Emission spectroscopy - Analytical Chemistry (ACS Publications)

in Crossref's Cited-by Linking service. For a more comprehensive list of citations to this article, users are encouraged to perform a search inSci...
0 downloads 0 Views 6MB Size
Spectrosc., 29, 44 (1975). (149)Frame, G. M., Ford, R. E., Scribner, W. G., Cturtnicek, T., Anal. Chem., 46, 534 (1974). (150) Morin. L. G., Am. J. Clin. Path., 61, 114

(1974). (151)Rojkin, M. L., Olguin de Mariani, M. C., Bioquim. Atlant., 1974, 1708. (152)Kuntziger, H., Antonetti, A,. Couette, S., Coureau, C., Amiel, C., Anal. Biochem., 60, 449 (1974). (153)Peres, M., Anals lnst. Vlnho Porto, 1974, 157. (154)Woidich, H., Pfannhauser, W., 2. Lebensm.-Unters.-Forsch., 155, 72 (1974). (155)Olschlager, W., Bestenlehner, L., Landwirsch. Forsch., 27, 62 (1974). (156)Schumacher, E., Umland, F., Fresenius’ 2.Anal. Chem., 270, 285 (1974). (157)Posma, F. D., Balke. J., Herber, R. F. M., Stuik, E. J., Anel. Chem., 47, 834 (1974). (158)Jervis, R. E., Tiefenbach, B., Chattopadhyay, A,. Can. J. Chem., 52, 3008 (1974). (159)Pekarek, R. S . , Hauer, E. C., Wannemacher, R. W. Jr., Beisel. W. R., Anal. Biochem., 59, 283 (1974). (160)Grafflage, B., Buttgereit, G., Kubler, W., Mertens. H. M., 2.Klin. Chem. Klin. Biochem., 12,

287 (1974). (161)Li, R. T., Hercules, D. M., Anal. Chem., 46, 916 (1974). (162)Janik, B., Gancarczyk, T., Acta Pol. Pharm.. 31. 61 119741. (163j Sorensen, N. K., Tidsskr. Planteavl, 78, 156 11974). -(l64)Popova, S. A,, Bezur, L., Pungor, E., Fresenius’ Z.Anal. Chem., 271, 269 (1974). (165)Barnett, M. D., Brozovic, B., Clin. Chim. Acta, 56, 295 (1974). (166)De Silva, M. E. M. S..Analyst (London), 99, 408 (1974). (167)Nabrzyski, M., Anal. Chem., 47, 552

(1975). (168)Simmons, W. J., Loneragan, J. F., Anal. Chem., 47, 566 (1975). (169)Kundu, M. K., Prevot. A,, Anal. Chem., 46, 1591 (1974). (170)Jacob, R. A., Klevay. L. M., Anal. Chem., 47, 741 (1975). (171)Maessen, F. J. M. J., Posma. F. D., Balke, J.. Anal. Chem., 46, 1445 (1974). (172) Mitoseru, O.,Herinean, I., Ind. Aliment (Bucharest), 24, 143 (1973). (173)Bonchev. P. R., Raikova, D., Aleksiev, A. A,, Yankova, D., Clln. Chim. Acta, 57,37 (1974). (174) Food, A., Young, B., Meloan, C., J. Agric. Fd. Chem., 22, 1034 (1974). (175)Huffman, H. L., Jr., Caruss, J. A,, J. Agric. Fd. Chem., 22, 824 (1974). (176)Reith, J. F., Engelsma, J., van Ditmarsch. M., 2. Lebensm.-Unters.-Forsch., 156, 27 1 119741 \ . - . .I.

(177)Mack, D., Msch. Lebensm.-Rundsch., 71, 71 (1975). (178)Cernik, A. A,, Br. J. hd. Med., 31, 239 (19741. (179)Ebert, J., Jungmann. H., Fresenius’ 2. Anal. Chem., 272, 287 (1974). (180)Human, H. G. C., Norval, E., Anal. Chim. Acta, 73, 73 (1974). (181)Forochner, E., Wildanger. W., Beitz, L.. Haase, I., Muller, L.. F/eischwirtschaft, 54, 529 (1974). (181a)Lopez, J. B., Buttery, J. E., Lab. Pract., 23, 557 (1974). (182)Grime, J. K., Vickers, T. J., Anal. Chem., 47, 432 (1975). (183)Peres. M. R., Pereira. J., Anais. lnst. Vinho Porto, 1974, 143. (184)Robbins, W. K., Anal. Chem., 46, 2177 (1974). (185)Suzuki, M., Wacker, W. E. C., Anal. Biochem., 57, 605 (1974). \

-

(186)Rohm, T. J.. Purdy, W. C., Anal. Chim. Acta, 72, 177 (1974). (187) Hall, E. T., J. Assoc. Offic. Anal. Chem., 57. 1068 (19741. il86) Nishi, S.,Horimoto, Y.. Nakano, N., Jpn Anal., 23, 386 (1974). (189) Bok, K., 2. Lebensm.-Unters.-Forsch., 155, 209 (1974). (190)Wiadrowska, B.. Syrowatka, T.. Rocz. Panstw. Zakl. Hig., 25, 701 (1974). (191)Woidich, H., Pfannhauser, W., 2. Lebensm.Unters.-Forsch., 155, 271 (1974). (192)Berode, M., Neumeier, W. U., Mirimanoff. A,. Mitt. Geb. Lebensmittelunters Hvo.. _ - . 85. I

427’(1974). (193)Alvarez, R., Anal. Chim. Acta, 73, 33 119741. , (194)Bradfieid, E. G.. Stickland, J. F., Analyst (London), 100, l(1975). (195)Quin, B. F., Brooks, R. R., Anal. Chim. Acta, 74, 75 (1975). (196)Cardenas, J., Mortenson, L. E., Anal. Biochem. 60, 372 (1974). (197)Weers, C. A., van der Soot, H. A,, Das, H. A,, J. Radioanal. Chem., 20, 529 (1974). (198)Stradling, G. N., Popplewell, D. S., Ham, G. J., lnt. J. Appl. Radiat. /sot., 25, 217 (1974). (199)Tiwari, S. N.. Harpalani, S. P., Triparthi, S.S.,Mikrochim. Acta, 1975 (I),13. (200)Curtis, A. R., J. Assoc. Offic. Anal. Chem., 57, 1366 (1974). (201)Glathe, M., Chem. Mikrobiol. Techno/. Lebensm., 3, 125 (1974). (202)Byrne, A. R., J. Radioanal. Chem., 20, 627 (1974). (203)Ooms, P. C., van Woerkom, R., Das, H. A,, J. Radioanal. Chem., 23, 33 (1974). (204)Hopp, H. U.. frdol Kohle, Erdgas, Petrochem. 6rennts.-Chem., 27, 435 (1974). (205)Kolihova, 0..Sychra, V., Chem. Listy, 68, 1091 (1974). \

-

Emission Spectroscopy Ramon M. Barnes Department ofChemistry, University of Massachusetts, Amherst,

Mass. 0 1002

This 15th review of emission spectroscopy surveys publications appearing during 1974-1975 in the format followed previously ( 3 A ) .Books, chapters, and reviews of a comprehensive nature related to emission spectroscopy and kindred fields are described in the first section, while books and reviews of a more topical sort are included in the individual sections to which they apply. The second section contains spectral descriptions and tables of fundamental spectral properties. The third section examines, albeit briefly, spectroscopic instrumentation and includes optics, light sources, spectrochemical excitation sources, spectrometers, photoelectric and photographic readout systems, electrodes and sampling devices, and vacuum ultraviolet instruments. Standards, samples and sampling, calibrations, and calculations related to emission spectroscopy are considered next. In the fifth section, the properties, characteristics, and some applications of popular spectrochemical excitation sources are examined. Finally, in a sharply curtailed section on spectrochemical analysis, some of the more important and typical applications are considered. Although the literature in emission spectroscopy continues to grow, review space does not. Materials were culled from major journals and abstracting sources but generally not conference proceedings or trade journals. Alternative citation sources are often included in the references for articles not written in English.

BOOKS AND REVIEWS Ranking high among practical books for emission spectroscopists are volumes 3 and 4 in the series of “Annual Re106R

*

ANALYTICAL CHEMISTRY, VOL.

48, NO. 5, APRIL 1976

ports on Analytical Atomic Spectroscopy”. These volumes cover published and conference activities in atomic absorption, emission, and fluorescence during 1973 (69A) and 1974 (70A), and emphasize applications of these spectroscopic techniques in fields of petroleum, chemicals, metals, refractory materials, minerals, agricultural products, environmental systems, and medicine. In the fundamentals and instrumentation portion, light sources, excitation sources and atomizing systems, optics, detector systems, data processing, complete instruments, and supplementary information are surveyed. Generally containing about 1600 citations, the volumes provide a current status report of analytical atomic spectroscopy. The 18th (64A) and 19th (65A) volumes of “Spectrochemical Abstracts” for the periods 1971-72 and 1972-73 were published. Unfortunately, this series covering 40 critical years of emission spectroscopy was terminated with the 19th volume. The published proceedings of the XVIII Colloquium Spectroscopicum Internationale held in Grenoble (13A) contain reports of current research in emission spectroscoPY. Thorne’s new textbook “Spectrophysics” (62A) explores underlying concepts and instrumentation used in emission spectroscopy. Chapters describe light sources and detectors, prism spectrographs, diffraction gratings, and interferometers complementing others on atomic and molecular structure, width and shape of spectral lines, emission and absorption of line radiation, determination of transition probabilities and radiative lifetimes, and elementary plasma spectroscopy. The 12th volume of “Methods of Experimental Physics” edited by Carleton (46C) contains chap-

Ramon M. Barnes, Associate Professor of Chemistry at the University of Massachusetts, Amherst. teaches instrumental analysis and spectroanalytical chemistry He received his 0 . S in Chemistry from Oregon State University in 1962, a M A. from Columbia University in 1963, and a Ph D. in Analytical Chemistry from the University of Illinois in 1966. As a Captain in the U S . Army, he served during 1967-1968 at NASA Lewis Research Center in Cleveland He was a postdoctoral associate at the USAEC Ames Laboratory at Iowa State University from 1968 until he joined the Chemistry Department of the University of Massachusetts at Amherst in the fall of 1969. He is a member of the American Chemical Society, Society for Applied Spectroscopy, Spectroscopy Society of Canada, American Society for Testing and Materials, the Optical Society of America, and the Society of Sigma Xi. His research interests include analytical instrumentation and spectrochemical analysis, and current research projects involve investigation of radiofrequency inductively-coupled plasma discharges, low-temperature oxygen plasmas, and time-resolved spark spectroscopy. He is also editing the ICP information Newsletter, and directing a SAS short course on modern emission spectrosCOPY

ters on photoelectric and photographic detectors. “The Spectroscope” by Tarasov (361C) includes chapters on spectroscopic instruments, dispersing elements, design of optical parts, instruments for emission spectroscopy, and Fabry-Perot interferometers. The Hungarian version of Mika and Torok’s second volume on emission spectrochemical analysis appeared in 1974 (29A) and is scheduled for publication in English during the next year or so. Kethelyi et al. (24A) published a book in Hungarian on the spectroscopic analysis of steel and metals. Richardson and Peterson (44A) edited a multivolume series on “Systematic Materials Analysis” with contributed chapters individually describing analysis techniques and methods. The introduction to the analytical methods chapter by Richardson and Peterson (43A) contains novel flowchart schemes for selecting appropriate analysis methods as well as detailed discussion of the analysis of gas, liquid, and solid samples. The chapter on emission spectroscopy by Barnes ( 4 A ) extends this systematic approach to arc, spark, plasma, and laser methods. In another book “Characterization of Solid Surfaces”, edited by Kane and Larrabee (21A), Seeley and Skogerboe (50A) discussed emission spectrometry in surface analysis. In the first volume of “Handbook of Spectroscopy” edited by Robinson (45A), Skogerboe (53A) considers atomic emission spectroscopy, and Butler et al. (10A) discuss electrical flames. In Hollahan and Bell’s (19A) edited book “Techniques and Applications of Plasma Chemistry”, Bell presents fundamental, engineering, and economic aspects of plasma chemistry. Hollahan describes the application of low-temperature plasmas to chemical and physical analysis such as ,plasma ashing for spectroscopic sample preparation. Mitchner and Kruger’s (32A) text “Partially Ionized Gases” describes collisional and radiative processes a t a microscopic level and calculation of properties and behavior of gases a t a macroscopic level; discusses the basic properties of nonflowing partially ionized gases in the absence of magnetic fields; describes the motion of charged particles in electrical and magnetic fields and MHD equations for electrically conducting gases, and illustrates calculations of transport properties of partially ionized gases and the problems of ionization nonequilibrium. Ausloos ( 2 A ) edited “Interactions Between Ions and Molecules” which consolidates experimental and theoretical data on the kinetics of ion-molecule reactions. History, present prospects and problems, elastic scattering, and collisional deactivation of excited ions are but a few of the numerous reports presented a t a NATO Advanced Study Institute held in Biarritz, France, in 1974. Four new books on plasma diagnostics are “Plasma Scattering of Electromagnetic Radiation” by Sheffield (52A), “Electric Probes in Stationary and Flowing Plasmas: Theo-

ry and Application” by Chung et al. ( I I A ) , “Laser Raman Gas Diagnostics” edited by Lapp and Penney (28A), and “Spectral Line Broadening by Plasmas” by Griem (101B). Sheffield’s book is perhaps the only book to cover in detail the theory and experimental application of radiation scattering as a diagnostic tool in plasma research. The technique allows measurement of electron and ion density and temperature, ionic charge, and magnetic field without significant perturbation of the plasma, and, in principle, any plasma can be probed by suitable choice of radiation source. Griem presents a comprehensive review of theory, experiments, and applications of the Stark broadening of atomic and ionic spectral lines. Burns ( 9 A ) surveyed the highlights during the hundred years of atomic spectroscopy between 1874 and 1974. Barnes and Slavin ( 5 A ) noted the previously overlooked contribution of A. Betim Paes Leme to the development of the total energy technique. Knippenber (26A) surveyed the trends in inorganic analytical methods including atomic emission spectrometry. Green ( 17 A ) discussed the principles, scope, and limitation of atomic spectroscopic techniques. Winefordner et al. (68A) critically compared multielement atomic spectroscopic excitation methods and optical detection devices. They concluded that atomic emission and atomic fluorescence spectroscopy offer distinct advantage over atomic absorption as methods for simultaneous multielement work. Gray (16A) reviewed the theory and instrumentation of optical emission spectroscopy along with applications to analysis of geological materials, used lubricating oils, and pig iron. Snooks (56A) surveyed photographic emulsion and photoelectric detection systems, excitation, sample preparation, and analytical results of emission spectroscopy. Coleman (12A) compared analytical techniques for inorganic pollutants, and Moenke (33A) presented an overview of the methods, apparatus, assumptions, and areas of application in atomic spectroscopic trace analysis. Pilipenko (39A, 38A) reviewed developments of analytical chemistry in 1973 and 1974. Saupe (48A, 49A) surveyed analytical methods for foundries including sampling and photometric procedures, methods for determination of gases, and emission spectrometry. Torok (63A) briefly considered spectrochemical analysis in Hungary, and Benko ( 7 A ) described the most important results of 20 years of research in fundamental problems, apparatus, instruments, and application of emission spectrochemistry in Hungary. Paksy (35A) described Hungarian methods of spectrochemical analysis between 1952 and 1972. Kim and Moon (25A) also reviewed emission spectroscopy. Valuable papers in fields related to emission spectrochemistry can be found in the proceedings of the 11th (59A) and 12th (20A) international conferences on phenomena in ionized gases, the 8th (22A), and 9th ( 6 A ) international conferences on rarefied gas dynamics, the 3rd (61A) international conference on gas discharges, the 2nd (66A) international conference on ion sources, and the annual gaseous electronics conference ( I A , 30A). Numerous monographs and conference reports related to emission spectroscopy from the USSR were published. These include “Techniques and Practice of Spectroscopy” by Zaidel et al. (72A), “Emission Spectral Analysis” by Putnin (41A), “Emission Spectroscopy of Aerosols in Metallurgy” by Gusarskii and Fridman (18A), “Spectrometric Analysis of Rare Earth Oxides” by Karyakin et al. (23A), “Instrumental and Chemical Methods of Analysis” by Stolyarov (60A), “Methods of Study and Determination of Gases in Metals” edited by Petrov et al. (37A), “Preparation and Analysis of Substances of Special Purity” edited by Stepin (58A), “Applied Spectroscopy” edited by Yankovskii (71A), and the “Seventh Ural Conference on Spectroscopy” edited by Skornyakov et al. (51A). Other Russian books include “Spectroscopy, Spectroscopic Analysis, and Technicoeconomics Effect from Their Use” by Borbat et al. ( 8 A ) , “Ions and Excited Atoms in Plasma” by Smirnov (55A), “Physics of Vacuum Ultraviolet Radiation” edited by Fugol (15A), “Methods for the Analysis of High-Temperature Plasmas” by Kuznetsov and Shcheglov (27A), “Optical Characteristics of Hydrogen ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

107R

Table I. Selected References to Atomic Spectra Element, isotope 6,7Li Be B

N

Ne Na A1 Si P

c1 Ar

sc

Ti V Cr Fe cu Rb Y Zr Ag 110-1 13Cd 110,112,114Cd 11'2,114,115Sn 130Te

1271

Xe 134,136,138,140Ba 13i-139La Hf Ta W Re Hg

203,206Tl Pb Pr Eu

DY Ho Th

U 253Es

[onization level I1 I I 11,111, IV IV I I I11 IV IV V I V I1 I I I I1

x-xv I I11 IV I11 IV V V I I-XXVI I1 V I11 I I1 I11 I11 IV I I1 I11 I I1 I1 I I1 I I I I1 I I IV IV V VI I I I I I1 I11 I I11 I11 I11 I, I1 I1 I11 I I, I1

Wavelength range, nm 548.5 526.2-214.7 190.0-1 35.0 550.0-200.0 450.0-25.0 902.2-378.1 117.2-86.4 4000-1200 201.0-175.5 470.0-40.0 200.0-70.0 300.0-90. 190.0-150.0 980.0-20.0 1100.0-50.0 4000-1200 1167.2-317.3 980.0-340.0

Number lineshonization limit, cm-I Isotope shift 27 66 928.0 f 0.2 47 22; 2 091 976 f 20 147 56 80 225; 967 804 f 15 115 140 -700; 65 747.55 f 0.21 126; 524 462.0 f 1.0 -1200; 192 070 f 1

307 233 354 550.0-15.0 30 900.0-230.0 1500 940.0-55.0 93; 199 677.37 f 0.1 250.0-18.0 300; 592 732.4 f 3.0 -100 1000.0-235.0 930.0-63.0 724; 221 735.6 f 2 800.0-200.0 51; 348 973.3 f 1.5 850.0-48.0 61; 526 524 f 5 526 530 f 4 54 575.6 f 0.3 Energy levels and icmization potentials 481 1150.0-480.0 171.5-302 1000 690.0-50.0 296 980 2564.1-844.3 360; 78 658.12 i 0.1 1001.1-438.0 600; 220 105.0 f 0.5 266.1-148.9 467.69-191.73 103 100; 165 540.5 f 1.0 970.0-60.0 277 550 f 20 -140 980.0-1 10.0 230.0-40.0 64 230.0-40.0 77 467.8 Isotope shifts Isotope shifts 645.4 Isotope shifts 2718.0-850.0 277 4 861.1-416.0 3275.7-870.1 -380 Isotope shifts 4000-1200 493.4 Isotope shift 5; Isotope shift 2857-689.7 Hyperfine structures 210.0-40.0 63; 269 150 f 200 6; 33.4 eV 216; 551 320 f 300 210.0-40.0 200-20 228; 785 130 f 400 Isotopes shifts 498.2, 426.9 900.0-210.0 Isotope shift Isotope shift 906.34-179.67 50 1071.6-210.7 4440 220.0-210.0 45 734.9 f 0.2 890: 201 000 f 800 900.0-200.0 600.0-120.0 600.0-120.0 3000-900 3100 (-1900 I, 412 11) 2500-200.0 6500 3000-1000 880.5-272.0 1850 598-495 89 690.0-260.0 290

(IIIB) ( I 72B) (128) (128B) (175B) (41B) (159B) (192B) (IlIB) (150B) (182B) (43B) ( I 78B) (228B) (215B) (66B) (222B) (228B,229B) (69B) (109B) (195B) (124B) ( 70B (21OB) (176B) ( I 93B) (194B) ( 73B1 (73B) (122B) (25B) ( 2 4) ~ (88B1 (3681 (96B) (177B) (74B) (157B) (83B,II7B-I19B, 153B) (1IlB) (82B) (84B) (23B1 (220B) (170B) (220B) (130B) (49B) (105B) (92B, 148B, 203B) (90B) (236B) (219B) (214B) (221B) (112B) (112B) (93B) (243B) (154B) (38B) (71~) (238B3

Plasma” by Soloukhin et al. (57A), “Use of Low-Temperature Plasma in the Technology of Inorganic Substances,” by Mosse and Pechkovskii ( 3 4 A ) , “Modeling and Methods for Calculating Physicochemical Processes in Low-Temperature Plasma” edited by Polak ( 4 0 A ) ,“Plasma Chemistry” by Smhrnova (54A), “Plasma Processes in the Metallurgy and Technology of Inorganic Materials” edited by Paton ( 3 6 A ) , and “Plasma J e t Generators and Heavy-Current Arcs” edited by Rutberg ( 4 6 A ) . Raiser’s book “Laser Sparks and Discharge Propagation” (42A) is soon to appear in English as “Laser-Induced Discharge Phenomena”. Other books in Russian concerning lasers were written by Visots’kii ( 6 7 A ) , Samson ( 4 7 A ) , Fedorov ( 1 4 A ) , and Mirnin ( 3 1 A ) .

SPECTRAL DESCRIPTIONS AND CLASSIFICATIONS A 1975 edition of the Meggers, Corliss, and Scribner’s NBS Tables of Spectral Line Intensities (168B, 169B) updates the 1961 version by about 9000 improved wavelength values. Furthermore, this two-volume tabulation, one volume arranged by elements and the second by wavelengths, incorporates improvements in the intensity scale, which now ranges from 1 to 90 000, resulting from calibration of the region below 245.0 nm, correction of an error in the original reduction of intensity data, and adjustment of each spectral plate to a common scale. The tables incorporate energy levels of 39000 lines between 200.0 and 900.0 nm observed in copper (MCS) arcs containing 0.1 atom-percent of each of 70 elements. The values for ionization potentials for the lanthanides, actinides, and Hf were taken from the compilation of Martin et al. (160B). Martin et al. gave values of the first four ionization potentials of the lanthanides (2 = 57-71) and gave the spectroscopic designation of the ground levels of neutral through triply ionized atoms. A similar compilation for the actinides (2 = 89-103) was included. Van der Sluis and Nugent (227B) also evaluated the ionization energies of doubly and triply ionized lanthanides. Sugar derived the values for the ionization potentials of quadruply ionized rare earths, Pr(V) through Lu(V), Hf(V), and Ta(V) (218B), and calculated revised ionization energies of the neutral actinides from Cm through No (217B). Schwob (206B) published a complete set of ionization potentials for all ionization stages for the elements gallium through molybdenum. Recently Degenkolb and Griffiths (62B) determined the temperature in the MCS-copper arc to be 6000 K rather than the 5100 K originally calculated. This new value permitted calculation of more accurate gf values for a variety of elements obtained previously by Corliss and Bozman. In “Atomic and Ionic Emission Lines Below 2000 A,” Kelly and Palumbo (136B)compiled a critical tabulation of 347 000 spectral lines below 200.0 nm for the first 36 elements primarily from information in the literature published through April 1972. A bibliography of atomic line identification lists prepared by Adelman and Snijders ( 3 B ) supplements the material contained in the Kelly-Palumbo tables. This list covers the wavelength range 91.1 to 825.0 nm. Kaufman and Bengt published a complication of 2091 atomic reference lines belonging to 59 different spectra of 23 elements with accurately known wavelengths covering the range of 1.5 to 2500.0 nm (129B). This fairly complete record of spectral lines which meet the requirements for useful wavelength and intensity references is arranged by element and ionization stage and by wavelength in the vacuum ultraviolet line list. Crosswhite listed over 4000 wavelengths between 190.0 and 900.0 nm for Fe I, Fe 11, Ne I, and Ne I1 lines measured in an iron hollow cathode discharge tube with neon filler gas (58B). Semi-quantitative intensity scales were included on photoelectric traces of spectra between 240.0 and 570.0 nm. An atlas of arc spectra for 70 elements recorded on a grating spectrograph between 224.0 and 675.0 nm was prepared by Idikowski et al. (113B). Some spark spectra between 340 and 600 nm were also included. In Table I, some atomic spectra reported during the re-

view period for wavelength regions of common interest in spectrochemistry are summarized. Spectra of multiply ionized states which appear in the vacuum ultraviolet are excluded; however, the recent progress in the classification of these highly ionized atoms was reviewed by Fawcett (80B). Moore ( I 75B) considered the spectra of N I, 11, and I11 in the fifth section of a series of selected atomic spectra energy levels and multiplets. Secondary wavelength standard lines generated by hollow cathode lamps and a Ballofet-Romand-Vodar (BRV) sliding spark source in the vacuum ultraviolet were compiled by Newson (179B). Yokozawa et al. (242B) outlined an approach and results for the computer preparation of Grotrian charts for atoms and ions of rare earths. Fuhr and Wiese (86B) published the second supplementary bibliography of atomic transition probabilities including the literature appearing between July 1971 and June 1973. Table TI lists references to selected lifetimes, transition probabilities, and oscillator strengths of neutral and low-ionization stage atomic spectra. Bielski (31B) critically reviewed the atomic transition probabilities for Cu I, and Weise and Fuhr (235B)critically evaluated and compiled atomic transition probabilities for 1500 allowed spectral lines of Sc and Ti through all stages of ionization. In her book “Spectrophysics”, Thorne (63A) discusses basic principles of spectral-line width and shape, transition probabilities and oscillator strengths, and experimental methods of measuring transition probabilities. Several new books related to spectral descriptions, classifications, and spectral processes became available. In “Spectral Line Broadening by Plasmas”, Griem (101B) presents a critical review of the theory of Stark broadening, corresponding laboratory experiments, applications in measurements and calculations, and calculated Stark broadening parameters for many atomic and singly charged ionic spectral lines. Ivanov’s English translation “Transfer of Radiation in Spectral Lines” ( I 16B) treats in great detail, the equilibrium state of an optically thick gas and the mathematical theory of the transport of radiation in spectral lines. Allen and Eberly ( 4 B ) considered the basic principles and theory of quantum optical resonance in “Optical Resonance and Two-Level Atoms”. In “Emission, Absorption and Transfer of Radiation in Heated Atmospheres”, Armstrong and Nicholls (180B) studied the basic theory of radiative transfer along with quantum theory of radiation as applied to real atomic and molecular systems in heated gases over a wide range of temperature and density. Talmage (223B) also considered the theory of radiative transfer of argon. The fourth volume of Massey and Gilbody’s (165B) fivevolume work on electronic and ionic impact phenomena covers high-energy collision processes involving neutral and ionized gases and molecules; electron-ion recombination, and ion-ion recombination processes. Ausloos ( 2 A ) also edited a large book on the interactions and kinetics of ionmolecule reactions. Crasemann (57B) edited a two-volume set “Atomic Inner-Shell Processes”, in which theoretical and experimental aspects of atomic-inner-shell excitation by electrons, heavy charged particles, and photons, and of the decay of these excited atoms are covered. Willett (394C) described population inversion mechanism in electrically excited gas discharges in his introductory book on gas lasers. Numerous reviews related to spectral descriptions and classifications appeared during the past few years. Berry (29B) and Shaw (209B) reviewed the work and theory of Penning ionization. Burke (44B) surveyed atomic scattering, photoionization and recombination, and molecular processes. Cabannes (46B) examined spectrometric plasma diagnostics including the measurement of transition probabilities and line profiles. Richards (197B) evaluated the calculation of spectroscopic constants, and Series (207B) reviewed the Rydberg constant. Tudorache (226B) considered resonance levels of alkali atoms, and Erman (76B) reviewed high-resolution measurements of atomic and molecular lifetimes using the high-frequency deflection technique. ANALYTICAL CHEMISTRY, VOL. 48, NO.

5, APRIL 1976

109R

Table 11. Selected References to Lifetimes Probabilities (A)

(T), Oscillator

Strengths

(0,a n d Transition

Ionization Element He Li B C

N

0 lOliOlA

F Ne

Na Mg Si P S

c1 Ar

K Ca

sc Ti Cr Fe

level

I I I1 I I, I1 I I1 I11 I-IV I-v

Type A T T

f T

A A A A T

I1

T

IV V I-VI (138B) I V I1 1-111 I I I

A A, T

I1 I I-IV I I I, 11, 111 I-v I, I1 I IV-x IV-IX I I I1 I1 I I I

T

f

A T

f

A

f 7 T

T T

f T

f

7,

T

A A T

T

A 7

A T

f

A T

A

1-111 I I I1 I

f f

A T

f

Reference

Element

(159B) (34B, 131B, 224B, 225B) (204B,205B) (164B) (52B) (97B,171B, 2168) (57B) (11OB) (64B) (137B) (146B) (110B) (19B) (189B)

co Ni

(231B) (11OB) (53B) (125B) (114B, 115B, 152B) (56B) (55B, 104B, 183B, 184B, 240B, 241B) (184B) (147B) (158B) (173B) (239B) (59B) (155B) (171B) (139B) (18B) (JOB) (233B,237B, 244B) (51B, 78B, 184B) (126B, 127B, 200B) (47B, 48B) (149B) (213B) (87B,99B) (235B) (198B) (22B, 142B, 158B) (235B) ( 72B1 (15B,33B, 39B, 77B,81B, 94B, 95B, 166B, 212B)

Noerdlinger and Dynan (181B) examined strong ultraviolet (90.0-400.0 nm) absorption lines arising on relatively low-lying metastable states and prepared a finding list and catalog. Biemont and Grevesse (32B)provided wavelengths and transition probabilities for atomic lines of light elements in the infrared. Martinson reviewed in-beam atomic spectroscopy (162B, 163B) and recent progress in studies of atomic spectra and transition probabilities by beam-foil spectroscopy (161B). Beam-foil spectroscopy was also surveyed in some detail by Bashkin (17B), Andra ( 8 B ) , and Berry (27B). Chang and Bickel developed a spectral-line-profile theory for wavelength measurement using the beam-foil light source (50B), and Lamb shift measurements by the beam-foil technique. Spectral line broadening was evaluated by Van Regemorter (230B) and Peach (186B). Berman (26B) surveyed collision effects on atomic and molecular line shapes, and Kieffer (140B) examined line and band emission cross-section data for low-energy electron impact. Bonch-Bruevich 1 1 0 R * ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

cu Zn As Se Br Kr

Rb Sr Pd Ag Cd

Sb Te I Xe

cs Ba Hg Ce Pr

DY Tm Yb Lu U

Ionization level I, I1 I I, I1 I I I I I I I I I1 I I I I1 I I1 I I I I1 I I I I, I1 I I I1 I1 I I I I I1 I I I1 11, I11 I1 I I1 I, I1 I1 I, I1 I

Type A ?;

A

f T

f T T

f T

A T T

f 7

‘T,

f

T T

A , f ,T

f

7

T

7

f T 7

f

A 7

f T

f T 7

T

f f T T

f T

7

T

f 7

Eeference (190B, 199B) (20B, 107B) (98B, 106B) (31B ) (167B,211B) (211B) ( I B ,2B) (6B) (65B) (54B) (103B) (126B,127B, 203B) (63B,191B) (102B) (145B) (89B) (9B, 122B, 133B) (134B,135B) (15lB) (143B) (174B) (208B,234B) (6B,21B) (65B1 (54B) (121B,188B) (5lB,201B) (5B) (202B) (191B) (79B, 145B) (61B, 185B) (85B1 (37B) (IOB,104B) (108B, 141B, 184B) (153B) (42B) (7B) (7B) (187B) (7B) (45B) (7B) (232B) (144B)

et al. (35B) reviewed the Stark effect in high-frequency fields, and Green et al. (IOOB)presented a unified theory of Stark broadening for hydrogenic ions. Jaeger (120B) considered the plasma spectroscopic determinations of atomic size. Finally, the Atomic Spectroscopy Symposium held September 23-26, 1975, a t the National Bureau of Standards featured invited and contributed papers on the theoretical and experimental aspects of spectra and spectral classifications (13B).

