis. L nd., Sect. ZI,2,36 pp. (1967); CA 67,80 26n. (467) Ganrot, P. O., Ezperentia 23, 5J3 (1967) -. (468) Ganrot, P. O., Kilehn, J. E., Clin. Chim. Acta 22, 335 (1968). (469) Gapanhuk, E., Henriques, 0. B., J. Chromatogr. 32, 782 (1968). (470) Garrick, RT. D., Huisman, T. H. J., Biochim. Biophys. Acta 168, 585 (1968). (471) Gassen, H. G., J . Chromatogr. 39, 147 (1969). (472) Gasser, F., Cahet, P., C. R. Acad. Sci., Paris, Ser. D 265, 763 (1967). (473) Gault. AI. H.. Hsieh. S..’ Elzer., E.., ‘ C l h . Cheh. 15, 271 (1969). (474) Gavrilet, I., Milovan, E., Granciu, I., Stud. Cercet. Biol.,Ser Zool. 19, 71 (1967). (475) Geelhoed, S. E., Conklin, J. L., J . Ezp. Zool. 162, 257 (1966). (476) Gehrke, C. W., Graven, D. A., Absheer, J., Tripathi, K. K., Separ. Sci. 2, 199 (1967). (477) Genet, hl., Ferradini, C., J . Chromatogr. 37,527 (1968). (478) Gerber, G., Barandun, S., Separ. S r i . 4.51 (l969>. (479) Gerhards, H. J., Joseph, K., Graul, E. H., Atompraxis 14, 21 (1968). (480) Gerhardt-Hansen, W., Dan. Med. Bull., Suppl., 15, 112pp. (1968). (481) Gerloff, E. D., Stahmann, 31. A., Smith, D., Plant Physiol. 42, 894 (1967). (482) Gershbein, L. L., Al-Wattar, J., J . Chromatogr. 34,485 (1968). (483) Gervais, P., Tiescou, Cl., Fournier, E., Gaultier, RI., Derobert, L., Ann. d l e d . Leg. 47, 362 (1967). (484) Geserick. G.. Bundschuh. G..’ Rose, ‘ M;, Aerztl. Lub. 14, 507 (1968). (485) Geyer, E., hlarghescu, S., Pllueller, J. J., Klin. Wochenschr.45, 717 (1967). (486) Ghetie,, V.,, Immunochemistry 4, 467 (1967). (487) Ghetie, V., Schell, H . D., HoppeSeuler’s 2. Phusiol. Chem. 349. 719 (1G68). (488) Gibbs, B., Becker, I., Zahn, I., Scheibe, E., Z . Immunitaetsforsch., Allergie Klin. Immunol. 134, 417 (1968). (489) Gilberg, Aa., Persson, I., Acta Statist. Med. 17, 422 (1967). (490) Gill, H. S., Powell, D., Phytopathol. Z., 63,23 (1968). (491) Gill, H. S., Powell, D., Phytopathology 58, 722 (1968). (492) Giorgio, N. A., Jr., Tabachnick, hl., J . Biol.Chem. 243, 2247 (1968). (493) Gitlin, D., Boesman, hI., J. Clin. Invest. 46, 1010 (1967). (494) Gitlin, D., Kitzes, J., Biochim. Biophys. Acta 147, 334 (1967). (495) Glasnak, V., Folia Biol.(Prague) 14, 70 (1968). (496) Glasnak, V., Zivocisna T’yroba 13, 335 (1968); CA 70,35747~. (497) Glawishnig, E., Bickhardt, K., Bogen, C., Z . Tierphysiol., Tierernaehr. Futtermittelk. 24. 239 (1968); C A 70, 75806~. (498) Glick, B., Poultry Sci. 47, 807 (1968). (499) Glinski, Z., Kostarz, T., Med. Wet. (Poland)24, 183 (1968). ’
\--
I
- I - -
\ - - - - ,
(500) Goetz, H., Balogh, R., Zentr. Veterinaermed., Reihe A 14,385 (1967); CA 67,98271~. (501) Goetz, H., Scheiffarth, F., Victor, F., Clin.Chim. Acta 21, 119 (1968). (502) Goetz, H., Wuest, H., Raies, F., ibid., 19,235 (1968). (503) Gofman, Yu. Ya., Biokhimiya 32, 690 (1967). (504)Gofshtein, L. V.,ibid., p. 959. (505)Gofshtein, L. V., ibid., 33, 823 (1968). (506)Goldberaer. R . F.,Anal. Biochem., ‘ 25; 46 (19687.’ i.iO7) Gordon. A. H.. Louis. L. N., ibid., I
---
\ -
I
(568) Got, R., Bertagnolio, G., Pradal, bl. B., Frot-Coutaz, J., Clin. Chim. Acta 22,545 (1968). (5091 Gould. H. J.. Pinder, J. C., hlatthew, H. R., Gordon, A. H., Anal. Biochem. 29,1 (1969). (510)Grabar, P., Numnii, AI., Brew Dig. 42,68 (1967). (511)Grabner, W., hlorhard, E., Berg, G., Z . Klzn. Chem. Klzn. Bzochem. 6 , 478 (1968). (512)Graells, C., Subirana, J. A., J . Mol. Bzol. 38,427 (1968). (513)Grasbeck, R., Acta Chem. Scand. 22, 1041 (1968). (514)Grass, F.,Aitzetmueller, K., Buchtela, K., Fresenius’ Z . Anal. Chem. 228, 261 (1967). (515)Gray, R. H., Herzog, R., Steffensen, D. hl., Biochim. Biophys. Acta 157, 344 (1968’1. (516)Greenberg, S. S.,Kopac, AI. J., Covnp. Bzochem. Physzol. 24,471 (1968). (517)Gressel, J., Woloxelsky, J., Anal. Biochem. 24,157 (1968). (518)Grob, P. J., Inderbitzin, T. M., J . Invest. Dermatol. 49,282 (1967). (519)Gromova, B. O., hlarkelov, I. AI., Tr. Vses. iVauch.-Zssled. Znst. Zashch. Rast. No. 26, 211 (1966); CA 69, 65206r. (520) Grosfeld. J. C. hl., Miehorst,’ J . C . A., Dermatologic 135,477 (1g67). (521)Grossback, U.,Weinstein, B. I., Anal. Biochem. 22,311 (1968). (522)Grossmann, H., Wagner, H., J . Chromatogr.35,301 (1968). (523)Groves, AI. L.,Gordon, W. G., Biochemistry 6,2388 (1967). (624)Groves. h4. L.. Kiddv. C. A.. Arch. Bzochem. ~ l o p h y s 126, . (igssj. (525)Groves, W.E.,Davis, F. C., Jr., Sells, B. H., Anal. Bzochem. 24, 462 (1968). (526)Groves, W. E.,Sells, B. H., Biochim. Biophys. Acta 168,113 (1968). (527)Gruendig, E.,hlaruna, R. F. L., Wzen. Med. Wochenschr.118,724(1968). (528)Grunder, A. A., Vox. Sang. 14,236 (1968). (529)Guenther, E.W., Starke, K., Chem. Zvesti 21,561 (1967). (530)Gurley, L. R., Hardin, J. hI., Arch. Biochem. Biophys. 128, 285 (1968). (531) Guttman, S. I., Comp. Biochem. Physiol. 23,871 (1967). (532) Gysels, H., Nematologica 14, 489 (1968). (533) Habermann, E.,Raeker, K . O., Arndts, D., Klin. Wochenschr. 46, 46 (19681. (534)H‘adacova, V.,Sahulka, J., Biol. Plant. 9,396(1967). (535)Haen, P. J., O’Rourke, F. J., Nature 217,65 (1968). (536) Hager-hIalecka, B.,Szczepanski, Z., Kobierska-Szczepanska, A., Pediat. Pol. 43,265(1968). (537)Hamauzu, Z., Yonezawa, D., Shimomura, H., Agr. Biol. Chem. (Tokyo)31, 448 (1967). (538) Hamilton, H. B., Iuchi, I., hliyaji, T., Shibata, S., J . Clin. Invest. 48,525 (1969). ~
\---,
(539) Hamilton, J. D., Stevens, T. J., J . Colloid Interface Sci. 25,519 (1967). (540) Hampton, J. R.. EXD. Biol.M e d . 3. (541)Hands, S. P.,Postgrad. itled. J . (London)43,141 (1967). (542)Hannig, K., Kolloid-Z. Z . Polym. 227,37 (1968). (543)Hannig, K.,Kruesmann, W. F., Hoppe-Seyler’s 2. Physiol. Chem. 349, 161 (1968). (544)Hannig, K.,Wirth, H., Fresenius 2.Anal. Chem. 243,522 (1968). (545)Hariharan, P.V., Poole, G., Johns, H. E., J . Chromatogr. 32,356 (1968). (546) Hauton, J. C., Laurent, B., Santandrea, A. G., Greusard, C., Lafont, H., Tessier, K., Sarles, H., Clin. Chim. Acta 17,171 (1967). (547)Haux, P., Sawerthal, H., Habermann, E., Hoppe-Seyler’s Z . Physiol. Chem. 348,737 (1967). (548) Havez, R., Carlier-Vanneuville, A., Carlier, C., Moschetto, Y., C. R . SOC. Biol. 161,325 (1967). (549)Hayashi, H., Sharpless, N., Logrippo, G. A., Henry Ford Hosp. Med. J . 15,149 (1967);CA 68,20349~. (550)Haydon, D. A., Seaman, G. V. F., Arch. Biochem. Biophys. 122, 126 (19671. (5glj Haywood, B. J., Starkweather, W. H., Spencer, H. H., Zarafonetis, C. J., J . Lab. C?in.Med. 71,324 (1968). (552) Heberlein, P. J., Barnhart, M. I., Biochim. Biophys. Acta 147,609 (1967). (553)Hedrick, J. L., Smith, A. J., Biochem. Arch. Biophys. 126,155 (1968). (554) Heidel, G., Reimann, W., Deut. Z . Gesamte Gerichtl. M e d . 62,207 (1968). (555) Heidelberger, C., Ann. Ztal. Dermatol. Clin.Sper. 19,153 (1965). (556) Heidler, W., Arch. Tierzucht 11, 413 (1968). (557) Heim, W. G., Nature 217, 1057 (1968). (558)Heimburger, N.,Behringwerk-Mitt. 46,121 (1967);CA 67,105856~. (559)Heki, N., Nippon A‘aibumpi Gakkai Zasshi, 44,674 (1968);CA 70,2611%. (560) Hello, O., J . Electroanal. Chem. Interfacial Electrochem. 19,37 (1968). (561)Hemmingsen, L., Oether, A,, Acta Ophthalmol. 45,359 (1967). (562) Henry, C., Bernard, D., Depieds, R., C. R . SOC.Biol. 162,494(1968). (563) Herd, J. K., Anal. Biochem. 23,117 (1968). (564) Herrmann, W. P., Hermann, G., Arch. Klin. Ezp. Dermato?. 234, 100 (1969). (565) Hess, P.W., Smith, R . A., Trans. Amer. Fish. SOC.96,131 (1967). (566) Hidalgo, J., Hansen, P. hl. T., J . Food Sci. 33,7 (1968). (567)Hilgermann, R., Z . Klin. Chem. Klin. Biochem. 5,317 (1967). (568) Hill, P. G., Sammons, H. G., J . Clin.Pathol. 20,654 (1967). (569)Hindley, J., J . Mol. Biol. 30, 125 (1967): (570)Hjelle, A., Acta Vet. Scand. 8,273 (1967). (571)Hjerten, S., “Free Zone Electrophoresis,” Almquist and Wiksells, Uppsala, 1967,177 pp. (572) Hjerten, S.,Jerstedt, S., Tiselius, A,, Anal. Biochem. 27,108 (1969). (573) Hobom, G., Braunitzer, G., HoppeSevler’s Z . Phvsiol. Chem. 348. 783 (1967). (574)Ibid., 804. (575)Hod. I.. Herz., A,., Curr. Sci. 38. 164 ’ (1969). (576)Hoefner, W., Atti Simp. Znt. Agrochim. 6,94(1966);CA 67,88280h. (577)Hoenigova, J., Noenig, V., Clin. Chim. Acta 18,31 (1967). (578)Hoerman, K. C., Kamel, K., Anal. Biochem. 21,107 (1967). I
,
(579) Hoffman, Harold A., Gottlieb, A. J., Primates Med. 1, 27 (1968); C’A 70, 441729. (580)Hoffman, Hyam, McDougall, J., Exp. Cell Res. 51,485 (1968). (581) Hoffman, P., Mashburn, T. 9., Jr., Meyer, K., Bray, B. A., J . Biol. Chem. 242,3801(1967). (582) Hollinshead, A. C., Alfrod, T. C., Nature 215,399 (1967). (583)Holt, W. S , Kinoshita, J. H., Invest. Ophthalmol. 7, 169 (1968). (584)Holzmann, H., hlorsches, B., Korting, G. W., Arch. Klin. Exp. Dermatol. 229,131 (1967). (585)Hong, R., Good, R. A,, Science 156, 1102 (1967). (586) Hong, R., Pickering, R. J., Good, R. A,, Birth Defects, Orig. Artzc. Ser. 4,212(1968);CA 70,457212. (587) Hope, R. hI., Godfrey, G. K., Aust. J . Biol.Sci. 21,587 (1968). (588) Horn, E. C., Kerr, RI. S., Comp. Biochem. Physiol. 29,493 (1969). (589) Homer, A. A., Can. J . Biochem. 45,1009 (1967). (590)Zbid., p. 1015. (591) Horobin, R.W., Murgatroyd, L. B., Histochemie 11, 141 (1967). (592)Horstmann, H. J., Hoppe-Seyler’s Z . Physiol. Chem. 349,405 (1968). (593)Hort, I., Amer. J . Vet. Res. 29,F13 (1968). (594)Horvath, S. M., Chiodi, H., Ridgway, S. H., Azar, S., Jr., Comp. Biochem. Physiol. 24,1027 (1968). (595)How, hI. J Long, V. J. T - 7 , Clin. Chim. Acta 23,$51 (1969). (596)Hristic, V.,Hesselholt, &I , Stosic, Acta Vet. Scand. 8,43 (1967). (597)Huisman, T. H. J., Dozy, A. II., Blunt, 11. H., Hayes, F. A., Arch. Biochem. Biophys. 127,711 (1968). (598) Huisman, T. H. J., Reynolds, C. A., Dozy, A. &I., Wilson, J. B., Biochim. Biophys. Acta 175,223(1969). (599)Hule., V., , Clin. Chim. Acta 17,349 (1967). (600)Hulsing-Hesselink, E., CnossenGroeneveld, RI. L., Klein, F., ibid., 18,93 (1967). (601) Hunziker, K., Schmid, K., Anal. Biochem. 20,495(1967). (602) Hyde, R. M., Garb, S., Bennett, A. J.. J . iyat. Cancer Znst. 38. 909
(603j-H>den, H., Curr. M o d . Biol. 2, 57 (1968);CA 69,33437~. (604)Hvden, H., Lange, P. W., J . Chromatogr. 35,336 (1g68). (605)Hyldgaard-Jensen, J., Valenta, AI., Jensen, S. E., Moustgaard, J., Clin. Chim. Acta 22,497(1968). (606)Inglis, N. I., Ghosh, N. K., Fishman, W. H., Anal. Biochem. 22, 382 (1968). (607) Ingram, L., Tombs, RI. P., Huret, A., i b i d . , 20,24 (1967). (608) Irfan, hI., Res. Vet. Sci., J . Brit. Vet. Ass. 8,137 (1967). (609)Irunberry, J., hloron, E. P., Neel, R., Ann.Znst. Pasteur 114,331 (1968). (610)Ishihara, M., Eur. J . Cancer 3,545 (1 \ -968) ___,.