INSTRUMENTATION This section highlights publications related to the instrumental execution of emission spectroscopy. Topics range from sample electrode and excitation sources to photon detectors and readout systems. Many of these topics are extensively treated in volume 12A of “Methods of Experimental Physics” (46C). Chap-

ters dealing with diffraction gratings, photometric systems, photomultipliers, photographic emulsions, Fourier spectrometers, Fabry-Perot instruments and two-dimensional electronic recording systems emphasize basic properties and operations in optical and infrared astronomy which can readily be extrapolated to emission spectroscopy. Thorne ( 6 2 A ) included chapters describing light sources and detectors, prisms and grating instruments, and interferometers in her book “Spectrophysics”. In a chapter on light sources and detectors, Ruddock (301C)considered radiometric and photometric definitions and units, continuum sources, lasers, and detectors which operate in the 200-800 nm range. Tarasov (361C) discusses the development and quantitatively analyzes individual components of spectroscopic instrumentation, design of optical parts, spectrographs, interferometers, and instruments for emission spectroscopy in his book “The Spectroscope.” This noteworthy and updated English translation of the 1968 Russian version describes not only general principles but illustrates them with specific examples of spectroscopic instruments made in the USSR. In a third volume of “Spectroscopic Tricks,” May (230C) reprinted 21 published articles describing instrumental and operational devices or techniques useful in emission spectroscopy. West (391C) also provided introductory discussions of plasma sources, lasers, monochromators, optical filters, and photodetectors. Ewing (97C) summarized some early 1940 analytical spectroscopic instrumentation. Optics, Gratings, a n d Spectrometers. Kingslake (185C) recounted the fascinating story of the halting progress in the development of applied optics during the past 300 years. Contributions from a workshop on machining of optics were introduced by Saito (307C),who also discussed the history, critical variables, and material and geometrical capabilities in the fabrication and evaluation of optics. Rupp (302C) illuminated the mechanism of the diamond lapping process used during the fine-grinding phase of optical surfacing. Hecht and Zajac (144C)published an undergraduate optics text. Barlett and Wildy (21C) described a grating ruling engine with piezoelectric drive and interferometric control in incremental steps. Strong (350C) discussed construction of a ruling engine for amateur scientists. Noda et al. (266C) developed a geometric theory of grating with special emphasis on the relation between the properties of holographic gratings and those mechanically ruled. The authors (267C) also developed a method for ray tracing through both plane and concave holographic gratings and mechanically ruled gratings. They (268C) applied the theory of the holographic grating to the design of aberration-corrected holographic concave gratings for Seya-Namioka monochromators. Lavolle and Robin (210C) introduced a new concept in the theory of asymmetric rectangular concave gratings which provides an additional degree of freedom and improvement of focus of some mountings such as the SeyaNamioka. Woodgate (399C) explored an approximate expression for the aberrations of a spherical grating in a near-Rowland-circle mounting and compared cylindrical and spherical gratings. The cylindrical grating gave superior resolution under some conditions. Michels (238C) presented a simple explanation and quantitative expression for the change of blaze wavelength as a function of position on the surface of a concave grating. Su and Gaylord (353C) calculated the diffraction efficiencies of thick gratings with arbitrary grating shape, and Hessel et al. (146C) established that the Bragg condition was necessary for perfect blazing of diffraction gratings that produce only a single diffraction order. Some (340C) modulated one of the interfering beams during the production of a holographic grating to introduce focusing properties into the recorded grating. Kalhor and Moaveni (176C)suggested a general numerical technique for analyzing diffraction gratings of arbitrary groove shape.

Maystre et al. (231C) determined theoretically the efficiencies for ruled and holographic metallic transmission gratings of the type used in Littrow mountings, and Hutley et al. (164C)studied the effect on the diffraction anomalies of overcoating a metal diffraction grating with a dielectric. The efficiency of blazed holographic diffraction gratings coated with different surface materials was found by Obermayer (269C)to be in fairly good agreement with theoretical predictions. Speer et al. (341C) evaluated a holographically formed grazing-incidence reflection grating with stigmatic focal isolation. Pouey (288C) reported the design of stigmatic concave grating monochromators that involved a simple rotation of a holographic concave grating. He (289C) also examined the second-order focusing properties of rule concave gratings in vacuum ultraviolet optical mountings, and he (290C) used a double-entrance monochromator with a concave grating to test the efficiency of some holographic gratings. Murty and Das (254C, 255C) evaluated the aberration properties of a holographically produced concave grating for Rowland circle and Seya-Namioka mountings. Bador (15C) determined the amplitude and phase components of holographic gratings. Argyle and Chaudhari (11C) employed magnetic bubble domains in the form of periodic arrays to diffract light. The array formed a diffraction grating based upon the difference in the index of refraction or extinction coefficients for circularly polarized light. Schroeder (323C) treated diffraction gratings, general spectrometer consideration, grating spectrometers, and echelle instruments. Bartoe and Brueckner (22C) explored the use of tandem concave gratings-the first of which served as the Wadsworth collimator-to obtain over a large wavelength range near normal incidence, a double-dispersion, stigmatic, coma-free spectrograph. Although no intermediate slit was necessary, the mounting arrangement exhibited the straylight-suppression characteristics of a double-dispersion spectrograph. Brinkman and Sacks (34C) achieved dual-channel operation with a monochromator by adding an inexpensive quartz plate. Sapp et al. (315C) altered the same monochromator so that it would accept both a kinetic grating mount which allowed easy interchange of gratings and a movable mirror to deflect the entrance and/or exit beams to a focal point outside the monochromator case. Another modification of the monochromator reported by Harrington and Malmstadt (138C, 139C) resulted in a digital scanning, tunable dye laser. Ushioda (373C) described a computer-controlled double grating spectrometer, and Rui et al. (161C) designed a dual-dispersion, high-resolution spectrograph. Murphy (253C) discussed the conversion of a sine-drive spectrometer to wavenumber scanning by having a computer drive the sine bar in a constant wavenumber-per-unit-time mode. Using channel spectra from a Fabry-Perot etalon, Jackson and Rajagolal ( 171C) automatically calibrated and scanned a double monochromator. Loughin et al. (213C) applied a programmable calculator in an automated prism monochromator system to linearize the spectral scale. Onton and Fern (273C) perfected an optical-electricalmechanical servosystem that tracked a spectral line of which the wavelength or position was changing with time. The continuous measurement of the wavelength derivative obtained with a wavelength modulator served as the basis for the system. Roessler (297C) determined the scattered radiation for several monochromators, Goode and Crouch (122C) described a practical method by which to determine the stray light in a spectrometer, and Siemon (335C) designed a three-grating polychromator with extreme stray light rejection. Andersen et al. ( 7 C )measured the over-all quantum efficiency and intrinsic instrumental polarization of a monochromator and photoelectric detection system. Radiation standards, quantum efficiency calibration procedures, and instrumental polarization calibrations were evaluated. Hodge and Belcher (149C) extended the wavelength ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

111 R

range from 350 nm to about 850 nm for a vacuum direct reading spectrometer by dispersing the zero-order line from the grating with a second monochromator. The system was applied to the determination of alkali metals in geological materials excited by a high-voltage spark discharge. Timperley (367C) described the application of a minicomputer-controlled direct reading spectrometer for dc arc analysis of geological materials. Schwarz and Bayer (325C) reported their experiences with a computer controlled direct reading vacuum spectrometer for steel plant production control. A computerized spectrometer system for foundry analysis was described by Matsubara et al. (22912). Multichannel spectrometers for studying properties of plasmas were described by Clement et al. (53C),Antipov et al. (8C),and Nagulin et al. (257C). Ambrose (5C) combined a dc arc source in a lightweight, hand-held probe with flexible light guide to deliver radiation to a direct reading spectrometer for rapid grade identification of steels. Two new Russian plane grating spectrographs were described by Aidarov et al. ( I C ) . The DFS-36 emission spectrometer, consisting of a polychromator, multipurpose power supply, and universal mount, were presented by Bel’chikov et al. (25C). Tarasov (361C) described numerous Russian spectroscopic instruments. Malacara et al. (22IC) prepared a bibliography of various optical testing methods, and Malacara and Cornejo (220C) described a null Rochi test for aspherical surfaces. Fouere and Malacara (106C) studied the focusing errors in a collimating lens or a mirror by means of moire patterns, Makous (219C) considered various optimization patterns used as fiducial marks for visual alignment. Mielenz (240C) computed the magnitude of the off-axis aberrations of ellipsoidal reflectors for unit magnification. Mintz et al. (243C) described a method for forming extremely light parabolic mirrors by holography, and Richter and Carlson (294C) generated two-dimensional, aberration-free holographic lenses. Hollahan et al. (152C) polymerized in a low-pressure plasma discharge, moisture-resistant and anti-reflection thin films as optical coatings. Hou (160C) developed a method that could be easily programmed on a computer for optimized design of dielectric multilayer filters. Spiller (342C, 343C) resolved discrepancies between theoretical and experimental results for Fabry-Perot type interference filters for the uv. His discussion included a short outline of the standard theory of Fabry-Perot interference filters below 250.0 nm. Title et al. (368C, 369C) showed that two mechanisms existed which caused drift to shorter wavelengths of narrow-band interference filters. They considered both the thermal history (368C)and the radiation history (369C)of the filter. Currey et al. (67C) designed an automatic device which changed filters in the optical path between an arc source and spectrograph during an arc exposure. Senitzky (329C, 330C) described a narrowband, ultraviolet vapor filter based on the principle of selective specular reflection from vapors of Hg for the determination of Hg in water and for monochromatic spatial distribution photography of excited Hg atoms in a flame. Using a floating optical mount, Rayside and Fletcher (293C) obtained accurate mounting and precision adjustment for optical components. Graham (126C) described a piezoelectric fine-focusing optical mount. Fletcher et al. (105C) also described a flexure hinge grating suspension, and Kreid (197C) employed a versatile flexure mount for precise positioning of optical elements. Phelps and Newbound (283C) developed an assembly to focus achromatically Fabry-Perot interference patterns on the slit of stigmatic spectrographs. The details of the construction of a versatile optical bed and single-mirror schlieren system used to observe timeresolved, high-voltage spark- discharges were given by Hosch (159C). Lurie (215C) described a general family of anastigmatic catadioptric telescopes, and Sinler (336C) examined a family of -compact S-chmidt-Cassegrain telescope designs. Wyman and Korsch (401C, 403C) systematically studied aplanatic two-mirror telescopes in the Cassegrainian 112R

ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

(401C ) , Gregorian (402C), and Schwarschild-Couder (403C) configurations. Gelles ( I 16C) considered the design of unobscured-aperture, two-mirror systems. Bakken ( I 7C, 18C, 375C) described a parabolic axicon to image a line source onto a point. To increase the detection of weak-intensity or low-energy spectra, Kroplin (ZOIC) used a cylindrical quartz lens inside a plane grating spectrograph. Kleinhaus (I86C) developed a simple expression for the power diffracted from a sequence of circular apertures and discs. The fields of fiber optics and integrated optics appear to be developing rapidly, and because of the-number of new publications appearing, only a few reviews are cited here. Fiber optics were surveyed by Di Domenico (84C) and Gloge (120C); whereas, Kogelnik (19IC), Pole et al. (286C), and Tien (365C) reviewed principles and applications of integrated optics. Tamir (393C) edited a book on integrated optics. Zanker (409C) prepared a nomograph for the calculation of the index of refraction of a prism, and Shyu and Wang (334C) simultaneously determined the refractive indices and angles of prisms with a simple experimental arrangement. Application of the quadratic electrooptic effect of lead lanthanum zirconate titante (PLZT) ceramic wafers was described by Cutchen et al. (68C) for large aperture photographic shutters, variable density optical filters, and eyeprotection devices. A comprehensive review of electrooptic devices based on Pockels and Kerr effects is featured in “An Introduction to Electrooptic Devices” by Kaminow (177C). An “Electro-Optics Handbook” is available from RCA (92C). Spectrometer Readout Systems. Steiner (345C) characterized the state of the art of radiational measurement systems, and Fussell (114C) developed an approximate mathematical theory of the photometric integrating sphere. Egan and Hilgeman ( 9 I C ) described a new system for absolute measurements using two integrating spheres. Mohan et al. (248C) discussed the measurement of the total spectral radiant power from a light source using a series of narrowband interference filters. The basic laws of radiometry were generalized by Marchand and Wold (225C) to fields generated by a two-dimensional stationary source or any state of coherence. Chandos and Chandos (48C) calculated the total radiant power emission from various diffuse wall cavity sources. Krompholz and Fischer (199C) described a nanosecond high radiance standard source based upon a spark discharge, and Fried and Labs (109C) discussed a quasimonochromatic calibration source for the 220-nm to 7000nm range. A wall-stabilized hydrogen arc was examined by Ott et al. (277C) as an absolute standard source of spectral radiance from 124 to 360 nm; the continuum emission coefficient is calculable to within a few percent which, in turn provides intensities that are independent of other radiometric standards or the accuracy of any plasma diagnostic method. Compared to other available standard sources, the results obtained by Ott et al. were consistent to within f 5 % in the range between 140 and 360 nm. The basic physics of photomultipliers, and the real and idealized systems represent major topics in a survey by Young (406C). Young (407C) also examined other components in photometric systems, including optics, calibration problems and standard sources, and principles of photometer design. Lytle (216C) considered spectral sensitivity, gain, risetime and circuit and wiring for fast signal detection. Woodriff and Malmstadt (400C) discussed the basic principles and instrument design for a charge-to-count data domain converter with which photomultiplier signals can be converted into numerical from either in charge-todigital count mode or current-to-frequency mode. Klobuchar et al. (187C) described an accurate method of determining photomultiplier gain using a multichannel analyzer and electrometer. Bower and Ingle (28C) described the construction of a simple, inexpensive apparatus for evaluation of P M gain. Ingle (165C) presented a simple noise-tosignal ratio monitor for measurement of noise in dc signals.

Fried (108C) considered signal processing for a signal with Poisson noise. Defrance (78C) reviewed precise measurement of weak light flux by photon counting, and Pike and Jackman (284C) examined photon statistics and photon-correlation spectroscopy. Cummins and Pike edited a survey of “Photon Correlation and Light Beating Spectroscopy” (66C). Laulicht (209C) described the wavelength calibration of a convenient dual channel multiplex spectrometer system employing a slightly modified commercial photon counting system. Skene et al. (337C) described a computer-controlled photon counting flame emission spectrometer. Photoelectric means of detecting, imaging, converting, intensifying, recording, and storing spectral information are finding new application in spectrochemical analysis as the result of a general availability of commercial vidicon detectors, improved semiconductor arrays, and finished spectrometer systems. Talmi surveyed the properties (359C) and applicability (358C) of T V type detectors in spectroscopy. Kron (200C) evaluated electrographic tubes, and Wampler (385C) considered the principles, application, and future developments of phosphor output image tubes. Kazan (181C) edited a volume of “Advances in Image Pickup and Display”, which contains chapters on image tubes with channel electron multipliers, negative electron affinity materials for imaging devices, deflection of electron beams, and Pockels effect imaging devices. Olsen (271C) patented a multichannel radiation analyzer, and Saroyan (317C) explored the characteristics of a commercial optical multichannel analyzer as a spectroscopic detector. Aldous et al. (2C), Busch et al. (42C), Beyon et al. (26C), Knapp et al. (188C), and Milano et al. (241C) applied image vidicon detectors for multielement spectrometric analysis in flames, mass spectrometry, and scanning spectrophotometry. The computerized emission spectrometer described by Wood et al. (398C) used a proximity-focused image intensifier and random access T V detector. Lowarance and Zucchino (214C), McCord and Frankston (232C), and Colgate et al. (56C) evaluated vidicon detectors for astronomical use. A silicon diode array vidicon displayed a linear response for a t least five orders of magnitude (232C). Richtol et al. (295C) arranged a simple TV system for classroom demonstration of atomic emission spectra. Recent advances in image camera tubes have been paralleled by developments in solid state photoconductive sensors, such as charge coupled devices (CCD), charge injection devices (CID), and photodiode arrays. Weimer (389C) examined beam-scanned and solid-state approaches to imaging devices in a critical review of their sensitivity, signal-to-noise ratio, resolution, and spurious signal sources. He also described recently available commercial, solidstate T V cameras. Kosonocky and Carnes (47C, 196C), Amelio (6C), and Itoh (169C) reviewed the basic concepts and applications of CCD’s. Silicon photodiode performance data were tabulated by Duncan (9OC), and Fry (111C) treated the history, developments, optical and electrical characteristics, and main commercial applications of silicon photodiode arrays. Horlick and Codding applied computer-coupled arrays mounted in a monochromator for spectrochemical analysis. In one application (155C), they measured dye laser intracavity enhanced absorption, and in another (156C) simultaneous multielement and multiline atomic absorption analysis over a range of 13.0 nm. In a third application (54C, 157C), the photodiode array spectrometer simultaneously recorded the full spectra over a 26.0-nm range from a dc arc source. Intensity-time data were automatically acquired, stored, and analyzed; up to seven time-sequential spectra, each representing spectral intensity collected in periods of 1to 10 s, were obtained during the arc burn. Tu11 et al. (372C) described a self-scanned Digicon, a digital image tube consisting of a magnetically focused image intensifier tube in which a self-scanned linear array of 1024 silicon photodiodes operating in the electron bombarded silicon (EBS) mode served as the photoelectron image detector. Mende and Shelley (237C) evaluated the feasibility of using a self-scanned linear photodiode array as a single counting photoelectron device.

Havens (143C) measured low-level photodiode noise currents with excellent agreement between calculated and measured values. Nieswander and Plews (262C) achieved broad frequency bandwidth performance comparable or better than that of photon-noise-limited photomultipliers with appropriate preamplifier design and cooled silicon photodiode and input FET. Schagen (318C) reviewed techniques of wavelength conversion, imaging, and intensification of image converters and intensifiers. Whittaker (393C) used an image-retaining panel to provide directly a luminescent spectrogram of a discharge lamp in the region of 0.7 to 1.5 nm. Kimura et al. (184C) and Willetts et al. (395C) utilized image intensifiers to improve sensitivity of conventional spectrographic recording. Application of echelle spectrometers in emission spectroscopy appears to be increasingly popular as new commercial instruments combine image detector technology with the compact spectral representation of the echelle configuration. Cresser et al. (63C) described some use of echelle monochromators, and Keliher and Wohlers explored their high-resolution capabilities in atomic absoiption spectrometry (182C), and measured the spectral line profiles from hollow cathode lamps (183C). Danielsson and Lindblom (72C, 73C) developed a computer-controlled echelle spectrometer with an image dissector tube readout for spectrochemical analysis. The ID tube required sequential read-off, but it provided high resolution in the absence of broadening effects of vidicon detectors and allowed single photon counting with very low dark count rates. Wood et al. (398C) employed a proximity-focused image intensified SEC image tube under computer control with a prismechelle spectrometer in a complete instrument for emission spectrometry. Four hundred lines of interest per second were read in the wavelength range from 230.0 to 860.0 nm a t one setting with the random-access di ita1 T V camera. Peterson and Title (281C) describe2 a semiautomatic procedure for the reduction of echelle spectra recorded with an image tube. Photographic or electrographic echelle spectra were examined with a computer-controlled densitometer and graphics display terminal. Lawrence and Stone (211C) constructed a uv spectrograph using double microchannel plates as detectors a t the focal plane. Lytle (217C) surveyed the experimental approaches used to measure fast optical signals, and Kuroda et al. (204C) and Gordon et al. (124C) described T V camera systems for recording pulsed transient optical signals. Iordanescy (166C) obtained time-resolved spectral line profiles with an oscillating Fabry-Perot interferometer. Bridoux et al. (32C) employed a double Czerny-Turner spectrometer with a three-stage image intensifier tube in studying the formation of CN in a pulsed discharge. Since gating a photoelectron current before multiplication in a photomultiplier tube provides the shortest resolution time, Kono and Hattori (194C) designed a cross-field P M with special gating electrodes in front of the multiplication stages. Resolution time of approximately 1 ns was obtained. Gribov (129C) discussed automation in spectrochemical research, and Cronhjort (64C) described the improvements in spectroanalysis through real-time computer control of recording integration period. With the introduction of computer control to spectrochemical analysis systems, the analysis of trends in storage of digital data presented by Barrekette (20C) indicates that inexpensive, mass storage will encourage further automation. Rowel1 (299C) surveyed signal averagers, and Horlick and Betty (154C) described an inexpensive lock-in amplifier based upon phase-locked loops. DeBiase et al. (74C) discussed the effect of scanning and restoration of spectral data in the presence of noise, and Horlick (153C) considered reduction of quantization effects by time averaging with added random noise. Photographic Detectors. The performance of photographic plates, including photographic photometry, signalto-noise ratio, and detective quantum efficiency are major topics in a chapter written by Latham (208C). Yasuda and Takahasi (405C) reviewed the detailed problems in measurement of spectral intensity of light sources by spectrogANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

113R

raphy. Cox edited three books on the photographic gelatin (60C), photographic sensitivity (62C), and photographic processing (61C). Fundamental aspects of photographic image evaluation principles and analysis were explored in a book by Dainty and Shaw (70C). Hamilton (136C) selectively reviewed the photographic process with major emphasis on general mechanism, ionic defects, charge defects, surface states, impurity trapping centers, chemical sensitization, and spectral sensitization. Theory and methods to increase sensitization of photoraphic emulsions were considered by Babock et al. (14C), orben et al. (58C), Primik and Weiss (291C), Scott and Smith (326C), and Van Dormael (374C). Sahyun (306C) explored the mechanisms found in photographic chemistry with particular emphasis on photochemistry, chemical sensitization, spectral sensitization, development mechanisms, and complexation. Burton et al. (41C) measured the characteristics curves and absolute sensitivity in the range 280.4 to 73.5 nm for three Kodak emulsions. Sambueva et al. (310C) compared the effects on contrast for continuous and line spectral sources produced by two developers. In a theoretical and experimental study of the exposure of photo raphic films, Chang and Bjorkstam (50C) demonstrated Afferences that depended upon spatial and temporal properties of the exposing light due to irradiance fluctuations and the threshold nature of the photographic detection process. Witmer et al. (396C) perfected a system for the automatic analvsis of DhotograDhicallv recorded emission sDectra based i p o n the modiYfication o? an existing microphoiometer. Emission spectra 25-cm long were scanned a t a speed of 1 cmb, the photographic blackening measured at 5-pm intervals, and the position of each measurement accurately determined by an optical measuring system. The 50000 data from the position and intensity of lines and background were stored in a computer memory, reduced to provide a wavelength scale from a prism dispersion function, and evaluated so that 400 wavelength windows provided the detection of 66 elements. Nine spectra from one unknown sample could be analyzed in less than 45 minutes. Walthall (383C) also described a computerized system of spectral analysis for the determination of 68 elements in geological materials which is based upon computer evaluation of spectra obtained from excitation in a dc arc. Detrio and Donlan (82C) modified a commercial microphotometer by installing a linear encoder which in turn allowed the motion of the plate to drive incrementally a stepper-motor chart recorder. The wavelength reading accuracy was improved by 2 to 5 times. Nakamura and Shalimoff (259C, 260C) employed an inexpensive four-function calculator to evaluate the wavelength of spectral lines on photographic plates measured with a microphotometer. This on-line wavelength calculation was based upon the uniformity of the plate factor and a controller which acquired the digitized lead screw position and accomplished the equivalent operation of pushing the calculator keys at the appropriate time and in the proper sequence. Samsoni and Nagy (313C, 314C) described a photometer device which measured the length of wedge-shaped spectral lines by detecting the null difference between the line and a reference background. Hamm and Walters (137C) designed a relay-controlled, electrically reversible dc motor arrangement fitted to a commercial microphotometer for recording photographically acquired time-resolved spectra. Automated microphotometers for mass spectrography were described by Burdo et al. (37C), Millett et al. (242C), and Weber et al. (388C). By installing a transverse slit in the plane of the entrance slit of a spectrograph, Nikolaevskii (265C) eliminated the influence of the Eberhard effect and the associated errors in comparing the blackening of a thin spectral line with that of the continuous spectrum of a calibration source. Interferometry and Multiplex Spectrometers. Marshall and Comisarow (227C, 228C, 303C) compared features of Fourier and Hadamard transform methods in spectroscopy. Hirschfeld and Wijntes (148C) and Decker (75C) discussed the relative merits of the two methods. Carrington (410C) devoted a chapter to Fourier transform spec-

E

114R

ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

troscopy. Thorne (63A) included a chapter in her book describing interferometers, Roesler (296C) recorded the basic considerations for use and design of Fabry-Perot spectrometers, and Tarasov (361C) described instruments based upon Fabry-Perot interferometers, instruments with Grille selective modulation, and interferometers with selective modulation and matrix spectrometers. Griffiths (130C) presented a status report and historical picture of chemical interferometry in the seventies, and Livingston (212C)and Shakland (332C) described the life of Michelson and the development of the Michelson interferometer, The feasibility of direct multichannel spectrometers was considered relative to Fourier and Hadamard transform spectroscopy. Strong (351C) reviewed multiplex spectroscopy, Harwitt and Decker (141C) surveyed modulation techniques in spectrometry, and O’Haver and co-workers (94C, 270C) examined derivative spectroscopy. Schnopper and Thompson (322C) detailed the theory and practice of Fourier spectrometers. In a study of atomic spectrochemical measurements with a Fourier transform spectrometer, Horlick and Yuen (158C) demonstrated application to simultaneous determination of multiple alkaline elements in flame emission. Fuller (113C) constructed a Fourier transform atomic fluorescence spectrometer. Meaburn (243C) estimated the relative performances of eight spectrometers with the same continuum source. Studies of Hadamard transform spectrometers were conducted by Larson et al. (198C), Harwit et al. (142C),Plankey et al. (285C), Tai et al. (356C, 357C), and Crosmum (65C). Baldini et al. (19C) described an easily assembled wavelength-modulated spectrometer for derivative spectroscopy, and Katskov et al. (180C) resolved weak spectral lines on a constant background by derivative spectroscopy. Bates et al. (23C) considered design and application of a self-modulated Fabry-Perot derivative spectrometer. Murphy et al. (252C) recorded time-varying infrared emission spectra using FTS. Multiplex advantage was retained and available measurement time was used effectively by obtaining a series of interferograms separated sequentially in time in a single scan of a Michelson interferometer. Hirschberg (147C) described a field-widened Michelson interferometer swept by a differential gas-equal pressure method. Stacey et al. (344C) described an optical method for determining the instrumental function of a Fabry-Perot etalon, and Hernandes (145C) developed an analytical description of an asymmetric Fabry-Perot spectrometer as well as useful approximations for interference filters. Kreye (207C) derived the effects of using a F P interferometer in conjunction with a conventional double slit monochromator on the transmitted powers of transmitted lines and continuum. A variable magnification, high-speed spectrometer with a FP disperser was designed by Clement et al. (52C) for measurement of line profiles emitted by pulsed plasmas. Variable magnification was achieved with an image converter tube. Roychoudhuri (300C) considered the temporal response of F P interferometers to light pulses of various length and kinds. Steinhaus and Klein (348C) modified a calculation scheme to improve the determination of fractional order numbers at the center of a FP interferometer-fringe system in the measurement of spectral lines of uranium. Gagne et al. (115C) applied sampling theory to locate the center of gravity of a spectral line obtained by photon counting with a multichannel FP spectrometer. Caplan (45C) examined temperature and pressure factors affecting the performance of pressure-scanned etalon and grating spectrometers, and Vaucamps et al. (376C) described a system for linear FP interferometer scanning and photon counting. Michelson interferometers with a magnesium fluoride beam splitter for the vacuum ultraviolet and a frustratedtotal-internal reflection beam splitter were described, respectively, by Freeman (107C) and Daehler and Ade (69C). Fitzgerald et al. (104C) developed a selectively modulated spectrometer for uv atomic and molecular spectroscopy based upon a Michelson interferometer with the stationary mirror replaced by a rotating grating.