(611) Isobe, T., Nagoya J . Med. 31, 325 (1968); CA 71,l547m. (6121 Iuchi. I.. Hamilton. H. B.. Science ‘ 159,204 (1968). (613)Iuchi, I., Yamagami, K., Comp. Biochem. Physiol. 28,977 (1969). (614)Ivanov, Ch., hlesrob, B., Prusik, Z., Can. J . Biochem. 46,1301 (1968). (615)Ivanova, 0.Yu., Malenkov, A. G., Byull. Eksp. Biol. M r d . 65,95 (1968). (616)Izzo, P.,Procaccio, P., Boll. SOC. SOC. Ital. Bzol. Sper. 44,920 (1968). (617)Jacobson, K . B., Murphy, J. B., Dunaway, P. B., Comp. Biochern. Physiol. 28,1135 (1969).
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
49 R
(618) Jacques, L. B., Ballieux, R. E., Dietrich, C. P., Kavanagh, L. W., Can. J . Phusiol. Pharmacol. 46. 351 (1968). (619) Jacyszyn, K., Laurskn, T.,Ciin. Chim. Acta 19, 345 (1968). (620) Jean, D. R., Bader, H., Biochem. Biophus. Res. Commun. 27, 650 (1967). (621) 'Jeppsson, J. O., Biochim. Acta 140, 468 (1967). (622) Jevons, S., Glover, J., Biochem. J . 103, 30P (1967). (623) Jimenez-Porras, J. SI.,Anim. Toxins, Collect. Pap. Znt. Symp., l s t , Atlantic Citu 1966, 307 (Pub. 1967); CA 68,76067b. (624) Johns, E. W., J . Chromatogr. 33, 563 (1968). (625) Zbid., 34,429 (1968). (626) Johnson, B. L., Science 158, 131 (1967). (627) Johnson, B. L., Barnhart, D., Hall, O., Amer. J . Bot. 54, 1089 (1967). (628) Johnson, R . B., Jr., Clin. Chem. 15, 108 (1969). (629) Jokl, V., Proc. Conf. Appl. Phys.Chem. Methods Chem. Anal., Budapest, 1966,2,88; CA 68, 119020~. (630) Jonsson, M., Pettersson, E., Acta Chem. Scand. 22,712 (1968). (631) Jonsson, R'I., Pettersson, E., Sei. Tools 15,2 (1968). (632) Jonsson, RI., Pettersson, E., Reinhammar. B.. Acta Chem. Scand. 22, 2135 (1968).' (633) Jordan, E. M., Raymond, S., Anal. Biochem. 27,205 (1969). (634) Jordan, S. &I., Morgan, E. H., Comp. Biochem. Physiol. 25, 271 (1968). (635) Zbid., 29, 383 (1969). (636) Josephson, A. S., Weiner, R. S., J . Zmmunol. 100, 1080 (1968). (637) Joss, A., Hay, A. J., Skehel, J. J., Burke, D. C., Biochem. J . 110, 40P (1968). (638) Jouannet, &I., Toxicon 5, 191 (1968). (639) Joubert, F . J., Burns, RI. A. C., J . S . A f r . Chem. Inst. 20, 161 (1967). (640) Jovanovic, V., Simonovic, I., IugoSlav. Physiol. Pharmacol. Acta 3, 307 (1967); CA 70, 349109. (641) Jozefowicz, E., Maslowska, J., Olczak, D., Chem. Anal. (Warsaw) 12, 1047 (1967). (642) Jurion, R., Bull. SOC.Chim. Fr . 1968, 2622. (643) Juul, P., Clin. Chim. Acta 19, 205 (1968). (644) Kadlecova, D., Kolar, V., Mechl, Z., Neoplasms 14, 473 (1967). (645) Kahan, B. D., Reisfeld, R . A,, Proc. Nut. Acad. Sci. U.S. 58, 1430 119671. (646j-Kahlke, W., Rapp, W., Verh. Deut. Ges. Inn. h l e d . 73, 828 (1967). (647) Kalashnikov. V. P.. Klvueva. S.G.. Lab. Del0 1968, 756. ' " (648) Kallee, E., Ergeb. Laboratoriumsmed. 3, 109 (1965) (Pub. 1967); CA 68, 84902k. (649) Kaminski, E., Bushuk. W., Can. J . Biochem. 46,1317 (1968). (650) Kanazawa, T., Kanazawa, K., Plant Cell Physiol. 9, 701 (1968). (651) Kang, C. Y., Prevec, L., J . Virol. 4, 404 (1969). (652) Kanzow, U., Rosenkranz, W., Klin. Wochenschr.45, 1037 (1967). (653) Kaplan, A., Amer. J . Med. Sci. 253, 549 (1967). (6E4) Kaplan, J . C., Beutler, E., Biochem. Biophys. Res. Commun. 29, 605 (1967). (655) Karas-Gasparec, V., Gasparec, Z., Farm Glaz. 24. 195 (1968): CA 69. . 69680~. (656) Kashkin, K. P., Kulish, Yu. S., Byull. Eksp. Biol. M e d . 66, 74 (1968). (657) Kasprzak, A., Pr. Inst. W l o k . Lykowych 14, 109 (1968); CA 70, 93622. I ,
50 R
(658) Katayama, T., Ikeda, H., Sci. Pap. Inst. Phys. Chem. Res. (Tokyo) 61, 146 (1968): C A 68.98600~. (6i9) K'atayama: T., Ikeda, H., Sci. Pap. Inst. Phys. Chem. Res. 62, 130 (1968); CA 70,40610~. (660) Kathe, I. S. T., Kulkarni, B. A. Indian Vet. J . 44, 303 (1967). (661) Katie, R. V., Gadjanski, G., Dimitriievic. 11..Vukicevic. Z.. Rev. Immunil. 30; 341'(1966). (662) Katsuura, K., Akahane, T., Abe, S., Nippon Kagaku Zasshi, 89, 983 (1968); CA 70,6502221. (6631 Kawauchi. H.. Minato. S.. Sakakibara, F., Nakamura, K., Tohoiu Yakka Daigaku Kenkyu h'empo 13, 53 (1966); CA 68, 1472w. (664) Kawerau, E., Franglen, G., Technicon Symp., bnd, N.Y. London 1965, 399 (Pub. 1966); CA 67, 29760s. (665) Kazenelson, G., Adams, F. H., Proc. SOC.Exp. Biol. Med. 127, 1099 (1968). (666) Kazenelson, G., Schwartz, J., Adams, F. H., ibid., 129,920 (1968). (667) Keler-Bocoka, Rl., Pucar, Z., Clin. Chim. Acta, 23,431 (1969). (668) Kennes, F., Experimentia 25, 246 (1969). (669) Kern, H., J . Chromatogr. 32, 790 (1968). (670) Khanna, N . D., Braend, >I., Acta Vet. Scand. 9. 316 (1968). ,
I
~
3 ) Kierszenbaum, F., Levison, S. A,, Dandliker, W. B., Anal. Biochem. 28, 563 11969). (674) Kimura, A., Tsurumi, K., J . Biochem. (Tokyo) 65, 303 (1969). (675) King, J. W. B., Polymorphismes Biochim; Anim., Congr. Eur. Groupes Sang., loth, Paris 1966, 427 (Pub. 1967): CA 68. 94015n. (676) Kirchmeier, O., Hoppe-Seyler's Z . Physiol. Chem. 349, 29 (1968). (677) Kirchmeier, O., Z . Lebensm.-Linters. 135, 181 (1967). (678) Kischer, C. W., Hnilica, L. S., Exp. Cell Res. 48,424 (1967). (679) Kiso, Y., Kobayashi, lI.,Kitaoka, Y., Kawamoto, K., Takada, J., J . Chromatogr. 33, 561 (1968). (680) Zbzd., 36, 215 (1968). (681) Kitamura, RI., Sakaguchi, S., Sakaguchi, G., Biochim. Biophys. Acta 168, 207 (1968). (682) Kitchen, H., Eaton, J. W., Stenger, V. G., Arch. Biochem. Biophys. 123, 227 (1968). (683) Kitchen, H., Putnam, F. W., Taylor, W.J., Blood 29,867 (1967). (684) Kithier, K., hlasopust, J., Radl, J., Biochim. BioDhus. Acta 160. 135 (1968). (685) Klainer,'A: S.,Clyde,' D. F., Bartelloni, P. J., Beisel, W. R., J . Lab. Clin. M e d . 72, 794 (1968). (686) Kleczkowska, D., Bull. Acad. Pol. Sci., Ser. Sei. Biol. 15, 201 (1967); CA 67,60944d. (687) Kleihauer, E., Stoeffler, G., Mol. Gen. Genet. 101, 59 (1968). (688) Kleist, H., Friemel, H., Brock, J., Bienengraeber, V., Muecke, D., Eur. J . Biochem. 6, 358 (1968). (689) Kloecking, R., Kleist, H., hluecke, D., Experientia 23, 519 (1967). (690) Klofat, W., Hannig, K., HoppeSeyler's 2. Physiol. Chem. 348, 1332 (1967). (691) Klug, 0. N., Chem. Anal. (Warsaw) 14, 11 (1969). (692) Klyueva, S. G., Sakhibov, D. N., Ganieva, N., Tr. Konf. Biokhim. Respub. Srednei Azii Kaz., l s t , Alma-Ala 1966, 292 (Pub. 1967); CA 69, 1047912.
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
(693) Knauff, R. E., Adams, J. A., Clin. Chim. Acta 19. 19 119681. (694) Knudsen, F. U., Gormsen, J., Scand. J . Haematol. 5, 361 (1968). (695) KO, H., Royer, M. E., Wechter, W. J., Anal. Biochem. 19, 556 (1967). (696) Kobavashi, I.. Naaova Shiritsu Daigaku Zgalkai iasshi "19, 331 (1968); CA 70, 661849. (697) Koch, H. J. A., Bergstrom, E., Bodarwe-Schmitz, E., Evans, J. C., Meded. Kon. Vlaam. Acad. Wetensch., Belg., Kl. Wetensh. 30, 3 (1968); CA 71,281585. (698) Koch, H. J. A., Bergstrom, E., Evans, J. C., Meded. Kon. Vlaam. Acad. Wetensch., Belg., Kl. Wetensch.28,20 pp. (1966); CA 67, 30184p. (699) Koch, H. J. A,, Wilkins, N. P., Bergstrom, E., Evans, J. C., Xeded. Kon. Vlaam. Acad. Wetensch., Belg., Kl. Wetensch.29.3 11967): (2.4 69.41241~. (700) Koen, A. L., biochim. ' Biophys. Acta 140, 496 (1967). (701) Kohn, J., J . Clin. Pathol. 22, 109 (1969). (702) Kolar, O., Yature 214, 524 (1967). (703) Kilar. 0.. Zeman. W.. 2. Zm' munitaetsjorsci., i l ~ e r & e krin. Immunol. 134,267 (1967). (704) Kondo, H., Zgaku to Seibutsugaku 73,72 (1966); CA 69, 84875%. (705) Konotev-Ahulu. F. I. D.. Gallo. E.. ' Lehmann, H . , Ringelhann, B., J . &ed: Genet. 5, 107 (1968). (706) Konstantinov, B. P., Oshurkova, 0. V.,Bgrokhimiya 1967, 99. (707) Konstantinov, B. P., Oshurkova, 0. V.. Dokl. Akad. Sauk SSSR 175, 113 (1967). (708) Kost, A . N., Sagitullin, R. S., Gorbunov, V. I., Barinova, G. I., Khim.-Farm. Zh. 1, 14 (1967). (709) Kostov, L., Vet. X e d . iVauki (Sofia) 4, 29 (1967). (710) Kotula, Z., Kaminska, A. , N e d . DOSW.Xikrobiol. 19. 381 11967).
(730) Kwarts, E. W., Looye, A., Bouman, J. G., Groen, A., Pharm. Weekbl. 103, 141 (1968). (731)Kwon, Yong Joe, Kim, Ae Soo, New Med. J . (Seoul, Korea) 10, 51 (1967);CA 68,76304b. (732)Labrie, F., Nature 221,1217 (1969). (733)Lahiri, &I. &I., Xlukherjee, S. K., J . Zndzan Chem. SOC.44.980 (1967). (734)Ibid., 45,1095 (1968). (735)Lamberts, B. L., hleyer, T. S., Secretory Mech. Salivary Glands, Proc. Int. Conj., 2nd, Univ. Ala. Med. Cent. 1966, 313 (Pub. 1967); CA 69,93140h. (736)Lambotte, R., Arch. Znt. Physiol. Biochim. 74,284(1966). (737)Lamy, J., Vargues, R., Weill, J., C. R . SOC.Biol. 161,2021(1967). (738)Lamy, &I., C. R . Acad. Sci., Paris, Ser. D 265,990 (1967). (739)Lancelot, F., Gilbert, J., C. R . Acad. Sci., Paris, Ser. C 268,306 (1969). (740) Lane, J. P., Hill, W. S., Learson, R. J., Solutions ( A n n Arbor) 7, 10 f1968). (741)Lang, B. A., Acta Univ. Palacki. Olomuc., Fac. Med. 1966,23. (742)Langlev. T.J.. Weiss. J . B.. Clin. Chim. Actd18,241 (1967). Eur. J . Cancer 4,107 (743)Langvad, E., (1968). (744)Langvad, E.,Int. J . Cancer 3, 17 (1968). (745)L’Annunziata, 31.F., Fuller, W. H., J . Chromatogr. 34,270 (1968). (746)Lanyon, W.G.,Paul, J., Williamson, R., FEBS (Fed. Eur. Bzochem. SOC.) Lett. 1, 279 (1968). (747) Larcan, A., Stoltz, J . F., Stoltz, AI., Peters, A., C. R . SOC.Bzol. 162,204 (1968). (748) Larkin, I.L. AI., Baker, T., Lorkin, P. A., Lehmann, H., Black, A. J., Huntsman, R. G., Brit. J . Haematol. 14,233(1968). (749)Larsen, A. L., Crop. Sci. 7, 311 (1967). (750)Larsen, S.A., Webb, C. D., Moody, M . D., A p p l . Mi2robiol. 17,31 (1969). (751)Latifi, AI., Shamloo, K. D., Amin, A., Arch. Inst. Razi 19, 33 (1967); CA 68,76058~. (752)Latner, A. L., Advan. Clin. Chem. 9,69 (1967). (753)Laurell, C. B., Gamma Globulins, Proc. lVobel Symp., Srd, Soedergarn, Lidingoe 1967, 295; Interscience, New York. N.Y. (754) Laursen, T., Jacyszyn, K., Clin. Chim. Acta 21,497(1968). (755)Leaback. D. H.. Rutter. A. C.. Biochem. Biophys. Res. Commun. 32; 447 (1968). (756)Lebez, D., Rlaretic, Z., Gubensek, F., Kristan, J., Toxicon 5,261 (1968). (757)LeBouton, A. V., Anal. Biochem. 20,551 (1967). (758)Ibid., 26,445(1968). (759)Lederer. 11.. hIazzei. AI.. J . Chromutogr. 35,201(1968). (760) Leers, W.D., Rozee, K. R., Wardlaw, A. C., Can. J . hficrobiol. 14, 161 (1968). (761)Lehmann, F. G., Schneider, K. W., Schering, G., Koch, V., 2. Vitamin-, Hormon-, Fermentforsch. 14,301 (1967). (762)Lemon, hl., Poole, W. E., Aust. J . Exp. Biol. Med. Sci. 47,283 (1969). (763) Lenaz, G.,Haard, N. F., Lauwers, A., Allmann, D. W., Green, D. E., Arch. Bzochem. Biophys. 126, 746 (1968). (764)Lengyel, A., Schmidt, W. A. K., Arch. Gesamte Virusforsch. 24, 419 (1968). (765) Leonhardi, G., Loehner, L., Guerenci, J., Schmidt, J., Arch. Klin. Exp. Dermatol. 234,61 (1969). (766) Lerch, B., Stegemann, H., Anal. Biochem. 29,76 (1969). \ ~ _ . _ ,
I
,
(767) Lesigang-Buchtela, M., Buchtela, K., hlikrochim. Acta 1967,1164. (768)Leskova, R., Onderscheka, K., 2. Tierphysiol., ’ Tierernaehr. Putter: mittelk. 23. 257 11968): CA 69.94229f. (769) Lessaid, J . L.,Taketa, F.,’Biochim. Biophys. Acta 175,441 (1969). (770)Levine, B.,Lipschutz, D., Bernstein, J., Newman,-C., Obstet. Gynecol. 31.424 (1968). (771)Lew.is, D’. H., Smith, D. C., New Phytol. 66,185 (1967). (772)Lewis, L.A., L i p i d s 4,60(1969). (773)Lewis, U.J., Cheever, E. V., Seavev. B. K.. Anal. Biochem. 24. 162 (1968). ’ (774)Lewis, U.J., Cheever, E. V., Seavey, B. K., J . Biol. Chem. 243, 260 (1968). (775)Lewis, W.H. P., Harris, H., Nature 215,351 (1967). (776) Li, Su-Chen, Li, Yu-Teh, Kato, T., Proc. SOC.Exw. Biol. Med. 127. 1014 (1968). (777)Li, Yu-Teh, Li, Su-Chen, J . Biol. Chem. 243,3994 (1968). (778) Lim, R., Huang, J . J., Davis, G. A., Anal. Biochem. 29,48 (1969). (779)Ling, Nan-Sing, Krasteff, T., Proc. A’at. Acad. Sci. LT.S.60,928 (1968). (780)Lingren, W. E.,Reeck, J. R., &farson, R. J.. ANAL. CHEW 40. 1585 (1968). (781) Lippi, U.,Pulido, E., Boll. Soc. Ztal. Biol. Sper. 43,165 (1967). (782)Lloyd, H. I f . , Bindon, B. AI., Lamond, D . R., Meares, J. D., J . Endocrinol. 40,313 (1968). (783)Loening, U.E.,J . Mol. Biol. 38, 3ij5 (1968). (784)LoGrippo, G. A., Hayashi, H., Sharpless, N., Henry Ford Hosp. hfed. Bull. 15,57(1967);CA 67,30809~. (785)Loh, P.C., Shatkin, A. J., J . Virol. 2,1353 (1968). Lab. Delo 1969, (786)Loktionov, A. M., 14 (787)Lopez Gorge, J., Monteoliva, M., J . Chromatogr. 29,300 (1967). (788)Lopez Gorge, J., llonteoliva. hl.. Mayor; F . , A; Rea? SOC.Espan: Fis: Quim., Ser. B 63,465 (1967); C.4 67, 84922~. (789)Lormeau, S.,hlannebach, M. H., Bull. SOC. Chim. F r. 1967,1818. (790)Lozano, E. A., Smith, L. D. S., Amer. J . Vet. Res. 28,IF69 (1967). (791)Lozca, A., Kiserl. Orvostud. 20, 209 (1965);CA 69,418222. (792)Luk’vanenko. V. I..Ermolin. G. A,. Sedov, S: I., Popov, A,‘ V., Dokl: Akad: Nauk SSSR 174,227 (1967). (793)Lundh, B., Laurell, C. B., Zmmunology 13,649 (1967). (794)Luner, S. J., Anal. Biochem. 23, 357 (1968). (795)Lutsik, 31. D., Biokhimiya 33,306 (1968). (796j-L~tz, P. L., Siddiqi, A. H., Exp. Parasztol. 20,83 (1967). (797)Lykakis, J. J., Immunology 14, 799 (1968). (798)MacGillivray, A. J., Biochem. J . 110,181 (1968). (799)hlackie, I. &I., Analyst (London) 93,458(1968). (800) llacko, V.,Novacky, A,, Biologia (Bratislava) 23,731 (1968). (801)Maeda, R.,‘Vippon A’aibumpz Gakkaz Zasshi 42. 1302 (1967): CA 67. . 79514k. (802)Maier, H.G.,Fresenius’ Z . Anal. Chem. 244.256 (1969). (803)hIalaskova, V.,’Holeysovska, H., Clin. Chim. Acta 24,39 (1969). (804)Manski, W.,Halbert, S. P., Javier, P., Int. Arch. Allergy Appl. Immunol. 31,475(1967). (805) hlanwell, C., Baker, C. 11. A., J . Mar. B i d . Ass. U.K. 47,659 (1967). I ,
(806) Marchalonis, J. J., Nossal, G. J. V., Proc. Nut. Acad. Sci. U.S. 61. 860
(808) Marchesi, v. T.,Steers, E., Jr., Science 159,203 (1968). (809)?Ylarcu,‘G., Botar, A., Stud. Univ. Babes-Bolyai, Ser. Chem. 13, 111 (1968);C A 70,64012h. (810) hiarcu, G., Marcu, T., Omagiu Raluca Ripan 1966, 359: C-4 67. 50043~. (811)Marcu, G., Murgu, G., Rev. Roum. Chim. 12.957 11967). (812)Marghescu, S.,‘ Arch. Klin. Exp. Dermatol. 228,327 (1967). (813) hlargolis, J., Kenrick, K . G., Anal. Biochem. 25,347(1968). (814)1Iargolis. J.. Kenrick. K. G.. Nature 221, 1056 (1969). ’ (815)hlarin, B., Kikindai, T., C. R . Acud. Sci., Paris, Ser. C 268,1 (1969). (816)Markert, C. L., Whitt, G. S., Experientia 24,977 (1968). (817)Markert, J . R.,Vanstone, W. E., Can. J . Biochem. 46,1334 (1968). (818)Markus, G., LlcClintock, D. K., Castellani, B. A., J . Biol. Cheni. 242, 4402 (1967). (819)hlaroufoff, A., Delt. Hellinik. Mikrobiol. Hyg. Hetairezas 12, 66 (1967); CA 69,65373. (820)Marti, H.R., Beale, D., Lehmann, H., Acta Haematol. 37,174 (1967). (821)Martinez-Resa, P., Alvarez-Rloreno, C., Hermida, F., Chordi, A., J . Dairy Sci. 52, l(1969). (822)hIarty, R., Zalta, J. P., C. R . Acad. Sci. Paris. Ser. D 264.2051 11966). (823)hlashburu, T. A,; Jr., Hoffman, P., Biochem. Biophys. Res. Commun. 29, 686 (1967). (824)Massaglia, A., Pennisi, F., Rosa, U., J . Chromatoor. 28.495 11967). (825)Massaro, E. J., llarkert, C. L., J . Histochem. Cytochem. 16,380 (1968). (826)Nastroeni, P., Nacci, A,, Rocca, A,, J . Bacteriol. 94,2073 (1967). (827)hlatheka, H. D., Trautman, R., Bachrach, H. L., Arch. Biochent. Biop h y s . 121,325 (1967). (828) Matsumura, F., Sakaki, K., J . Econ. Entomol. 61, 598 (1968); C A 69,349412. (829)hlattila, S.,Ann. Chir. Gynaecol. Fenn., Suppl. 149,29 pp (1967). (830)hlaughan, E.,Rilliams, J. R. B., i2’ature 215,404 (1967). (831)Maurer, H.R., “Diqk Electrophoresis. Theory and Practice of Iliscontinuous Polyacrylamide Gel Electrophoresis (Disk-Elektrophorese. Theorie und Praxis der Diskontinuierlichen Polyacrylamidgel-Elektrophorese),” de Gruyter, Berlin, 1968,221 pp. (832)MaFal, R. B.,Acta Physzol. Pharmacol. iyeer. 14,317 (1967). (833)llayer, H., Weitphal, O., J . Chromatogr. 33,514 (1968). (834);\layer, R.J., Candy, D. J., iyature 215,987 (1967). (835)Mayerova, A,, Cicmancova, L., Hrubisko, M.,Lek. Obz. 17,63 (1968); CA 69,255349. (836) Mazeron, P., Krischer, J., Horn, P., Bull. SOC. Chim. Biol. 49, 791 (1967). (837)Nazzei, M.,Lederer, M., Anal. Lett. 1, 67 (1967). (838)Xazzei, hI., Lederer, hl., J . Chromatoqr. 31,196 (1967). (839)KlcCarthy, D., J . Gen. Virol. 3,417 (1968). (840)iLIcCown, B. H., Beck, G. E., Hall, T. C., Plant Physiol. 43, 578 (1968). Y
I
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
51 R
(84l),hlcCrone, J . D., Hatala, R. J., Anzm. Toxzns, Collect. Pap. Int. Symp., l s t , Atlantic City 1966, 29 (Pub. 1967); CA 68,76064~. (842) McDevitt, D , S., J . Exp. Zool. 164, 21 (1967). (843) McEwen, B. S., Anal. Biochem. 25, 172 (1968). ’ (844) E. H. F., Jevons, F. R., j _ ~ PrlcGale. ~ , Cllin. Chim. Acta 17. 441 (196:7 \ ~
~
1st. Atlantic C i t y 1566, C A 68,94221b.