Phase correction for a Michelson interferometer was discussed by Goorvitch (123C) and Sheahen and McCanney (333C). Chang et al. (49C) presented a general theoretical analysis of an n-grating interferometer under various conditions of illumination, for which the grating served as beam splitters, beam deflectors, or both. Su et al. (352C) reconstructed the spectrum of a Hg arc using a holographic method in which infinite resolving power was theoretically predicted. As an example of the diagnostic applications of pulsed holographic interferometry, Rzhevskii (304C) measured the radial temperature distribution of an argon discharge at medium pressures. Spatial resolution was improved by Attwood et al. (13C) in a holographic interferometric technique to probe electron density distributions by frequency tripling. Schmidt et al. (320C) achieved high-speed optical interferometry with 0.5-11s exposure times using a TEA nitrogen laser. In considering interferometry of strongly refracting axisymmetric phase objects such as plasmas, Vest (378C)demonstrated by computer simulation that Abel inversion of interferograms yielded accurate estimates of refractive index. Kogelschatz (192C) applied a simple differential intermeasure the refractive index gradient in highferometer to.~ current arc discharges. Light Sources. The theory of halogen incandescent lamps, their chemical transport reactions, evolution, and future prospects were explored by Schimer and Stober (319C),Geszti (117C, I l S C ) , Waymouth (387C),Neumann (263C), Neumann and Mueller (264C), Taxi1 (362C), Vermeulen (377C), and Tachang (363C). Jack and Koedam considered the energy balance for some high-pressure gas discharge lamps ( I 7 0 0 , and Fischer (103C) calculated temperature distributions and plasma compositions for metal halide discharge. Asinovskii (12C) reviewed the main trends in high-pressure discharge research. Johnson ( I 75C) developed a minicomputer-based closed-loop system for control and optimization of pulsed hollow cathode lamps. Defreese et al. (79C) described a new type of programmable current-regulated power supply for operation of hollow cathode lamps in a high intensity programmed mode. Aleksandrov and Rukhadzw (3C) reviewed the theory and experimental studies of high-current electrical discharge light sources, and Golubev et al. (121C) and Gusinow (134C) described pulsed lamps for the uv spectral regions. Mack (218C) developed a vortex stabilized flashlampessentially a spark gap with a transparent enclosing wallfor dye laser pumping, and Dishington et al. (86C)calculated flashlamp performance and evaluated the efficiency of solid state lasers using the flashlamp pump. Baker and King (16C) described the optimization of pulsed uv radiation from linear flashtubes. McFarlane (233C) described a ns pulse circuit for light emitting diodes which are used to test and calibrate arrays of photomultiplier tubes. Stephens and Ryan (349C) built and applied a Zeemaneffect magnetically stable spectral source. Johnson et al. ( I 74C) compared a low pressure capillary Xe arc lamp with an Eimac CW arc illuminator as sources for atomic fluorescence spectrometry. Browner (35C) described sources for AFS, and the companion review on flame spectrometry discusses the characteristics and applications of line and continuum sources for flame spectroscoPY. Cathode-ray and x-ray excited optical emission of rare earth elements were explored by Muir and Grant (251C), Larach (206C), and Fassel and co-workers (80C, 88C, 89C, 99C). Excitation Sources. Description of instrumentation and equipment used for analysis by the inductively coupled plasma discharge were presented by Fassel and Kniseley (107E), Boumans and de Boer (39E), Greenfield et al. (126E),Eckert (IOOE), Czernichowaki and Jureqicz (69E), Scott et al. (362E), Schleicher and Barnes (322E), Kornblum and de Galan (190E),and Nixon et al. (262E). Hollahan and Bell (151C) summarized basic design considerations for rf generators, matching networks, power mea-

surements, and rf power coupling. Fricke et al. (111E) employed a vidicon optical multichannel analyzer to evaluate the relative capabilities for simultaneous multielement trace analysis of samples vaporized from carbon-cup or tantalum-strip devices and excited in a microwave discharge. Lyman and Hieftje (221E) described a computer-controlled microwave excited discharge system with an independent microarc sample vaporizing device. DeCorpo et al. (77C) described the power variations in microwave exposure resulting from different source gases. Eaton (98E) characterized an electronic spark source capable of very low time jitter, current waveform control, repetitive triggering, and synchronization, and described instrumentation for recording high-quality time-swept, timeand spatially-resolved emission produced by the spark discharge. Zynger and Crouch (419E) describe a miniature, lowenergy spark discharge system for solution analysis. The spark was formed by the discharge of a coaxial capacitor through a stream of argon which also transported the desolvated sample particles. Weysenfeld (392C) constructed an argon-jet guided spark of 1-cm length to pump a small dye laser a t 150 Hz with 60-11s pulses. Graham and Leavitt (125%)developed a triggered air spark for inserting timing marks on film. Van Calker and Hollenberg (43C) constructed an electronically regulated spark generator with periodic discharge for frequencies up to 3 kHz. Two delay lines connected in parallel for charging and in series for discharging served for energy storage. Spark conditions and repetition rate were independently variable. Vukanovic et al. (396E) described a horizontal dc arc source contained in a graphite tube and operated in an inhomogeneous magnetic field. New dc arc plasma jet devices were constructed and evaluated by Rippetoe et al. (303E, 304E) and Murdick and Piepmeier (2483). Sacks and co-workers (33C, 150C, 305C) exploded thin metallic wires to produce very intense continuum radiation extending far into the uv spectral region. Samples applied to wires were excited to line emission under appropriate electrical and pressure conditions for use in emission trace metal analysis. Decker (76C) compared the capabilities of three dc arc sources to control variations in arc temperature, electron pressure, and anode temperature and studied the dependence of these factors on electrical parameters. With well buffered sample, little advantage was gained, but for poorly buffered samples, the constant power source provided greater control over the manually and controlled and constant-current sources. Among spectroscopic equipment employed in the USSR, a new generator series IVS-21 through -26 with ShT-20 through -23 stands which replace DG-2, IG-3, and GEU-1 generators were described by Voronov (382C). Bondar and Dem’yanchuk (27C) patented a spark excitation generator, Voronov (380C) patented an arc source, and Orlova et al. (276C) described the MFS-4, a 12-channel concave grating spectrometer and excitation source for nonferrous alloy analysis. Kolev (193C) rectified the output of an ac generator to produce a highly stable dc arc discharge, and Fudal and Witkowska (112C) described an attachment which allows the initiation of a dc arc by a high voltage spark. Ondrasek et al. (272C) described the performance of a high repetition rate source for 16 elements in steel used in conjunction with two spectrometers. Demin and Matrenicheva (81C) described an apparatus consisting of an ac generator and a microscope for analysis of small metal pieces and local analysis of small surface areas (40-50 pm). Apolitskii ( 9 C ) investigated a four-pole arc in which a 15-14 dc arc was vertical and a 20-A ac burning between sample containing electrodes was horizontal. Zaharescu et al. (408C) constructed a 0.4-ps pulsed, high-intensity light source based on an argon jet flowing along the electrode axis. Schmitz and Gustin (135C)patented the circuitry for an arc generator for use with an emission spectrometer. Gray (127C) introduced a novel combination of mass spectrometric detection of metal ions produced in an atmoANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

115R

spheric pressure dc capillary arc discharge. Ions were extracted from the plasma into a vacuum system and focused into a quadrupole mass analyzer. A similar capillary arc was used by Denton et al. (84E) for solution emission analysis after the 5-pl sample was vaporized into the flowing arc discharge from a heated tantalum wire coil. Hunt et al. (162C)described a chemical ionization source for mass spectrometry using a Townsend discharge, and Carroll et al. (47bC) applied a corona discharge ion source for use in a liquid chromatograph-mass spectrometer system. Harrison et al. (76E, 91E, 134E) and Colby and Evans (64E) described hollow cathode and rf cavity ion sources; whereas, Coburn et al. (59E, 60E, 62E, 63E, 102E) used glow discharge sources. Lasers. The extensive literature on lasers exceeds the space available here for a comprehensive survey. However, a number of notable texts and reviews include Arecchi’s (10C) two-volume encyclopaedic “Laser Handbook”, Kaminow and Siegman’s “Laser Devices and Applications” (178C),Schwarz and Hora’s “Laser Interaction and Related Phenomena” (324C),Willett’s “Introduction to Gas Lasers” (394C3, Sobolev’s “Lasers and Their Future” (339C), Monte’s “Laser Applications” (298C), Harry’s “Industrial Lasers and Their Applications” (140C),Moore’s “Chemical and Biochemical Applications of Lasers” (249C),and Wolbarsht’s “Laser Applications in Medicine and Biology” (397C), which includes a chapter on quantitative laser microprobe analysis. Phelps (282C) surveyed the application of gaseous electronics to laser technology, and Fry ( I I O C ) included emission spectroscopy in his examination of laser applications in analytical chemistry. Sargent and co-workers prepared three books “Laser Physics” (316C) “High Energy Lasers and Their Applications” ( I 73C), and “Laser Applications to Optics and Spectroscopy” (172C). In this later volume, Melngailis and Mooradian (236C) reviewed tunable semiconductor diode lasers, Dienes (85C) surveyed dye lasers, Greenhow and Schmidt (128C) considered ps laser pulse generation by mode locking, and Evenson and Petersen (96C) evaluated stabilized lasers and applications. Steinfeld (346C, 347C) appraised the impact of lasers in spectroscopy, and Feld and Letokhov ( I o I C ) described laser spectroscopy. Dye lasers and tunable lasers were reviewed by Burdett and Poliakoff (36C), Lange et al. (205C), Bradley (30C, 31C), Shank (331C), Colles and Pidgeon (57C), Allkins ( 4 C ) , Walther (384C), and Kuhl (202C). Oraevskii (275C), Tsuchiya and Hajime ( 3 7 1 0 , and Warren (386C) surveyed chemical lasers. GirardeauMontaut (119C)examined uv molecular nitrogen lasers. Marich et al. (226C, 370C) refined a Q-switched laser microprobe system for spectrochemical analysis. Moenke-Blankenburg et al. (245C, 246C, 247C) described modifications of a laser microprobe instrument which included use of variable solid-state laser Q-switching, special microscope optics, and triggering of the auxiliary spark by external ignition. Moenke et al. (244C) described emission and mass spectrographic laser microanalyzer arrangements and applications, and the design of vacuum chambers for laser emission spectroscopic examination a t low vacuum pressure and in argon atmospheres (235C). Voronov (381C) and Korolev et al. (195C) described MSL-1 and MSL-2 microspectral analysis sources. Ferrar (102C) used a rotary spark gap in series with a flashlamp in a pumped dye laser, and described the practical limitations imposed by his present equipment. Electrodes a n d Sample Introduction. Peter (280C) described a “chimney” electrode consisting of a hollow upper graphite cap with an extended exit hole which fitted over a lower carbon pedestal. The chimney length was varied to provide acceleration or delay of sample heat-up time for fractional vaporization of trace volatile elements. Raikhbaum et al. (292C) also used a covered electrode chamber to eliminate nonuniform evaporation of sample in the analysis of rocks. Grikit and Galushko (132C) developed a wine-glass shaped electrode which improved the sensitivity of the analysis of titanium. As part of an extended study of arc processes, Szabo et al. (355C) investigated the behavior of amorphous and graphite-based carbon electrodes in dc arc excitation. Dif116R

ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

ferences in their oxidation were due primarily to differences in crystal structure, thermal conductivity, and electrode mass. Belyaev et al. (24C) found an improvement in precision in the determination of sub-ppm concentrations in carbon powders when the electrode resistance of graphite electrodes was increased. Nakamizo et al. (258C) examined the Raman spectra of natural graphite, including spectrographic graphite. Naganuma and Kat0 (256C) studied the influence of pores on the emission with electrodes prepared by powder metallurgy. Dhumwad and Ramachandran (83C) designed a special holder for small diameter (6-16 mm) steel wire rods for use with a commercial spectrometer stand originally designed for use with flat samples. El-Kholy et al. (93C) described a triple-flow gassheathed arc device which combined a twin-jet around the anode with an independent gas sheath around the cathode counter electrode. Vogel (379C) developed an integral atmospheric control device as part of an arc stand electrode clamp. The techniques developed for solution nebulizers, microvolume samples, and resistance-heated atomizers are beginning to appear in plasma emission papers. In a comprehensive survey, Syty (354C)examined the developments in methods of sample injection and atomization in atomic spectrometry. Kniseley et al. (189C) developed a pneumatic nebulizer for efficient solution nebulization at low gas flow rates as required in the ICP discharge. Issaq and Morgenthaler (167C, 168C) developed an ultrasonic nebulizer and a desolvation unit with a temperature controlled heater with fast response to changes in thermal loads. Boumans and de Boer (39E) and Kornblum and de Galan (190E) described ultrasonic nebulizer-desolvation units for solution introduction into an ICP discharge. Nixon et al. (2623) employed a heated tantalum filament atomizer with their ICP unit. Grigor’ev et al. (131C) experimentally and theoretically studied the efficiency of operation of pneumatic atomization systems, and Lyman and Hieftje (221E) utilized a resistance heated filament to vaporize samples into a microwave plasma discharge. Details of the design and operation of a cathode sputtering cell were given by Kirkbright et al. (179E). Cherevko and Simonova (51C) studied the effect of particle size of mineral samples on the reproducibility of powder injection into a plasma discharge. Fal’kova and Fishkova (98C) derived an equation based on a gas-dynamic theorv for the air flow rate and d r o d e t size from an aerosol nkbulizer . Skogerboe et al. (327C, 338C) employed a volatile chloride generator for iniection of samdes into flames. a microwave“plasma, discharge, and a dc arc. In the dc arc approach (327C), spectrographic graphite electrodes were used as filters to collect atmospheric particulates, and the graphite filter electrode was analyzed directly by dc arc excitation in a flowing argon stream saturated with HCl. Vacuum Ultraviolet Instrumentation. Principles of vacuum ultraviolet optics, calibration of vacuum spectrographs, plasma diagnostics by vacuum uv methods, vacuum uv light sources and monochromators used in photoelectron spectroscopy, and vacuum uv emission from hot plasmas are among topics examined in the book “Some Aspects of Vacuum Ultraviolet Radiation Physics” edited by Damany, Romand, and Vodar (71C). Proceedings of a conference on vacuum radiation physics edited by Koch et al. (19OC) included 15 papers on instrumentation of sources, spectrometers, and detectors. Yamashita (404C) described a highly monochromatic Lyman alpha light source based upon an expanded plasma jet, and Karin et al. (179C)constructed a modulated source of continuous radiation for the vacuum uv. A giant pulse current discharge was used by Esteva et al. (95C) to feed a vacuum spark to obtain a 300-11s continuum in the 5.0-20.0 nm range. Boursey and Damany (29C) improved the BRV continuum source for vacuum uv absorption measurements. Cantu and Tondello (44C) extended the performance by a factor of 200 of a triggered vacuum spark source in the 8.- to 50.-nm range. Ophir et al. (274C) devel-

oped a high pressure continuous light source for the vacuum uv to 110. nm. Seitel and Anderson (328C) analyzed the frequency distribution of resonance lines excited in an atomic beam light source. Burger and Maier (38C, 39C) described a He 11 30.4-nm photon Source and Poole et al. (287c) used a glow discharge as sources for photoelectron sPectroscoPY. Perlman (279C) and Codling (55C) reviewed applications and design of sources of synchrotron radiation. Fastie et al. (1OOC) discussed the problems associated with making accurate spectroradiometric measurements in the far uv region, and Saloman (308C), Saloman and E&rer (309C), and Samson and Haddard (311C) made absolute radiometric calibrations in the vacuum uv. Timothy and Lapson (366C) outlined the procedures available for photometric calibration a t extreme uv wavelengths and the requirement for a secondary standard extreme uv photomultiplier. Samson and Haddard (312C) measured the fluorescent efficiency of sodium salicylate between 11.6 and 60.0 nm, and Mori and Ando (250C) calibrated intensity between 100.0 and 200.0 nm by the molecular branching ratio method. Paresce (278C) measured the quantum efficiency of a channel electron multiplier in the far uv. Malherbe (222C, 223C) described interference filters, Guda et al. (133C) built a rotating beam splitter, and Schmidt et al. (321C) constructed a prism order sorter for the Vacuum UV. COXet al. (59C) considered the reflection and optical constants of evaporated Ru between 30.0 and 200.0 nm. Michels et al. (239C) described a device for detailed measurement of diffraction grating efficiency in the vacuum uv. Negus (261C) evaluated a grazing-incidence mirror system for use with grating spectrometers in the extreme uv. Hunter and Chaimson (163C) designed an adjustable aperture stop for use in controlling the direction and angular divergence of the beam emerging from a vacuum uv monochromator. Vacuum uv spectrometers and spectrographs were described by Dreher and Frank (87C), Weiser (390C), Burns (40C), Kumar et al. (203C), Pouey (288C-29OC) and Mantz et al. (224C). STANDARDS, SAMPLES, CALIBRATION, CALCULATIONS Kaiser (590) discussed the foundations and principles of chemical analysis methods. He considered basic concepts of a complete analytical procedure, the structure of analytical procedures, and classes of measured quantities. A brief review of methods of calibration used in trace analysis, prepared by the IUPAC Commission on Microchemical Techniques and Trace Analysis (870), classified calibration methods, and discussed calibration curves and their stability. Spectroscopic nomenclature was discussed by Strong (10701, and Baker (50, 1170) derived a formula for the conversion of power spectral radiance to rayleigh spectral radiance. IUPAC emission spectroscopy nomenclature, symbols, units, and their usage was recently reprinted (560). Analytical Functions, Figures of Merit. Sources of systematic error arising from blank determinations, calibration, interference, and forms of the determinand were discussed by Wilson (12001, who also made suggestions for the investigation and reporting of errors when characterizing the performance of analytical methods. Gottschalk (390) considered the general principles of standardization, and Massart and Kaufmand (790) described operations research in analytical chemistry. The basic terms, definitions, and interpretation of information theory in analysis were defined and interpreted by Cleric et al. (110, 770). In applying information theory to analytical chemistry, Eckschlager (190, 2 0 0 , 2 2 0 , 2 3 0 ) explained the expression of the quantitative results, the amount of information obtainable from repeated higher precision analyses, the effectivity of the results and physicochemical measurements, and the use of sequential statistical testing in analytical practice. Danzer (130) calculated the analytical resolution capabilities of two spectrographs and derived an equation for

the approximate amount of information which could be obtained in spectrochemical analysis. Eckschlager (210 )critically evaluated the characteristics for judging the reliability of analytical methods and a new characteristic was proposed based on the information uncertainty of results. Kuznetsov and Kuznetsova (720) considered the selection of a method for comparatively estimating the efficiency of analytical procedures. The evaluation of accuracy of analytical techniques was discussed by Lontsikh and Berkovits (750) and Belyaev and Krasnobaeva (70). Various factors affecting the accuracy of spectrochemical analysis were explored by Ersepke (260), Pupyshev et al. (920), and Svehla and Salcerova (11ID),Gluzinska (370) proposed a simplified method for evaluating the precision of analytical methods, and Kaplan and Nedler (620) discussed the effect of the number of measurements on the final accuracy of a result. Doerffel ( 1 6 0 ) discussed the limits of general spectroscopic methods in determining concentrations, estimating sensitivity, and decreasing analysis time. Ingle (550) discussed the concepts of limit of detection and sensitivity and their definitions for emission and absorption spectroscopy. Matherny ( 8 0 0 ) explored different methods for the calculation of detection limit, its precision, and guarantee limit of purity related to the way of obtaining the photographic emulsion blackening value with different spectral line background corrections. Broekaert (90) described methods to calculate detection limits of spectrographic techniques in terms of blank and background. Bosch and Broekaert ( 8 0 ) found that a logarithmically normal distribution described the dispersion of converted densitometer readings, and they proposed a method for the calculation of detection limits. Risova and Plsko ( 9 5 0 , 9 6 0 ) evaluated the effect of focal length of a spectrograph camera and variation of background on the limit of detection. Florian et al. (320) investigated the dependence of sensitivity and precision on the resolving power of the spectrograph. Florian et al. (330) also discussed methods for establishing and testing linear emission spectroscopic calibration functions, and the dependence of calibration curves on background correction methods (340). Kraskovska and Matherny (700) considered background correction and the possibility of finding an optimum distance between analytical line and background measuring position. Van der Linden (1160) found that, with nonlinear calibration curves; the use of the difference between sample and blank signals gave incorrect results. Larsen and Wagner (740) re-examined the statistical steps and results in establishing linear calibration curves. Mason (780) chaired an ASTM symposium on the determination of the spectrochemical working curve during which a number of presentations described the approaches and capabilities of employing computers to obtain and process analytical curves in spectrometry. Kantor and Pungor (600, 6 1 0 ) formulated the relationship between the vapor-liquid equilibrium and the emission analytical curve on the basis of Hirata’s equation. Raikhbaum et al. (930) considered the effect of atom transfer in the discharge area of an excitation source on the calibration curve, and equations for modeling curves taking into account atom transfer were devised and tested. Standards. LaFleur (730) described standard reference materials for the determination of trace elements in environmental samples. Ondov et al. (900) determined the concentration of 37 elements in NBS environmental coal and 41 elements in fly ash SRM’s. Florence et al. (310) reported the Be content of NBS orchard leaves, and Rains et al. (940) described the preparation of Be reference material for stationary source emission analysis. A catalog of NBS standard reference materials was published as “NBS Special Publication 260” (890). Roberts (980) explained the updated standards program a t the NBS. Abbey et al. (10)and Tetley and Turek (1130) described Canadian reference rock samples SY-2, SY-3, and MRG-1. Faye (290) discussed the characteristics and preparation of nickel-copper-cobalt ores SU-1 and UM-1. McAdam et al. (830) prepared a Ni-Cu matte as a SRM. Faye (280) also listed standard reference ores and rocks ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

117R

available from the Canadian Mines Branch. Stoch (1060) established five fluorspar samples as standard reference materials. Steele et al. (1050) described the preparation and certification of a 7000-kg reference sample of precious metal ore. Samadi et al. (1000) prepared homogeneous aluminum-based alloys by melting in a plasma furnace, and Dugain (17 0 ) described the homogeneity tests in the preparation of solid metal standards. Subrahmaniam and co-workers produced secondary standards for maraging steel (1080) and alnico magnet alloy (1090). Gusarskii ( 4 5 0 ) explained a system of 62 standards for spectrometric analysis of aluminum and its alloys. McLauchlan ( 8 5 0 ) analyzed reference materials for the analysis of gases in copper samples. McKinney and Pollard ( 8 4 0 ) obtained a British patent for spectrographic oil standards. A list of Polish emission spectrographic metal standards was compiled by Witkowska et al. (1210). Grabowski and Lopata ( 4 1 0 ) described the preparation of spectrographic standards for trace impurities in thallium. Wachi et al. (1180) prepared four Nb-Zr alloy standards for the determination of 5 impurities. Gries and Norval ( 4 4 0 ) prepared primary standard ppm thallium in pure aluminum by ion implantation technology. Farhan and Pazandeh ( 2 7 0 ) reviewed the use of graphite powder standards in arc spectrography, and proposed a general direct method of spectrographic trace analysis based on the application of synthetic graphite powder standards. Sutarno and Faye (1100) defined a certification factor to serve as an objective evaluation of the usefulness of a standard reference material for particular analytical applications. Sampling, Sample Preparation Techniques. Ingamells and Switzer ( 5 4 0 ) treated laboratory sub-sampling error as a major single source of error in analyses for trace elements and proposed the use of sampling constants during the establishment and certification of reference samples or standards. Ingamells ( 5 3 0 ) further expanded on methods for the design of sampling schemes and for data evaluation for large, inhomogeneous, and segregated masses of materials. Harris and Kratochvil(460) treated statistically the precision in sampling particulate materials for analysis especially at trace levels. Kozlicka ( 6 9 0 ) derived formulas for taking samples of friable metal ores used for chemical compound standards. Gegus et al. ( 3 6 0 ) described and demonstrated a mathematical statistical procedure based on the generalization of the Q-test for characterizing the homogeneity of samples. The effects of sample homogeneity on precision for bulk analytical techniques including emission spectroscopy was explored by Skogerboe (1020). Yoshimori and Tanaka (1220) recommended procedures for drying SRM’s containing water in various states for 10 SRM’s. Harrison et al. ( 4 7 0 ) evaluated lyophilization for preconcentration of natural water samples and found for all but Hg and I that freeze drying provided quantitative preconcentration of inorganic trace elements in water. Abu-Samra et al. ( 2 0 ) determined that problems associated with methods for the destruction of organic material prior to analysis were minimized if wet ashing in a commercial microwave oven was performed. Cowgill ( 1 2 0 ) described a new method using acetone and a sonicator for obtaining a homogeneous powder mixture of dried lake mud and graphite suitable for arc spectrochemical analysis. Graff ( 4 2 0 ) discovered that some constituent minerals ground in a jaw crusher were preferentially concentrated in the dust up to 3% of which escaped during preparation. Hesp and co-workers ( 3 0 , 4 8 0 ) studied the effects of riffling and grinding for preparation of granitic rocks and observed contamination by Cr, and Co and W after grinding in a stainless steel mill and in a tungsten carbide mill, respectively. Mays et al. ( 8 2 0 ) developed a method for determination of minor elements in natural sulfides based upon the elevated-temperature synthesis of complex crystal standards that contained within their lattices the minor elements of interest. Techniques for preparing and dissolving alkaline fusions 118R

ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

of silicate samples and brass drillings were investigated by Flaschka and Myers (200). Knoop ( 6 7 0 ) dissolved silicate minerals and glass in a micro-test tube inside a Teflonlined bomb. Govindaraju ( 4 0 0 ) dissolved silicate rock after fusion in an aqueous suspension of a strongly acidic cationic exchange resin. The resin was subsequently impregnated as a thin uniform film on a moving cellulose tape which passed a t a constant speed between two graphite electrodes. Tunney and Hughes (1150) and Stamp et al. (1040) studied arc melting techniques, and Buravlev et al. ( 1 0 0 ) used a microwave furnace for preparation of solid samples for direct reading spectrometric analysis of steels. Jecko ( 5 7 0 ) described a fusion method in a pelletable crucible for the preparation of nonmetallic samples for spectrometric analysis. Smith and Parsons (1030) selected compounds of 72 elements for preparation of standard solutions to be used in the determination of these elements. In an ASTM symposium on some fundamentals of analytical chemistry, Hobart and Kallman ( 4 9 0 ) described the dissolution of metals for analysis, and French and Tuthill ( 3 5 0 ) discussed the purity of reagents. Nasser ( 8 8 0 ) described a modulated variable internal reference method for iron at variable concentration in oil ashes when chosen as the internal reference element. Statistical methods were employed by Kerekes and Ambrus ( 6 5 0 ) and Svoboda and Kleinmann (1120) for the selection of spectral line pairs. Matherny ( 8 1 0 ) described a test procedure for evaluating the homology of analytical line pairs based on the successive testing of scatter diagram parameters. Photographic Emulsion Calibration, Computation. Computer automated systems for analysis of photographically recorded spectra were described by Witmer et al. (396C) and Walthall (383C). Both systems record transmittance readings from spectrographic plates, perform calibrations and transformations, search for element lines, and solve for unknown sample concentrations. Thomas (1140) improved the program described by Walthall (383C) by addition of a new subroutine for determination of elemental concentrations from integrated intensities of spectral lines. Calibration of emulsions with computer programs were also described by Malinek ( 7 6 0 ) and Holcombe, Brinkman, and Sacks (500). Batistoni and Capaccioli ( 6 0 ) used a programmable calculator to perform the necessary operations for emulsion calibration. Green and McPeters ( 4 3 0 ) proposed an analytical expression for the photographic characteristics curve, and Severin (1010) described a method for photographic photometry of a converging family of characteristics curves. The influence on the ultimate concentration results of various spectrographic parameters and methods of data extraction including background correction were explored by Matherny and co-workers (320-340, 7 0 0 , 8 0 0 ) . Gorokhov and Nikitin ( 3 8 0 ) treated spectrographic data on a computer and calculated corrections for nonlinearity of emulsion curves and deviations of the reference line blackening. Englemann and Radziemski (25C) described the capabilities of Polaroid type 57 film for visible, uv, and vacuum uv spectrography. Computer Applications. Application of machine computation in emission spectroscopy extends from large system calculations to instrument microprocessors and calculators. At the ASTM symposium on determination of working curves edited by Mason ( 7 8 0 ) , various computer approaches and computations for spectrochemical analysis were described. “Computers for Spectroscopists” edited by Carrington (410C) contains a series of lectures covering the use, architecture, logic, and basic language of small laboratory computers. Computer-spectrometer interfaces, offline data processing, and multiuser laboratory computer systems were also treated. DeVoe et al. ( 1 5 0 ) described a utility computer system for large laboratory operation, and Karp ( 6 3 0 ) surveyed small electronic calculators for chemists. Dulaney ( 1 8 0 ) examined computerized signal processing and the hardware required for it.

Deming et al. (660,860)described simplex optimization approaches in analytical chemical methods and introduced a sequential unequal-interval strategy for optimization in the presence of random error. Ritter et al. (970)developed a simplex pattern recognition method to provide a systematic approach in obtaining near-optimum linear discriminant functions. Kowalski (680)reviewed computer pattern recognition methods and their future applications. Jurs and Isenhour (580)Dublished a text on “ AId.i c a t i o n s of Pattern Recognition.’’ Bozhevol’noi et al. (41E,42E,3443,345E) and Pravceva et al. (910)aDDlied multifactoral exDerimenta1 Dlannine and the Box a i d Wilson method of steep ascent in i h e opt; mum development of a sensitive dc arc spectrographic method. Krivchenkova and Khakhaev (710)described the use of various statistical models for calculating the properties of a gas discharge. Walter (1190)surveyed algorithms for concentration determination in computerized spectroscopic analysis. Aspnes (40)described a digital smoothing technique using Chebyshev polynomials, and Edwards and Wilson (240) demonstrated that the length of the smoothing range was the most significant parameter in digital smoothing of spectra by least squares fitting to a cubic polynomial. Kelly and Horlick (640)compared a Bayesian approach for the resolution of noisy Lorentzian doublets in the application of deconvolution, second derivative, cross-correlation, and least-squares methods. Den Harder and de Galan (140)evaluated a procedure for the real-time deconvolution of two-dimensional profiles such as a spectrum while it is being scanned. Hurlick and Hanratty (520)described a system for measuring line centers from digitally recorded spectra using a minicomputer, and Saint-Dizier and Gagne (99D)considered the variance of the measurement of the interval between two spectral lines. Zenitani and Minami (1230)applied an on-line minicomputer system to correct waveform distortion resulting from finite instrumental resolution. In the spectrographic analysis of 23 elements in limestone, Howarth (510)used a Monte-Carlo simulation technique to evaluate a matrix-correction equation in which many mutual interferences were involved.

EXCITATION SOURCES Greenfield et al. (127E,128E) critically surveyed plasma emission sources-excluding arc and sparks-used in analytical spectrochemistry. In the first part (127E),they discussed fundamental concepts of temperature and equilibrium as applied to high temperature excitation sources and reviewed plasma jets. In the second part (128E),microwave plasma and capacitively coupled high-frequency plasma sources for emission analysis, their development, application for elemental analysis of solutions, and specialized applications were featured. Boumans (37E)discussed the recent development of excitation sources for accurate multielement analysis of solutions and emphasized their role in inorganic analytical chemistry. Winefordner et al. (68A) compared multielement atomic spectroscopic excitation methods including microwave plasma (MP) discharges, inductively coupled plasma (ICP) discharges, and flames as well as multielement spectral measurement components. Butler et al. (IOA)described plasma jets, radiofrequency and microwave plasma discharges, their main features, operating characteristics, analytical capabilities, and relative advantages and disadvantages. Barnes (4A)described arc, spark, low pressure, and high frequency plasmas, and laser sources in a chapter on systematic materials analysis. Limits of detection for arc and spark excitation techniques, different arc excitation conditions, liquid sample techniques, micro and residue sample approaches and laser microprobe were compiled by Skogerboe (53A). Kleinmann and Svoboda (183E)reviewed the theory, construction, and applications of plasma generator devices in emission spectroscopy, and discussed thermodynamic properties, discharge models, experimental results and methods of introducing liquid and powder samples. Svoboda and Kleinmann (362E)also considered the different possibilities of introducing dry aerosols into the external

part of a plasma discharge. A variety of excitation source have been studied and applied in emission spectrochemical analysis that do not readily fall into common classifications. For example, Holz and Hohenegger (141E)evaluated a commercially available helium-glow photometer for the determination of sodium and potassium. Molnar et al. (242E)reported emission feasibility studies of a resistively heated tubular vitreous carbon furnace commonly used as an atomization device for atomic absorption and fluorescence. Sacks and co-workers developed a number of novel spectrochemical excitation sources based upon exploding wires and foils, and shock tubes. Using time-resolved and timeintegrated techniques, Holcombe and Sacks (150C, 805C, 140E) examined the radiative properties of wires exploded by a capacitive discharge under various pressures and atmospheres. Two basic mechanisms were described (305C) and employed in developing spectrochemical applications. Using low-pressure.helium and applying the peripheral restrike mechanism, Holcombe and Sacks (140E)emphasized line emission with low continuum background through surface vaporization and observed line emission of analyte electrodeposited on a silver wire. Brinkman and Sacks (33C) emphasized the conditions for the axial restrike mechanism-atmospheric pressure of gases with high dielectric strength such as argon-to produce an intense ultraviolet continuum spectrum for use as an excitation source in atomic fluorescence. Ling and Sacks (215E) replaced wires by metal foils for the excitation of trace metals deposited on their surface. Sacks and Corasco (316E)devised a bursting-diaphragm shock tube for analysis of trace metals in aqueous solutions. Microliter samples deposited on membrane filter strips were vaporized and excited in the high temperature (10 500 K) region of He-driven, Mach 6.8 Ar shocks. Perarnau and Triche (278E)studied the spectra of exploded Cu wires to determine the relation between the Cu I absorption line width and the environmental gas pressure. Rice et al. (302E)reviewed exploding wire and film techniques for metal atom production and laser action, and Dikhter and Zeigarnik (87E)investigated explosions of Cs wires in vacuum and a t high pressure. Maiorov et al. (222E)examined the prospects for the design of a stable, accurate, high-temperature light source for spectral analysis of small sample solutions. Arc and high frequency plasmas were also discussed. Lura (220E) patented an electron collision device for spectrochemical analysis in which the sample was supported on a concentric anode grid tube within a cathode tube inside a vacuum furnace. Tong and McLaren (3823)and Kat0 et al. (163E)described emission spectrochemical analysis of materials including feldspars excited by ion bombardment. Emission spectra resulting from ion bombardment during sputtering were observed by Jensen and Veje (150E),Ratinen (296E), and Brongersma et al. (45E).Baudin (24E)examined a luminescent discharge technique for the analysis of steel and cast iron in which the sample was used as the cathode of a discharge filled with argon. Dresser et al. (93E)surveyed atomic spectroscopy atomization systems. High Frequency Discharge. High frequency discharges appear as one, if not the most, potentially valuable new area of development in emission excitation sources. Fassel and Kniseley (106E) reported the status of ICP optical emission spectroscopy in terms of its analytical achievements and illustrated capabilities with examples of analysis of steels and blood. In a companion survey, Fassel and Kniseley (107E)described the instrumentation aspects of the ICP optical emission system. Butler et al. (IOA)reviewed ICP discharge configurations, operating parameters, sampling systems, and analytical capabilities. Boumans (37E)and Boumans and de Boer (38E)assessed the ICP discharge for simultaneous multielement analysis through direct comparison with other atomic spectroscopic approaches. A list of 33 limits of detection obtained under compromise conditions with the ICP represented the best values reported to date. Boumans and de Boer (39E)also described the practical experimental considerations of the conditions necessary for simultaneous ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

119R

multielement analysis with a low-power (700 W) ICP discharge to obtain low limits of detection and a satisfactory level of ionization interference effect. Greenfield et al. (126E) examined equipment design as well as results from four years of routine analysis with the ICP discharge using a 30-channel direct reading spectrometer and fully automated sample handling. Kirkbright (177E) and Kirkbright and Ward (178E) compared the theoretical and experimental performance capabilities of an ICP discharge and an inert gas shielded NzO-CzHz flame. A longer linear calibration range was predicted and verified for the ICP source compared to the flame. Eckert (100E) and Czernichowski and Jurewicz (69E) reviewed much of the experimental and theoretical engineering physics of the ICP discharge, including the history, experimental configurations, theory, and applications. Scott et al. ( 3 2 6 3 ) described a complete system for emission spectroscopy with the ICP discharge. This included design of a nebulizer chamber, a low-flow nebulizer (197E), plasma tube configuration, and conditions for experimentally coupling and tuning rf generators. Barnes and Schleicher (21E) commented on the theoretical approach taken by Scott et al., and Schleicher and Barnes ( 3 2 2 3 ) described the design of a remote coupling unit for the ICP discharge. Jarosz et al. (149E) determined the radial distribution of electron density of an Ar-H ICP discharge and deduced a value of ionization temperature. Mermet (236E) measured the excitation temperature and electron density of the Ar plasma gas and of elements injected as aerosols into the ICP discharge. Dresvin (94E) examined the nonequilibrium resulting from a large flow of plasma-forming gases in an induction lasma-called the transport effect-which led to a disturance in thermal equilibrium between gas and electron temperature without significant change in ionization equilibrium, Maxwellian velocity distribution, or Boltzmann distribution of excited levels. Alder and Mermet ( 3 E ) studied the spectrum of Ar and Ar-10% methane ICP discharges with additions of S, P, and halogen compounds. They determined changes in electron density and excitation temperature. Barnes and Nikdel (20E) determined the spatial distribution of Ar and nitrogen concentrations by gas chromatography in an argon ICP discharge surrounded by a nitrogen gas sheath. Kornblum and de Galan (190E) presented detailed descriptions of experimental arrangements used to obtain the spatial distributions of temperature, and electron and sample-element concentration in an ICP discharge. Kalnicky et al. (421E) presented the spatially resolved, radial excitation temperature distributions experienced by injected analyte species in the ICP discharge. The selection of transition probabilities employed in the temperature calculation was critically evaluated. Kniseley (186E)and Butler et al. (54E) described applications and analysis techniques for the determination of alloying impurity elements in low and high alloy steels, whole blood, and serum. The presence of an iron matrix did not influence the detection limits for 12 elements in steels. Nixon et al. (2623) adapted a tantalum filament vaporizing system as a sample introduction device for the ICP discharge. Scott and Strasheim (3283) determined six trace elements in orchard leaves by the ICP discharge. Their results compared favorably with three independent analyses. Scott and Kokot (3273) also determined five elements in soil samples, and Thomas et al. (377E) used the ICP discharge for analysis of yttrium in thin film deposits. Larsen et al. (212E) investigated the extent to which certain interferences or interelement effects occurred in the ICP discharge. Under normal conditions solute vaporization interferences were found negligible and effects of addition of sodium could be minimized by selection of flow rate, plasma power, and height of observation. Boumans and de Boer (39E) reached similar conclusions. Mermet and Robin (237E) studied chemical and ionization interferences, and they also found negligible chemical interferences. However, some interactions caused by sodium could not be explained

E

120R

*

ANALYTICAL CHEMISTRY, VOL. 48,

NO. 5,

APRIL 1976

by a change in particle equilibrium in the discharge. Boumans et al. (40E) scrutinized both ICP discharge and a commercial Kessler-type capacitively coupled microwave plasma discharge for solution analysis. In all respects, the ICP discharge was superior to the .microwave discharge as an excitation source for simultaneous multielement analysis of solutions. Barnes and Schleicher (22E) reported preliminary results for a model which accounted for the spatial distribution of as properties and energy losses in an ICP discharge. Eomputer simulations provided spatial temperature, gas velocity, sample concentration, and radiation distributions for experimental discharge configurations. Gerasimov and Eilenkrig (116E) studied the sensitivity and reproducibility of the ICP discharge for powder samples and compared results for the determination of 9 elements with those obtained in an ac arc. Klubnikin (285E) investigated the thermal and gas-dynamic characteristics of argon induction discharges. Rovinskii and Sobolev (305E),Rozovskii (306E),and Aref'ev et al. (12E) also examined various aspects of high frequency induction discharges. Eckert (IOIE) operated a low pressure, inductively-coupled discharge a t 60 Hz. Runser and Frank (313E) determined the emission spectra of chlorinated hydrocarbons and pesticides in a medium pressure induction plasma, and Dreher and Frank (87C, 92E) developed an atmospheric pressure argon induction plasma for analysis of As and I in the vacuum uv. Both devices incorporated tantalum sampling boats or wires from which samples were vaporized by the plasma. Greenfield et al. (128E) surveyed microwave and high frequency capacitively coupled plasma emission sources in analytical spectroscopy. Dagnall and Sharp (70E) briefly reviewed the basic mechanisms of the microwave plasma and applications of the discharge for spectrochemical analysis. Zvyagintsev et al. (419E) and Gonchar et al. (120E) operated capacitively coupled plasma 150-MHz discharges at atmospheric pressure in flowing air, Ar, He, Hz, and Nz. They measured the radial temperature, heat flux density, and flow velocity profiles as well as the energy efficiency of the generator plasma system. Earlier they (238E) described a 150-MHz induction discharge in inert and molecular gases. In an attempt to define the properties of electrodeless discharge lamps, Avni and Winefordner (16E) measured by probe and spectroscopic means the electron temperature, electron density, and plasma temperatures for low power (120 W) microwave discharges in Ar, He and Nz at pressure of 0.5 to 10 Torr and in argon containing various metals. Although the discharge was found to be under steady-state conditions, local thermodynamic equilibrium did not exist. Brassem and Masessen (43E, 4223) measured electron temperatures and electron concentrations at low pressure (0.05-2 Torr) in flowing low power (50-100 W) microwave discharges in Ar, He, and Ne. Both parameters decreased with increasing pressure. Belousov et al. (27E) obtained from the Boltzman transport equation and energy balance equation, the electron distribution function of energy, electron temperature, and other parameters in a 1-80 Torr Ar microwave discharge. Voitsenya et al. (394E) determined spectroscopically and by probe techniques, the electron temperature as a function of He pressure in a microwave discharge. Bryukhovetskii et al. (48E) determined the temperature and emission properties of a low power (6-18 W) microwave discharge in Ar at 0.01-1 atm. Batenin et al. (23E) investigated spectroscopically the hydrogen plasma produced at atmospheric pressure in a high-power (0.6-5 kW) microwave discharge, and Miyake et al. (239E) observed the electrical and spectroscopic properties of a 2-kW MW discharge in Nz and Nz-H2 mixtures. Grushetskii and Yas'ko (132E) determined the coefficients of power transformation into reflected and transmitted power for waveguide and resonator type microwave plasma generators in He, air, and COz. Sat0 et al. (318E) and Avni et al. (17E) studied the decomposition of propane and methane, respectively, by mi-

crowave discharges, and Nishimura et al. (261E) extensively examined the decomposition of CO and organic molecules in ICP discharges. Although the microwave and hf plasma pyrolysis of organics and minerals like coal (97E) and oil shale (263E) are investigated for materials processing such as gasification and chemical reactions (404E),little, if any, application to emission spectroscopy has yet resulted. Simonova et al. (346E) studied the process of generating an emission signal during the passage of aerosol particles of beryl mixed with carbon powder through a microwave discharge plasma. Kitagawa and Takeuchi (181E)explored the interference caused by cations and free electrons in a commercial atmospherical pressure MW discharge. Boumans et al. (40E) observed substantial decreases in background, increases in standard deviation of background, increase in sensitivity, and variation in visual appearance of another commercial microwave discharge with the addition of Cs to 12 elements. Ionization interferences and a number of anomalous enhancement of depression effects were also reported. Oishi and Yasuda (265E) examined the interference by Na, K, C1, and sulfate on emission intensities of Al, Cr, Pb, and Zn in a unipolar microwave discharge before and after modification of the location of sample aerosol introduction. Usin a commercial argon microwave discharge, Atsuya ( 1 5 E ) etermined the factors affecting the intensity of Cr emission and the optimum working conditions for the determination of Cr in desolvated solution samples of iron and steel. Nakashima et al. (2533) established conditions for determining Nb, Ti, and Zr in steel with the same instrument. For the analysis of silver in biological materials such as condensed milk and whole blood, Nakashima et al. ( 2 5 4 3 ) used bismuth iodide as a carrier and found that after the precipitate had been decomposed and iodide removed, the bismuth provided enhanced silver signal intensities in the MW plasma. Kaiser et al. (155E) determined in a MW argon plasma, 11 elements including Hg with high sensitivity and good reproducibility when vaporized directly from an electrically heated graphite crucible or after reaction to form volatile compounds. Watling (400E) also determined Hg in sea water by means of a quarter-wave Evenson cavity MW arrangement; he obtained a detection limit of 30 ag. By emission and absorption in a MW discharge, Bauchurina et al. (19E) determined Ba, Sr, and Ca in sputtered deposits. Fricke et al. (111E) explored the use of a combined MWP with carbon-cup and tantalum-strip sampling devices and a vidicon optical multichannel analyzer readout for simultaneous multielement analysis. Seitz ( 3 2 9 3 ) evaluated the application of a low-pressure He microwave discharge system for trace analysis of As, Cd, Pb, and Hg in water introduced into the discharge by thermal atomization from a wire filament. Analytical curve slopes varied with matrix. Kawaguchi and co-workers (164E, 167E) applied the same microwave plasma-spectrometer system in the determination of pg quantities of 8 metals in 5-pl samples of metalloenzymes. Small 0.1-pg samples of Zn-containing enzymes were analyzed after suitable separation by microscale gel-exclusion chromatography (148E). Sakamoto et al. (317E) determined As in AI by MW emission spectrometry. For the determination of trace levels of CO in air, Moore et al. (243E) adapted the 1 2 0 5 method for determining 0 in organic compounds to permit liberated I to be measured in a MWP discharge. Skogerboe et al. (338C)vaporized samples as chlorides from a simplified generator with Ar-HCl flow into a MW discharge. Lyman and Hieftje (221E) developed a low-power (100 W) microwave discharge with a microarc sample atomization system. Microliter-volume samples, deposited and dried on a loop-shaped tungsten-wire cathode, were sputtered in a high-voltage, low-current, pulsating dc arc between the wire and a stainless steel syringe needle anode through which argon carrier gas flowed. Chemical, physical, spectral, and plasma quenching interferences were evaluated in the axially viewed, 3/4-waveBroida cavity. Haarsma et al. (80E)critically reviewed the preparation

di

and operation of electrodeless discharge lamps (EDL’s); they included a discussion of microwave apparatus and cavities, multielement EDL’s, and comparison with other light sources. Application of EDL’s as primary light sources for atomic fluorescence spectroscopy is discussed in the companion review of flame spectroscopy, but a few applications of EDL’s for emission spectroscopy are described here. Agterdenbos and co-workers continued their application of EDL’s for trace emission analysis. Van Montfort and Agterdenbos (389E) determined traces of Se and Te in aqueous samples freeze-dried in EDL’s, and Van Sandwijk and Agterdenbos (400E)determined 4-100 pg of Cd, In, and T1 using the same techniques. Gatzke (115E) excited P , S , As, and Se in closed quartz tubes with microwaves to generate intense vacuum uv spectral lines. Subbaram et al. (360E) reported the emission spectra from a microwave discharge through BeClz and argon a t greater than 20 Torr. Jansen et al. (148E) compared the characteristics of a Sr EDL with a normal hollow cathode lamp. A technique for stabilizing the microwave power was developed. Hattori and Chinen (135E) measured the optical properties of a microwave discharge in a mixture of He (200 Torr) and H (0.1 Torr) as a radiation source for transition probability measurements. Reader ( 1 9 3 4 194B) developed a new electrodeless lamp usable to 149. nm excited with pulsed rf at 13.5 MHz for the study of Rb I1 and Rb TI1 spectra. Kessler ( I 72E) patented a microwave plasma burner which avoided electrical breakdown between waveguides. Microwave-excited emission spectrometric detectors for gas chromatography have become a relatively popular application of the MW discharge. In his book on gas chromatographic detectors, David (78E) commented on discharge detectors of various types. Dagnall et al. (71E, 72E) determined volatile metal chelates using a microwave discharge a t 70 W in Ar. Nonselective monitoring of atomic C emission or selective monitoring of metal emission were used for various metal acetylacetonates. Shapunov et al. (334E) determined trace Nz, 0 2 , CO, and NO in Hz after chromatographic separation. Serravallo and Risby (331E, 3323) described an oxygendoped MW discharge in He a t reduced pressure as a metalselective gas chromatographic detector. The effect of doping gases was studied (331E),and an optimum quantity of oxygen was found for the determination of Cr. Bros et al. (46E) described a He detector for GC based on the Penning effect. Talmi and Andren (373E) determined Se in environmental samples after the gc separation of a stable Se chelate and detection of Se emission a t 204 nm excited in an Ar MW discharge at atmospheric pressure. Talmi (372E) also determined trace amounts of volatile organomercury compounds in environmental samples. Talmi and Norvell (375E) analyzed environmental samples for As and Sb, and Talmi and Bostick (374E) determined alkylarsenic acids in pesticides and environmental samples. Using a radiofrequency furnace as an atomization source, Talmi (371E) determined Zn and Cd in environmental samples, and Crosmun (67E) analyzed trace environmental samples for Zn, Pb, and Cu. Arc Plasmas. Numerous spectroscopists have extensively studied the spectrochemical arc discharge from physical and chemical points of view in an attempt to understand and improve arc analysis. Vukanovic (3953) summarized the advances of his work with particular emphasis on the relationships between radial arc temperature distribution and reactions of molecular atmospheres, the addition of elements of low ionization potential (301E), and the dependence of transport processes and particle transport on spatial temperature and electron density distributions and on extraneous magnetic fields. Vukanovic et al. (397E) reviewed the status of fundamental investigations of mass transport in arc discharges, and they introduced a technique based upon the velocity-selected injection of liquids into the arc plasma for the study of transport properties and residence times of injected materials. Peric et al. (279E, 280E) followed the transport of CaO molecules formed in the reaction of Ca with 0 in the dc arc ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

121 R

plasma, measured the axial transport rates, and calculated the diffusion coefficients. From the measured radial temperature distribution and electric field strength of an arc in water vapor, the electrical and thermal conductivities of water vapor were calculated by Pavlovic et al. (274E) as function of temperature at 2000-8000 K. The effect of lithium carbonate on the arc plasma temperature in nitrogen was examined by Rekalic and Vukanovic (301E) using a schlieren interference method. The influence of matrix anion, particularly chloride and oxides of Cd, on vaporization of trace elements, radial temperature, and electron pressure distributions were measured by Rybarova et al. (314E). Vukanovic et al. (3963) designed a new type of dc arc source for s ectrochemical analysis consisting of a horizontal arc ins& a graphite tube in a relatively weak inhomogeneous magnetic field. The surrounding graphite tube reduced the velocity of particles escaping from the plasma between the two horizontal electrodes. In subsequent developments with aerosol sample introduction, two rotating plasmas within the graphite tube were achieved. Morris and Worden (2463) measured arc temperatures and estimated relative electron densities for low-current dc arc discharges in Ar, Ar-CO, He, and He-CO in an attempt to establish the influence of small quantities of CO on the excitation characteristics of Ar and He arcs. Nonequilibrium in arcs was considered by Chan et al. (55E, % E ) , Namitokov and Frenkel (255E),Polak and Slovetskii (286E),and Pyatnitskii et al. (292E) for argon arcs, and by Shumaker (3383) and Polak and Slovetskii (2873) for nitrogen arcs. Uhlenbusch (3853) reviewed nonequilibrium effects in arc discharges. In their investigations Chan et al. (&E, 563) used Thomson scattering for the direct measurement of electron temperature in a 15-A free-burning argon arc. Gol’dfarb ( 118E) reviewed arc plasma diagnostic techniques, and Evans (1053) and Cabannes (46B) surveyed optical methods of plasma diagnostics. Aleksandrov et al. ( 6 E ) determined ionization equilibrium in an arc plasma based upon spectroscopic observations of small perturbations arising during modulation of the arc current. In considering the observation that for some elements evaporated from the anode of a dc arc, the position of the maximum concentration of atomic particles occurred not on the‘axis of the arc column but some distance away from the center, Decker and McFadden (79E) showed that the magnitude of the off-axis peak increased with increasing volatility of the element but decreased with increasing electric power generated in the plasma and decreasing ionization potential of the buffer metal. Sample components evaporated directly under the anode spot entered the hot plasma through the anode spot, and components evaporated from regions not immediately beneath the anode spot tended to diffuse laterally around the arc. Rautschke et al. explored the theoretical and experimental kinetics of thermochemical reactions in the dc arcs of uranium compounds (298E), tungsten compounds (299E, 300E), and vanadium compounds (300E) in a graphite matrix. A theoretical development of the role played in the electrode cavity by thermochemical reactions on the temporal dependence of spectral-line intensities was evaluated with uranium compounds (2983).Conversion into carbides was followed by x-ray diffraction of reaction products and by measurement of electrode temperature (2973). The total intensity for samples burnt to completion was found to be independent of the type of compound. In the study of reactions of W and V oxides (300E)the kinetics of thermochemical reactions with and without LiF, C2C16, and C&lS additive were discussed. Saari (3155) studied the electrode reactions between rare earth oxides and carbon and the volatilization of the reaction products in a dc arc operated in air and argonoxygen atmospheres. Formation of LnC2 clearly dominated. Laktinova et al. (211E) also studied the chemical reactions of rare earth oxides in a carbon electrode. Semeneko et al. (330E) investigated by x-ray diffraction methods, the thermochemical products of Nb205- and TazOs-carbon powder mixtures after arcing a t 10 A. 122R

ANALYTICAL CHEMISTRY, VOL. 48, NO.

5, APRIL 1976

Vigant et al. (393E) noted increased average residence times of V, Nb, and T a in the dc arc plasma for fluoride compounds as the matrix. The influence of chemical reactions, especially those arising in the presence of fluoride, in the arc plasma was investigated by Radic-Peric and Vukanovic (194E). Mazurkiewicz and Nickel (230E, 231E, 2583) investigated the influence of Ar, He, and Ar-02 discharge gases on the physical and spectrochemical processes in a carbon arc, using radioactive isotopes 59Fe and lloAg and high-speed photography to trace material distribution in electrodes and discharge cell and to follow macroscopic particle movement in the plasma. In developing an improved method for the analysis of graphite and titania in a 10-A dc arc, Schaeps (321E) scrutinized the influence of a homogeneous magnetic field (at 0, 10.0, 20.0, 40.0 mT) on the integral line-intensity of different trace elements in graphite and on their axial and radial distribution. Nondestructive and continuous x-ray absorption measurements and evaporation of some metal oxides from graphite electrode were determined as a function of magnetic field strength. Keintzel (169E) showed that a dc arc at high pressure in He, unlike the discharge in Ar, was accompanied by convection-effected instabilities at 20 atm which caused unsatisfactory reproducibility in analysis. Application of a homogeneous longitudinal magnetic field (10.0-20.0 mT) stabilized the arc and improved reproducibility. Kharizanov (173E) provided a qualitative explanation of the intensification effect of an applied nonhomogeneous magnetic field on emission lines in a dc arc. Petrakiev and Milanova (281E) observed 1.5- to 6.8-fold increases in spectral-line intensity when using an external nonhomogeneous magnetic field (60.0 mT) to stabilize a 9-A dc arc during the analysis of rocks. Karyakin et al. (158E) measured the influence of a nonuniform magnetic field produced by permanent ferromagnets on spectral-line intensity as a function of magnetic field configuration, distance between magnets, and field intensity. Polatbekov et al. (288E) tested the effect of a longitudinal magnetic field on the intensity and distribution of Ti spectral lines in an arc. Zil’bershtein et al. (418E) studied the cathode intensification of spectral lines in a homogeneous magnetic field (10.0, 20.0, 30.0 mT) for 11 elements in coal powder samples, and Kurochkina and Rubinovich (204E) found detection limits lowered by 3-15 times in a dc arc with a superimposed homogeneous magnetic field (10.0 mT) for the determination of 17 elements in various pure graphite and buffered matrices. Bozhevol’nov, Silakova et al. (41E, 42E, 344E, 34533 developed a highly sensitive spectrographic method based upon analysis of solution residues dried on C disks, placed into an electrode crater, and arced in air or Ar-02 atmosphere. Multifactorial experimental planning and the Box and Wilson method were employed to optimize experimental variables, the carrier mixture, and disk thickness. Shuvabova et al. (340E) also selected conditions for determination of W and Mo in silicates by the Box and Wilson method. Berenshtein et al. (29E) determined the optimum spectroscopic buffer composition using the same approach. Krasnobaeva and Zadgorska (195E, 409E, 410E) examined the effect of additives on the plasma and electrode temperatures and the plasma electron pressure for the arc excitation of dried solution residues in an 8-9 A dc arc. Patterns of material entry were related to the occurrence of chemical conversion on the electrode surface. Krasnobaeva and Nedyalkova-Daskalova (192E, 193E, 2943) further studied the effect of controlled argon atmosphere and barium nitrate on plasma parameters, relative spectral-line intensities, and detection limits for the polystyrene-saturated electrode dried residue method. Polatbekov and Zhukov (2893) observed the changes of radial and axial distributions of absolute concentration resulting from changes in the sample compositions and introduction of sodium into the arc. Vysokova and Shvangiradze (341E,3423, 398E) measured the temperature and electron concentration as a function of Na and K concentrations in the arc, and explored the effect of Ar on excitation temperature and electron concentration in a 14-20 A dc arc in the presence of various radiation buffers. Rekalic and Vukano-

vic (301E) determined the temperature distribution in a free-burning dc arc in nitrogen in the presence and absence of lithium carbonate using a schlieren interference method. Schoenfeld (324E) demonstrated that the addition of Ag2O in the analysis of hydroscopic and deliquescent halogenides permitted storage in powdered form for longer periods than untreated samples. Among other advantages, the sensitivity of the determination of some elements was improved. Decker (76C).observed that, for well-buffered samples, the type of dc arc source control contributed little but, for poorly buffered samples, a constant power source provided greater control over variations in arc temperature, electron pressure, and anode temperature than constant-current or manual sources. The effect of a high-current, short-lasting arc discharge on the spectrochemical matrix effect and the arc discharge temperature was examined by Kawaguchi et al. (165E); however, the significant matrix effect of the alkali metals was not eliminated. Vecsernyes (391E)explored the selection of optimum excitation conditions in a spectrochemical method for analysis of high-purity silicon. Shavrin et al. (3353) sought the presence or absence of chemical reactions in determining the effect of Group I, 11, and VI11 elements on excitation of artifical mixtures containing Si02. Kupkova (203E)studied the effect of variable CaC03 content in a silicate matrix on the precision of the spectrographic determination of some elements of low volatility. Shvartsman and Fal’kova (343E) considered the effect of seven oxides and PbC12 on the evaporation of gold from mixtures with a C-KCl-Pt buffer in the development of a method for the determination of gold in minerals. Cyanogen bands were suppressed by Mannkopff et al. (2243) by arcing in a stream of pure CO prepared from HCOzH and H2S04. Watson et al. (402E) applied the Boumans-Maessen double jet controlled atmosphere arrangement to stabilize the arc and reduce CN emission in the analysis of geological samples for trace elements with a 24channel readout. Vogel (379C) and El-Kholy (93C) also described devices for introducing controlled atmospheres for dc arc analysis. Belov et al. (28E) examined the role played by pressure in an argon arc. With increasing pressure from 1-6 atmospheres, the fraction of energy dissipated by thermal conduction decreased. Grove and Loseke (131E) measured the response to F and C1 of He- and He-Ar-shielded tungsten arcs a t 15 A. In developing a complete dc arc method for the rapid quantitative analysis of 21 metal in large suites of silicate materials, Timperley (367C) selected sample, buffer, atmosphere, and arc parameters to promote reproducible selective volatilization. Using a minicomputer-controlled directreading spectrometer, he found that partial integration of line emission for volatile metals reduced the contribution from spectrum background, improved line-to-background ratios, and allowed determination of volatile as well as nonvolatile metals in a single arc exposure. Kawaguchi et al. (1663) introduced by means of argon carrier gas glow, an ultrasonically nebulized and desolvated aerosol into a horizontal, 5-A dc arc in a simple quartz chamber. Conversion from bright core of the arc to lowluminous arc column occurred along with an increase in sensitivity and suppression of third element matrix effects in the presence of sodium or potassium in solution. McWhirter and Wilson (234E) developed a theory to describe the intensities of spectral lines from a plasma in which a sound wave was propagating, and they concluded that related effects might be observable in plasmas produced in spectroscopic arc! sources. Degenkolb and Griffiths (62B) redetermined the temperature of the Meggers-Corliss-Scribner copper arc. Vidzhkh (3923) prepared graphical correlations between the cathode drop in an arc discharge and the solid body-vapor free energy a t the melting point, the heat of vaporization, and the melting points for 30 different pure electrode metals. Pavlovic et al. (275E)and Ikonomov et al. (206E)treated the problem of an arc in air burning in vertical, watercooled metal tubes of 10- to 20-mm diameters by observing

the radial temperature and electron distributions, changes in spectral line intensities of some trace elements, and mean particle residence times. Szabo and co-workers (355C, 290E, 3633-3653, 3673369E) continued their studies of reaction phenomena occurring in a polarized ac arc. Szabo (364E) summarized early results and experimental approaches in a discussion of the tendency for oxidation a t the anode and reduction a t the cathode during arc excitation. The role of electrode polarities, current, arcing time, composition of the atmosphere gas, reactivities of electrodes, electrode temperature, electrode spacing, and gas space volume (365E),and structure of amorphous and graphite electrode (355C) were considered. Mochalov and Kocherezhkina (240E) studied the excitation conditions and entry of substances into an ac arc discharge in an ammonia atmosphere; the arc temperature was higher by 1400-900 O C than in air. Trapitsyn and Poremskaya (380E) obtained axial and radial temperature distributions in a 3-A ac arc with the addition of CuCl; temperature of the arc axis fluctuated between 5800 and 7400 K depending on the current phase. Alekseev and Kapitonov ( 7 E ) explored the time and arc-phase dependences of the electron concentration and temperature in an ac arc. Lowke (2183) demonstrated that the Elenbaas-Heller equation could be used to predict temperature profiles and electric field strengths in wall-stabilized arcs to fair accuracy, even in cases in which significant self-absorption occurred, provided that suitable net emission coefficients were used to represent radiation losses. Lowke et al. (2193) numerically solved energy balance and circuit equations together with Ohm’s law to obtain temperature profiles, current, and voltage as a function of time for wall-stabilized ac arcs. Pukhov (2913) and Kolesnik and Shirokanov (188E) studied capillary discharge plasmas, and they measured plasma temperatures of approximately 35 000 K. Lishanskii (216E) measured the copper emission spectra and their spatial distributions in an ac arc, low-voltage spark, and combined discharges. By combining discharge forms, high neutral atom emission and sensitivity were obtained. A combined ac arc-air-acetylene flame was studied by Lesnikova and Khurin (213E),who found that the energy parameters of the arc were stabilized owing to the increased electrical conductivity of the hydrocarbons in the flame. Podmoshenskaya and Podmoshenskii (2843) investigated instabilities in quantitative spectroscopy with arc and spark generators resulting from instabilities of the electric discharge region and the electrical discharge plasma. Smirnova (3523) developed a calculation model for spectral line intensities in a spatially inhomogeneous arc, spark, pulsed discharge and other emission sources. Carrier Distillation. Table I11 summarizes some reported spectrochemical analysis carried out by the carrier distillation technique. Morello et al. (2443) examined a variety of experimental conditions in developing a satisfactory carrier-distillation method for the analysis of ferrous alloys with polytetrafluoroethylene carrier. Shuvalova et al. (3393, 3403), screened the effect of 12 chloride carriers in the determination of Mo and W in silicate matrix. Reaction products were examined by x-ray diffraction, and CuCl proved the most effective additive. An experimental design technique was applied in selecting experimental conditions. Tarasevich et al. (376E) introduced AgCl carrier by impregnating the electrode with Ag(NH&Cl followed by drying to decompose the diammine complex and to provide a uniform distribution of AgC1. Martel (229E) controlled the effect of sample particle size on the carrier distillation analysis of PuOz by mortar grinding and mechanical mixing. By using radiotracer methods with 48V, Amaya and Guido ( 9 E ) determined the degree of volatilization for NaF (37%) and Gas03 (0.9%) carriers in the determination of V in U308. Laktionova et al. (2103) investigated the mechanism of NaCl carrier on the increased intensity of rare earth element lines in a carbon collector. ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

123R

Table 111. Arc Analysis by Carrier Distillation Matrix Carrier Impurities Reference AgCl-SrF2 Ta, W + 5 (2773) UBOS NaF,AgCl 6,5 (183) NaF,GazOa V (83,9E) UF4 PbC12 17 (733) NaF B (250E) ZnO B, Si (5E) U,U308 AgCl,+AgF, 6 (43) SrF2, NaF PuOn NaCl Ga (863)

vzos Ti02

ZrO2 CaF2 Metal oxides Pt metals Ferrous alloys Si02

WE) (3.546) (162E) (411E) (2723) (113) (1213, 122E) (22233

AgCl AgCl GaF3 AgCl NaC1, NaF NaF CuOF PbF2

20 11 11 22

AgC1, CdS NaCl, Gan03 Teflon

W 5 17

(238E) (2733) (2443)

CUClZ

W, Mo

(340E)

Ta, W B, Cd B 9

Dale (73E)described a carrier distillation method for the determination of 17 trace elements in UF4 based upon PbC12 as carrier and with Yz03 added to suppress U emission by reacting with the matrix during the arcing period to form U3O8. Peter (208C) employed a chimney electrode for spectrographic detection of easily volatilized elements. DC Arc Plasma Jets. Excellent reviews of spectrochemical plasma jets were prepared by Greenfield et al. (127E), Kleinmann and Svoboda (182E), and Butler et al. (IOA). Greenfield et al. discussed the historical development, introduction of liquids and solids, plasma temperature, interferences and background spectra, and analytical applications including a table of detection limits. Kleinmann and Svoboda considered construction, operating conditions, physical measurements, sample introduction, and analytical results with a table of detection limits. Butler et al. also reviewed construction and major features of various current carrying and noncurrent carrying plasma jet arrangements. Rippetoe et al. (303E, 304E) reported two notable developments. To extend aerosol residence time and reduce plasma rejection of aerosol, Rippetoe et al. (303E)modified the Marinkovic-Dimitrijevic plasma arc arrangement by incorporating relatively large electrode spacing and by inducing a diffuse discharge mode which improved sample entry and reduced background by nebulizing 2M KC1 with the sample aerosol. Subsequently, Rippetoe et al. (304E) introduced a novel plasma jet device in which the arc column burned in argon between a pointed thoriated tungsten upper cathode and a circular graphite disk anode. Rotation of the discharge and a durable electrode system enhanced long- and short-term stability and eliminated the need for KC1. Kawaguchi et al. (166E) also forced a change in arc column configuration upon addition of Na or K in solution. Murdick and Piepmeier (2483) constructed and evaluated a dc plasma arc device similar to that of Marinkovic and Vickers for determination of Hf, Cu, and Ca. Marriott (2283) briefly described a plasma jet arrangement suitable for analysis of powdered steel samples. Using a dc plasma device similar to that reported by Elliott, Merchant and Veillon (2353) measured plasma temperatures, their change with gas flow rates, and detection limits for a 9-A discharge with desolvated sample aerosol. Golightly and Harris (119E) also investigated the analytical characteristics of the Elliott plasma jet operated at 7.5 A with a desolvated sample and evaluated its application to geochemical materials. Denton et al. (84E) explored the analytical capability of a commercially available capillary dc arc plasma operating with argon into which sample was injected by vaporization 124R

ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

from a tantalum filament coil atomizer. The unsuitability of commercial pneumatic nebulizers which operate at relatively high flow rates prompted use of the Ta-coil atomizer for 5-pl aqueous samples. Gray (127C) used the same capillary arc source for mass spectrometry. In a new commercially available but unreported design, Elliott positioned gas-stabilized anode and cathode a t a 75' included angle between which formed a narrow arc column. Maximum analytical radiation was observed slightly below the apex of the filamentary arc column where background was low and where sample aerosol, introduced from below, encountered the arc column. McElfresh and Parsons (232E) developed a method with a Spex plasma jet for the determination of wear metals in oils, and Watson and Russell ( 4 0 I E )applied the plasma jet in the analysis of leach liquors, concentrates, slags, and residues. Marinkovic et al. (184E, 225E) determined Al, Cu, and Fe in 0.5% KCl solutions and Be in Cu-based alloys with a gas stabilized arc. Doerffel and Ganeva-Arpadjan (90E)determined 10 trace elements in high polymers using the Holdt-Hoffmann disk-stabilized arc. Cherevko and Simonova (57E) investigated the relationship between the spectral-line intensity and grain size of minerals vaporized in a plasma jet. Koifman et al. (187E) constructed a device for sDravina _ - -solutions into an arc between C electrodes. Pulsed and Spark Plasma Discharges. Eaton (98E) continued studies of radiation Datterns of electrode and plasma species in an atmospheric pressure high-voltage spark using time-swept, time- and spatially-resolved instrumentation for recording high quality spatial information. In the spatially heterogeneous discharge, application of a simple masking technique demonstrated improved signal-to-noise and reduced interferences and background. Eaton characterized an electronic spark source capable of very low time jitter, control of current waveform, repetitive triggering, and synchronization. A miniature, low-energy coaxial capacitor spark discharge system for emission solution analysis was described by Zynger and Crouch (420E). Characteristics of the source, designed in a coaxial geometry for maximum energy storage with minimum inductance and power loss in transmission, were measured for solution sample aerosols using photoelectric time-resolved techniques. Topham et al. (3783) investigated the dynamics and properties of a coaxial spark ignitor, and Hill (138E) showed that some initial thermalization of a spark discharge occurred in the plasma constriction at the cathode after a fairly high-density electron plasma was formed from the cathode by high-velocity ionizing waves moving into the spark channel. A gas dynamic model was proposed by Bobrov (33E, 34E) for the expansion of a spark channel, and Kekez and Savic ( I 7 0 E ) proposed a new mechanism for the development of a spark channel in gases. Marode (2263,227E) examined the experimental and theoretical nature of the streamer track in the spark breakdown in air at atmospheric pressure, a positive point, and a plane. Hess (137E) calculated quantities of a theory describing the electrical behavior of low-inductance spark discharges. Bayle and Bayle (26E) simulated by computer the buildup of a breakdown in air in a gap with an applied uniform electric field. Brenza and Veis (44E) examined the recombination processes in later stages of a spark discharge in air; time variation of density of ionized particles was described by a model of radiative-collisional plasma decay. Yashin and Smolentsev (408E) calculated the forces responsible for ejection of molten metal from the crater during electroerosion machining. Van Dijck and Dutre (388E) calculated the craters obtained by sparks in electrical-discharge machining based upon a heat conduction model. Pressler and Guenther (99E)considered the cathode erosion and electrode loss power in pulsed discharges in Xe at 700 Torr, and Nikolaev et al. (260E) characterized the erosion of Ni, Cu, and A1 electrodes in a pulsed plasma generator in Ar, N, and He. Pyshnov (293E) studied the behavior of a channel-wall stabilized discharge in He, H, N, and Ar a t pressures of 0.1-760 Torr during the passage of a 1-50

kA, 70-140 K S rectangular pulse. Podmoshenskii et al. ( 2 8 5 3 ) evaluated a high-current pulsed discharge in argon as a light source. Borovich et al. (36E) studied the current and voltage, channel expansion rate, and absolute emission intensities of high-current discharges, and a general physical picture and approximate model developed. Van Deurzen and Conwaj (3873) studied the time-integrated and time-resolved spectra of vanadium ions in a vacuum sliding spark and measured the relative line intensities as parameters of the electric circuit were varied. Using scanning electron microscopy and energy-dispersive x-ray spectrometry, Strasheim and Blum ( 3 5 6 3 )investigated the erosion of aluminum surfaces sparked by single and multiple discharges in air and argon. Stachova (3533) reported the effect of alloying components, discharge gas, and state of electrode surface on the spectrographic analysis of aluminum alloys in a high-voltage spark discharge. Slickers e t al. (350E, 3513) found interelement effects minimized by sample excitation in argon in a combined medium-voltage discharge, and Slickers and Schmitt (3493) described the spectro chemical analysis of aluminum alloys. Strelkov and Yankovskii (3573) measured the time characteristics and size of plasma cloud for aluminum electrodes in a spark discharge, and Kazennova and Taganov (168E) explored the regularities and mechanisms of the effect of structure and properties in the spark analysis of aluminum alloys. Schwarz and Milkowits (3253) determined the effects of thermal conductivity and structure of alloyed steels in a low-voltage spark discharge. The sampling rate, penetration depth, and form of spark crater were directly related to the sample thermal conductivity and the temperature near the craters. Slickers (3483) reduced analysis time of steels and cast iron by directing an accelerated stream of argon directly against the cathode to remove sample impurity oxygen early during the prespark period. Lopez-de Azcona and Alvarez-Arenas (217 3 ) found the spectral emission in a low-voltage spark discharge of different constituents of titanium and its alloys depended upon the proportion of phases present in the alloy and upon its thermal history. Kashima and Umemura (159E-161E) investigated the effect of spark electrode heating on spectral-line intensities; pure and alloy electrodes were heated as high as 700 OC in air, oxygen, and argon atmospheres. Savitskii et al. ( 3 1 9 3 ) and Skotnikov and Smirnov ( 3 4 7 3 ) studied selective erosion by low-voltage spark discharges on tungsten, tungsten alloys, and pressed copper powder. A correlation was observed between the difference in work function of the inclusion, the pressed-copper matrix, and the erosion. Bondarenko ( 3 5 3 ) derived an analytical expression for the dependence of spectral line intensity with the bond energy of atoms in the step process of evaporation which considered the temperature dependence of the bond energy and difference in the statistical sums for each solid phase. Musha and Inoue (2.513) examined the effect of argon, oxygen, and their mixtures on spectral-line intensities and sample erosion in a high voltage spark on steel. Galazka et al. (113E, 1143) considered the effects of presparking time, nature of the counter electrode, and structure of steel samples on the determination of four elements in steel, Florian (1093, 1103) studied spectral line pair selection and sample evaporation in a medium-voltage spark discharge for different excitation conditions using scatter diagrams and correlation curves. Narita et al. ( 2 5 6 3 ) found that the cause of improper discharge in the low-voltage spark excitation of pig iron results from preferential sparking to graphite flakes in the iron. By employing a specially constructed pulse height analyzer Onodera et al. ( 2 6 6 3 )correlated the fluctuation in the A1 line intensity in the pulsed-discharge determination of A1 in steel with the amounts of A1 in different chemical states. Dryakhlov (96E) studied the periodicity effect of line intensities observed during the high-voltage condensed discharge analysis of high-chromium steels as a function of sample entry and electrode surface oxidation processes, The perferential contact of a spark discharge with car-

bide and sulfide inclusions was explored by Buravelev et al. (51E) as a function of time by spark samples with ground and polished surfaces. The effect was eliminated with appropriate presparking. Savkiv et al. (320E) and Sherstyuk et al. (3363) applied contact-spark techniques to obtain remote samples for subsequent spectrochemical analysis. Van der Piepen (3863) applied an argon-jet guided spark with a rotating disk electrode to the spectrochemical analysis of organometallic compounds in oil. Weysenfeld (392C) applied the argon-jet guided spark technique to a dye laser pump. Lakatos and Paksy (208E, 209E, 268E-271E) examined the effect of axial iniection of an areon stream through the upper counter electiode with a flat-rod sample a n d h the rotating disk electrode spark and intermittent-arc methods of analysis. This configuration provided decreased self-absorption of atom and ion lines and uniformity of line-intensity distribution in the electrode gap. Lakatos (205E-207E) explored the use of organic solvents with the rotating disk electrode and spark excitation. Halogenated hydrocarbon solvents improved sensitivity by more than an order of magnitude although correlation of line pairs and precision were poorer relative to water (205E). Line intensity was found to be inversely proportional to the bth power of the heat of vaporization (206E) and, in the determination of metal content of crude oils by the rotating disk technique, the matrix effect of hydrocarbons was attributed to an increase in heat of evaporation of the sample solution and residence time of elements in the discharge (2073). Ackermann and Muenx ( 1 3 ) measured the influence of inorganic foreign ions on the spectrographic determination of 0.1 to 10%A1 and Si in metallurgical products fed to a spark discharge as a solution aerosol blown through a hollow graphite electrode. The effect of addition of acids and organic solvents on the atomization rate and on line intensities in arc and spark excitation of Zn and Fe solutions was examined by Moselhy (2473). Muzgin et al. ( 2 5 2 3 ) improved the detection limit and the precision of analysis using a rotating disk electrode by blowing a stream of hot air on the rising part of the electrode to remove the solvent and dry the electrode. Kosarev and Kostko (1913) used a cotton-wick electrode for spark analysis of aluminum solutions. Heshmat-Chaaban and Triche (1363, 381E) used a highpower pulsed source for the emission determination halogens after a study of the influence of matrix and sample polarity. Kalinin et al. (1563, 157E) examined the effect of reduced pressure on electrical erosion and line intensity during spectral analysis of alloys by a pulse discharge. Hollow Cathode Discharge. Hollow cathode discharges find application as sealed and flowing lamps for atomic absorption and fluorescence spectroscopy, as emission sources, especially with demountable hollow cathodes, and recently as ion sources for mass spectrometry. The combination of these applications has led to further exploration of the spectral properties and physical sputtering and discharge processes. Delcroix and Trindade (83E) reviewed hollow cathode arc applications to ion lasers, ion sources for electric propulsion systems, discharge lamps, and rectifiers. DeJong and Piepmeier (813, 82E) measured time- and wavelength-resolved emission line profiles for pulsed conventional Cu and Ag hollow cathode lamps (HCL’s) and for a demountable Cu arc-glow HCL. Time-resolved profiles were measured under computer-control a t 2 1 - c ~intervals ~ using a piezoelectric-driven Fabry-Perot interferometer. Self-absorption and self-reversal of the Cu 1324.7 nm doublet was severe in some pulsed HCL’s. Optimum conditions for various uses of pulsed lamps were discussed. The emission-line profiles from the arc-glow HCL were compared with a standard Cu HCL. Various electrode configurations for the arc-glow HCL were studied, and the discharge was termed an arc-glow because the discharge inside its cathode capillary portion showed emission linewidth and current density characteristics of an arc discharge, while the discharge region outside the capillary and near the anode ANALYTICAL CHEMISTRY, VOL. 48, NO. 5 , APRIL 1976

125R

appeared characteristic of a glow discharge. DeJong and Piepmeier suggested configurations and sample types for which the capillary arc-glow discharge might serve as a useful sampling system. DeJong and Piepmeier (80E) observed extreme self-reversal under pulsed conditions in a commercial Cu HCL in spite of a linear relation between the wavelength-integrated line intensity and the lamp pulse current. Piepmeier and De Galan ( 2 8 2 3 ) determined profiles of a Ca I resonance line emitted by a modulated HCL. Self-reversal and line width increased with radial distance from the center of the cathode bore and with frequency up to 6.4 kHz. Electronic modulation gave narrower and more intense lines than dc operation combined with optical chopping for frequencies up to 1.6 kHz. Piepmeier and De Galan (283E) also measured interferometrically line profiles emitted by Cu and Ca HCL's pulsed to 1 A. Time integrated profiles showed that self-reversal increased with repetition frequency and that the lines broadened with increased current. Wagenaar et al. (399E) obtained HCL line profiles with a pressure-scanned interferometer in a study of the influence of HCL profiles on analytical curves in atomic absorption spectroscopy. Keliher and Wohlers (171E) used a high-resolution echelle sDectrometer to measure directlv line Drofiles from Ca. Ag, ahd A1 HCL's. For Ca I and Ag"1, a d;rect relationship existed betv?een increasing current, line broadening, and absorbance. Human et al. (142E) compared dc and high frequency boosted HCL's; remarkably similar results were obtained for intensity enhancement and line widths, which were measured with a Fabry-Perot interferometer. Zhechev et al. (417E) analyzed the profile of the Fe 372nm line emitted in the negative glow of a hollow-cathode discharge for a current range of 7-15 mA and Ne pressure of 1-4 Torr. By using a Fabry-Perot scanning interferometer, Kidrasov et al. (174E-176E) studied contours of Mg, Ar, and He lines excited in a Mg HCL as a function of current and filler-gas pressure. Yamashita and Hasunuma (406E) measured the radial intensity distribution of spectral lines in a Cu HC discharge as a function of gas pressure of Ne, Ar, and Xe. Dobrosavljevic and Marinkovic (89E) examined the dependence of spectral line intensities on fill gas pressure and discharge current for a graphite cathode coated with evaporated metal solutions. Spectral line intensities decreased with pressure except for autoionized lines of Cu in Ar discharge and increased with increasing current. Cristescu et al. ( M E ) found two different excitation mechanisms were involved in populating upper Cd I1 level in a HC discharge in He. Kravchenko et al. (196E, 197E) found that increasing He pressure in a pulsed HC discharge increased the intensities of spontaneous emission of triplet He lines. Kagan et al. (151E-154E) studied the line intensities and electron energy distribution in hollow cathode discharges. Quenching effects were studied by Zakharov et al. (416E), cathode materials effects by Brunet (47E),and electric and energy characteristics by Nikolaev et al. (259E). Rudnevskii et al. (307E-310E, 312E, 3333) investigated the effect of a magnetic field on the spectral line intensities during analysis in a HC discharge, and Rudnevskii et al. (311E) examined a combined dc-pulsed discharge. Kucherenko and Zykova (202E) compared cylindrical and conical hollow cathode shapes, and Atnashev et al. (13E, 14E) studied a double hollow cathode with separated zones of evaporation and excitation. Torok and Zaray ( 3 7 9 3 ) designed a twin hollow cathode cooled by liquid air coupled to an interferometer-spectrometer for studying excitation processes in HC discharges and applying the system to spectrometric analysis. Flinn and Stephens (108E) described a technique for the construction of a multicathode configuration HCL. Daughtrey (74E) explored the use of the hollow cathode discharge as a spectral emission and mass spectral ionization source. Daughtrey et al. (75E)used a scanning electron microscope to study sputtering effects in a HC discharge with copper, graphite, and stainless steel cathode materials. Practical implications for methods using the HC dis126R

ANALYTICAL CHEMISTRY, VOL. 48, NO.

5, APRIL 1976

charge as an emission or ionization source were discussed. They also determined sub-ppm concentrations of B in solution (77E). Harrison and Magee (134E) described the application of the hollow cathode ion source for solids mass spectrometry, and Daughtrey and Harrison (76E) examined the critical parameters affecting the hollow cathode ion source for the mass spectrometric analysis of solids and solutions. Donohue and Harrison (91E) also described a radiofrequency cavity ion source to sputter and ionize solid samples for mass spectrometry. Colby and Evans (64E) also reported a simple hollow cathode ion source for the mass spectrometry of conducting solids, and Coburn et al. (62E) employed a radiofrequency glow discharge mass spectrometric source. Zakharov et al. (412E-415E) used a hollow cathode discharge to determine rare earths in Am, impurities in Cf, Am, Cm, Eu, and Gd, and Am in Cm. Fukushima and Nakajima (112E) determined 235U/238U ratios in a HCL with an etalon-grating monochromator. Bevan and Kirkbright (30E) used a demontable HCL source and a piezoelectrically scanned Fabry-Perot interferometer for the determination of the hyperfine and isotope components of the P b 405.8-nm emission line. They developed a simple method for the determination of isotopic composition of lead ores and minerals. Kirkbright and Wilson (180E) used the demountable HCL as a source for the atomic absorption determination of S, I, As, Se, and Hg. Kirkbright et al. (179E) applied an Ar-filled cathode sputtering cell as the atomization cell for the direct determination of I at 183 nm by atomic absorption and emission spectroscopy. Turkin et al. (307E, 413E) tested a cooled hollow cathode light source for spectral analysis of nonvolatile impurities in a volatile matrix and other powdered samples. Lindinger and Howorka (214E) described an experimental arrangement which allowed the exact determination of the density of neutral water traces in a cylindrical hollow cathode during operation of the discharge. Grekova et al. (129E) investigated the structural change in the cathode layer accompanying the transition from an anomalous glow discharge to a hollow cathode glow discharge. Stieber and Stern (334E) considered the plasma parameters in the negative glow of double cathode discharges, and Aksenov et al. (2E, 10E) measured the current-voltage characteristics for a glow discharge with hollow cathodes. Glow Discharge Lamps. Since the glow discharge process results in removal of a sample surface by sputtering, application of the glow discharge in the analysis of surface and thin film compositions is becoming increasingly popular. Evans (104E) surveyed techniques and instrumentation employed in surface analysis, and Coburn and Kay ( M E )critically reviewed techniques for elemental composition profiling in thin films. The glow discharge is employed both in optical emission spectroscopy and mass spectrometry, and the terms GDOS (glow discharge optical spectroscopy) and GDMS (glow discharge mass spectroscopy) are now often used. Jager and Blum (147E) examined cross-sections of burnspots on brass and a Au alloy produced by a glow discharge lamp (GDL) by scanning electron microscopy. The relative sputtering of Pb-rich inclusions resulting in unique topography required a long preburn time in order to obtain satisfactory analytical curves. Jaeger ( I 18E) applied the GDL to spectrometric analysis of raw gold, and explained interference effects by changes in sputtering rate and self-absorption of emission lines. Bueger (49E) measured the electron concentration ~ m - ~excitation ), temperatures (30 000 K) and rotational and vibrational temperatures (9300 K, 1190 K) in a glow discharge lamp. Bueger and El-Alfy (50E)determined excitation temperatures from Fe I and Fe I1 lines (30005000 K, 20 000 K) in the GDL. The ion lines were strongly affected by discharge parameters. Whelan and Greene (403E) patented a sputtering method and apparatus for quantitative and qualitative analysis of materials, such as impurities in semiconductor thin films by sputtering in a GDL. Greene et al. (124E, 125E) determined B implantation and P diffusion profiles in Si, and described GDOS for microvolume elemental analysis

( 123E, 25 7 E ) . Czakow (68E) improved the Grimm GDL by using a brass insert with a graphite rod and enlargement of the anode with an A1 ring. The GDL used a flat cathode for analysis of macrocomponents, and a concave cathode for microcomponents; either glow or hot hollow cathode modes were used. Hirokawa (139E) applied the GDL for analysis of mild steel and a Cu-Ni alloy, and Radmacher and de Swart (295E) analyzed steel and cast iron. Schneider and Schumann ( 3 2 3 3 ) analyzed corrosion or diffusion zones of corroded cladding material. Suzuki et al. (361E) determined S and A1 in steel. Application of glow discharge sputtering for mass spectrometry was described by Coburn et al. (59E, 60E, 62E, 63E, 102E). Laser-Produced Plasmas. Laser-produced plasma emission continues to be used in emission spectrochemical analysis almost totally in the analysis of microvolume samples by means of the laser microprobe. The application of laser radiation for the dielectric breakdown of various gases, plasmas, liquids, and solids increases, however. Reviews of gas-breakdown phenomena induced by lasers were prepared by Shkarofsky (337E), Morgan (24.533, Ciura ( % E ) , and Ostrovskaya and Zaidel (2673). Couturand et al. (65E) and Krokhin (199E) reviewed the interaction of intense laser radiation with matter. In “An Introduction to Gas Lasers: Population Inversion Mechanisms”, Willett (394C) brought together information on the basic atomic collision processes that operate in a gas laser and their relationship to gas-discharge processes and parameters. He treated the basic and practical aspects of electrically excited gas discharges used in the production of population inversion and described gas-discharge methods applied successfully in gas-laser systems: glow, rf, hollow cathode, and pulsed discharge. Three chapters of specific neutral atom, ionized, and molecular laser systems were employed to illustrate selective excitation processes and ways in which population inversion was maintained in their presence. Baudin ( 2 5 3 ) surveyed application of the laser to emission spectrography, and McGillivray ( 2 3 3 3 ) reviewed laser microspectrochemical analysis. Glick et al. (226C, 370C, 1173) discussed the potential for clinical use and applications of the analytical laser microprobe for emission spectroscopic elemental analysis in microscopic samples of biological materials. The principles, instrumentation, performance, and application of the laser microprobe were described. Murota ( 2 4 9 3 ) reviewed laser microprobe emission analysis and its applications in fields of nonmetals, metals, alloys, polymers, rubber, and biosubstances. The status and development trends in laser microspectral analysis were described by Moenke-Blankenburg and Moenke (2432). Yankovskii (407E) also reviewed laser spectrometric analysis. Stupp and Overhoff (3583, 3593) described the vaporization of graphite, the plasma form, the plasma properties, and the plasma-laser radiation interaction when the beam of a free-running laser was focused on graphite in air a t 1 atm and in He, 0 2 , and Ar a t various pressures. Using normal, framing, and streak photography to observe the plasma, the authors found that absorption of the laser beam by inverse bremsstrahlung to be the dominant excitation mechanism a t higher pressure which causes a strong temperature gradient from the point of absorption to the fringe. Tagnov and Fainberg (3703) examined optimum analytical parameters for laser spectrographic analysis of metals, alloys, and glass. For the spectrochemical analysis of metal samples by the laser microprobe, Kubota and Ishida (200E, 201E) decreased self-absorption by changing the parameters of the cross-spark discharge and energy output of the laser, and by blowing Ar through the analytical gap. Dimitov and Petrakiev ( 8 8 3 ) also studied the performance of a laser microprobe in air, 0 2 , N2, and Ar, and Mohr (235C, 241E) examined the effect of pressure and type of protective gas atmospheres. The uses of laser sources for the spectrochemical analysis

of metals was considered by Ohls et al. (2643), Bieber (31E, 3 2 E ) ,Krivchikova (198E),Buravlev et al. (52E,53E), and Pelukh and Yankovskii (2763). Application of lasers in microanal sis of geological materials was reviewed by Eremin (IO&& and Idzikowski et al. (143E-145E). Uchida et al. (384E) performed multielement analysis of air-borne articulates, and Yamane (405E) detected halogens and in air by laser microspectral analysis.

SPECTROCHEMICAL ANALYSIS Many applications of spectrochemical analysis are published annually, and excellent compilations are given in the “Annual Reports on Analytical Atomic Spectroscopy” (69A, 70A), in “Spectrochemical Abstracts” (64A, 6 5 A ) , and in the applications reviews of this journal appearing in alternative years. In 1975, pertinent reviews included air pollution by Saltzman and Cuddeback (169F), clinical chemistry by Gochman and Young (56F),ferrous metallurgy by Straub and Hurwitz (186F),fertilizers by Gehrke and Rexroad (54F),food by Sloman et al. (180F),inorganic and geological materials by Dinnin (39F), metals in oils by Braier (17F), nonferrous metallurgy of light metals by Seim et al. (175F),solid and gaseous fuels by Hattman et al. (70F), and water analysis by Fishman and Erdmann (50F). T r a c e Element Analysis. Toelg (199F) discussed the limits of optical spectroscopy, mass spectroscopy, and activation analysis in the direct analysis of high purity metals and semiconductor materials, enrichment of contaminating elements, and separation of impurities from the matrix in a review of recent problems and limitations in the analytical characterization of high purity material. General methods were described for the elimination of systematic errors, especially during the decomposition and enrichment procedures. These methods combined with suitable spectroscopic techniques, such as plasma emission spectroscopy, made possible the accurate determination of many elements in ng and pg amounts in a variety of matrices. The concentration and determination of trace elements by chemical, physical, and microbiological processes was the general topic of the first and second parts of Koch and Koch-Dedic’s (9527) second edition of “Handbook of Trace Analysis”. Koch (96F) surveyed analytical techniques used for determination of trace elements in chemical materials, and Albert (3F) reviewed methods for trace impurities in pure metals. A special issue of Clinical Chemistry (34F) featured trace elements in clinical chemistry. Fulkerson et al. (53F) edited the proceedings of a conference on trace contaminants. Von Lehmden et al. (215F) compared selected analytical techniques including emission spectrometry for the determination of trace elements in coal, fly ash, fuel oil, and gasoline, and Babu (228F) edited a monograph on trace elements in fuel, which included a chapter describing trace elements in coal by optical emission spectroscopy (43F).Yen (222F) edited a book on the role of trace metals in petroleum. Preconcentration, enrichment, and separation techniques are commonly used in conjunction with most conventional emission analysis of trace elements. For example, Krasil’shchik et al. (104F) used electrolysis for nine impurities in magnesium compounds; Makhnev et al. (133F) applied three-phase extraction for determination of Hg, Sc, and Sn; Pavlenko et al. (159F) extracted four different types of complexes in the determination of 18 elements in alkali metal halides, and Lazebnik et al. (112F) collected trace elements by passing them through an oxidized carbon column, which was later dried, ground, and analyzed in an ac arc. Bozhevol’nov et al. (16F) determined trace metals in organic reagents and complexing agents, and Yudelevich et al. (226F) studied the effects of NaCl carrier concentration in carbon collectors for trace analysis on line intensities produced during dc arc analysis of extra-pure substances. Some further references to analysis of pure materials for trace elements are given in Table IV. Minczewski et al. (139F) described methods for separaANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

127R

Table IV. Trace Element Analysis i n P u r e Materials Material

Impurities

Reference

A1 Ag As AsC13 Au BaClz Bi C Cd cu Ga Ge Li salts Mg MgCh MnOn Na Ni oxide Pb Se Ta compounds Ti, Ti02 HReOn Sb

21 22 20 19 26 5 20+ B; 12; 10 2

(92F) (208F) (214F) ( I 77F) (154F) (55F) (26F) (58F, 165F, 227F) (138F) (164F) (181F) (156F) UOF) ( I 06F, 140F) (52F) (79F,80F) (209F) (8W (26F) (138F) (60F) (205F) (225F) (150F,185F, 223F) (224F) (67F) (149F, 187F) (6IF) (6.W (33F) (59F) (142F)

18

11 12 8 4, 17 5 20

21 20 8 19 21 20 14,16 7 9 5 5 3 15 42 30

+

tion and concentration in trace analysis. Agricultural, Clinical, Environmental Materials. Greifer (64F) included emission spectroscopy in his survey of various approaches to the chemical analysis of environmentally important materials, and Ahuja et al. ( I F ) edited a book devoted to chemical analysis of the environment in which Hume (73F) outlines the pitfalls in the determination of environmental trace metals. Burrell (24F) in “Atomic Spectrometric Analysis of Heavy Metal Pollutants in Water” considers natural water systems, aqueous heavymetal pollution, pre-analysis chemistry, and .aspects of atomic spectroscopic methods of analysis. Aidarov and Razyapov (56F) described spectral methods for determining noxious substances in air and biological materials. Harrison (68F) reviewed the problems and needs for monitoring trace metals in the atmospheric environment. A bibliography of lead and air pollution was prepared (113F). Emission spectroscopic determination of trace elements in airborne particulates was considered by a number of authors. Imai et al. (76F)used an ac arc to determine particulates collected on a Millipore filter. Sugimae (189F-191F) employed dc arc excitation for determination of approximately 1 2 elements in particulates collected either on membrane or glass fiber filters. Krishnamurty et al. (107F) employed filter paper and a dc arc for the collection and determination of trace metals in particulates. Seeley and Skogerboe (327C) used graphite electrodes as sample collectors and sample holders in the dc arc analysis of atmospheric particulates. Uchida et al. (3843) performed multielement analysis of particulates using a laser microprobe. Sugimae (192F) determined Hg in the atmosphere by dc arc excitation of activated-carbon filters treated chemically before sampling and before analysis. Braman (20F) determined ambient forms of Hg in air using sequential selective absorption tubes for separation and a dc discharge spectral emission detector for analysis. Soldano and Kwan (182F) considered the relationship between the concentration of mercury in air samples and the emission signal from a Braman dc emission detector. Watling (400E)determined Hg 128R

ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

in sea water, and Talmi et al. (371E-375E) determined organomercury and other trace metals in various environmental samples. Rubin (166F)described the chemistry of metals in an aqueous environment, and Leland (116F) reviewed heavy metals and other trace elements in aquatic environments. Allen et al. (5427) surveyed analytical techniques for trace inorganics in water. Sahini et al. (16827) applied the carrier distillation method with NaC1, CsC1, and mixed AgF-NaC1 carriers for the determination of six elements in natural waters after evaporation of a 1-liter sample. Lebedinskaya and Chuiko (114F) preconcentrated 14 elements from a natural water sample by co-precipitation prior to dc arc analysis. Knight and Pyzyna (94F) determined Hg in industrial waste water by emission spectrography after deposition onto silver powder. Le Roy and Lincoln (117F) determined 36 elements in industrial effluents as dried salt residues using a 15-A dc arc in Ar-0. Cornil and Ledent (3%’) determined B, F, P, and Si in water, food, and soils and minerals by emission spectroscopy. Cowgill ( 1 2 0 ) described sample preparation techniques for the determination of 12 elements in commonly-found lake muds. Scott et al. (3273, 3283) determined trace elements in orchard leaves and soil. Shendrikar (229F) critically evaluated analytical methods for the determination of Se in air, water, and biological materials. The elemental analysis of plant tissue by emission spectroscopy was described by Jones (232F) for an eleven-laboratory collaborative study based on the solution rotating disk and a direct reading spectrometer. Chaplin and Dixon (230F) determined 9 elements in plant tissue with the rotating disk solution spark technique. Burridge and Scott (231F) applied the rotating briquetted-disk method for the determination of boron and other elements in plant materials with a triggered condensed ac discharge. Perry et al. (162F) compared intra- and interhepatic variability of 16 trace metal concentrations determined by emission spectroscopy. The inter-hepatic variability was highly significant for all metals. Kawaguchi et al. (164E, 167E) measured Zn in Zn-containing enzymes, and Nakashima et al. (2543) determined Ag in milk and whole blood. Anand et al. ( 6 F ) outlined some precautions in specimen collection and storage in trace element analysis of body fluids. Dreher and Schleicher (43F) developed two spectrochemical methods, one spectrographic and the other spectrometric, for the determination of 16 trace elements in high-temperature coal ash. Problems in loss of V and Mo were discussed, and preparation of synthetic standards was described. Ruch et al. (167F) reported the occurrence and distribution of potentially volatile trace elements in 101 whole coal samples and 32 separated fractions of washed coals. Peck (160F) determined Hg in rocks and coal over the 5-1000 ppb concentration range. Von Lehmden et al. (215F)determined 28 elements in coal, fly ash, fuel oil, and gasoline. Davison (37F) determined the concentration as a function of particle size for 25 elements in fly ash emitted from a coal-fired power plant. Hodges and Belcher (149C) determined Na and K in plasma ashed coal mineral material. Geological Materials. Four recent books on the analysis of geological materials include those by Jerrery (78F), Belopol’skii et al. ( l l F ) , Donaldson (42F), and Kvyatkovskii (110F). Bojic et al. (15F) discussed the theory and techniques of analysis of iron ores, and Ingamells ( 5 3 0 ) proposed a sampling constant for use in geochemical analysis. Timperley (367C)described a direct-reading dc arc spectrometric method for rapid geochemical surveys, and Watson and Russell (402E) established optimum conditions for determination of 11 trace elements in geological samples by direct-reading emission spectrometry. El-Kholy et al. (93C, 46F), determined 19 elements in 60 soils and rocks using a triple-flow gas-sheathed dc arc method. Berenice et al. (12F) described a visual, six-step semiquantitative spectrographic procedure for geochemical reconnaissance. Mosier et al. (144F)determined 40 trace ele-

ments in 129 galena samples using a semiquantitative spectrochemical method based on a visual comparison with standards prepared in spectrographically pure lead sulfide. Mays et al. ( 8 2 0 )described synthetic sulfide standards for quantitative emission spectrographic analysis. Gol’dberg and Vlasov (57F) evaluated the semiquantitative analysis of geochemical materials. Golightly and Harris (119E) applied an argon plasma jet for the analysis of geological materials. Schoenfeld and Berman (173F)determined T e in geological materials by emission spectrography after separation from the sample by volatilization a t 900 OC. Brenner et al. (21F) determined 13 trace metals in silicate rock standards by dc arc emission spectrography. Chandola (27F) determined tungstic oxide in ores and concentrates by means of an intermittent ac arc between copper electrodes. Metals. The analysis of metals by emission spectroscopy was reviewed by Woodward (69A, 7 0 A ) , by Straub and Hurwitz (186F) for ferrous materials, by Seim et al. (175F) for light nonferrous metals, and by Kipsch (30F) and Kawamura and Molita (89F) for iron and steel. Castro (25F) reviewed analytical techrniques used in metallurgy, and Hurlbut (74F) surveyed the analysis of beryllium. Schwarz and Milkowits ( 3 2 5 3 ) studied the influence of thermal conductivity and structure of alloy steels on spark emission analysis, and Slickers (3483) described the effect of Ar atmosphere. Morello et al. (244E) used a carrier distillation method for 16 trace elements in ferrous materials. Vassilaros (211F) determined trace Bi and P b in ferrous and superalloys. Tanaka et al. (194F) described the influence of Mn on the determination of Nb in steel, and Buravlev et al. (23F) applied a “nondestructive” solution sampling technique for the analysis of complex ferrous alloys. Alvarez-Arenas et al. (5F)determined T i in stainless steels by a solution method to avoid selective sampling of TiN-rich areas. Le Trung Tam (118F) determined B in steel by dc arc with steel turnings. Ohls et al. (267E) and Bieber (31E) described the application of laser microprobe analysis in ferrous metallurgy. Emission spectrometric analysis of aluminum was described by Slickers et al. (349E-351E), Stachova (353B), and Strasheim and Bloom (359E). Chandola and Machado (30F) determined 21 impurities in aluminum metal and alumina. Williams et al. (218F) appraised precious metal assay. Sims (178F) determined 7 platinum group metals by arcing a t 7 A with a Cu cathode, a 10-mg fire assay bead for rapid screening of fire assay beads for the precious metals. Grinzaid et al. (190F) evaluated the error statistics of the fire assay-spectrographic determination of Pt, Pd, Au, and Rh. Toelle (200F) reported the emission spectrographic behavior of some impurities in Pd powder standards. The determination of noble metals by emission spectroscopy was reported by Pavlenko et al. (158F, 216F), Danilova et al. (36F),Tarasova et al. (195F), Apolitskii ( 7 F ) , Karpova et al. (87F),Lisnyanskaya et al. (120F),Chandola and Mahajan (31F),and Kreimer et al. (105F). Kornilova (97F) analyzed V-A1 and Zr-A1 alloys; Maciejewska and Substyk (122E’) studied Moos and Mo powders, and Murty and Khanna (148F) determined P b and Te in Bi-Pb and Bi-Te alloys. Efimenko and Kushnareva (45F) determined Zr and Hf using an aerosol spark method, Baryshnikova et al. (9F) compared the unipolar discharge with high-voltage spark and ac arc sources for determination of 5 elements in cast irons. Gases, Gases in Metals. Melnick et al. (136F) edited a comprehensive book titled “Determination of Gaseous Elements in Metals” which includes chapters on electrical discharge extraction methods and optical and mass-spectrometric methods by Winge and Fassel (219F, 220F). Petrov et al. (55A) included in their edited book “Methods of Study and Determination of Gases in Metals” numerous individual contributions based on emission spectroscopic techniques. Takao (193F) also edited a book on standard methods for gas determination in metals. Sudo et al. (188F), Inglot (77F), and Kat0 (88F) reviewed methods for determining gases in metals. Kraft (IOIF, 102F) considered chemical methods for determining

oxygen in nonferrous metals. Baranovskaya ( 8 F ) determined hydrogen in aluminum alloys, and Meister et al. (13%’) applied an electric discharge to polished metal surfaces in the qualitative detection of H inclusions. Dudich et al. (443’) determined l60 and lSO in semiconductors. Matic-Dobrosavljevic and Jelena (134F) determined fluorine in uranium and its oxides by excitation in a hollow cathode discharge. Skotnikov ( I 79F) determined N in steel excited in a low-voltage discharge. Schmauch ( I 72F) critically reviewed methods of analysis, including emission spectroscopy, for the noble gases. Fleck scrutinized (51F) microdetermination of nitrogen with but a single reference to a microwave emission technique. Fiedler and Proksch (49F),in contrast, studied and surveyed the determination of nitrogen-15 by emission and mass spectrometry in biochemical analysis. They described extensively the emission spectrometric determination of 14N/15Nratio using microwave excitation which is presently being used effectively (163F). Korolev et al. (98F, 99F) developed a corona discharge method for the determination of N in an Ar stream, and Kiseleva et al. (93F) determined N, 0, and H impurities in He, Ne, and Ar in a closed system. Penchev et al. (161F) determined Ne after separation of He and the sample. Shapunov et al. (176F) determined N, 0, and CO impurities in H, and Kutyrkin and Pobegailo (108F) determined 0 and N impurities in Ar, He, and their mixtures in an arc discharge. Bit0 and Anta1 (14F) determined gas impurities in the filler gas of fluorescent lamps by applying a capacitive discharge between two electrodes placed externally on the lamp. Grove and Loseke (131E)determined F and C1 in He in a He-Ar arc discharge, and Heshmat-Chaaban and Triche (136E, 381E) analyzed air for halogens with a pulsed discharge source. Pacheva and Zhechev (157F) determined 0 and Ca with a hollow cathode discharge. Isotopic Analysis. Ungureanu (206F, 207F) reviewed and developed isotopic determinations of H, N, and 0 by emission spectroscopy. Fiedler and Proksch (49F, 163F) described the application of mass and emission spectrometry for 14N/15Nratio determination in biological materials. Varga (210F) reviewed new methods of measuring 15N, and Middelboe (137F) described a simple device and sample preparation for high-resolution 15N emission analysis. Wetzel (217 F ) reviewed the preparation, isotope determination, and uses of 15N in research and technology. Mueller (147F) used quartz tubes to eliminate errors in the emission spectrometric determination of 15N abundances in gaseous N. Loyd-Jones et al. (121F)modified a commercial emission spectrometer and procedures for use in the determination of 15N in plant materials. Scott and Humpherson (174F) described an apparatus for the determination of 15N by electrodeless discharge. Muchkaev et al. (145F, 146F) performed isoto ic emisusing sion spectral analysis of trace amounts of l60and r)80 the emission bands of CO produced in a high-frequency discharge. Lichte and Skogerboe (119F) determined by emission spectrometry of a microwave discharge the isotopic concentrations of Li using a scanning method. Bevan and Kirkbright (30E) obtained the isotopic composition of lead ores by means of a demountable hollow cathode lamp and a piezoelectrically scanned Fabry-Perot interferometer. Mainka and Mueller (123F) studied the suitability of emission spectrometry for the isotopic analysis of U and Pu, and Sonobe et al. f170F, 183F) reported the sample preparation and hollow-cathode excitation techniques for determining 235Uand 238Uby emission spectroscopy. Rare Earth, Actinide Elements. Fassel et ai. (48F) discussed the flame and plasma atomic absorption, emission, and fluorescence spectroscopy of the rare earth elements and suggested from preliminary results that electrically generated plasmas such as the ICP discharge may replace combustion flames as excitation sources for analysis of rare-earth mixtures. Osumi (155F) reviewed the spectrochemical analysis of rare earth elements and studied spark solution electrode methods and carrier distillation conditions for their analysis. The rotating disk and vacuum cup ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

129R

electrodes were investigated in the presence of alkali elements and organic solvent, and a method using the rotating disk electrode in methanol was used. Brusdeylins (2287, Kowalczyk et al. (100F), DeKalb (38F),and Haskin (69F) reviewed analytical methods for the determination of rare earths. Some references are cited in Tables I11 and IV. Karyakin et al. (23A) published a book in Russian describing the spectrometric analysis of rare earth oxides. Laktonova et al. (2113) and Saari (3153) investigated chemical reactions in carbon arc electrodes during emission spectrographic analysis of rare earths. Karpenko et al. (84F) studied the mutual effect of rare earth elements and V and A1 in the solution spark analysis of rare earths and A1 vanadates. Dittrich et al. (41F) determined La203 in Y2O3 by arc excitation in an Ar-0 atmosphere. Grampurohit and Sethumadhavan (63F) determined Y in the range of 1-90% in rare earth mixtures. King (91F) developed a rapid condensed-spark method to determine 9 impurity elements in finished or semi-finished U metal surfaces. Moseva et al. (143F) improved the determination of impurities in U by separation of the matrix by extraction with tributyl phosphate. Murty et al. (151F)determined B directly in UF4 using a 5-A dc arc. Zakharov et al. (4113-414E) determined rare earths and actinides by excitation in a hollow cathode source. Karpenko et al. (85F, 86F) found that aerosol transport of solutions gave more precise determinations of alloying additives of rare earth elements in zirconate-titanates than transport through a porous electrode. Metals in Oils. Yen's (222F) book "The Role of Trace Metals in Petroleum" treats instrumental methods of analysis as well as the occurrence and nature of trace elements in petroleum. Braier (276') and Braier and Eppolito (18F, 19F) reviewed the determination of metals in oil and the instrumental methods used for the analysis. The most commonly used emission method is the rotating disk electrode with spark excitation. Van der Piepen (3863) explored the analysis of oil using a argon-jet stabi-

LITERATURE CITED

Books and Reviews (1A) "Application of Gaseous Electronics, 25th Anniversary Conference London, Ontario, 1972", Am. Phys. SOC. Bull., Ser. /I, 18, 790 (1973). (2A) Ausloos, P., "Interactions Between Ions and MoleCules", Pienurn Press, New York, 1975. (3A) Barnes, R. M., Anal. Chem., 46, 150R (1974). (4A) Barnes, R. M., Syst. Mater. Anal., 3, 23 (1974). (5A) Barnes, R. M...Siavin, W., Appl. Spectrosc., 28, 574 (1974). (6A) Becket, M., Fiebig. M., "Rarefied Gas Dynamics", Vol. I, 11, DFVLR-Press, Linder Hoehe, Germany, 1974. (7A) Benko. I., Kem. Kozlem., 40, 175 (1973); Chem. Abstr., 80, 88931q (1974). (8A) Borbat, A. M., Malashok, L. S.,Trenert, E. R., "Spectroscopy, Spectroscopic Analysis, and Technicoeconomics Effect from Their Use'' (Spektroskopiya, Spektral'nyi Analiz i TekhnikoEkonomicheskii Effekt ot Ikh Primeneniya), RDENTP, Kiev, Ukr. SSR, 1974; Chem. Abstr., 82, 149003d (1975). (9A) Burns, D. T., Proc. Anal. Div. Chem. SOC. (London), 12, 155 (1975). (1OA) Butler, L. R. P., Human, H. G. C., Scott, R. H., Handb. Spectrosc., 1, 8 16 (1974). (11A) Chung, P. M., Talbot, L.. Touryan, K. J., "Electric Probes in Stationary and Flowing Plasmas: Theory and Application". Springer-Verlag, New York, 1975. (12A) Coleman, R. F., Anal. Chem., 46, 989A (1974). (13A) "Colloquium Spectroscopicum Internationale XVlll Grenoble 1975", Vol. 1-3, GAMS, Paris, 1975. (14A) Federov, B. F., "Lasers and Their Use" (Lazery I Ikh Primenenie), Izd. DOSAAF. Moscow, USSR, 1973; Chem. Abstr., 81, 97651w (1974). (15A) Fugol, I. Ya.. Ed., "Physics of Vacuum Ultraviolet Radiation" (Fizika Vakuumnogo Ul'trafioletovogo lzlucheniya), Naukova Dumka, Kiev,

130R

lized spark discharge with the rotating disk electrode, and Lakatos (2053-2073) studied the use of it with organic solvents. Hauptmann and Jager (71F) compared rotating disk and rotating platform techniques for the analysis of mineral oils. Farhan and Pazandeh (47F) determined 10 trace metals in petroleum crudes by arc spectroscopy; whereas McElfresh and Parsons (2323)determined wear metals in a He dc arc plasma jet after dilution. Kuznetsova et al. (109F)examined the optimal treatment conditions for resinous and asphaltic crude oil fractions in the determination of 6 metal impurities. Savunov (171F) determined metals in hydraulic fluids by arc excitation, and Biktimirova and Mashireva (13F)improved the detection limits for the arc analysis of metals in petroleum products by addition of specific carriers. Turina and Weber (204F) determined lead in mineral oil with the aid of a textile sample carrier soaked in the oil. Nonmetals. Emission spectroscopy is widely applied for the routine analysis of a diversity of materials as indicated in the reviews on inorganic and geological materials by Dinnin (39F), and refractories, chemicals, and miscellaneous materials listed in ARAAS (69A, 70A). Numerous other practical applications were reported for semiconductor materials (152F), glasses, silicates (75F), scale, clinkers (296F),leach liquors and other liquid concentrates ( 4 0 1 3 ) , raw materials (1I l F ) , slags and nonmetallic inclusions in steel (153F), and chemicals. Among the latter, impurities were determined in S ( 8 2 F ) ,Se (203F),Te (90F, 298F),As (82F, 224F), GeC14 (202F), TazOj (330E, 28F, 32F), W03 (72F), B203 (213F), Caw04 (60F),KZTaFi ( 5 8 F ) , SrC03 (222F), H3B03 (203F), and NH4F (65F),as well as those materials listed in Tables I11 and IV. Temma and Miwa (297F)determined Sb in polyester fibers, and Tokhachenkova et al. (220F) determined Cr in polymethylsiloxane liquids. Also reported were laser microanalysis in semiconductors ( 2 4 1 F ) ,and for particles in single crystals of NaI (222F).

Ukr. SSR, 1974; Chem. Abstr., 82, 162664e (1975). (16A) Gray, A. L., Mod. Phys. Tech. Mater. Techno/.,232 (1974). (17A) Green, J. H. S.,Proc. Soc.Anal. Chem., 11, 49 (1974). (18A) Gusarskii, V. V., Fridman, G. I., "Emission Spectroscopy of Aerosols in Metallurgy" (Emissionnaya Spektroskopiya v Metailurgii), Metallurgiya, Moscow, USSR, 1974; Chem. Abstr., 82, 1 3 2 5 7 5 ~(1975). (19A) Hollahan, J. R., Bell, A. T., "Techniques and Applications of Plasma Chemistry", Wiley, New York. 1974. (20A) Holscher, J. G. A,. Schram, D. C., Ed., "Phenomena in Ionized Gases", North-Holland, Amsterdam and New York. 1975. (21A) Kane, P. F., Larrabee, G. B., "Characterization of Solid Surfaces", Plenum Press, New York, 1974. (22A) Karamcheti. K., Ed., "Rarefied Gas Dynamics", Academic Press, New York. 1974. (23A) Karyakin, A. V., Anikina, L. I., Pavienko, L. I., Laktionova, N. V., "Spectrometric Analysis of Rare Earth Oxides" (Spektral'nyi Analiz Redkozemel'nykh Okislov). Nauka, Moscow, USSR, 1974; Chem. Abstr., 82, 1059531 (1975). (24A) Kethelyi, J., Szakacs. O., Torok, T., and Zimmer, K.. "Acelokes Femotvozetek Spektroszkopos Elemzese." Muszaki Konyvkiado, Budapest, 1971. (25A) Kim, Y. S.,Moon, T. J., Hwahak Kwa Kongop Ui Chinbo, 13, 293 (1973); Chem. Abstr., 80, 114211b(1974), (26A) Knippenberg, W. F., Philips Tech. Rev.. 34, 298 (1974). (27A) Kuznetsov, E. I., Shcheglov, D. A,. "Methods for the Analysis of High-Temperature Plasmas" (Metody Diagnostiki Vysoko-Temperaturnoi Plazmy). Atomizdat. Moscow, USSR, 1974; Nucl. Sci. Absb., 31, 5741 (1975). (28A) Lapp, M., Penney C. M., "Laser Raman Gas Diagnostics", Plenum Press, New York and London, 1973. (29A) Mika, J., Torok, T., "Emissions Szinkepelemes Gyakorlati Resz", Akademiai Kiado, Bu-

ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

dapest, 1974. (30A) "Minutes of the 27th Annual Gaseous Electronics Conference 1974", Bull. Am. Phys. Soc., Ser I/, 20, 231 (1975). (31A) Mirnin, L. I., "Physical Basis of Processing Materials by Laser Beams" (Fizicheskie Osnovy Obrabotki Materialob Luchami Lazera). Izadatel'stvo Moskovskogo Universiteta, Moscow, USSR, 1975. (32A) Mitchner, M.. Kruger, C. H., Jr., "Partially Ionized Gases", Wiley-lnterscience, New York, 1973. (33A) Moenke. H., "Modern Trace Analysis, Vol. 1: Atomic Spectroscopic Trace Analysis: Overview of the Methods, Apparatus, Assumptions, and Areas of Application" (Moderne Spurenanlytik, Bd. 1: Atomspektroskopische Spurenanalyse; Ueberblick ueber ihre Methoden. Apparativen. Voraussetzungen und Anwendungsbebiete), Geest und Portig, Leipzig, 1974. (34A) Mosse, A. L., Pechkovskii, V. V., "Use of Low-Temperature Plasma in the Technology of Inorganic Substances" (Primenenie Nizkotemperaturnoi Plazmy v Tekhnoiogii Neoganicheskikh Veshchestv), Nauka i Tekhnika, Minsk, Beloruss. SSR, 1973; Chem. Abstr., 80, 8310y (1974). (35A) Pasky, L., Kem. Kozlem., 40, 185 (1973); Chem. Abstr., 80, 77852p (1974). (36A) Paton, V. Ya., Ed., "Plasma Processes in the Metallurgy and Technology of Inorganic Materials" (Plazmennyee Protsessy v Metallurgii i Tekhnologii Neorganicheskikh Materialov), Nauka, Moscow, 1973. (37A) Petrov. A. A., Ivanova, T. F., Vitol, E. N., Karasev, V. P., Fedorov, V. V.. Orlova, K. B., Ed., "Methods of Study and Determination of Gases in Metals. Proceedings of a Short Seminar, 11-13 June 1973" (Metody lssedovaniya i Opredelenie Gazov v Metallakh. Materialy k Kratkosrochnomu Seminaru, 11-13 lyunya (1973). Leningr. Dom Nauchno-Tekh. Propag., Leningrad, USSR, 1973; Chem. Abstr., 82, 1 3 2 5 8 2 ~(1975). (38A) Pilipenko, A. T., Volkova, A. I., Zavod. Lab., 39, 1425 (1973); lnd. Lab., 39, 1837 (1973). (39A) Pilipenko, A. T., Volkova, A. I., Zavod. Lab., 40, 1297 (1974).

(40A) Polak, L. S., Ed., "Modeling and Methods for Calculating Physicochemical Processes in Low-Temperature Plasma" (Modelirovanie i Metody Rascheta Fizikokhjmicheskikh Protessov v Nizkotemperaturnoi Plazme), Nauka, Moscow, USSR, 1974; Chem. Abstr., 82, 105435s (1975). (41A) Putnin, Ya. K.. "Emission Spectral Anaiysis. (Synopsis of Lectures)" (Emissionnyi Spektral'nyi Analiz (Konspekt Lektsii)). Rizh. Politekh. inst., Riga, Latv. SSR, 1973. (42A) Razier. Yu. P., "Laser Sparks and Discharge Propagation" (Lazernaya lskra i Raspostranenie Razryadov), Izdatel'stvo Nauka, MOSCOW, 1974. (43A) Richardson, J. H., Peterson, R. V., Syst. Mater. Anal. 1, 1 (1974). (44A) Richardson, J. H.,Peterson, R. V., "Systematic Materials Analysis", Vol. 1-3, Academic Press, New York, 1974, 1975. (45A) Robinson, J. W., "Handbook of Spectroscopy", Vol. 1, Chemical Rubber Co., Cleveland, Ohio, 1974. (46A) Rutberg, F. G., Ed., "Plasma Jet Generators and Heavy-Current Arcs" (Generatory Plazmennykh Strui i Sil'notochnye Dugi), Nauka Leningrad. Otd., Leningrad, 1973; Chem. Abstr., 81, 112753b (1974). (47A) Samson, A. M., Ed., "Quantum Electronics and Laser Spectroscopy: (Kvantovaya Elektonika i Lazernaya Spektroskopiya), Nauka i Tekhnika, Minsk, 1974; Chem. Abstr., 83, 18825w (1975). (48A) Saupe, K., Giesserei, 60, 849 (1973). (49A) Saupe, K., Giesserei, 61, 784 (1974). (50A) Seeiey, J. L., Skogerboe, R. K.. Character. Solid Surfaces, 203 (1974). (51A) Shornyakov, G. P., Ed., "Seventh Ural Conference on Spectroscopy" (Sed'maya Ural'skaya Konferentsiya PO Spektroskopii), Inst. Fiz. Metal. Ural. Nauch. Tsentr. Akad. Nauk SSSR, Sverdlovsk, USSR, 1971. (52A) Sheffield, J.. "Plasma Scattering of Electromagnetic Radiation." Academic Press, New York, 1975. (53A) Skogerboe, R. K., Handb. Spectrosc., I, 845 (1974). (54A) Smhrnova. 8. M . . Ed., "Plasma Chemistry", Vol. 1 (Khimiya Plazmy), Atomzdat, Moscow, 1974. (55A) Smirnov. 8. M . , "Ions and Excited Atoms in Plasma" (lony i Vozbuzhdennye Atomy v Plazme). Atomizdat, Moscow, 1974. (56A) Snooks, E. C., Ulrrapurity, 437 (1972). (57A) Soloukihin, R. I., Yakobi, Yu. A,, Komin, A. V., "Optical Characteristics of Hydrogen Plasma," (Opticheskie Kharakteristiki Vodorodnoi Plazmy), Nauka, Sib. Otd., Novosibrisk, USSR, 1973; Chem. Abstr., BO, 151015m (1974). (58A) Stepin, B. D., Ed., 'Preparation and Analysis of Substances of Special Purity (Proceedings of the 4th All-Union Conference, 20-23 June 1972, in Gorky)" (Poluchenie i Anaiiz Veshchestv Osoboi Chistoty (Materiaiy IV Vsesoyuznoi Konferentsii, 20-23 lyunya 1972, v Gor'kom). Akad. Nauk SSSR, Inst. Khim. Gorsky, USSR, 1974; Chem. Abstr., 83, 1 7 2 2 0 7 ~(1975). (59A) Stoll. I., Ed., "Contributed Papers to the Eleventh International Conference on Phenomena in Ionized Gases, 1973" and Pekrek, L., Laska, L., Ed., "Invited Papers for the Eleventh International Conference on Phenomena in Ionized Gases 1973", Czech. Acad. Sci., inst. Phys., Prague, 1973. (60A) Stolyarov, K . P., Ed., "Instrumental and Chemical Methods of Analysis" (Instrumentai'nye i Khimicheskie Metody Analiza), izd. Leningrad. Univ., Leningrad, 1973; Chem. Abstr., 82, 25450c (1975). (61A) "Third International Conference on Gas Discharges, London, September 9-12, 1974", iEE Conference Publication No. 118, Institute of Electrical Engineers, London, 1974. (62A) Thorne, A. P., "Spectrophysics", Halsted, New York, 1974; reviewed in Appl. Opt., 14, 2305 (1975). (63A) Torok, T.. Kern. Kozi. 42, 382 (1974). (64A) Van Someren, E. H. S., Birks, F. T., "Spectrochemical Abstracts", Vol. 18, 19711972, Adam Hilger. London, 1973. (65A) Van Someren, E. H. S., Birks, F. T., "Spectrochemical Abstracts", VoI. 19, 19721973, Adam Hilger, London, 1974. (66A) Viehboeck, F.. Winter, H.. Bruck, M., Ed., "Proceedings of the Second International Conference on Ion Sources, September 11-15, 1972, Vienna, Austria," inst. Ailg. Phys. Tech.

Hochsch., Vienna, 1973. (67A) Visots'kii, V. Z., "Horizons of Science and Technology Sereis: Lasers." (Seriya Gorizonti Nauki i Tekniki: Lazeri), Nauk. Dumka, Kiev, 1974. (68A) Winefordner, J. D.. Fitzgerald. J. J., Omenetto, N., Appl. Spectrosc. 29, 369 (1975). (69A) Woodward, C.. Ed., "Annual Reports on Analytical Atomic Spectroscopy 1973", Vol. 3, SOC.Anal. Chem., London, 1974. (70A) Woodward, C.. Ed., "Annual Reports on Analytical Atomic Spectroscopy 1974", Vol. 4, SOC.Anal. Chem.. London, 1975. (71A) Yankovskii, A. A,, Ed., "Applied Spectroscopy. Collection of Abstracted Papers from the 17th All-Union Congress on Spectroscopy, Minsk, 5-9 July 1971" (Prikladnaya Spektroskopiya. Sbornik Obzornykh Dokladov 17 Vsesoyuznogo Cezda PO Spektroskopii, Minsk, 5-9 lyulya 1971), Akad. Nauk Beloruss. SSR, Inst. Fiz., Minsk, 1974; Chem. Abstr., 83, 155565a (1975). (72A) Zaidel. A. N., Ostrovskaya, G. V., Ostrovskii, Yu. i., "Technique and Practice of Spectroscopy" Nauka, Moscow, 1972: reviewed in Appl. Opt., 13, A18 (1974). Spectral Descrlptlons and Classlfications (18) Abjean. R., Johannin-Gilles, A,. J. Quant. Spectrosc. Radiat. Transfer, 15, 25 (1975). (28) Abjean, R., Johannin-Gilles, A,. J. Quant. Spectrosc. Radiat. Transfer, 15, 15 (1975). (38) Adelman, S. J., Snijders, M. A. J., Pub/. Astron. SOC.Pac. 86, 1018 (1974). (48) Allen, L., Eberly, J. H.. "Optical Resonance and Two-Level Atoms", Wiiey, New York, 1975. (58) Amusya, M. Ya., Berezina. N. 8.. Chernysheva. L. V., Phys. Lett. A, 51, 101 (1975). (68) Andersen, T., Joergensen, S. W., Soerensen, G., J. Opt. SOC.Am., 64, 891 (1974). (78) Andersen, T., Soerensen, G., Sol. Phys., 38, 343 (1974). (86) Andra, H. J., Phys. Scr. 9, 257 (1974). (98) Andra, H. J., Piohm, H. J., Wittmann, W., Gaupp, A., Stoner, J. O., Jr., and Gaillard, M., J. Opt. SOC.Am., 65, 1410 (1975). (106) Arnesen. A,, Bengtsson. A,. Hallin. R., Kandela. S., Noreland, T., Lidhoit, R., Phys. Lett. A, 53, 459 (1975). (118) Artu, M. C., Briilet, W. U. L.. J. Opt. SOC. Am., 64, 1063 (1974). (128) Artu. M. C., Kaufman, V., J. Opt. SOC. Am., 65, 594 (1975). (138) "Atomic Spectroscopy Symposium. Program and Abstracts" National Bureau of Standards, Sept. 23-6, 1975, Gaithersburg,Md. (148) Bacis, R.. Berry, H.G., Phys. Rev. A, 10, 466 (1974). (158) Banfield, F. P., Huber, M. C. E., Astrophys. J., 186 (Pt. l ) , 335 (1973). (168) Ref. deleted in revision. (178) Bashkin, S., Prog. Opt., 12, 289 (1974). (188) Bashkin, S., Bromander, J., Leavitt, J. A., Martinson. I., Phys. Scr., 8, 285 (1973). (196) Baudinet-Robinet, Y., Dumont, P. D., Biemont, E., Grevesse, N.. Phys. Scr. 11, 371 (1975). (208) Becker, U., Goebel. L. H., Klotz, W. D., Astron. Astrophys., 33, 241 (1974). (218) Belin, G., Garpman, S.. Holmgren, L., Rydberg, S., Phys. Scr., 9, 213 (1974). (228) Bell, G. D.. Kalman, L. E., Tubbs, E. F., Astrophys. J., 200 (Pt. l ) , 520 (1975). (238) Ben Ahmed, Z., Bauche-Arnoult, C., Wyart. J. F.. Physica(Ufrecht), 77, 148 (1974). (248) Benschop, H., Joshi, Y. N.. Van Kleef, Th. A. M . , Can. J. Phys., 53, 498 (1975). (258) Benschop, H., Joshi, Y. N., Van Kleef, Th. A. M . , Can. J. Phys., 53, 700 (1975). (268) Barman, P. R., Appl. Phys., 6, 283 (1975). (276) Berry, H. G., Phys. Scr., 12, 5 (1975). (288) Berry, H. G., Subtil, J. L., Phys. Scr., 9, 217 (1974). (298) Berry, R. S., Radiat. Res., 59, 367 (1974). (308) Bhardwaj. S. N., Berry, H. C., Mossberg, T., Phys. Scr., 9, 331 (1974). (318) Bielski, A., J. Quant. Spectrosc. Radiat. Transfer., 15, 463 (1975). (328) Biemont, E., Bull. SOC.R. Sci. Liege, 42, 307 (1973). (338) Biackweil, D. E., ibbetson, P. A,, Petford. A. D., Mon. Not. R. Astron. SOC.,171, 195 (1975). (348) Bogdanova, I. P., Marusin, V. D., Opt. Spektrosk., 38, 189 (1975).

(358) Bonch-Bruevich, A. M., Khodovoi, V. A,, Przhibel'skii, S. G.. Invited Pap., Conf. lnferaction Electrons Strong flectromagn. Field, 1972, 255 (1973). (368) Brechignac. C., Phys. Scr., 12, 230 (1975). (378) Brecht, J., Kowalski, J., Lidoe, G.. Ma, I. J., Zu Pputlitz, G., 2.Phys., 264, 273 (1973). (388) Breckinridge, J. E., Pierce, A. K., Stoll, C. P.. Astrophys. J. Suppl. Ser., 29, 97 (1975). (398) Bridges, J. M., Kornblith, R. L., Astrophys. J. 192 (Pt. 1). 793 (1974). (408) Brown, C. M., Tilford, S. G., Ginter, M. L., J. Opt. SOC.Am., 64, 877 (1974). (418) Brown, C. M., Tilford. S. G., Tousey, R., Ginter, M. L.. J. Opt. SOC.Am., 64, 1665 (1974). (428) Bruneteau, A. M., icole, A. M., Rouille, C.. Poquerusse. A,, Doucet, J., Phys. Lett. A., 46, 309 (1974). (438) Buchet, J. P., Buchet-Poulizac, M. C., Denis, A., Desesquelles. J., Guy Do Cao, Phys. Scr., 9, 221 (1974). (448) Burke, P. G., At. Mol. Astrophys., Proc. Scot. Univ. Summer Sch. Phys.. 12th 1971. 1 (1972). (458) Burshtein, M. L., Verolainen, Ya. F., Komarovskii, V. A,, Osherovich, A. L., Penkin, N. P., Opt. Spektrosk., 37, 617 (1974). (468) Cabannes, F., Pure Appl. Chem., 39, 381 (1974). (478) Camhy-Val, C., Dumont, A. M., Dreux, M., Perret, L., Vanderriest. C., J. Quant. Spectrosc. Radiat. Transfer, 15, 527 (1975). (488) Campos, J., Zurro, E., An. Fis., 70, 244 (1974). (498) Champeau, R. J., Miladi, M., J. Phys. (Paris), 35, 105 (1974). (508) Chang, M. W., Bickel, W. S., J. Opt. SOC. Am., 65, 1376 (1975). (518) Chenevier, M., Moskowitz, P. A,, J. Phys. (Paris), 36, 401 (1974). (528) Chin-Bing, S. A,, Head, C. E., Phys. Lett. A, 45, 203 (1973). (538) Chin-Bing, S. A,, Head, C. E., Phys. Rev. A, 10, 209 (1974). (548) Ciyne. M. A. A,. Townsend, L. W., J. Chem. SOC., Faraday Trans. 2, 70, 1863 (1974). (558) Crance, M., Rev. Phys. Appl., 8, 325 (1973). (568) Crance, M.. Juncar, P., Pinard, J., J. Phys. B.,8, 2461 (1975). (578) Crasemann, E., Ed.. "Atomic Inner-Shell Processes, Plenum Press, New York, 1975. (588) Crosswhite. H. M., J. Res. Natl. Bur. Stand., SectA, 79, 17 (1975). (598) Curtis, L. J., Smith, W. H., Phys. Rev. A, 9, 1537 (1974). (608) Damaschini, R., Brochard. J., Opt. Commun., 9, 89 (1973). (618) Deech, J. S., Luypaert, R., Series, G. W.. J. Phys. 8, 8, 1406 (1975). (628) Degenkolb, E. O., Griffiths, J. E., J. Opt. SOC.Am., 65, 315 (1975). (638) Donneily, K. E., Kindlmann, P. J., Bennett, W. R., Jr., J. Opt. SOC. Am., 65, 1359 (1975). (648) Dumont. P. D., Biemont, E., Grevesse, N., J. Quant. Spectrosc. Radiat. Transfer, 14, 1127 (1974). (658) Dynefors, 8. I., Phys. Scr., 11, 375 (1975). (668) Edien, E., Swensson, J. W., Phys. Scr., 12, 21 (1975). (678) Ehrich, H., Kusch, H. J., 2. Phys., 267, 295 11974). (68B) E'idelsberg, M., J. Phys. B, 7, 1476 (1974). (698) Ekberg, J. 0.. Phys. Scr., 9, 96 (1974). (708) Ekberg, J. O., Phys. Scr., 12, 42 (1975). (718) Engleman, R. Jr., Spectrosc. Lett., 7, 547 (1974). (728) Engman, 8.. Gaupp. A,, Curtis, L. J., Martinson, I., Phys. Scr., 12, 220 (1975). (738) Epstein, G. L., Reader, J., J. Opt. SOC. Am., 65, 310 (1975). (748) Eriksson, K. B. S.. J. Opt. SOC.Am., 64, 1272 (1974). (758) Eriksson, K. 8. S., Phys. Scr., 9, 151 (1974). (768) Erman, P., Phys. Scr., 11, 65 (1975). (778) Erman, P., Lyyra, M . , Martinson, I., Phys. Lett. A, 49, 41 (1974). (788) Erman. P.. Martinson. I.. Phvs. Scr.. 8. 269 (1973) (798) Fabry, M., Cussenot, J. R , Opt Commun, 13, 409 (1975)

.