(847) Medvedev, A. I., Prikl. Biokhim. -Mikrohznl. - . . - . - 5 . 97 (1969). (848) hleffroylBiget, A.’ M., C. R. Acad. Sci., Paris, Ser. C 266, 1329 (1968). 1849) hlehrishi, J. K.,Seaman, G. V. F., Trans. Faraday SOC.64,3152 (1968). (850) hlehrotra, P. N., Singh, M., Res. V. p-. f. S r-.i .. 0 . 59.1 - - - (1968’). (851) hlejbaum-Katzenellenbogen, W., Kowalczvk, M., Maskos, K., Pol. Tyg. Lek. 22,782 (1967). (852) hlejbaum-Katzenellenbogen W., Kowal-Gierczak. B.. Kudredca-Hu- ~ . bicka, Z., ibid., 1677. (853) Mejbaum-Katzenellenbogen, W., Lomako, J., Maskos, C., Arch. Zmmunol. Ther. Ezp.1 6, 817 (1968). 1854) hlelachouris, N. P., J . Dairy Sci. 52, 456 (1969). (855) hlelartin, L., Blumberg, B. S., Lisker, R., Nature 215, 1288 (1967). (856) Meleshko, V. E., Klin. M e d . (Moscow) 45, 122 (1967). (857) hfel’nikov, N. N., Voronkova, V. V., Khaskin, B. A., Petruchenko, N. B., Zh. Obshch. Khzm. 37, 1024 (1967). (858) hlelnychyn, P., U’olcott, J. M., J . Dairy Scz. 50, 1863 (1967). (859) Menache, R., Rubinstein, I., Gaist, L., Rlarziuk, I., Clin. Chim. Acta 19, 33 (1968). (860) Pllerciny, E., Duyckaerts, G., J . Chromatogr. 35, 549 (1968). (861) Meredith, P., Cereal Chem. 44, 436 (1967). (862) Meyer, H., Deut. Tieraerztl. Wochenschr. 74.535 (1957). (863) Rleyer, T. S., Lamberts, B. L., Arch. Oral Biol. 13, 839 (1968). (864) hlichalak, W., J . Dairy Sci. 50, 1319 (1967). (865) Micle, S., Gheorghiu, A., Avram, A,, Stud. Cercet. Bzol., Ser. 2001. 19, 193 (1967). (866) hliesch, F., Bieth, J., hletais, P., Ann. Bzol. Clin. ( P a r a )26, 939 (1968). (867) Xikkonen, L., Finkler, A. E., Hall, C. A., Acta M e d . Scand. 181, 591 (1967). (868) Miller, W. K., Proc. SOC.Exp. Biol. A f e d . 124, 1224 (1967). (869) hlills, A. K., Crowden, R. K., Aust. J . Biol.Scz. 21, 1131 (1968). (870) hlilstein, C. P., Biochem. J . 110, 127 (1968). (871) Milstein, C. P., Xature 215, 1190 (1967). (872) hlinden, P., Grey, H. AI., Farr, R. S., J . Zmmunol. 99,590 (1967). (873) hliro, P., Garcia Dominguez, J. J., Bul1.Znst. Tezt. Fr . 21, 91 (1967). (874) hlirsky, R., Biochemistry 8, 1164 (1969). (875) RIisaki, A., Tampakushitsu Kakusan Koso, Bessatsu 11, 60 (1968); C A 70, 84089s. (876) Mitchell, W. M., Biochim. Biophys. Acta 147, 171 (1967). (877) Zbzd., 178, 194 (1969). (878) Mitlin, K.,Lusk, G. J., Wiygul, G., Ann. Entomol. SOC. Amer. 60, 1155 (1967). - I
52 R
\ - -
- I
(879) Miyahara, Y., N i p p o n Eiseikasa Gzshzkaz Zasshi 15, 73 (1966); CA 69, 65046~. (880) Miyai, K., Itoh, K. F., Abe, H., Kumahara. Y.. Clin. Chim. Acta 22. 341 (1968).’ ’ (881) Miyaji, T., Ohba, Y., Yamamoto, K., Shibata, S., Iuchi, I., Takenaka, M., Nature 217, 89 (1968). (882) Miyoshi, K., Saijo, K., Kotani, Y., Kashiwaei. T.. Kawai. H.. Tokushima J . Exp. -n/ed. ‘13, 121’(1966); CA 68, . 56634 . . . .f~ (883) Mochissi, K. S., Fert. Steril., Proc. World Congr., 5th, Stockholm 1966, 723 (Pub. 1967); CA 69,1198a. (884) Moeller, W.. Castleman,. H.,. Nature 215,1293 (i967j. (8851 Moniardino. J. P. P. V.. Anal. Blchem. i8,313 (1969). (886) Monteverde, A., Osp. Magg. Novara 44,9 (1967). (887) Moon, K . H., Bunge, R. G., Invest. Urol. 6, 223 (1968). (888) Morales-Malva, J. A,, Israel-Budnick, S., Sapag-Hagar, M., Vallegahlagasich, A., Clin. Chim. Acta 18, 175 (1967). (889) Morgan, E. H., Biochim. Biophys. Acta 154.478 (1968). (890) Mor;, I., Bunseki Kagaku 16, 1320 (1967); CA 68,74207~. (891) Morozova, L. I., Vrach. Delo 1967, ~
64
(892)Morpurgo, L., Ric. Sci. 38, 459 (1968). (893) Morse, R. S., Welford, G. A,, Chiotis, E. L., ANAL.CHEM.39, 1336 (1967). (894) Morvay, J., Kozepesy, G., Kocsis, G., Acta Pharm. Hung. 38,326 (1968). (895) Moss, B., Ingram, V. M., J . Mol. B i d . 32. 481 (1968). (896) Zbid:, p 493. ’ (897) hloulik, S. P., Cooper, F. C., Bier, &I., J . Colloid Interface Sci. 24, 427 (1967). (898) Mueller, H. E., Z . Immunitaetsforsch., Allergie Klin. Zmmunol. 133, 3.57 11967). (899) kugiya, Y., N i p p o n Suisan Gakkaishi32, 117 (1966); CA 68, 667780. (900) blulcahy, 31. F., Nature 215, 143 (1967). (901) Muller-Eberhard, U., English, E. C.. J . Lab. Clin. Med. 70.619 (1967). (902) Munier, R. L., Freienius’ Z . Anal. Chem. 236, 358 (1968). (903) Rlunier, R. L., Thommegay, C., Bull. SOC.Chim. Fr. 1967,3171. (904) Zbid., p 3176. (905) Munier. R. L.. Thommeeav. “ , C.., ‘ Sarrazin, G:, ibid., ~’3971. (906) Musa, B. U., Doe, R. P., Seal, U. S., J . Clin. Endocrinol. Metab. 27, 1463 (1967). (907) Musakin, A. P., Pal’mskii, V. G., Zh. Anal. Khim. 23,463 (1968). (908) Myszkowska, K., Diss. Pharm. Pharmacol. 20, 373 (1968); CA 70,
-
1.571~. - . - .. .
(909) Nadler, C. F., Comp. Biochem. Physiol. 25, 1121 (1968). (910) Zbid., 27,487 (1968). (911) Nadler, C. F., Hughes, C. E., Harris. K. E.. Nadler. N. W., ibid., 23, 149 (1967).‘ (912) Nanv. G. A.. Halkin. V. A,. Norszejev, J. V., d a g y . Kim. Foiy. 73, 191 (1967); CA 67,50005j. (913) Nakajima, H., Araya, A., Nakajima, M., Fujiwara, N., Wu, Ku-Chayu, hlizuno, K., Acta Med. h’agasak. 12, 7 (1967); CA 69,650423. (914) Kakayama, Y., Jap. J . Microbiol. 11, 95 (1967); CA 67, 88450~. (915) Nalbandian, R. &I., Michel, R. E., hlader, I., Ezperientia 24, 1006 (1968). (916) Nasr, A. H., Bekheet, I. A., Ibrahim, R. K., Hydrobiologica29,80 (1967). \
I
~
0
1
1
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
(917) Nassi, L., Pratesi, C., Frangini, V., Moggi, C., Rapi, G., Riv. Clin. Pediat. 80,202 (1967). (918) Nassi, P., Treves, C., Ramponi, G., J. Chromatogr. 33,553 (1968). (919) Nast, H. P., Fasold, H., ibid., 27, 499 (1967). (920) Natelson, S., Stellate, R., Clin. Chem. 13, 626 (1967). (921) Negroni, L., Boll. SOC.Ztal. Biol. Sper. 43, 1426 (1967). (922) Neihof, R., J . Colloid Interface Sci. 30, 128 (1969). (923) Neuhoff, V., Arzneim.-Forsch. 18, 35 (1968). (924) Neuhoff, V., Schill, W. B., HoppeSeyler’s Z. Physiol. Chem. 349, 795 (1968). (925) Ney, K. H., Fette, Seifen, Anstrichm. 69, 794 (1967); CA 68, 2052w. (926) Ney, K . H., Wirotama, I. P. G., Seitz, I., Znt. Dairy Congr., Prc., I7th, Munich, 1566, 4,283; CA 68,48397r. (927) Nguyen-Hoang-Nam, Herbert, hl., Nguyen-Dat-Xuong, Pichat, L., Bull. SOC.Chim. Fr. 1968, 2667. (928) Niece, R. L., Kracht, D. W., Genetics 57,837 (1967). (929) Niedermeier, W., Gramling, E. S., Carbohyd. Res. 8,317 (1968). (930) Nielsen, D. J., Mills, R. R., J . Znsect. Physiol. 14, 163 (1968). (931) Nielsen, H. C., Beckwith, A. C., Wall, J. S., Cereal Chem. 45,37 (1968). (932) Nikolaeva, G. N., Uch. Zap. Petrozavodsk. Gos. Univ. 13, 39 (1965); CA 68, 1359q. (933) Nishikawa, I., Saito, K., Nippon Nogei Kagaku Kaishi 43, 45 (1969); CA 70, 955469. (934) Nisselbaum, J. S., Anal. Biochem. 23, 173 (1968). (935) Njogu, A. R., Humphryes, K. C., Nature 216, 280 (1967). (936) Noble, J., Kass, S. J., Levintow, L., Virology 37,535 (1969). (937) Noble, R. P., J . Lipid Res. 9, 693 (1968). (938) Noble, R. P., Hatch, F. T., llazrimas, J. A., Lindgren, F. T., Jensen, L. C., Adamson, G. L., Lipids 4, 55 (1969). (939) Norris, J. R., Chemotazon. Serotaxon., Proc. Symp. 2, 49 (1967) (Pub. 1968), Academic Press, London, England. (940) Notario, A,, Bobbio Pallavicini, E., Rlalvicini, G., Minerva M e d . 59, 3049 (1968). (941) Nowak-Golabowa, M., Skawinska, Z., Przegl. Lek. 22, 694 (1966); CA 67, 30777j. (942) Nowosz-Arkuszewska, I., Pompowski, T., Rocz. Chem. 42, 321 (1968); CA 69,70151~. (943) Nowosz-Arkusaewska, I., Pompowski, T., Rocz. Chem. 42, 1083 (1968); CA 69,806719. (944) Nye, T. G., Kern, C. H., Aldrich, R. F., Phytochemistry 7, 741 (1968). (945) Nygaard, P., J . Chromatogr. 30, 240 (1967). (946) Nyiredy, I., Tuboly, S., Magy. Allatorv. Lapja 23, 451 (1968); CA 70, 36053d. (947) Odell, G.V., Nazhart, N., Grothaus, R., Howell, D. E., Proc. Okla. Acad. Sci. 47, 263 (1968). (948) Ogata, K., Rinsho Shoni Igaku 15, 56 (1967); CA 68,37387m. (949) Ogita, Z., SABCO (SOC. Areas Biol. Chem. Overlap)J . (Osaka) 2,91 (1966). (950) Ohba, Y., Bull. Yamaguchz Med. Sch. 14, 201 (1967); CA 70, 8 4 3 4 4 ~ . (951) Okabe, K., Hayakawa, T., Hamada, M., Koike, Bzochemzstry 7, 79 (1968). (952) Okoshi, S., Tomoda, I., Rlakura, S., iYippon Juigaku Zasshi 29, 233 (1967); CA 69,65636f.
(953) Okoshi, S., Tomoda, I., Makura, S., Nippon Juigaku Zasshi 29,337 (1967). C A 69,656374. (954)Olechnowitz. A. F.. Arch. Exw. Veterinaermed.21, 981 (f967). (955) Olered, R., Jonsson, G., Ber. Getreidechem.-Tag., - _ Detmold 1967, 207; CA 68,18916s. (956) Olesen, H., Terp, B., Scand. J. Clin. Lab. Invest. 21. 14 (1968). (957) Op de Beeck, ‘J., Anal. Chim. Acta 40,221(1968). (958) Opienska-Blauth, J., Zugoslav. Physiol. Pharmacol. Acta 3,362 (1967); CA 70,9875s. (959) Ord, M . G., Stocken, L. A,, Biochem. J . 109,24P (1968). (960) Orlando, J. A., hlaes, A. A., Biochim. Biophys. Acta 140,459(1967). (961) Ortolani, C., Cattaneo, R., Massarotti, G., Boll. Zst. Sieroter. Milan. 46,596 (1967). (962) Oshiro, Y., Eylar, E. H., Arch. Biochem. Biophys. 127,476(1968). (963) Osterhoff, D. R., Polymorphismes Biochim. Anim., Congr. Eur. Groupes Sang., loth, Paris, 1966, 345 (Pub. 1967); CA 68,94001e. (964) Osuga, D. T., Feeney, R. E., Arch. Biochem. Biophys. 124,560 (1968). (965) Otsuji, S.,Kamisage, T., Meada, S., Zgaku to Seibutsugaku 77, 111 (1968); CA 70, 54728g. (966) Ottewill, R. H.,Shaw, J. N., J. Colloid Interface Sci. 26,110 (1968). (967) Ouchterlony, O., “Handbook of Immunodiffusion and Immunoelectrophoresis,” Ann Arbor Science Pub., Ann Arbor, Mich., 1968,215 pp. (968) Owen, J. A., Advan. Clin. Chem. 9, ‘ 1 ( 1967). ’ (969) Pabis, A., Sulis, E., Alessio, L., Mannucci. P. M.. Clin. Chim. Acta 20. 449 (i968j. (970) Pace, N. R.,Bishop, D. H. L., Spiegelman, S., J . Virol. 1, 771 (1967). (971) Padmoyo,. M., Miserez, A., Mitt. Geb. Lebensmzttelunters. Hyq. 58, 31 .. (1967). (972) Palau, J., Ruiz-Carrillo, A,, Subirana, J. A., Eur. J. Biochem. 7, 209 \ -
~
(1969). \-___,.
(973)Paltrinieri, E., Acta Neurol. (Naples) 22,216 (1967). (974) Pan, In-Chang, Kaplan, A. M., Morter, R. L., Freeman, M. J., Proc. SOC.Exp. Biol. Med. 129,867 (1968). (975) Panic, B., Acta Vet. Scand. 8, 228 (1967). (976) Panic, B., Ekman, L., Acta Vet. (Belgrade)17,167 (1967). (977)Pantelouris, E. M., Arnason, A,, Comp. Biochem. Physiol. 21, 533 (1967). (978) Pantelouris, E.M., Payne, R. H., Genet. Res. 11, 319 (1968). (979)Panyim, S., Chalkley, R., Arch. Biochem. Biophys. 130,337 (1969). (980)Pappo, A., Stoica, G., Rev. Roum. Med. Interne 3,341 (1966). (981) Paraskevas, F., Clin. Biochem. 1, 135 (1967). (982) Parfitt, G. D., J . Oil Coluur Chem. Ass. 51,137 (1968). (983) Paschinger, H.,Radola, B. J., Mmatsh. Chem. 99,347 (1968). (984) Pasieka, A. E.,Thomas, M. E., Can. J . Biochem. 47,7 (1969). (985) Pasternak., A.., Zsotovenvraxis 4,137 .~ (1968). (986)Pauwels, M., Gijbels, R., Hoste, J., Anal. Chim. Acta 42,213 (1968). (987) Payne, R. B., Dickinson, J. P., Nature 215,536(1967). (988) Peacock, A. C., Dingman, C. W., Biochemistry 6,1818 (1967). (989)Zbid., 7,668(1968). (990) Peberdy, J. F.,Turner, M., J . Gen. Microbiol. 51,303 (1968). (991) Pedrini, V., J . Biol. Chem. 244,1540 (1969). ~
(992)Peel, D., Biochem. J . 108, 51P (1968). (993)Peetoom. F.. Laboratorium 4. 1 (1965). (994) Peive, Ya. V., Zhiznevskaya, G. Ya., Livanova, G. I., Safonov, V. I., Dokl. Akad. Nauk S S S R 173,956(1967). (995) Penttinen, R., Kari, A., Kulonen, E., Acta Chem. Scand. 21,827 (1967). (996) Perham, R. N., Biochem. J . 105, 1203 (1967). (997) Perham, R. N., Jones, G. M. T., Eur. J . Biochem. 2, 84 (1967). (998)Perlberg, K. W., Allergie Asthma 13,64 (1967). (999)Perona, G., Vettore, L., Ghiotto, G., Cortesi, S., De Sandre, G., Acta Med. Patavina 26, 173 (1967); CA 67, I
’
,
(1030) Qureshi, M., Israili, A. H., Anal. Chzm. Acta 41,523 (1968). (1031) Rabinovitz. M.. Schen. R. J.. Clin. Chim. Act; 20,227 (1968). (1032) Rabinovitz, M., Schen, R. J., J. Pediat. 70, 617 (1967). (1033) Rabinowitz, Y.., Dietz, A. A,, Wilhite, B. A., Lubrano, T., Blood 29, 182 (1967). (1034)‘Rahbar, S., Clin. Chim. Acta 22, ~
296 (1968). \----,-
(1035) Raikher, I. I., Protserova, N. M., Lab. Delo 1967,674. (1036)Rajulu, G. S.,Sci. Cult. (Calcutta) 33,147 (1967); CA 67,61876~. (1037)Ranadive, N. S.,Cochrane, C. G., J . Exp. Med. 128,605 (1968). (1038) Rao, C. A. P., Comp. Biochem. 7. -0-~- -( .4..3 . ~, Physiol. 26,1119 (1968). (1000)Pesakhovich, L. V., Tr. Tadzh. (1039)Rapi, G., Frangini, V., Moggi, C., Med. Inst. 79,74(1967); CA,69,38755n. Pratesi. C.. Testaferrata. A.. Riv. Clin. (1001) Peter, G., Atomprams 13, 116 Pediat.”78,785(1966). ( 1967). (1040)Rapp, W., Kahlke, W., Clin.Chim. (1002) Peterson, P. J., J . Chromatogr. 38, Acta 19,493(1968). 301 (1968’1. (1041)Rasanen, O.,Acta Pathol. Micrp (1003) Phillips, D. M. P., Biochem. J . biol. Scand., Suppl. 1.98, 81 pp (1968). 105,46P(1967). (1042)Rashkhovan, B. A., Sementovs’ka, (1004)Picard, J., Vandebroek, G., HereG. P., Farm. Zh. (Kiev)23,50 (1968). mans, J., Defosse, G., Bull. SOC.Chim. (1043)Rathbun, W. B.,Morrison, M. A., Biol. 49,779(1967). Fusaro, R. M., Exp. Eye Res. 6, 267 (1005)Pikkarainen, J., Rantanen, J., (1967). Vastamaki, M., Lampiaho, K., Kari, A., (1044)Raunich, L., Battaglia, B., CalleKulonen, E., Eur. J . Biochem. 4, 555 garini, C., Mozzi, C., Atti Accud. Naz. (1968). Lincei, Rend., C1. Sci. Fis.Mat. Nut. 41, (1006) Pilz, W., Fresenius’ 2. Anal. Chem. 581 (1966). 243,587 (1968). (1045)‘Ravaioli, L.,Giovenali, E., Ann. (1007)Pinevich, V. V., Bers, E. P., 1st. Super. Sanita 3,187 (1967). Passkel, G. G., Vestn. Leningr. Univ., (1046) Ravina, I., Zaslavsky, D., Soil Sci. Biol. 23,140 (1968). 106,94 (1968). (1008) Podrazky, V., Biochim. Biophys. (1047)Razin, S.,Rottem, S., J . Bacteriol. Acta 160,277(1968). 94,1807 (1967). (1009)Polcak, J., Wiedermann, D., (1048)Rebeyrotte, P., Labbe, J. P., C. R. Polcakova, J., Skalova, M., GastroAcad. Sci., Paris, Ser. D 268, 1125 enterologia 107,273 (1967). )., (1969 \---(1010) Polter, C., 2. Naturforsch., b, 22, (1049)Reeves, R. E.,Bischoff, J. M., J . 340 (1967). Parasitol. 54,594 (1968). (1011) Pootrakul, S., Wasi, P., Na(1050)Reich, G., Sieber,. H.., 2.Chem. 6, Nakorn, S., Brit. J . Haematol. 13, 303 351 (1966): ‘ (1967). (1051)Reichel, A., Comp. Biochem. (1012) Porter, P., Porter, M. C., ShanPhusiol. 28. 1367 (1969). berge, J. N., Biochemistry 6,1854(1967). (1052“)Reidi’M. S . , Bieleski, R. L., Anal. (1013)Pospisil, R., Hrstka, V., Cesk. Biochem. 22,374 (1968). Pediat. 23,556 (1968). (1053)Reis, H. E.,Wetter, 0.. Klin. (1014) Potter, I. C., Nicol, P. I., Aust. J . Wochenschr. 47,426(1969).’ ‘ Exp. Biol. Med. Sci. 46,639 (1968). (1054) Reisch, J., Alfes, H., Moellmann, (1015)Potter, L. T., Murphy, W., H.. Pharmazie 23.246 , - - 11968). Biochem. Pharmacol. 16,1386 (1967). (1055) Reisfeld, R. A., Inman, J. K., (1016) Poulik, M. D., Ann. N . Y . Acad. Mage, R. G., Appella, E., Biochemistry Sci. 151,476 (1968). 7, 14 (1968). (1017) Pratt, J. J., Dangerfield, W. G., (1056) Rene,. M.,. Bull. SOC.Pharm. Lilk Clin. Chim. Acta 23,189 (1969). 1966,51. (1018)Preetz, W., Pfeifer, H. L., Anal. (1057) Ressler, N., Nature 215,284(1967). Chim. Acta 38,255 (1967). (1058) Reuter, A. M., Kennes, F., (1019) Prellwitz, W., Opferkuch, W., Leonard, A., Sassen, A., Comp. Biochem. Hammer, C. H., Koettgen, E.. Clin. Physiol. 25, 921 (1968). Chim. Acta 20. 505 (1968). (1059) Revis, G. J., Proc. SOC.Exp. Biol. (1020) Pristoupd, T.‘I., ’ Fricova, V:, Med. 128,1110(1968). Kramlova, M., Travnicek, M., Sterbi(1060) Reztsova, V. V., Lab. Deb 1969,27. kova, J., Novotna,. Z.,. J . Chromatoar. (1061) Ricci, C., Micheletti, P. C., Boll. 36,9’1(i968). Soc. Ital. Biol. Sper. 42,1628 (1966). (1021) Prochnicka, B., Spodaryk, A., (1062) Ricciardi, R., Restivo, O., Piazza, Przegl. Lek. 22, 602 (1966); CA 67, v., Sindoni, G., Boll. SOC.Med.-Chir. 42057n. Catania 33,645 (1965); CA 68,1348~. (1022) Proso, Z., Pucar, Z., J . Radioanal. (1063) Richmond, J. E.,Comp. Biochem. Chem. 2,243(1969). Physzol. 24,991 (1968). (1023)Prout, R. E. S., Biochim. Biophys. (1064) Rieder, H. P., Nusselt, L., Clin. Acta 177,157 (1969). Chim.Acta 24,159 (1969). (1024) Prusik., Z.,. J . Chromatow. 32. 191 (1065) Riley, R. F., Coleman, M. K., ‘ ( 1968). J . Lab. Clin. Med. 72,714 (1968). (1025) Puech, A,, Masse, J., Jacob, M., (1066) Rinderknecht, H., Silverman, P., Trav. Soc. Pharm. Mmtpellier 26, 275 Mikrochim. Acta 1968,819. (1966);C A 67,94030t. (1067) Ringbor U.,Egyhazi, E., Dane(1026)Puski, G., Melnychyn, P., Cereal holt, B., Lamfert, B., Nature 220,1037 Chem. 45,192(1968). (1968). (1027) Quast, R., Vesterberg, O., Acta (1068) Ripan, R., Pascu, N., Rev. Roum. Chem. Scand. 22,1499 (1968). Chim. 12,263(1967). (1028) Quattrin, N., Ventruto, V., Helv. (1069)Zbid., 13,885 (1968). Med. Acta 33,388 (1967). (1029) Quinlivan, W. L. G., Arch. B i e (1070) Rittner, Ch., 2. Zmmunitaetsforsch., chem. Biophys. 127,680 (1968). Allergie Klin.Zmmunol. 131,422 (1966). ,
I
\ - - - - I
> - -
- - I
\
ANALYTICAL CHEMISTRY, VOLE 42, NO. 5, APRIL 1970
53R
(1071) Ritzmann, S. E., Cobb, E. K., Levin. W. C., Tex. Rep. Biol. Med. 25, 273 (1967). (1072) Rodkey, L. S., Freeman, M. J., J . Zmmunol. 102, 713 (1969). (1073) Rogge, D., Segal, L., Glupe, I., Schulz, L., Biol. Zentralbl. 87, 343 (1968): (1074) Rohde,, W.., 2. Med. Labortech. 9, 163'(1968). (in7.5'1 _ ,Rohde. W.. Doerner. G.. Acta Endocrinol. tCopenhagen)60; 101 11969). (1076) Roitrub, B. A., Zlatin, R. S., Fiziol. Zh. (Kiev) 13, 124 (1967). (1077) Rolla, G., Jonsen, J., Caries Res. 2, 306 (1968). (1078) Romel, W. C., LaMancusa, S. J., DuFrene, J. K., Clan. Chem. 14, 47 (1968). (1079) Rosalki, S. B., Montgomery, A., Clin. Chim. Acta 16, 440 (1967). (1080) Rosca, I., Apostol, S., Bul. Inst. Politeh. Iasi 12, 157 (1966); CA 69, 62059j. (1081) Rose, F. L., Drotman, R., Weaver, W. G., Comp. Biochem. Physiol. 29, 847 (1969). (1082) Rose, J. E., Hwang, J. C., J . Parasitol. 53, 1061 (1967). (1083) Rosner, W., Deakins, S. M., J . Clin. Invest. 47, 2109 (1968). (1084) Rosnowska, M., Zacharjasiewicz, I., Grzybowski, E., Pol. Tyg. Lek. 24, 126 (1969). (1085) Rosselin, G., Rev. Med. Liege 23 (Suppl. l),17 (1968). (1086) Roszman, T. L., Mallmann, V. H., Mallmann, W. L., O'Reilly, D., Amer. Rev. Resp. Dis. 97, 103 (1968). (1037) Rothen, A., RIathot, C., Zmmunochemistry 6,241 (1969). (1038) Rothschild, H., Itakawa, H., Suskind, s. R., J . Bucteriol. 94, 1800 (1967). (1089) Rothwell, K., Whitehead, J. K., Chem. Ind. (London) 1967, 784. (1090) Rottem, S., Razin, S., J. Bucteriol. 94, 359 (1967). (1091) Rousselet, F., Probl. Actuels Biochim. Appl. 1967, 261. (1092) Rowe, M. J., 111,Agranoff, B. W., Tourtellotte, W. W., Neurology 16, 714 ( 1966). (1093) Rowland, L. P., Dunne, P. B., Penn, A. S., Maher, E., Arch. Neurol. (Chicago) 18, 141 (1968). (1094) Rowlands, D. T., Jr., Dudley, bl. A., J . Zmmunol. 100, 736 (1968). (1095) Roy, D. N., Rao, B. S. N., Curr. Sci. 37, 395 (1968). (1096) Royce, P. C., Amer. J. Physiol. 215, 1429 (1968). (1097) Rozenszajn, L., Epstein, Y., Shoham, D., Arber, I., J. Lab. Clin. Med. 72,786 (1968). (1098) Ruddle, F. H., Roderick, T. H., Ann. N . Y . Acad. Sci. 151,531 (1968). (1099) Ruebner, H., Albers, P., J . Chromatogr. 27, 510 (1967). (1100) Ruiz-Reyes, G., Ramirez-Zorrilla, 31.de J., Amer. J . Clin. Pathol. 50, 677 (1968). (1101) Ruoslahti, E., Seppala, I. J. T., Simons, K., Seppala, &I., Nature 220, 480 (1968). (1102) Russell, F. E., Mender, C. B., Buess, F. W., Science 159, 90 (1968). (1103) Russi, M., Rita, G., Cirri, G., Bocci, V., Boll. SOC.Ztal. Biol. Sper. 43, 593 11967). (1104) 'Ryabchikov, D. I., Korchemnaya, E. K., Naumova, V. I., Zh. Anal. Khim. 23,741 (1968). (1105) Sachtleben, P., Schlaudecker, J., Schweisfurth, R., 2. A'aturforsch., B 23, 1236 (1968). (1106) Safonov, V. I., Safonova, M. P., Fiziol. Rust. 16, 161 (1969). (1107) Safonov, V. I., Safonova, M. P., Karbut, N. A., Biol. Plant. 11, 183 (1969). '