~~

~

ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

131 R

(808) Fawcett. 8. C., Adv. At. Mol. Phys., IO, 223 (1974). (818) Figger, H., Siomos, K.. Walther, H., 2. Phys., 270, 371 (1974). (828) Fischer. W., Hartmann, M., Huehnermann, H., Vogg, H., Z. Phys., 267, 209 (1974). (838) Fischer, W., Huehnermann, H.. Kroemer, G., Schafer, H. J., 2.Phys., 270, 113 (1974). (848) Fischer, W., Huehnermann. H.. Mandrek, K., 2.Phys.. 269, 245 (1974). (858) Fliflet. A. W., Kelly, H. P., Hansen, J. P. E., J. Phys. B, 8, L268 (1975). (868) Fuhr, J. R., Wiese, W. I., NatI. Bur. Stand. (U.S.). Spec. Pub/. 320 (Suppl. 2) (1973). (878) Furcinitti, P. S.. Balling, L. C.. Wright, J. J., Phys. Left. A, 53, 75 (1975). (888) Gagne, J. M., Saint-Dizier, J. P., J. Opt. SOC.Am., 65, 962 (1975). (898) Gaillard, M., Andra. H. J., Gaupp. A,, Wittmann, W., Plohn, H. J.. Stoner, J. 0. Jr.. Phys. Rev. A, 12, 987 (1975). (908) Garton, W. R. S., Reeves, E. M., Tomkins, F. s., Proc. R. SOC.London, Ser. A, 341, 163 (1974). (918) Gebhard. D., Behmenburg, W., Z. Naturforsch. A, 30, 445 (1975). (928) Gerstenkorn, S., Verges, J., J. Phys. (Paris).36, 481 (1975). (938) Giacchetti, A,, Blaise, J., Corliss, C. H., Zaiubas, R., J. Res. Natl. Bur. Stand., Sect. A, 78, 247 11974) - (94B) dilbert, A. G., Diss. Abstr. lnt. B, 34, 3998 11974). (95B) Gilbert, A. G., Sulzmann, K. G. P., Penner, s. s., J. Quant. Spectrosc. Radiat. Transfer, 14, 455 (1974). (968) Goble, A. T., Silver, J. D.. Stacey, D. N., J. Phys. B, 7, 26 (1974). (978) Goiy A,. Zesz. Nauk. Wyzsz. Szk. Pedagog. Opolu. Fiz., 13, 87 (1972): Chem. Abstr., 81, 129098q (1974). (986) Goiy, A,. Moity, J., Weniger, S., Astron. Astrophys., 38, 259 (1975). (998) Gornik, W., Kaiser, D., Lange, W., Luther, J., Meier, K., Radloff, H. H.. Schulz, H. H., Phys. Left. A, 45, 219 (1973). (1008) Greene, R. L., Copper, J., Smith, E. W., J. Quant. Spectrosc. Radiat. Transfer, 15, 1025, 1037, 1045 (1975). (1018) Griem, H. R., "Pure and Applied Physics, Vol. 39: Spectral Line Broadening by Plasma," Academic Press, New York, 1974. (1028) Grigor'eva, V. N., Vestn. Leningrad. Univ., Fiz., Khim. (3), 44 (1973). (1038) Gruzdev, P. F., Loginov, A. V., Opt. Spektrosk., 38, 1056 (1975); Opt. Spectrosc., 38, 611 (1975). (1048) Harde, H., Guthoehrlein, G., Phys. Rev. A, IO, 1488 (1974). (1058) Hassan, G. E. M. A,. Abbas, A,, Bull. Fac. Sci., Riyadh Univ. 6, 90 (1974); Chem. Abstr., 83, 170304h (1975). (1068) Heise, H., Astron. Astrophys., 34, 275 (1974). (1076) Heidt, J., Figger, H., Siomos, K., Walther, H.. Astron. Astrophys., 39, 371 (1975). (1088) Holt. R . A,, Pipkin, F. M., Phys. Rev. A, 9, 581 (1974). (1098) Huber, M. C. E., Sandeman, R. J., Tubbs. E. F., Proc. R. SOC.London, Ser. A, 342, 431 (1975). (1108) Hummer, D. G.. Norcross, D. M., Mon. Not. R. Astron. SOC.,168, 263 (1974). (1118) Humphreys, C. J., J. Phys. Chem. Ref. Data, 2, 519 (1973). (1128) Hussian, R., Diss. Abstr. lnt. 8, 34, 56308 (1974). (1136) Idzikowski. A,, Gadek, S., Mleczko, W.. Pr. Nauk. lnst. Chem. Nieorg. Met. Pierwiastkow Rzadkich Polifech. Wrocla w, No. 13, 124 ( 1973); Chem. Abstr., 80, 8690x (1974). (1146) inatsugu, S..Holmes, J. R.. Phys. Rev. A, 8, 1678 (1973). (1158) Inatsugu, S., Holmes, J. R., Phys. Rev. A, 11, 26 (1975). (1168) Ivanov, V. V., "Transfer of Radiation in Spectral Lines", Nafl. Bur. Stands. (U.S.) Spec. Pub/., 385, 461 pp (1973). (1178) Jackson, D. A., Couiombe, M. C.. J. Opt. SOC.Am., 65, 464 (1975). (1188) Jackson, D. A., Coulombe, M. C., Proc. R. SOC.London, Ser. A, 338, 277 (1974). (1198) Jackson, D. A,, Coulombe, M. C., Bauche, J., Proc. R. SOC.London, Ser. A, 343, 443, 453 (1975). (1208) Jaeger, H., Acta Phys. Ausfr., 38, 225

132R

(1973). (1218) Jimenez, E., Campos, J., Sanchez del Rio, C., J. Opt. SOC.Am.. 64, 1009 (1974). (1228) Johannsen, H. U., Lincke, R.. 2. Phys. A, 272, 147 (1975). (1238) Johansson, L., Phys. Scr., I O , 236 (1974). (1248) Johansson, S.. Litzen. U., Phys. Scr., 10, 121 (1974). (1258) Kaiser, D., Phys. Left. A, 51, 375 (1975). (1268) Karatsu, O., Ogura, I., Jpn. J. Appl. Phys. 14 Suppl. (Proc. IC0 Conf. Opt. Methods Sci. Ind. Meas., 1974). 111 (1975). (1276) Karatsu, O., Ogura, I., J. Appl. Phys., 46, 317 (1975). 11288) Kaufman, V., Artru, M. C.. Brillet, W . 4 . L., J. Opt. SOC.Am., 64, 197 (1974). (1298) Kaufman, V.. Edien, B., J. Phys. Chem. Ref. Data, 3, 825 (1974). (1308) Kaufman, V., Sugar, J., J. Opt. SOC. Am., 65, 302 (1975). (1318) Kazantsev, S. A,, Markov, V. P., Opt. Spektrosk., 36, 613 (1974). (1328) Kelly, F. M., Koh, T. K., Mathur, M. S., Can. J. Phys., 51, 2295 (1973). (1338) Kelly, F. M., Koh. T. K., Mathur, M. S., Can. J. Phys., 52, 795 (1974). (1348) Kelly, F. M., Koh, T. K.. Mathur, M. S.. Can. J. Phys., 52, 1438 (1974). (1358) Kelly, F. M., Koh, T. K., Mathur, M. S., Can. J. Phys., 52, 1666 (1974). (1366) Kelly, R. L., Paiumbo, L. J., Rep. NRL7599, 1001 pp (1973). (1378) Kernahan, J. A,, Livingston, A. E., Pinnington, E. H., Can. J. Phys., 52, 1895 (1974). (1388) Kernahan, J. A., Pang, P. H. L., Can. J. Phys., 53, 455 (1975). (1398) Kernahan. J. A., Pang, P. H. L., Can. J. Phys., 1114(1975). (1408) Kieffer, L. J., Joint inst. Lab. Astrophys.. Rep. 12, 6 1 (1972); Chem. Abstr., 80, 138694n (1974). (1418) King, G. C., Adams. A,, J. Phys. B, 7 , 1712 (1974). (1428) Kiemt, M.. Atron. Astrophys., 29, 419 (1973). (1438) Klose, J. Z.,Astrophys. J., 198 (Pt. I), 229 (1975). (1448) Klose, J. 2.. Phys. Rev. A, 11, 1840 11975) - -, (1458) Klyucharev, A. N., Sepman. V. Yu., Dobrolezh, 8. V., Opt. Spectrosk., 37, 822 (1974). (1466) Knystautas, E. J., Brochu. M., Drouin, R., Can. J. Spectrosc., 18, 153 (1973). (1478) Knystautas, E. J., Drouin, R., Astron. Astrophys., 37, 145 (1974). (1488) Leboucher, E., Bousquet, C., Bras, N., Nouv. Rev. Opt., 5, 121 (1974). (1496) Le Toulouzan, J. N., Darrigo. R.. Valentin, P , J. Quant. Spectrosc. Radiat. Transfer, 14, 1239 (1974). (1508) Li, H. H., Humphreys, C. J., J. Opt. Soc. Am.. 64. 1072 11974). (1516) Liening, H.: 2.Phys., 266, 287 (1974). (1528) Lilly, R. A., J. Opt. SOC.Am,, 65, 389 (1975). (1536) Littiefield, T. A,, Rafi, M.,J. Phys. B, 7, 612 (1974). (1548) Litzen, U.. Phys. Scr., IO, 103 (1974). (1556) Livingston, A. E., Kernahan, J. A,, Irwin. D. J. G., Pinnington, E. H., Phys. Scr., 12, 223 (1975). (156B) Lotrian, J., Cariou, J., Johannin-Gilles, A,, J. Quant. Spectrosc. Radiat. Transfer, 15, 815 (1975). (1576) Luc-Koening, E., Morillon, C., Verges, J., Phys. Scr., 12, 199 (1975). (1588) Lundin, L., Engman, B., Hilke, J., Martinson, I., Phys. Scr., 8, 274 (1973). (1598) Magnusson, C. E.. Phys. Scr., 10, 177 (1974). (1608) Martin, W. C., Hagna, L., Reader, J., Sugar, J., J. Phys. Chem. Ref. Data, 3, 771 (1974). (1618) Martinson, I., Phys. Scr. 9, 281 (1974). (1628) Martinson, I., Pure Appl. Phys., 40C, 467 (1974). (1638) Martinson, I., Phys. Rep., 15C, 114 (1974). (1648) Martinson, I., Gaupp, A,, Curtis, L. J., J. Phys. B, 7, L463 (1974). (1658) Massey, H., Gilbody. H., "Electronic And Ion Impact Phenomena, Vol. 4: Recombination and Fast Collisions of Heavy Particles", Oxford University Press, England, 1974. \

ANALYTICAL CHEMISTRY, VOL. 48, NO.

5, APRIL 1976

(1668) May, M., Richter, J., Wichelmann, J.. Astron. Astrophys., Suppl. Ser., 18, 405 (1974). (1678) McDermott, W. E., Nash. C. P.. Appl. Spectrosc., 29, 408 (1975). (1688) Meggers, W. F., Corliss, C. H., Scribner, 8. F., "Tables of Spectral-Line Intensities. I. Arranged by Elements." Nafl. Bur. Stand. (U.S.), Monogr., 145, Pt. 1, 387 pp (1975); reviewed in J. Opt. SOC.Am. 65, 1527 (1975). (1698) Meggers, W. F., Corliss, C. H., Scribner, 8. F., "Tables of Spectral-Line Intensities. II. Arranged by Wavelengths", Natl. Bur. Stand. (U.S.),Monogr., 145, Pt. 2, 213 pp (1975). (1708) Meijer, F. G.. Physica (Utrecht), 72, 431 (1974). (1718) Miller, M. H.. Wilke;son. T. D.. Roig, R . A.. Bengtson, R. D.. Phys. Rev. A, 9, 2313 (1974). (1728) Minnhagen, L., Phys. Scr., 11, 38 (1975). (1738) Mitchell, C. J., J. Phys. B, 8, 25 (1975). (1748) Miyazaki, K., Fukuda, K., J. Phys. SOC. Jpn, 38, 906 (1975). (1758) Moore, C. E., Natl. Stand. Ref. Data Ser., Natl. Bur. Stand., NSRDS-NBS 3 (Sect. 5), 67 pp (1975). (1768) Morilion, C., Verges, J., Phys. Scr., I O , 227 (1974). (1778) Morillon, C., Verges, J.. Phys. Scr., 12, 129 11975). -I (1788) Neufeid, L., Schrenk, W. G., Spectrochim. Acta, Part B, 30, 45 (1975). (1798) Newson, G. H., Appl. Opt., 13, 2712 (1974). (1808) Armstrong, 8. H., Nicholis. R . W.. "Emission, Absorption and Transfer of Radiation in Heated AtmosDheres." Perqamon Press, New York, 1972. (1818) Noedlinger, P. D.. Dynam, S. E., Astrophys. J. Suppl. Ser., 29, 185 (1975). (1828) Norien, G., Phys. Scr., 8, 249 (1973). (1838) Osherovich, A. L., ivanov, V. N.. Vestn. Leningrad. Univ., fiz., Khim. (4), 154 (1973); Chem. Abstr., 80, 114287f (1974). (1848) Osherovich, A. L., Ivanov, V. N., Gorshkov, V. N.. Vestn. Leningrad. Univ., Fiz. Khim. (4). 7 (1974); Chem. Abstr., 82, 147394h (1975). (1858) Pace, P. W.. Atkinson, J. B., Can. J. Phys.. 53, 937 (1975). (1868) Peach, G., Contemp. Phys., 16, 17 (1975). (1878) Penkin, N. P., Opt. Spektrosk., 37, 393 (1974). (1888) Pinnington. E. H., J. Opt. SOC.Am., 65, 218 (1975). (1898) binnington, E. H., Irwin. D. J. G.. Livingston. A. E., Kernahan, J. A,, Can. J. Phys., 52, 1961 (1974). (1908) Pinnington, E. H., Lutz, H. 0..Carriveau, G. W., 2.Phys., 267, 27 (1974). (1918) Podbiraiina. V. P., Smirnov, Yu. M., Stegnova, N. V., Opt. Spektrosk., 34, 609 (1973). (1928) Radziemski. L. J., Jr., Kaufman, V., J. Opt. SOC. Am., 64, 366 (1974). (1938) Reader, J.. J. Opt. SOC. Am., 65, 286 (1975). (1948) Reader, J., J. Opt. SOC.Am., 65, 988 (1975). (1958) Reader, J., Sugar, J., J. Phys. Chem. Ref. Data, 4, 353 (1975). (1968) Redi, O., Stroke, H. H.. J. Opt. SOC. Am., 65, l(1975). (1978) Richards, W. G., Raftery, J., Hinkley, R . K., Theor. Chem., 1, 1 (1974). (1988) Roberts, J. R., Voigt, P. A,, Czernichowski. A., Astrophys. J., 197 (F't. l ) , 791 (1975). (1998) Roig, R . A,, Miller, M. H., J. Opt. SOC. Am., 64, 1479 (1974). (2008) Rostovikova, G. S., Samoilov, V. P.. Smirnov, Yu. M.. Zh. Prikl. Spektrosk., 20, 544 (1974). (2018) Rundel, R. D.. Dunning, F. B., Goidwire, H. C. Jr., Stebbings. R . F., J. Opt. SOC. Am.. 65, 628 (1975). (2028) Samoiiov, V. P., Smirnov, Yu. M.. Starikova, G. S.. Opt. Spektrosk., 38, 1222 (1975). (2038) Samoiiov, V. P., Smirnov. Y u . M., Starikova, G. S., Zh. Prikl. Spektrosk., 23, 321 (1975). (2048) Schlagheck. W., Schuermann, D.. Haas. D., Von Buttlar. H., Phys. Lett. A, 45, 433 (1973). (2058) Schuermann, D., Schlagheck, W., Haas. D., Von Buttlar, H., Phys. Lett. A, 46, 167 (1973). (2068) Schwob, J. L., Rep. EUR-CEA-FC-720, 15 pp (1974); Nucl. Sci. Abstr., 30, 33498 (1974). 1

(2078) Series, G. W., Contemp. Phys.. 15, 49 (1974). (2088) Shaw. D. A,, Adams, A,, King, G. C., J. Phys. 8. 8, 2456 (1975). (2098) Shaw. M. J., Contemp. Phys., 15, 445 (1974). (2108) Shenstone, A. G., J. Res. Natl. Bur. Stand., Sect. A. 79, 497 (1975). (2118) Siefart. E., Ney, J., Bucka, H., Bolouri, H., J. Phys. B, 7, 1279 (1974). (2128) Siomos, K., Figger, H.. Walther, H., Z. Phys. A, 272, 355 (1975). (2138) Smith, G., O'Neill. J. A,, Astron. Astrophys. 38, l(1975). (2148) Smith, G., Tomkins, F. S.,Proc. R. SOC. London, Ser. A, 342, 149 (1975). (2158) Smitt, R., Phys. Scr., 8, 292 (1973). (2168) Stuck, D., Wende, B., Phys. Rev. A, 9, l(1974). (2178) Sugar, J., J. Chem. Phys., 60, 4103 (1974). (2188) Sugar, J., J. Opt. Soc. Am., 65, 1366 (1975). (2198) Sugar, J., J. Res. Natl. Bur. Stand., Sect. A, 78, 555 (1974). (220A) Sugar, J., J. Opt. SOC. Am. 64, 1656 (1974). (2218) Sugar, J., Spector. N., J. Opt. SOC. Am., 84, 1484 (1974). (2228) Swensson, J. W., Edlen. B., Phys. Scr., 9, 335 (1974). (2238) Talmage, J. E., Jr., Diss. Abstr. lnt. B, 34, 5118 (1974). (2248) Thompson, R. T., J. Quant. Spectrosc. Radlat. Transfer, 14, 1179 (1974). (2258) Thompson, R. T., J. Quant. Spectrosc. Radiat. Transfer, 15, 1017 (1975). (2268) Tudorache, St., Stud. Cercet. Fiz., 26, 361 (1974). (2278) Van der Sluis, K. L., Nugent, L. T., J. Chern. Phys., 80, 1927 (1974). (2288) Van Deurzen. C. H. H I Rep. LEL-1857, 117 pp(1973); Chem. Abstr., 80, 3202% (1974). (2298) Van Deurzen, C. H. H., Conway. J. G., Davis, S. P., J. Opt. SOC.Am., 64, 498 (1974). (2308) Van Regemorter, H., At. Mol. Astrophys., Proc. Scot. Univ. Summer Sch. Phys., 72th, 7977, 85 (1972). (2318) Van Tassel, R. A,, Huffman. R. E., Roebber. J. L., J. Chem. Phys., 59, 5926 (1973). (2328) Voigt, P. A,, Phys. Rev. A, 11, 1845 (1975). (2338) Von Specht, J., Astron. Astrophys., 34, 363 (1974). (2348) Watanabe, S.,Kuroda, K., Chihara, M., Ogura, I., Jpn. J. Appl. Phys. 74, Suppl. (Proc. I C 0 Conf. Opt. Methods Sci. lnd. Meas., 1974), 99 (1975). (2358) Weise, W. L., Fuhr, J. R., J. Phys. Chem. Ref. Data, 4, 263 (1975). (2368) Wood, D. R., Ross, C. B., Scholl, P. S., Hoke, M. L., J. Opt. SOC.Am., 64, 1159 (1974). (2378) Woodyard, J. R., Sr., Diss. Abstr. lnt. B, 35, 3500 (1975). (2388) Worden, E. F., Lougheed, R. W., Gutmacher, R. C., Conway, J. G., J. Opt. SOC. Am., 64, 77 (1974). (2398) Wright, J. J., Dawson, J. F., Balling, L. C.. Phys. Rev. A, 9, 83 (1974). (2408) Yamagishi. A,, Inaba, H., Jpn. J. Appl. Phys., 14, Suppl. (Proc. I C 0 Conf. Opt. Methods Sci. lnd. Meas., 7974), 33 (1975). (241B) Yamagishi, A., Inaba, H., Opt. Commun., 12, 213 (1974). (2428) Yokozawa, M.. Matsuzaki, H.. Kamegaya, T., Nakajima, M., J. Opt. SOC.Am., 64, 396 (1974). (2438) Zalubas. R., Corliss, C. H., J. Res. Natl. Bur. Stand., Sect. A, 78, 163 (1974). (2448) Zurro, B., An. Fis., 70, 137 (1974). Instrumentation (1C) Aidarov, T. K.. Beiozerova, V. P., Ganieva, V. Kh., Nagulin, Yu. S., Prib. Sist. Upr. (8), 41 (1973); Chem. Abstr., 80, 10007y (1974). (2C) Aidous, K. M.. Mitchell, D. G., Jackson, K. W., Anal. Chem.. 47, 1034 (1975). (3C) Aleksandrov, A. F., Rukhadze, A. A,, Usp. Fiz. Nauk, 112, 193 (1974). (4C) Allkins, J. R., Anal. Chem., 47, 752A (1975). (5C) Ambrose, A. D.. U.S. Natl. Tech. lnform. Serv., PB Rep. No. 230217/2GA, 20 pp (1974). (6C) Amelio, G. F., Sci. Am., 230, 22 (1974). (7C) Andersen, N.. Jensen, K., Jepsen, J., Melskens, J.. Veje, E., Appl. Opt., 13 1965 (1974).

(8C) Antipov, S. V., Nezlin, M. V., Snezhkin, E. N., Trubnikov, A. S.,Khanov, I. F., Prib. Tekh. Eksp. (3), 193 (1974). (9C) Apolitskii, V. N., Zh.Prikl. Spektrosk., 20, 294 (1974). (1OC) Arecchi, F. T., "Laser Handbook Vol. 1-2" North-Holland, Amsterdam, 1972. (11C) Argyle, B. E., Chaudhari. P., ISM Tech. Disclosure Bull., 18, 603 (1975). (12C) Asinovskli, E. I., Zeigarnik, V. A,, Teplofiz. Vys. Temp., 12, 1278 (1974). (13C) Attwood, D. T., Coleman, L. W., Sweeney. D. W.. ADD/. Phys. Lett., 26, 616 (1975). . (14C) Babcock,T. A., Ferguson, P. M., James, T. H., Astron. J., 79, 92 (1974). (15C) Bader, T. R., Appl. Opt., 14, 2818 (19751 (16C) Baker, H. L., King, T. A,, J. Phys. E, 8, 219 (1975). (17C) Bakken, G. S., Appl. Opt., 13, 1290 (1974). (lac) Bakken, G. S., Appl. Opt., 14, 2335 (1975). (19C) Baldini, G., Grilli, E.. Guzzi, M., Appl. Opt., 14, 268'7 (1975). (20C) Barrekette, E. S., Appl. Opt., 13, 749 (1974). (21C) Bartlett, I. R., Wildy. P. C., Appl. Opt., 14, l(1975). (22C) Bartoe, J. D. F.. Brueckner, J. Opt. SOC. Am. 65, 13 (1975). (23C) Bates, B., Dufton. P. L., McKeith, C. O., Appl. Opt., 13, 1746(1974). (24C) Belaev, Yu. I., Egorova, V. A,, Kuteinikov, A. F., Shlepnina, T. V., Zh.Anal. Khim., 28, 2044 (1973). (25C) Bel'chikov, 2. M., Petrova, N. G., Podmoshenskaya, s. V., Trilesnik, I. I., Zavod. Lab., 40, 1288 (1974). (26C) Beynon, J. H.. Jones, D. 0.. Cooks, R. G.. Anal. Chem., 47, 1734 (1975). (27C) Bondar, A. A,, Dem'yanchuk, A. A,, U.S.S.R. 428,227, (15 May 1974); Chem. Abstr., 82, 254619 (1975). (28C) Bower, N. W., Ingle, J. D.. Jr., Anal. Chem., 47. 2069 (1975). (29C) Boursey. E., Damany. H.. Appl. Opt., 13, 589 (1974). (30C) Bradley, D. J., Contemp. Phys., 16, 263 11975) (31C) Bradley, D. J., Opto-electronics, 6, 25 (1974). (32C) Bridoux, M., Dessaux, O., Selle. J. M., Tourbez, H., Can. J. Spectrosc., 20, 42 (1975). (33C) Brinkman, D. W., Sacks, R. D.. Anal. Chern., 47, 1279 (1975). (34C) Brinkman, D. W., Sacks, R. D.. Anal. Chem., 47, 1723 (1975). (35C) Browner, R. F., Proc. Anal. Div. Chem. SOC.,12, 138 (1975). (36C) Burdett, J. K., Poliakoff, M., Chem. SOC. Rev., 3, 293 (1974). (37C) Burdo, R. A,, Roth, J. R., Morrison, G.H., Anal. Chem., 46, 701 (1974). (38C) Burger, F., Maier, J. P., J. Electron Spectrosc. Relat. Phenom., 5, 783 (1974). (39C) Burger, F., Maier. J. P., J. Phys. E, 8, 420 (1975). (40C) Burns, E. J. T., Rep. AFWL-TR-74-121, 44 pp (1974); Nucl. Sci. Abstr.. 32, 258 (1975). (41C) Burton, W. M., Hatter, A. T., Ridgeley, A,. Appl. Opt., 12, 1851 (1973). (42C) Busch, K. W., Howell, N. G., Morrison, G. H.. Anal. Chem., 46, 575 (1974). (43C) van Calker, J., Hollenberg. K., Spectrochim. Acta, Part 8. 30, 243 (1975). (44C) Cantu, A. M., Tondelio, G., Appl. Opt., 14, 996 (1975). (45C) Caplan, J., Appl. Opt., 14, 1585 (1975). (46C) Carelton, N., Ed., "Methods of Experimental Physics, Vol 12 A, Astrophysics: Optical and Infrared", Academic Press, New York, 1974. (47C) Carnes, J. E., Kosonocky, W. F., Solid State Techno/., 17, 67 (1974). (47bC) Carroll, D. I., Dzidic, I., Stillweil. R. N.. Haegeie, K. D.. Horning. C.. Anal. Chem., 47, 2369 (1975). (48C) Chandos, R. J.. Chandos, R. E., Appl. Oot.. 13. 2142 (1974) '(49C)'Chang, B. J:, Alferness, R., Leith, E. N., Appl. Opt., 14, 1592 (1975). (50C) Chang, C. T., Bjorkstam, J. L., J. Opt. SOC.Am., 85, 1495 (1975). (51C) Cherevko, A. S., Simonova, V. I., Zh. Prikl. Spektrosk., 19, 348 (1973). (52C) Clement, M.. Moulin, B., Pinet, D., Stev\ . - .