~
j _ _ _
54R
(1108) Saeone. I.. Arrotta. U.. Ann. Ostet. ' Ginkcol."89, il8 (1967). I
,
(1109) Salach, J. I., Turini, P.!Hauber, J., Seng, R., Tisdale, H. D., Singer, T. P., Biochem. Biophvs. _ - Res. Commun. 33, 936 (1968). .110) Salem, H. M., Nakkadi, A. M., J. Chem. U.A.R. 10, 119 (1967). .111) Salibian, A,, C. R. Soc. Biol. 161, 717 (1967). 112) Salomon, H., Tatarski, I., Dance, N., Huehns, E. R., Shooter, E. M., Proc. Conar. Asian Puc. SOC.Hematol. 1964, 178 ?Pub. 1965); CA 67, 41572q. 113) Samsonova, V. S., Nikitina, V. D., Kholchev, N. V., Volkova, Z. M., Zh. Mikrobiol., Epidemiol. Immunobiol. 44, 93 (1967): 114) Sandbere. K., Acta Aar. Scand. 17. 127' (1967). 115) 'Sandberg-Wollheim, hl., Zettervall, O., Muller, R., Clin. Exp. Zmmunol. 4,401 (1969). (1116) Sandhoff, K., Hoppe-Seyler's 2. Physiol. Chem. 349, 1095 (1968). (1117) Sandhu. R. S.. Hokin. M .R.. J . Chromatoor. 35. 136'(1968'1. ' (1118) Sanione, ' G., carrel], R. w., Lehmann, H., Nature 214, 877 (1967). (1119) Santamaria, P., Chordi, A,, Ortiz de Lanzaduri., E.., Pathol. Eur. 2. 427 ( 1967). (1120) Sardesai, S. K., Rao, S. S., Indian J . Biochem. 5,46 (1968). (1121) Sargent, J. R., Vadlamudi, B. P., Anal. Biochem. 25,583 (1968). (1122) Sasivimolkul. V.. Kallee. E., Grimminger, H., Acta Zsotdp. 8, 41'(1968). (1123) Sato, T., Uchiyama, S., Hayama, T., Koyama, K., Tohoku J . Ezp. Med. 87 (1965); CA 67, 62453s. (1124) Sawicki, E., Guyer, >I Engel, ., C. R., J . Chromatogr. 30, 522 (1967). (112.5) Sawicki, E., Guyer, M., Schumacher, R., Elbert, W. C., Engel, C. R., Mikrochim. Acta 1968, 1025. (1126) Saxena, I. D., Nagchaudhuri, J., Indian J . Med. Res. 56, 416 (1968). (1127) Sayanova, V. V., La Van Ty, Biol. Nauka 1968, 96. (1128) Schapira, F., Dreyfus, J. C., Allard, D., Gregori-Lauer, C., Clin. Chim. Acta 20, 439 (1968). (1129) Schaup, H. W., Best, J. B., Goodman, A. B., Kature 221, 864 (1969). (1130) Scheiffarth, F., Goetz, H., Griehl, H., 2. Klin. Chem. Klin. Biochem. 6, 89 I ,
I
\
- I
146) Schoenmakers, J . G. G., Bloemendal, H., Biochem. Biophys. Res. Commun. 31, 257 (1968). 146) Schoenmakers, J. G. G., Bloemendal, H., Nature 220, 790 (1968). 147) Schuermann, P., J . Chromatogr. 39, 507 11969). (1148) 'Schultz, J., Felberg, N., John, S., Biochem. Biophys. Res. Commun. 28, 543 (1967). (1149) Schumacher, G. F. B., Wied, G. L., Fert. Steril., Proc. World Congr., bth, Stockholm 1,966. 713 (Pub. 1967): ,! CA 69, 1 6 7 2 1 ~ . (1150) Schurch, D., Godet, J., Nigon, V., Blanchet, J. P., Experientia 24, 548 (1968). (1151) Schweiger, A., Hannig, K., HoppeSeyler's 2. Physiol. Chem. 348, 1005 (1967). (1152) Schwenke, K. D., Kujawa, &I., 2. Krebsforsch. 70, 64 (1967). (1153) Schwenke, K. D., Plass, R., ibid., 69, 205 (1967). (1154) Schwick, H. G., Haupt, H., Heide, K.. Klin. Wochenschr.46. 981 11968). (1155) Schyns, R., J . Chromatogr. 36,'549 ~~
(1F)AFO. \ - - - - I
(1156) Scolari, L., Picard, J. J Heremans, J. F., Clin. Chim. Acta 19, 25 (1968). (1157) ScoDes. R. K.. Biochem. J . 107. 139 (1968). (1158) Scott, J. E., Chem. Znd. (London) 1967, 953. (1159) Secchi, G. C., Petrella, A., Lomanto, B., Gervasini, N., Enzymol. Biol. Clin. 8, 33 (1967). (1160) Seese, P. G., Welsh, B. C., Jeffries, C. D., Zak, B., Weiner, L. Rl., Proc. SOC.Exp. Biol. Med. 128, 617 (1968). (1161) Seidl, S., Holtz, G., Klin. Wochenschr.45, 588 (1967). (1162) Sekhon, A. S.,Colotelo, N., Can. J . Mzcrobiol. 14, 1169 (1968). (1163) Sellinger, 0. Z., Borens, R. N., Bzochim. Biophys. Acta 173, 176 (1969). (1164) Semeonoff, R., Robertson, F. W., Biochem. Genet. 1, 20.5 (1968). (1165) Senegacnik, J., Mikulec, K., Veterinaria (Sarajevo) 17, 339 (1968); C A 70, 112234f. 11166) Seno. T.. Acta X e d . Okawama 22. " ' 51 (1968): C A 71, 111219. (1167) Serlupi-Crescenzi,, G., Paolini, c., Leggio, T., Anal. Baochem. 23, 263 ( 1968). 168) Serlupi-Crescenzi, G., Paolini, C., Leggio, T., Ann. Chim. (Rome) 57, 438 f~1 O68'1 -""~,. (1967). (1131) Scheiffarth, F., Goetz, H., Grottke, 169) Shapiro, A. L., Invest. Ophthalmol. M., Clin. Chim. Acta 20, 455 (1968). 7, 544 (1968). (1132) Schell. H. D.. Ghetie, V., Rev. 170) Shapiro, A. L., Maizel, J . V., Jr., Roum. Biochim. 5. 77 (1968). 133) Schen, R. 'J., Rabinovitz, &'I.,Anal. Biochem. 29, 505 (1969). 171) Shapiro, A. L., Vinuela, E., Goldschmid, A., Tenne, M.,Clin. Chim. hlaizel, J. V., Jr., Biochem. Biophys. Acta 16,445 (1967). Res. Commun. 28. 815 (1967). 134) Schenkein, I., Levy, M., Weis, P., 172) Shatkin, A. J., Sipe, J. D., Loh, P., Anal. Biochem. 25, 387 (1968). J . Virol. 2 , 986 (1968). 1361 Scheurlen. P. G.. Aerztl. Lab. 13. 173) Shaw, D. J., "Electrophoresis," 239'(1967). ' Academic Press, New York, 1969, 144 136) Scheving, L. E., Pauly, J. E., Tsai, Tien-Hu, Amer. J. Physiol. 215, 1096 PP. (1174) Shechter, Y., Landau, J. W., New( 1968). comer. V. D.. J . Invest. Dermatol. 52, (1137) Schmid, K., Polis,, A., Hunziker, 57 (1969). ' K.. Fricke. R.. Yavoshi,. M.,, Biochem. (1175) Sheena, A. H., Fox, F. A., Bayha, J . 104,361'(1967). " M., Stevens, K. A f . , Amer. J . Clzn. (1138) Schmitt. J ., Deut. Tieraerztl. Pathol. 50, 142 (1968). ' Wochenschr. 75. 87 (1968). ~, (1176) Shibata, S., hliyaji, T., Iuchi, I., (1139) Zbid., p 327. Ohba, Y., Yamamoto, K., J . Biochem. (1140) Schmita, R., Bauer-Staeb, G., (Tokyo)63, 193 (1968). Braunitzer, G., 2. Naturforsch., B 23, (1177) Shibata, S., Naruse, T., Nagasawa, 284 (1968). T.. Takuma. T.. hlivakawa, Y., J . (1141) Schneider, G., Schneider, G., J . Zhmunol. 99,'454 1196y). Chromatogr. 37,348 (1968). (1178) Shimomura, ?VI., Aoki, I., Miya(1142) Schneiderbaur, A., Rettenbacher, zaki, >I., Yasumatsu, RI., Hori, M., F., Wien. Med. Wochenschr. 118, 229 Hattori, AI., Ann. Rep. Takeda Res. Lab. (1968). 27, 54 (1968); CA 70, 78292m. (1143) Schneiderman, H., Berger, J., (1179) Shipolini, R. A., Dimitrov, G. D., Krieg, A., Sature 218, 1159 (1968). Ivanov, Ch. P., C. R . Acad. Bulg. Sci. (1144) Schneiderman, L. J., Junga, I. G., 21, 573 (1968). Biochemistry 7, 2281 (1968).
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
(1180) Shome, B., Parlow, A. F., Ramirez, V. D., Elrick, H., Pierce, J . G., Arch. Biochem. Biophys. 126,444 (1968). (1181) Shore, B., Shore, V., Biochemistry 7, 2773 (1968). (1182) Short, W. A,, Woods, ,J. W., Baker, B. R., Ala. J . Med. Scz. 4, 279 (1967). (1183) Shubin, P. N., Genetika 5, 37 (1969). (1184) Shulman, S., Bronson, P., Fert. Steril. 19, 649 (1968). (1185) Shulman, S., Bronson, P., J . Reprod. Fert. 18,481 (1969). (1186) Shurupova, E. V., Uch. Zap. Kazan. Vet. Inst. 97, 53 (1966); CA 67, 52246n. (1187) Shvedov, V. P., Ivanov, I. A., Radiokhzmiya 8, 373 (1966). (1188) Sick, K., Beale, D., Irvine, D., Lehmann, H., Goodall, P. T., MacDougall, S., Biochim. Biophys. Acta 140, 231 (1967). (1189) Sidorova, E. V., Biokhimiya 33, 1197 (1968). (1190) Siest, G., Ferchiou, A., Imbs, M. A.. Pharm. Biol. 5, 193 (1967). (1191) Sikes, D., Hayes, F. A,, Prestwood, A. K., Amer. J . Vet. Res. 30, 143 (1969). (1192) Silano, V., De Cillis, U., De Ponte, R., D'Errico, A. M., Pocchiari, F., Ric. Sci. 38,745 (1968). (1193) Silano, V., D'Errico, A. M., Micco, C., Muntoni, F., Pocchiari, F., J . Ass. Off. Anal. Chem. 51, 1213 (1968). (1194) Silbirzahn, P., Richard, G. B., Creyssel, R., Bull. SOC.Chim. Biol. 49, 495 (1967). (1195) Simmonds, H. A., Clin. Chim. Acta 23, 319 (1969). (1196) Sinell, H. J., Kluge-Wilm, R., Zentr. Veterinaermed., Reihe B 15, 802 (1968). \-"-l,.
(1197) Sirbu, I., Zamfir, I., Rev. Chim. (Bucharest) 19, 149 (1968). (1198) Sirek, 0. V., Sirek, A., Bucalossi, A., Can. J . Physiol. Pharmucol. 46, 417 (1968). (1199) Sizonenko, P. C., Job, J . C., hfichel, R., Rev. Fr. Etud. Clin. Biol. 13, 407 (1968). (1200) Slater, G. G., Anal. Biochem. 24, 215 (1968). (1201) Smillie, L. B., Hartley, B. S., Biochem. J . 105, 1125 (1967). (1202) Smirous, F., Celeda, J., Collect. Czech. Chem. Commun. 33, 1017 (1968). (1203) Ibid., 34, 1155 (1969). (1204) Smith, A. C., Comp. Biochem. Physiol. 27, 543 (1968). (1205) Smith, A. C., Goldstein, R. A., ibid.. 23. 533 (1967). (1206)'Sm'ith, E: W., Evatt, B. L., J . Lab. Clin. Med. 69, 1018 (1967). . . (1207) Smith, I., Chemotaxm Serotason., Proc. Symp. 2, 29 (1967) (Pub. 1968); Academic Press, London. England. (1208) Smith, I., Ed., "ChroGatographic and Electrophoretic Techniques, Vol. 2: Zone Electrophoresis," Interscience, N.Y., 1968,524 pp. (1209) Smith, I., Lightstone, P. J., Perry, J. D., Clin. Chim. Acta 19, 499 (1968). (1210) Smith, J. H., Poweil, D.,' Phytopathology 58, 972 (1968). (1211) Smith, J. K., Moss, D. W., Anal. Biochem. 25, 500 (1968). (1212) Smith, J. K., Moss, D. W., Biochem. J . 109, 44P (1968). (1213) Sodeman, W. A., Jr., Amer. J . Trop. Med. Hyg. 16, 591 (1967). (1214) Sokolova, Z. A., Grigor'yan, D. G., Dokl. Akad. iYauk SSSR 177,977 (1967). (1215) Somkina, N. V., Krichevskaya, A. A., Zh. Evol. Biokhim. Fiziol. 4, 489 (1968).
(1216) Sourek, J., Zeman, K., J . Hyg. Epidemiol., Microbiol., Zmmunol. (Prague) 11, 109 (1967). (1217) Sparkes, R. S., Baluda, M. C., Townsend, D. E., J . Lab. Clin. Med. 73, 531 Il969). -___ _
_
_
\
(1218) Spe& P. G., Roizman, B., Anal. Biochem. 26, 197 (1968). (1219) Spear,P. G.; Roizman, B., Virology 36,545 (1968). (1220) Spelsberg, T . C., Sarkissian, I. V., Phytochemistry 7, 2083 (1968). (1221) Spiegel-Adolf, M., Bsird, H. W., McCafferty, M., Conjin. Neurol. 26, 399 (1966). (1222) Stagg, B. H., Whyley, G. A., Clin. Chim. Acta 19. 139 (1968). (1223) Zbid., 22, 521 (1968): (1224) Stahnke, H. L., Johnson, B. D., Anim. Toxins, Collect. Pap. Znt. Symp., f s t , Atlantic City 1966, 35 (Pub. 1967). (1225) Starosel'tseva, L. K., Belokrinitskii, D. V., Pediatriya (Moscow) 1967, 79. (1226) Starzynska, R., Pol. Arch. Med. Wewn. 39,793 (1967). (1227) Steenkamp, D. J., Joubert, F. J., J . S. A f r . Chem. Inst. 20, 81 (1967). (1228) Steere, R. L., Davis, R. E., 'Anal. Biochem. 22, 511 (1968). (1229) Stefanovich, V., J . Chromatogr. 31, 466 (1967). (1230) Stefanovitch, V., Gore, I., ibid., n 473. (1231) Stegemann, H., Fresenius' Z . Anal. Chem. 243,573 (1968). (1232) Stegemann, H., Hoppe-Seyler's Z . Physiol. Chem. 348, 951 (1967). (1233) Steiner, D. F., Hallund, O., Rubenstein, A., Cho, S., Bayliss, C., Diabetes 17, 725 (1968). (1234) Steiner, J. C., Keller, P. J., Arch. Oral Biol. 13, 1213 (1968). (1235) Steitz, J. A., J . Mol. Biol. 33, 923 (1968). (1236) Stepanova, L. K., Zh. Mikrobiol., Epidemiol. Immunobiol. 44, 26 (1967). (1237) Stern, S., Metz, C. B., Exp. Cell Res. 48, 224 (1967). (1238) Stoddart, R. W., Northcote, D. H., Biochem. J . 105, 61 (1967). (1239) Stoeffler, G., Mol. Gen. Genet. 100, 374 (1967). (1240) Stover, B. J., Bruenger, F. W., Stevens, W.. Radiat. Res. 33, 381 (1968). (1241) Stratil,' A., Comp. Biochem. Physiol. 22,227 (1967). (1242) Strekalov, A. A., Genetika 1967, 39. (1243) Strickland, R. D., ANAL. CHEM. 40, 74R (1968). (1244) Strumm-Tegethoff, B., J . Chromatoar. 30. 284 (1967). (1245) -Stuchlik, M., Csiba, I., Krasnec, L., Cesk. Farm. 16, 187 (1967). (1246) Stuchlik, M., Joshi, R. K., Krasnec, L., J . Chromatogr. 40, 440 (1969). 247) Stuchlik, M., Krasnec, L., ibid., 36, 522 (1968). 248) Stupnitskii, R. RI., Il'chenko, M. D., Fiziol. Biokhim. Sel'skokhoz. Zhivotn. 1967, No. 5, 62; CA 69, 17292~. 249) Subba Rao, N. S., Chopra, C. L., J . Sci. Ind. Res. 26. 329 (1967). (1250) Sukhomlinov,' B. F:, Pahenko, L. N., Ukr. Biokhim. Zh. 40, 597 (1968). (1251). Sulitzeanu, D., Slavin, M., Yecheskeli, E., Anal. Biochem. 21, 57 (1967). (1252)'Suikowski, E., Laskowski, M., Sr., zbid., 20, 94 (1967). (1253) Sullivan, B., Riggs, A., Comp. Biochem. Phusiol. 23, 449 11967). (1254) Suyama, H., Sawada,' H., Kojima, M., Nippon Hoigaku Zasshi 19, 108 (1965); CA 67, 795137'. (1255) Svendsen,. P. J.; Anal. Biochem. 25, 236 (1968). 1-
~
(1256) Svensson, H., Svensk Kern. Yidskr. 79. 654 (1967). (1257) Swart, L. S., Joubert,, F. J., Text. Res. J . 38,36 (1968). (1258) Szilvassy, B., Bergfeld, J., Magy. Allatorv. Lupja 22, 455 (1967); C'A 68, 75439n. (1259) Szylit, M., Bull. SOC.Chim. Biol. 49, 1884 (1967). (1260) Szylit, M., C. R. Acad. Sci., Paris, Ser. C 267, 1173 (1968). (1261) Tabata. T.. Nishimura. R.. Odai, - > -M.,' Sakurai,'T., Iwama, N., Wakayama Med. ReD. 12, 73 (1967); C,4 68, 85713m. (1262) Takahashi, A., Yachi, A., Anzai, T., Wada, T., Clin. Chim. Acta 17, 5 (1967) (1263) Takahashi, M., Ogino, T., Baba, K., Biochim. Biophys. Acta 17'4, 183 (1969). (1264) Takahashi, Y., Aoyama, I., Ito, F., Yamamura, Y., Clin. Chim. Acta 18, 21 (1967). (1265) Taketa, F., Smits, hI. R., Lessard, J. L., Biochem. Biophys. Res. Commun. 30, 219 (1968). (1266) Tanasescu, D., Moldoveanu, N., Stud. Cercet. Biochim. 11, 313 (1968). (1267) Tangheroni, W., Zorcolo, G., Gallo, E., Lehmann, H., LVature 218, 470 (1968). (1268) Tardy, J., Gombos, G., Vincendon, G., Mandel, P., C. R. Acad. Sci., Paris, Ser D 267, 669 (1968). (1269) Tate, N . E., Anal. Biochem. 23, 141 (1968). (1270)'Taves, D. R., A'aturc 220, 582 (1968). (1271) Tentori, L., Vivaldi, G., Carta, S., Sorcini, ?*I.,G. Biochim. 16, 83 (1967). (1272) Terashima, T., Shokuhin Eiseigaku Zasshi 8, 46 (1967); CA 67, 20648d. (1273) Testa, M., Fiori, C., Bocci, N., Calabro, S., Exp. Eye Xes. 7, 276 (1968). (1274) Tewari, S. N., Xikrochim. Acta 1968, 390. (1275) Thierfelder, St., Pichlmayr, R., Klin. W-ochenschr.45, 528 (1967). (1276) Thompson, J. W., Forensic Sci. SOC.J. 7, 199 (1967). Anal. (1277) Thompson, R. R., J . Ass. Off. Chem. 51, 746 (1968). (1278) Thorun, W., Mehl, E., Biochim. Biophys. Acta 160, 132 (1968). (1279) Thurston, R. Ti., J . Fish Res. Board Can. 24, 2169 (1967). (1280) Timpl, R., Pecker, I., Z . Immunitaetsforsch., Allergie Klin. Immunol. 132, 322 (1967). (1281) Tishler, P. V., Epstein, C. J., Anal. Biochem. 22,89 (1968). (1282) Tittobello, A., Fegato (Rome) 13, 43 11967). (1283)-TitCobello, A,, Quad. Sclavo Diagn., Clin. Lab. 3, 377 (1967). (1284) Tobe, S.S., Loughton, B. G., Can. J . Zool. 45. 975 (1967). (1285) Tokita, K., Schmid, K., Clin. Chim. Acta 17, 39 (1967). (1286) Toom, P. RI., Squire, P. G., Tu, A. T., Biochim. Biophys. Acta 181, 339 (1969). (1287) Tormo, J., Chordi, A., RodriguezBurgos, A., Diaz, R., Vet. Rec. 81, 392 (1967). (1288) Torresani, J., Roques, M., Lissitzky, S., Bull. SOC.Chim. Biol. 50, 1993 (1968). (1289) Tourtellotte, W. W., Parker, J. A., Nature 214, 683 (1967). (1290) Traeger, J., Nanuel, Y., Revillard, J. P., Fries, D., J . Urol. Nephrol. 73, 327 (1967). (1291) Travnicek, T., Sulc, K., Physiol. Bohemoslov. 16, 330 (1967). - 7
~
\ - - - . I .
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
55 R
(1292) Truman, D. E. S.,Clayton, R. M., CamDbell, J. C.. Biochem. J . 108, 9P (1968). ’ (1293) Truman, D. E. S., Clayton, R. M., Campbell, J. C., Experentia 23, 502 (1967). (1294) Truswell, A. S., Hansen, J. D. L., Wittman, W., Proc. Int. Congr. hTutr., 7th 5 , 390 (1966) (Pub. 1967); CA 70, 18001f . (1295) Tsugawa, N., Yamaguchi, Y., Abe, K., Kagaku Keisatsu Kenkyusho Hokoku 20, 150 (1967); CA 69, 65545~. (1296) Tsvetanova, E., Dokl. Bolg. Akad. h’auk 21. 941 (1968). (1297) Tu,’A. T.; Ganthavorn, S., Toxicon 5, 207 (1968). (1298) Turczynowski, R., Kisielewicz, J., Jablonowski, Z., Gmzlica 36,889 (1968); CA 70, 1044429. (1299) Turek, F., Ebermann, R., Bodenseher, H., Steinacker, G., Wien. Tieraerztl. Monatsschr. 54, 157 (1967). (1300) Turner, B. L., Pure Appl. Chem. 14, 189 (1967). (1301) Turner, G. A., Taylor, D. M., Radiat. Res. 36, 22 (1968). (1302) Turowska, B., Trela, F., Przegl. Lek. 22, 597 (1966). (1303) Uriel. J.. Ann. h‘utr. Aliment. 21, ‘ B67 (1967). ’ (1304) Uriel, J., Berges, J., Nature 218, 578 (1968). (1305) Ushakova, M. T., Alekseeva, Zh. P., Lab. Delo 1967, 502. (1306) Uszynski, L., Thromb. Diath. Haemorrh. 18, 325 (1967). (1307) Uthe, J. F., Tsuyuki, H., J . Fish. Res. Board Can. 24, 1269 (1967). (1308) Vaintraub, I. A., M o l . Biol. 1, 807 (1967). (1309) Valmet, E., Sei. Tools 15, 8 (1968). (1310) Ibid., 16, 8 (1969). (1311) Vamos-Vigyazo, L., “Paper Electrophoresis (Papirelektroforezis),” Muszaki Kiado, Budapest, Hung., 1967, 288 PP.
(1312) Tan Baelen, H., Heynes, W., De hloor, P., Ann. Endocrinol. (Paris) 30, 199 (1969). (1313) Vanfraechem, J., Poortmans, J. R., Rev. Fr. Etud. Clin.Biol. 13, 383 (1968). (1314) Van Hung, K., Acta Biol. Med. Ger. 21,249 (1968). (1315) Van Hung, N., Geserick, G., ibid., p 679. (1316) Van Ooij, W. J., Houtman, J. P. W., Fresenius’ Z . Anal. Chem. 236, 407 (1968). (1317) Van Orden, D. E., Immunochemistry 5, 497 (1968). (1318) Van Oss, C. J., Progr. Separ. Purif. 1, 187 (1968). (1319) Van Tets, P., Cowan, I. McT., Can. J . Zool. 45,579 (1967). (1320) Vanzetti, G., Palatucci, F., Cosci, G., Clin. Chim. Acta 20, 215 (1968). (1321) Vasil’eva, E. D., Lab. Delo 1968, 236. (1322) Vaughan, J. G., Chemotaxon. Serotaxon., Proc. Symp. 2 , 103 (1967) (Pub. 1968); Academic Press, London, England. (1323) Vaughan, J. G., Denford, K. E., J . Exp. Bot. 19, 724 (1968). (1324) Vaughan, J. G., Waite, A., ibid., 18, 269 (1967). (1325) Vecerek, B., Stepan, J., Hynie, I., Kacl, K., Collect. Czech. Chem. Commun. 33, 141 (1968). (1326) Vella, F., Amer. J . Clin. Pathol. 49, 440 (1968). (1327) Vella, F., Clin. Biochem. 1, 118 (1967). 56R
(1328) Vella F., Lorkin, P. A., Carrell, R. W., Lehmann, H., Can. J. Biochem. 45, 1385 (1967). (1329) Vendrely, R., Pathol. Biol. 15, 71 (1967). (1330) Vendrely, R., Aleksandrov, K., De Sousa Lechner, M. C., Coirault, Y., Nature 218, 293 (1968). (1331) Vergani, C., Stabilini, R., Agostoni, A., J . Chromato r. 28, 135 (1967). (1332) Vergani, Stabilini, R., Manetti, M., Minerva Med. 58, 3775 (1967). (1333) Vernon, S. K., Rubin, B. A., Appl. Microbiol. 17, 603 (1969). (1334) Vesely, F., Petru, F., Mader, F., Chem. Zvesti 20, 792 (1966). (1335) Vesterberg, O., Biochim. Biophys. Acta 168,218 (1968). (1336) Vesterberg, O., Svensk Kem. Tidskr. 80,213 (1968). (1337) Vestermark, A., Naturwissenschaften 54,470 (1967). (1338) Vestermark, A., Wiedemann, B., h’ucl. Instrum. Methods 56, 151 (1967). (1339) Vigneron, C., Pelt, J. M., Pharm. Biol. 5, 183 (1967). (1340) Villanueva, E., Castilla, J., Gisbert-Calabuig. J. A., Ann. Med. Leg. 47, 878 (1967). (1341) Villarejo, M., Hua, S., Evans, E. A., Jr., J . Virol. 1, 928 (1967). (1342) Vinson, S.B., Lewis, W. J., Comp. Biochem. Physiol. 28, 215 (1969). (1343) T’irtanen, R., Kivalo, P., Suom. Kemistilehti B 41, 184 (1968). (1344) Ibid., 42, 182 (1969). (1345) Vollosovich, A. G., Safonov, V. I., Safonova, M . P., Tr. Leningrad. Khim.Farm. Inst. 21, 192 (1967); CA 69, 80254~. (1346) Voronkova, V. V., Tuturina, N. N., Khaskin, B. A., Mel’nikov, N. N., Zh. Obshch. Khim. 37, 1017 (1967). (1347) Vulpis, G., Biochem. Biol. Sper. 7, 137 (1968). (1348) Wachter, H., Aerztl. Lab. 13, 211
2,
(1967). \ - - - . ,.
(1349) Wadstrom, T., Biochim. Biophys. Acta 147, 441 (1967). 11350) Ibid.. 168, 228 (1968). (1351) Wager, O., Rasanen, J. A., Ann. Med. Exp. Biol. Fenn. 45, 170 (1967). (1352) Wagner, E. F., Seifen-Oele-FetteWachse 94,27 (1968); CA 69,48909e. (1353) Wagner, M., Allergie Asthma 13,61 (1967). (1354) Wagner, R. R., Schnaitman, T. A., Snyder, R. M., J . Virol. 4, 395 (1969). (1355) Wagner, W., 2. Lebensm.-Unters.Forsch. 136, 175 (1968). (1356) Walravens, P., Laterre, E. C., Heremans, J. F., Clin. Chim. Acta 19, 107 (1968). (1357) Wang, Ching-Muh, Patton, R. L., J . Insect Physiol. 14, 1069 (1968). (1358) Ibid., 15, 543 (1969). (1359) Warburton, F. G., Allan, E., Laing, G. S., Waddecar, J., Nature 215, 287 (1967). (1360) Warecka, K., Bauer, H., J . Neurochem. 14, 783 (1967). (1361) Washburn, K. W., Marks, H. L., Lowe, R. H., Poultry Sci. 47, 1641 f 1968). (1362) Watanabe, H., Appl. Entomol. Zool. 3, 74 (1968). (1363) Watanabe, H., J . Invertebr. Pathol. 9,570 (1967). (1364) Watson. D. H.. J . Gen. Virol. 4. 151‘(1969). ’ (1365) Weeke, B., Scand. J . Clin. Lab. Invest. 21, 351 (1968). (1366) Ibid., 22, 107 (1968). (1367) Weimer, H. E., Humelbaugh, C., Roberts, D. AT., Amer. J. Physiol. 213, 418 (1967). ~
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5 , APRIL 1970
(1368) Weimer. H. E.. Tonuchi. R.. C0m.n. ’ Biochem. Phisiol. 28, 887 (1969).’ (1369) Weinberg, R. A., Loening, U., Willems, M., Penman, S., Proc. Nut. Acad. Sci. U.S. 58, 1088 (1967). (1370) Weiner. L. M., Welsh, B.. Zak. B.. ‘ J . Chromatogr. 27, 512 (1967).’ ’ ’ (1371) Weiss, J. B., Steven, F. S., Nature 217.661 11968). (1372) Wei‘tkamp, L. R., et al., Acta Genet. Statist. Med. 17, 399 (1967). (1373) Welfle, H., Bielka, H., Z . Naturforsch. B 23, 690 (1968). (1374) Weller, D. L., Heaney, A., Sjogren, R. E.. Biochim. Biovhvs. . ” Acta 168. 576
(igssj.
(1375) Wellmann, E., Loeffler, G., Trautschold, I., Fresenius’ 2.Anal. Chem. 243, 568 (1968). (1376) Wenn, R. V., Williams, J., Biochem. J . 108, 69 (1968). (1377) Wenzel, K. W., Aurich, H., Rotesch, W., Acta Biol. Med. Ger. 18, 573 (1967). (1378) Wenzel, M., Med. Lab. 20, 173 (1967). (1379) Werner, M., Odenthal, D., J . Lab. Clin. Med. 70, 302 (1967). (1380) Wessler, E., Anal. Biochem. 26,439 (\1- 968) ---,.
(1381) Whitaker, D. R., Can. J . Biochem. 45, 994 (1967). (1382) Whitney, P. J., Vaughan, J. G., Heale, J. B., J . Exp. Bot. 19,415 (1968). (1383) Whitt, G. S., SABCO (SOC.Areas Biol. Chem. Overlap) J . (Osaka) 3, 1 (1967). (1384) Wieme, R. J., Demeulenaere, L., Nature 214, 1042 (1967). (1385) Wilkins, N. P., J . Cons., Cons. Perma Int. Explor. Mer 31, 77 (1967); CA 67, 705328. (13861 Wilkins. N. P.. J . Fish. Res. Board Can. 25, 2651 (1968). (1387) Wilson, E. M., MacRae, H. F., Belanger, J. M., J . Dairy Sci. 50, 1612 (1967). (1388) Winter, E., Fresenius’ Z . Anal. Chem. 233, 104 (1968). (1389) Wolf, R. O., Taylor, L. L., Amer. J . Clin. Pathol. 49, 871 (1968). (1390) Wolf, R. O., Taylor, L. L., Nature 213, 1128 (1967). (1391) Wood, E. J., Salisbury, C. ll., Formosa, N., Bannister, W. H., Comp. Biochem. Physiol. 26, 345 (1968). (1392) Wraxall, B. G. D., Culliford, B. J., Forensic Sci. SOC.,J . 8 , 81 (1968). (1393) Wrigley, C. W., J . Chromatogr. 36, 362 (1968). (1394) Wrigley, C. W., Sci. Took 15, 17 \ -
(1968’1. --, \ - -
(1395) Wuelker, W., Maier, W., Bertau, P., 2. Naturforsch. B 24, 110 (1969). (1396) Yakovleva, V. I., Usp. Biol. Khim. 9,55 (1968). (1397) Yamada, T., Jones, A. E., Endocrinology 82, 47 (1968). (1398) Yanai, R., Nagasawa, H., Kuretani, K., Endocrinol. Jap. 15,365 (1968). (1399) Yong, J. AI., J . Clin. Pathol. 20, 647 (1967). (1400) Young, D. S., Clin. Chem. 14, 418 (1968). (1401) Yuldashev, P. Kh., Osmolovskaya, N. K., Kuchenkova, M. A., Dzhanvaeva, N., Khim. Prir. Soedin. 4, 64 (1968); CA 69, 16249~. (1402) Yurkov, Yu. A., Tamm, L. Ya., Pediatriya (Moscow) 1967, 50. (1403) Zacharia, T. P., Pollard, M., J. Nut. Cancer Inst. 42, 35 (1969). (1404) Zahler, W. L., Saito, A., Fleischer, S., Biochem. Biophys. Res. Commun. 32, 512 (19681. (1405) ‘Zaidman, J., Clin. Chim. Acta 23, 67 (1969).
(1406) Zail, S. S.,Joubert, S. hl., Brif. J. Haematoi. 14, 57 (1968). 11407) Zak. B.. Welsh. B. A., Weiner, ‘ L. $I., J.’Chromafogr.34, 275 (1968). (1408) Zaki, 0. A., Khogali, A., Rabie, F., Abdel-Wahab, 11. G., Hassan, Y. hf., J . Trop. i l l e d . Hyg. 72, 75 (1969). (1409) Zakrzewska, A., filed. Dosw. Mikrobiol. 20,99 (1968). 11410) Zamfir. J.. Szabo, hal., Rev. Roum. Chim. 13,219 (1968). (1411) Zamiri, I., hlason, J., A‘ature 217, 258 (1968).
(1412) Zegers, B. J. M., Poen, H., Stoop, J. W., Ballieux, R. E., C h . Chim. Acta 22, 399 (1968). (1413) Ziegler, hl., Lippman, H. G., Acta Biol. M e d . Ger. 21, 733 (1968). (1414) Zoria, V. G., Klin. Khir. 1967, 43. (1415) Zubaidov, U., Dokl. Akad. Nauk Tadzh. SSR 11, 57 (1968); CA 69, 65101~. (1416) Zubareva, L. A,, Solomonova, 0. N., Kuznetsov, N. I., Kyazimov, S. B., Sel’skokhoz. Biol. 4, 89 (1969).
(1417) Zwaal, R. F. A., Van Deenen, L. L. M., Biochim. Biophys. Acta 163,44 (1968). (1418) Zwaan, J., Anal. Biochem. 21, 155 (1967). (1419) Zwvaan, J., Ezp. Eye Res. 7, 461 (1968). (1420) Zwaan, J., J . Cell. Physiol. 72, 47 (1968). (1421) Zwaan, J., Maki, T. N., LVature 218, 476 (1968).
Fluorometric Analysis Charles E. White, University of Maryland, College Park, Washington, D. C. 2 0 2 0 4
T
is the twelfth of a series of biennial reviews on Fluorometric Analysis and covers the period approximately from December 1967 to Ilecember 1969 (752). During this period several books and reviews have been published dealing with fluorescence analysis. Dr. C. A. Parker of England, a recognized international authority on fluorescence, has titled his book “Photoluminescence of Solutions with Applications to Photochemistry and Analytical Chemistry.” From both a theoretical and practical standpoint this book must be rated as one of t h e best published on the subject of fluorescence and phosphorescence (488). Another book from England, “Luminescence in Chemistry,” by Bowen is one of the Van Sostrand series in Physical Chemistry and is intended for students and research workers in the area of luminescenee (76). This book gives excellent background material but little direct analytical procedures. An enlarged and revised edition of Udenfriend’s book on “Fluorescence Assay in Biology and Xedicine” is a welcome updating of this classic (697). ‘(Fluorescence ilnalysisA Practical Approach” by White and Argauer contains specific laboratory outlines for fluorometric analysis in inorganic, organic, biological and clinical chemistry as well as background material (731). Volume I1 of Passwat’er’s “Guide to Fluorescence Literature” covering 1964-68 is advertised for publication early in 1970 (489a). A book on “Phosphorirnetry” by Zander translated from the German gives a clear exposition on the theoretical background of fluorescence and phosphorescence and discusses mainly the HIS REVIEW
1
Alfred Weissler is author of the Organic
and Biological Section.
Md. 2 0 7 4 2 , and Alfred Weissler,’ Food and Drug Administration,
phosphorescent properties of aromatic hydrocarbons with selected example$ of analysis (754). “Molecular Light” (Luminescence) has been published in Russian (704) and the “Theory of Luminescence’’ originally in Russian has been translated into English (641). Other books on Organic and Biological topics are listed under the appropriate sections below. The papers presented at two international conferences on “Luminescence” have been published in book form; one held at Budapest, 1966, is in two volumes (in English) with a total 2165 pages (664) and the other given at Loyola University, Chicago, 1968 (395). Both cover many aspects of luminescence and the papers appropriate to this review are listed under the subject matter headings. T h e following reviews and general articles are pertinent: a review of fluorometric analysis (609); a review of luminescence analysis given as part of the Symposium on 50 years of Soviet Analytical Chemistry (79); a chapter of Fluorometry and Phosphorimetry in a book on Instrumental Methods of Chemical Analysis (187); a nine page article on the theory of molecular luminescence by Kasha (526); a seven page article on the theory of fluorescence by Yoshide (761). The meaning of sensitivity in trace analysis is discussed (45). The shape of fluorescence and absorption bands have been calculated for several complex organic molecules and are found to agree with experimental resuIts (715). A method calculating the constants for temperature quenching of fluorescence of several organic molecules seems to have promise (694). One of the instrument companies (682) is publishing a series of review articles, on the fluorescence analysis of elements and compounds, which are free on request and will be referred t o under the appropriate head-
ings. Another of the instrument firms frequently has general articles in their bulletin which is also free on request and will be referred to under the various sections below (16). Quantum yields of fluorescent materials are of interest to the analytical chemist and quinine sulfate has always been a problem as a standard. X series of 8 samples of quinine sulfate or bisulfate were obtained from various suppliers and were examined for absorption and excitation spectra and quantum yields. Solid samples had only a 2.270 relative variation in quantum yields but a commercial liquid sample was 2070 low (203). The quantum yield of quinine sulfate has been shown to change with the sulfuric acid concentration; the values in O.lN, lN, and 3.6N acid were found to be 0.50, 0.54, and 0.60, respectively (245). This same article reports that the quantum yield of quinine sulfate varies with the excitation wave length; the yield was 0.48 with 313.1 nm and from 0.54 to 0.6 with 365.5 nm and 435.8 nm. Other workers believe that the quantum yield is independent of wavelength (218). A comparison of fluorescence quantum yield standards indicates that 9,lO-diphenylanthracene is 2.17 i 0.1 times greater than quinine sulfate (651). This suggests that the value of 0.55 for quinine sulfate is too large and should be 0.46, or 16% lower than the accepted value. The quant u m yields of tryptophan, tyrosine, isomeric tyrosines, and fluorophenylalanines have been reported (115). New data on the quantum efficiency and spectra of some important phosphors have been determined with a careful control of all parameters involved (677). The calometric, photometric, and fluorescent lifetime determinations and fluorescent yields have been determined for fluorescein and eleven halogenated derivatives (690). X vi-
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
*
57 R