- I

enin, P.. Appl. Opt., 13, 1621 (1974). (53C) Clement, M.. Moulin. B., Stevenin, P., Rev. Phys. Appl.. 9, 743 (1974). (54C) Codding, E. G., Horiick, G., Spectrosc. Left., 7, 33 (1974). (55'2) Codling, K.. Phys. Scr., 9, 247 (1974). (56C) Colgate, S. A,, Moore, E. P.. Colburn. J.. Appl. Opt.. 14, 1429 (1975). (57C) Colles, M. J., Pidgeon, C. R., Rep. Prog. Phys., 38, 329 (1975). (5%) Corben, P. M., Reddish, V. C.. Sim, M. E., Nature(London), 249, 22 (1974). (59C) Cox, J. T., Hass, G., Ramsey. J. B., J. Opt. SOC.Am., 84, 423 (1974). (60C) Cox, R . J., Ed., "Photographic Gelatin", Academic Press, New York, 1972. (61C) Cox, R. J., Ed.. "Photographic Processing," Academic Press, New York, 1973. (62C) Cox, R. J., Ed., "Photographic Sensitivity," Academic Press, New York, 1973. (63C) Cresser, M. S., Keiiher, P. N., Wohlers, C. C., Lab. Pract., 24, 335 (1975). (64C) Cronhjort, 8. T., Meas. lnstrum., Proc. Congr. lnt. Meas. Confed., 6th, 7973, 3, 409 (1974). (65C) Crosmun, R. V., Diss. Abstr. lnt. B, 35, 5271 (1975). (66C) Cummins, H. Z., Pike, E. R., Ed., "Pho-' ton Correlation and Light Beating Spectroscopy," Plenum Press, New York, 1974; reviewed in Appl. Opt., 14, 789 (1975). (67C) Curry, K. J., Cooley, E. F., Dietrich, J. A,, Appl. Spectrosc., 29, 274 (1975). (68C) Cutchen, J. T., Harris, J. O., Jr., Laguna, G. R.. Appl. Opt., 14, 1866 (1975). (69C) Daehler, M., Ade, P. A. R., J. Opt. SOC. Am., 65, 124 (1975). (70C) Dainty, J. C.. Shaw, R., "Image Science: Principles, Analysis, and Evaluation of Photographic-Type Imaging Processes", Academic Press, London, 1974; reviewed in J. Opt. SOC. Am., 65, 1384 (1975). (71C) Damany, N., Romand. J., Vodar, B., Ed., "Some Aspects of Vacuum Ultraviolet Radiation," Pergamon Press, Oxford, New York, 1974; reviewed in J. Opt. SOC.Am., 65, 1158 (1975). (72C) Danielsson, A,, Lindblom, P., Appl. Spectrosc., 30 (3), (1976). (73C) Danieisson, A,, Lindblom, P., Chem. Scr., 6, 5 (1974). (74C) De Biase. G. A,, Sacchetti, F., Trevese, D., J. Opt. SOC.Am. 64, 335 (1974). (75C) Decker, J. A,, Jr., Appl. Opt., 13, 1296 (1974). (76C) Decker, J. A,, Jr., Spectrochim. Acta, PartB, 29, 51 (1974). (77C) DeCorpo, J. J., Larkins, J. T., McDowell, M. V., Appl. Spectrosc., 29, 85 (1975). (78C) Defrance, A,, Bull. SOC. Sci. Bretagne, 48, 73 (1973). (79C) Defreese, J. D.. Woodruff, T. A., Malmstadt, H. V., Anal. Chem., 46, 1471 (1974). (80C) DeKalb, E. L., Fassel, V. A,, Anal. Chem., 47, 2354 (1975). (81C) Demin, I. M., Matrenicheva, G. I., Khim. Neft. Mashinostr., (l), 43 (1975); Chem. Abstr., 83, 215359 (1975). (82C) Detrio, J. A,, Donlan, V. L., Appl. Opt., 13, 2236 (1974). (83C) Dhumwad. R. K., Ramachandran, S., Anal. Chim. Acta. 74, 11 (1975). (84C) DiDomenico, M. Jr., Opt. Eng., 13, 423 (1974). (85C) Dienes, A., Phys. Quantum Nectron. 2 (Laser Appl. Opt. Spectrosc., Lect. Summer Sch., 7973) 53 (1975). (86C) Dishington, R. H., Hook, R., Hilberg, R. P., Appl. Opt., 13, 2300 (1974). (87C) Dreher, G. B., Frank, C. W., Appl. Spectrosc., 28, 184 (1974). (88C) D'Silva, A. P., Fassel. V. A,, Anal. Chem., 46, 996 (1974). (89C) D'Silva, A. P., Fassel, V. A,, Tritten, J. S., Oestreich, G., Proc. Rare Earth Res. Conf., 7 7 t h 2, 1105 (1974). (9OC) Duncan, F. W.. Opt. Spectra, 9, 26 (1975). (91C) Egan, W. G., Hilgeman, T., Appl. Opt., 14, 1137 (1975). (92C) "Electron-Optics Handbook," 2nd ed., 256 pp, RCA, Harrison, N.J., 1974. (93C) El-Kholy, H. K.. Burridge, J. C.. Scott, R. O., Anal. Chim. Acta, 74, 247 (1975). (94C) Epstein, M. S.,O'Haver, T. C., Spectrochim. Acta, Part 6,30, 135 (1975). (95C) Esteva, J. M., Mehlman, G.,Romand, J.,

ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

133R

Vodar, B., J. Quant. Spectrosc. Radiat. Transfer, 14, 357 (1974). (96C)Evenson, K. M., Petersen, F. R., Phys. Quantum Nectron. 2 (Laser Appl. Opt. Spectrosc.. Lect. Summer Sch., 7973), 367 (1975). (97C)Ewing, G. W.. J. Chem. Educ., 51, A391

(1974). (98C)Fal'kova 0.B., Fishkova. N. L., Zh. Prikl. Spektrosk., 21, 9 (1974). (99C)Fassei, V. A,, DeKalb, D'Silva. A. P., Anal. Appl. Rare Earth Mater., NATO Adv. Study lnst. 1972, 109 (1973). (1OOC)Fastie, W. G., Kerr, D. E., Appl. Opt., 14, 2133 (1975). (101C)Feid, M. S.,Letokhov. V. S.. Sci. Am., 229, 69 (1973). (102C)Ferrar, C. M., Appl. Opt., 13, 1998

(1974). (103C)Fischer, E., J. Appl. Phys., 45, 3365 (1974). (104C)Fitzgerald, J. J., Chester, T. L.. Winefordner, J. D., Anal. Chem., 47, 2330 (1975). (105C)Fletcher, W. H.. Rayside, J. S.,Wiley, W. J., Appl. Opt., 13, 734 (1974). (106C)Fouere, J. C.,Malacara, D.,Appl. Opt., 13, 1322 (1974). (107C)Freeman, G. H. C.,Opt. Commun., 14, 274 (1975). (108C)Fried, D. L., Appl. Opt., 13, 1282 (1974). (109C)Fried, J., Labs, D.. Appl. Opt., 13, 197 (1974). (11OC) Fry, F. H., Anal. Photochem. Photochem. Anal.; Solids, Solutions, Polym., 43 (1971). (111C)Fry, P. W., J. Phys. E, 8, 337 (1975). (112C)Fudal, A,, Witkowska, S., Chem. Anal. (Warsaw), 19, 425 (1974). (113C)Fuller, W. C.,Diss. Abstr. lnt. B, 35, 3193 (1975). (114C)Fusseli, W. B.. Natl. Bur. Stand. ( U S . ) Tech. Note, 549-7, 39 pp (1974). (115C)Gagne, J. M., Saint-Dizier, J. P., Picard, M., Appl. Opt., 13, 581 (1974). (116C)Gelles, R., J. Opt. SOC. Am., 65, 1141 (1975). (117C)Geszti, T., Acta Tech. Acad. Sci. Hung., 78, 463 (1974). (1 18C) Geszti, T., Gaal, I., Acta Tech. Acad. Sci. Hung., 76, 479 (1974). (119C) Girardeau-Montaut, J. P., Nouv. Rev. Opt., 5, 367 (1974). (120C)Gloge, D., Appl. Opt., 13, 249 (1974). (121C)Golubev, E. M.. Ogurtsova, N. N., Podmoshenskii, I. V., Rogovtsev, P. N.. Zh. Prikl. Spektrosk., 20, 165 (1974). (122C)Goode, S. R., Crouch, S. R., Anal. Chem., 46, 181 (1974). (123C)Goorvitch. D., Appl. Opt., 14, 1387

(1975). (124C)Gordon, S.,Schmidt, K. H., Martin, J. E., Rev. Sci. Instrum., 45, 552 (1974). (125C)Graham, H. M., Leavitt. G. A.. Rev. Sci. Instrum., 44, 1630 (1973). (126C)Graham, M. D., Rev. Sci. Instrum., 45, 1026 (1974). (127C)Gray, A. L., Analyst(London), 100, 289 (1975);Anal. Chem., 47, 600 (1975);Proc. SOC. Anal. Chem., 12, 182 (1974); Brit. Patent 1,371,104(23Oct. 1974). (128C)Grenhow. R. C.,Schmidt, A. J., Adv. Quantum Electron., 2, 157 (1974). (129C)Gribov, L. A,, Comput. Chem. Res. Educ., Proc. lnt. Conf. 2, 3-81 (1973). (130C)Griffiths. P. R.. Anal. Chem., 48, 645A (1974). (131C)Grigor'ev, V. F., Lisienko, D. G., Muzgin, V. N., Zolotavin, V. L., Zh. Prlkl. Spektrosk., 21, 14 (1974). (132C)Grikit, I. A,, Galushko, E. G., Zh. Prikl. Spektrosk.. 19, 213 (1973). (133C)Guda. W.. Kunz. C., Karlau, J.. ADD/. Opt. 13, 1412 (1974) (134C)Gustnow, M A , Appl. Opt, 14, 2645 119751 \ . -

- I

(135C)Gustin, P. G. J., Schmitz, J. F. R., Gar. Offen. 2,348.761(4Apr. 1974). (136C)Hamilton, J. F., Prog. Solid. State Chem., 6, 167 (1973). (137C)Hammn, F. M., Walters, P. E., Appl. Spectrosc., 28, 75 (1974). (138C)Harrington, D., Malmstadt, H. V.. Am. Lab., 6, 33 (1974). (139C)Harrington, D., Malmstadt, H. V., Anal. Chem., 47, 271 (1975). (140C)Harry, J. E., "Industrial Lasers and Their Applications", McGraw-Hill, New York. 134R

1974. (141C)Harwit, M.. Decker, J. A,, Jr., Prog. Opt., 12, 101 (1974). (142C)Harwit. M., Philips, P. G.. King, L. W., Briotta. D. A,, Jr., Appl. Opt., 13, 2669 (1974). (143C)Havens, W. H., Appl. Opt., 13, 2209 (1974). (144C)Hecht, E., Zajac, A,, "Optics," Addison-Wesley, Reading, Mass., 1974. (145C)Hernandez, G.. Appl. Opt., 13, 2654 (1974). (146C)Hessel, A., Schmoys. J., Tseng, D. Y., J. Opt. SOC.Am. 85, 380 (1975). (147C)Hirschberg, J. G.. Appl. Opt., 13, 233 (1974). (148C) Hirschfeld, T., Wijntjes. G.. Appl. Opt.. 12, 2876 (1973);13, 1740 (1974). (149C)Hodges. R. J.. Belcher, C. B., Appl. Spectrosc.. 29, 163 (1975). (150C)Holcombe, J. A,, Diss. Abstr. lnt. 8, 35,

3194 (1975). (151C)Hollahan, J. R., Bell, A. T., Ed.. "Techniques and Applications of Plasma Chemistry", Wiley, New York, 1974. (152C)Hollahan, J. R., Wydeven, T.. Johnson, ~ p p iopt.. . 13, 1844 (1974). (153C)Horlick. G., Anal. Chem., 47, 352

c.c..

(1975). (154C)Horiick. G., Betty, K. R., Anal. Chem., 47, 363 (1975). (155C)Horlick, G., Codding. E. G., Anal. Chem., 46, 133 (1974). (156C)Horlick, G., Codding, E. G.. Appl. Spectrosc., 29, 167 (1975). (157C)Horlick, G., Codding, E. G., Leung, S. T., Appl. Spectrosc., 29, 48 (1975). (158C)Horlick, G., Yuen, W. K., Anal. Chem., 47, 775A (1975). (159C)Hosch, J. W., Diss. Abstr. lnt. B, 36, 1178 (1975). (160C)Hou, H. S., Appl. Opt., 13, 1863 (1974). (161C)Hui, A. K., Chowdhury, U. K. R., Ghosh, P. K., lndian J. Techno/., 12, 512 (1974). (162C)Hunt, D. F.,McEwen, C. N., Harvey, T. M., Anal. Chem., 47, 1730 (1975). (163C)Hunter, W. R., Chaimson, R. K., Appl. Opt., 13, 2913 (1974). (164C)Hutley, M. C..Verrill, J. F., McPhedran. R. C.,Opt. Commun., 11, 207 (1974). (165C)Ingle, J. D., Jr., Anal. Chem., 47, 1217 (1975). (166C)lordanescu, S., ionescu-Bujor, Th., Rev. Roum. Phys., 20, 1 1 (1975). (167C)Issaq, H. J., Morgenthaler, L. P., Anal. Chem., 47, 1661 (1975). (168C)Issaq, H. J., Morgenthaler, L. P.. Anal. Chem., 47, 1668 (1975). (169C)Itoh, Y., Bussel, 15, 42 (1974);Chem. Abstr., 60,101206d (1974). (170C)Jack, A. G., Koedam, M., J. lllim. Eng. Soc., 3, 323 (1974). (171C)Jackson, D. A., Rajagopai, S.. J. Phys. E, 8,727 (1975). (172C)Jacobs, S.F,.: Sargent, M., Ill, Sctott, J. F., Scully, M. O., Ed., Laser Applications to Optics and Spectroscopy", Addison-Wesley, Reading, Mass., 1975. (173C)Jacobs, S.,Sargent M., 111, Scuily. M. O., Ed., "High Energy Lasers and Their Appiications (Physics of Quantum Electronics, Vol. l)", Addison-Wesley, Reading, Mass., 1974. (174'2) Johnson, D. J., Plankey, F. W., Winefordner, J. D., Anal. Chem.. 46, 1898 (1974);47,

1739 (1975). (175C)Johnson, E. R.. Diss. Abstr. lnt. B, 31, 192 (1975). (176C)Kaihor, H. A,, Moaveni. M. K., J. Opt. SOC.Am., 63, 1584 (1973). (177C)Kaminow. I. P., "An Introduction to Electro-optic Devices", Academic Press, New York, 1974. (178C)Kaminow, I. P., Siegman, A. E., Ed., "Laser Devices and Applications". Wiley, New York, 1973; review in Appl. Opt., 14, 2349

(1975). (179C)Karin, M. G., Koziov, B. P., Morozova, N. G., Sidorin, K. K., Snigirev, Yu. A,. Zh. Prikl. Spektrosk., 20, 742 (1974). (18OC)Katskov. D. A., Kruglikova. L. P., L'vov, B. V., Orlov. N. A,. Polzik, L. K., Zh. Prikl. Spektrosk., 21, 366 (1974). (181C)Kazan, B., Ed., "Advances in Image Pickup and Display. Vol. I," Academic Press, New York, 1974. (182'2)Keliher. P. N., Wohlers, C. C.,Anal.

ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

Chem., 46, 682 (1974). (183C)Keliher, P. N., Wohlers. C. C., Appl. Spectrosc. 29, 198 (1975). (184C)Kimura, M., Iwai, T., Horie. T., J. Phys. SOC.Jpn, 37, 1601 (1974). (185C)Kingslake, R., J. Opt. Soc. Am., 64,

123 (1974). (186C)Kleinhaus, W. A,, J. Opt. SOC.Am., 65, 1451 (1975). (187C)Klobuchar, R. L., Ahumada, J. J.. Michael, J. V., Karol, P. J., Rev. Sci. Instrum., 45,

1071 (1974). (188C)Knapp. D. 0.. Omenetto, N., Hart, L. P.. Plankey, F. W., Winefordner, J. D., Anal. Chim. Acta, 69, 455 (1974). (189C)Kniseiey, R. N., Amenson, H., Butler, C. C., Fassei. V. A., Appl. Spectrosc., 28, 285

(1974). (19OC)Koch, E. E., Haensei. R., Kunz, C.,Ed., "Proceedings of the IV International Conference on Vacuum Ultraviolet Radiation Physics, Hamburg, July 22-26, 1976," Pergamon. Eimsford, N.Y., 1974. (191C)Kogeinik, H., /€E€ Trans. Microwave Theory Tech., MlT-23, 2 (1975). (192'2)Kogelschatz, U., Appl. Opt., 13, 1749

(1974). (193C)Kolev, N., Metalurgiya (Sofia), 29, 19 (1974);Chem. Abstr., 81, 130386~(1974). (194C)Kono, A., Hattori, S., Appl. Opt., 13, 2002 (1974). (195C)Korolev, N. V., Ryukhin, V. V.. Lodin, G. B., Zh. Prikl. Spektrosk., 19, 400 (1973). (196C)Kosonocky, W. F., Carnes, J. E., RCA Rev., 36, 566 (1975). (197'2)Kreid, D. S.. Appl. Opt., 13, 737 (1974). (198C)Kreye, W. C.,J. Opt. SOC. Am., 65, 1427 (1975). (199C)Krompholz, H., Fischer, H., Appl. Opt., 13, 203 (1974). (200C)Kron, G. E., Methods Exp. Phys., 12A, 252 (1974). (201C)Kroplin, P., Jena Rev., 19 (5).270 (1974). (202C)Kuhl, J., Schmidt, W., Appl. Phys., 3, 251 (1974). (203C)Kumar, S., Paresce, F., Bowyer, S., Lampton. M., Appl. Opt., 13, 575 (1974). (204C)Kuroda, H., Shionoya, S.,Saito, H., Masuko, H., Opt. Commun., 12, 107 (1974). (205C)Lange. W., Luther, J., Steudel, A., Adv. At. Mol. Phys., 10, 173 (1974). (206C)Larach, S., Anal. Appl. Rare Earth Mater., NATO Adv. Study lnst. 1972, 123 (1973). (207C)Larson, N. M., Crosmun, R., Talmi, Y., Appl. Opt., 13, 2662 (1974). (208C)Latham, D. W., Methods Exp. Phys., 12A, 221 (1974). (209C)Laulicht, i., Appl. Spectrosc., 26, 270 (1974). (210C)Lavollee, M., Robin, S., J, Opt. SOC. Am., 64, 319 (1974). (211C) Lawrence, G. M., Stone, E. J., Rev. Sci. lnstrum., 46, 432 (1975). (212'2)Livingston, D. M., "The Maser of Light, A Biography of Albert A. Michelson," Scribner's, New York, 1973;reviewed in Phys. Today, 27 (9).

54 (1974). (213C)Loughin, S..Yang, C. Y., Fischer, J. E., Appl. Opt., 14, 1373 (1975). (214'2) Lowarance, J. L., Zucchino, P., Methods Exp. Phys., 12A, 277 (1974). (215C)Lurie, R. J., J. Opt. SOC.Am., 65, 261 (1975). (216C)Lytle, F. E., Anal. Chem., 46, 545A (1974). (217C)Lvtle. F. E.. Anal. Chem., 46. 817A (1974). (218C)Mack, M. E., Appl. Oct., 13, 46 (1974). (219C)Makous. W , Appl. Opt.. 13, 659 1 1 974). (220C)Maiacara, D.. Cornejo, A,, Appl. Opt., 13, 1778 (1974). (221C)Malacara. D.,Cornejo, A,, Murty, M. V. R. K., Appl. Opt., 14, 1065 (1975). (222C)Malherbe, A., Appl. Opt., 13, 1275 (1974). (223C)Malherbe, A., Appl. Opt., 13, 1276 (1974). (224C)Mantz, A. W., Sowers, B. L., Lange, J. J., Appl. Opt., 13, 193 (1974). (225C)Marchand, E. W., Wolf, E., J. Opt. SOC. Am. 64. 1219 11974). (228C)Mari'ch. K: W.. Trytl, W. J., Hawley, J. ~

G., Peppers, N. A,. Myers, R. E., Glick, D., J.

Phys. E, 7. 830 (1974). (227C) Marshall, A. G., Comlsarow, M. B., Anal. Chem., 47,491A (1975). (228C) Marshall, A. G., Comisarow, M. B., J. Chem. Educ., 52, 638 (1975). (229C) Matsubara, K., Masuda, K.. Somaki, H.. Uragami, Y., Namiki, T., Furukawa Denko Jiho, 58, 35 (1974); Chem. Abstr., 83, 21385h (1975). (230C) May, L., Ed., "Spectroscopic Tricks, Vol. 3," Plenum, New York. 1974. (231C) Maystre, D., Petit, R., Duban, M., Gilewicz, J., Nouv. Rev. Opt.. 5, 79 (1974). (232C) McCord, T. B., Frankston, M. J., Appl. Opt., 14, 1437 (1975). (233C) McFariane, W. K., Rev. Scl. Instrum., 45, 286 (1974). (234C) Meaburn, J., Appl. Opt., 14, 2521 (1975). (235C) Mehl, L., Mikkeleit. W., Moenke, H., Moenke-Blankenburg, L.. Mohr, J., Exp. Tech. Phys., 22, 161 (1974). (236C) Melngailis, I.. Mooradian, A,, Phys. Quantum Electron. 2 (Laser Appl. Opt. Spectrosc., Lect. SummerSch., 1973). l(1975). (237C) Mende, S. B., Shelley, Appl. Opt., 14, 691 (1975). (238C) Michels, D. J.. J. Opt. SOC. Am., 84, 662 (1974). (239C) Michels. D. J., Mikes, T. L., Hunter, W. R., Appl. Opt., 13, 1223 (1974). (240C) Mielenz, K. D., Appl. Opt., 13, 2931 (1974). (241C) Milano, M. J., Pardue, H. L., Cook, T. E., Santini, R. E., Margerum, D. W.. Raycheba, J. M. T., Anal. Chem., 46, 374 (1974). (242C) Millett, E. J., Morice, J. A,. Clegg, J. E., lnt. J. Mass. Spectrom. /on Phys., 13, 1 (1974). (243C) Mintz. G. D., Morland, K.. Boerner. W. M., Appl. Opt., 14, 564 (1975). (244C) Moenke, H.. Moenke-Blankenburg, L.. Mikrochim. Acta, Suppl. 5, 377 (1973). (245C) Moenke-Blankenburg, L.. Moenke, H., CZ-Chem-Tech., 2, 297 (1973). (246C) Moenke-Biankenburg, L., Moenke, H., Mohr, J., Quiilfeldt. W., Wiegand, Grassme, W., Schroen, W., Spectrochim. Acta, Part E, 30, 227 (1975). (247C) Moenke-Blankenburg, L., Moenke, H., Quilifeldt. W. Mohr, J., Grassme, W., Jena Rev., 20 (3). 107 (1975). (248C) Mohan, K., Schaefer, A. R., Zaiewski, E. T.,Appl. Opt., 14, 1035 (1975). (249C) Moore, C. B.,Ed., "Chemical and Biochemical Applications of Lasers", Vol. 1, Academic Press, New York, 1974. (250C) Mori, K., Ando, K.. Rikagaku Kenkyusho Hokoku, 50, 173 (1974); Chem. Abstr., 82, 1 1 8 1 0 9 ~(1975). (251C) Muir, M. D., Grant, P. R., Quant. Scanning Electron Mlcrosc., 287 (1974). (252C) Murphy, R. E., Cook, F. H., Sakai, H., J. Opt. SOC.Am. 65, 600 (1975). (253C) Murphy, W. F., Appl. Spectrosc., 29, 421 (1975). (254C) Murty, M. V. R. K., J. Opt. (India), 2, 53

, .

(257C) Nag&, Yu. S..Smolyak, E. L., Afanas'ev, V. A., Gimushin, I. F., Zh. Prikl. Spektrosk., 21, 1070 (1974). (2586) Nakamizo, M., Kammereck, R., Walker, P. L., Jr., Carbon, 12, 259 (1974). (259C) Nakamura. M., Shaiimoff, G. V., Appl. Spectrosc., 28, 581 (1974). (260C) Nakamura, M.. Shaiimoff, G. V., Rep. LBL-2331, 17 pp (1973): Chem. Abstr., 81, 31722p (1974). (261C) Negus, C. R., Appl. Opt., 13, 1216 (1974). (262C) Neiswander, R. S., Plews, G. S.,Appl. Opt., 14, 2720 (1975). (263C) Neumenn, G. M., Tech.-Wlss. Abh. Osram-Qes., 11, 8 (1973). (264C) Neumann, G. M., Tech-Wiss. Abh. Osram-Qes., 11, 42 (1973). (265C) Nikolaevskli, L. S., Zh. Prlkl. Spektrosk., 20, 924 (1974). (266C) Noda, H., Namioka, T., Seya, M., J. Opt. SOC. Am., 84, 1031 (1974). (267C) Noda, H., Namioka, T., Seya. M., J. Opt. SOC. Am., 84, 1037 (1974). (268C) Noda, H., Namioka, T., Seya, M., J. Opt. Soc. Am., 64, 1043 (1974).

(269C) Obermayer, H. A,, Opt. Commun., 13, 426 (1975). (270C) O'Haver, T. C.. Green, 0. L., Am. Lab. 7 (3), 15 (1975). (271C) Olson. G. G.. US. Pat. No. 3,820,898 (28 Jun 1974). (272C) Ondrasek, A,, Poljak, B., Svardaia, L., Hutn. Listy, 29, 892 (1974). (273C) Onton, A,, Fern, R. E., Appl. Spectrosc., 28, 556 (1974). (274C) Ophir, Z.,Even, U., Raz, B., Jortner, J.. J. Opt. SOC.Am., 84, 1175 (1974). (275C) Oraevskii, A. N., Khlm. Vys. Energ., 8, 3 (1974). (276C) Oriova, S. A., Sidoruk, V. I., Fridman, M. G., Zavod. Lab., 39, 1416 (1973). (277C) Ott, W. R., Behringer, K., Giers. G., Appl. Opt., 14, 2121 (1975). (278C) Paresce, F., Appl. Opt., 14, 2823 11975) (279C) Perlman, M. L., Rowe, E. M., Watson, R. E., Phys. Today, 27 (7). 30 (1974). (280C) Peter, H., Jena Rev., 19 (6), 336 (1974). ' (281C) Peterson, R. C., Title, A. M., Appl. Opt., 14, 2527 (1975). (282C) Phelps, A. V., Gaseous Electron.: Some Appl., 25 (1974). (283C) Phelps, F. M., Ill, Newbound, K. B.. J. Opt. SOC.Am., 65, 1283 (1975). (284C) Pike, E. R., Jakeman, E.. Adv. Quantum Electron., 2, 1 (1 974). (265C) Plankey, F. W., Glenn, T. H., Hart, L. P., Winefordner, J. D., Anal. Chem., 46, 1000 (1974). (266C) Pole, R. V.. Conweil. E. M., Kogeinik, H., Tien, P. K.. Whinnery, J. R., Yariv, A,, DeMaria, A. J., Appl. Opt., 14, 569 (1975). (287C) Pooie, R. T., Liesegang, J., Leckey, R. C. G., Jenkin, J. G., J. Electron Spectrosc. Relat. Phenom., 5, 773 (1974). (288C) Pouey, M., Appl. Opt., 13, 2739 (1974). (289C) Pouey, M., J. Opt. Soc. Am., 64, 1616 (1974). (29OC) Pouey, M., Now. Rev. Opt., 5, 323 (1974). (291C) Primik, W., Weiss, W. W., Astron. Asfrophys., 35, 307 (1974). (292C) Raikhbaum, Ya. D., Popov, K. F., Kuznetsova, A. I., Zh. Prikl. Spectrosk., 20, 703 (1974). (293C) Rayside, J. S.,Fletcher, W. H., Appl. Opt., 14, 2334 (1975). (294C) Richter, A. K., Carlson, F. P.. Appl. Opt., 13, 2924 (1974). (295C) Richtol, H. H., Reeves, R. R., Nelson, D. L.. J. Chem. Educ., 52, 198(1975). (296C) Roesler, F. L., Methods Exp. Phys., 12A, 531 (1974). (297C) Roessler, F., Optik (Stuttgart) 41, 293 (1974). (298C) Ross, Monte, Ed., "Laser Applications", Vol. 2, Academic Press, New York, 1974. (299C) Rowell, R. L., J. Chem. Educ., 51, A71 (1974). (300C) Roychoudhuri, C.. J. Opt. SOC.Am., 65, 1418 (1975). (301C) Ruddock, H., Res. Prog.. 0rg.-Biol. Med. Chem., 3, Pt. 1, 3 (1972). (302C) Rupp, W. J., Appl. Opt., 13, 1264 (1974). (303C) Rushton, E., Sagarra, A,, Anal. Chem., 47, 491A (1975). (304C) Rzhevskii, V. N., Opt. Spectrosc., 37, 671 (1974). (305C) Sacks, R. D., Hoicombe, J. A,, Appl. Spectrosc., 28, 518 (1974). (306C) Sahyung, M. R. V., J. Chem. Educ., 51, 72 (1974). (307C) Saito, T. T., Appl. Opt., 14, 1773 ( 1975). (308C) Saloman, E. E., Appl. Opt., 14, 1764 (1975). (309C) Saloman, E. B., Ederer, D. L., Appl. Opt., 14, 1029 (1975). (310C) Sambueva, A . S., Sverchlnskaya, S. A., Shipltsyn, S. A,, Zh. Prlkl. Spektrosk., 21, 748 (1974). (311C) Samson, J. A. R., Haddard, G. N., J. Opt. SOC. Am., 84, 47 (1974). (312C) Samson, J. A. R., Haddard. 0. N., J. Opt. SOC.Am., 84, 1346 (1974). (313C) Samsoni, Z., Nagy, Z.,Acta Chim. Huna. 84, l(1975). (514C) Samsoni, Z.,Nagy, Z . , Magy. Kem. Foly.. 80, 174 (1974). (315C) Sapp. E., Penchina, C. M., Pribram, J. \

-

K., Yates, D. A., Appl. Opt., 14, 2565 (1975). (316C) Sargent, M., 111, Sculiy, M. O., Lamb, W. E., Jr., "Laser Physics", Addison-Wasely," Reading, Mass., 1974: reviewed Phys. Today, 28 (7), 50 (1975). (317C) Saroyan, R. A., Rep. UCID-18497, 36 pp (1974): Nucl. Scl. Abstr., 30, 18413 (1974). (318C) Schagen, P., J. Phys. E, 8, 153 (1975). (319C) Schimer, H., Stober. I., Tech.-Wiss. Abh. Osram-Qes.. 11, l(1973). (320C) Schmidt, H., Salzmann. H.. Strohwald, H., Appl. Opt., 14, 2250 (1975). (321C) Schmidt, K., Neuhaus. H., Lundh, L. E., Phys. Scr., 9, 197 (1974). (322C) Schnopper, H. W., Thompson, R. I., Methods Exp. Phys., 12A, 491 (1974). (323C) Schroeder. D. J., Methods Exp. Phys., 12A, 463 (1974). (324C) Schwartz, H. J.. Hora, H., Ed., "Laser interaction and Related Plasma Phenomena", Vols 3A-3B, Plenum Press, New York, 1975. (325C) Schwarz, W., Bayer, E., Chromatographica, 7, 585 (1974). (326C) Scott, R. L., Smith, A. G., Astron. J., 79, 656 (1974). (327C) Seeiey, J. L., Skogerboe, R. K.. Anal. Chem., 46, 415 (1974). (328C) Seitel, S. C.. Anderson, D. K., J. Opt. SOC.Am., 84, 884 (1974). (329C) Senitzky, E.. Appl. Opt., 14, 238 (1975). (330C) Senitzky. B., Appl. Phys. Lett.. 24, 68 (1974). (331C) Shank, C. V., Rev. Mod. Phys., 47, 649 (1975). (332C) Shankiand, R. S..Phys. Today, 27 (4). 37 (1974). (333C) Sheahen, T. P., McCanney, T. 0.. J. Opt. SOC.Am., 65, 825 (1975). (334C) Shvu. R. S., Wana, S., ADD/. 13, . . ODt.. . 118 (1974). (335C) Siemon, R. E., ADD/. Opt., 13, 697 . . (1974). (336C) Sigier, R. D.. Appl. Opt., 13, 1765 (1974). (337C) Skene, J. F., Stuart, D. C., Fritze, K., Kennett, T. J., Spectrochim. Acta, Part B, 29, 339 (1974). (338C) Skogerboe. R. K.. Dick, D. L., Pavlica. D. A., Lichte, F. E., Anal. Chem., 47, 568 (1975). (339'2) Sobolev, N., "Lasers and Their Future", Mir, Moscow, USSR, 1974; Chem. Abstr.. 81, 70977v (1974). (340C) Som, S. C.. Appl. Opt., 13, 2767 (1974). (341C) Speer, R. J., Turner, D., Johnson, R. L., Rudolph, D., Schmahl, G., Appl. Opt., 13, 1259 (1974). (342C) Spiller, E.. Appl. Opt., 13, 1209 (1974). (343C) Spiller, E., Optik (Stuttgart), 39, 118 (1973). (344C) Stacey, D. N., J. phys. E, 7, 405 (1974). (345C) Steiner, E., Natl. Bur. Stand. (U.S.) Tech. Note594-6, 56 pp (1974). (346C) Steinfeld, J. I., Opt. Eng., 13, 476 (1974). (347C) Steinfeld, J. i., Proc. SOC. Photo-Opt. Instrum. Eng. 1974, 49, l(1975). (348C) Steinhaus, D. W., Kline, J. V., J, Opt. SOC.Am., 65, 814 (1975). (349C) Stephens, R., Ryan, D. E., Talanta, 22, 655 (1975). (350'2) Strong, C. L., Scl. Am., 232 (4), 134 (1975). (351C) SGong, J., Essays Phys., 5, 197 (1973). (352C) Su, L. K., Hsue, S. T., Feng, S. Y., Phys. Lett. A, 53, 177 (1975). (3530) Su, S. F., Gaylord, T. K., J. Opt. SOC. Am., 813, 59 (1975). (354C) Syty, A., Crlt. Rev. Anal. Chem., 4, 155 (1974). (35%) Szabo, 2. L., Fejerdy, H., Burasi, A,, Acta Chlm. (Budapest), 80, 365 (1974). (356C) Tal, M. H., Briotta, D. A,, Kamath, N. S., Harwit, M., Appl. Opt., 14, 2633 (1975). (3570) Tai, M. H., Harwltt, M., Sbane, N. J. A , , ~ p p iopt., . 14, 2678 (1975). (358C) Talml, Y., Anal. Chem., 47, 658A (1975). (359C) Talmi, Y., Anal. Chem., 47, 697A (1975). (360C) Tamir, T., Ed., "Integrated Optics", Springer-Verlag. Heidelberg, New York, 1975; reviewed J. Opt. SOC.Am., 85, 1528 (1975). (361C) Tarasov. K. I., "The Spectroscope",

ANALYTICAL CHEMISTRY, VOL. 48, NO.

5, APRIL 1976

135R

Wiley, New York, 1974: reviewed in Appl. Opt., 14, 2310 (1975). (362C) Taxil, A,, Rev. Gen. Electr., 83, 577 (1974). (363C) Tchang. L. I., Rev. Gen. Electr., 83, 595 (1974). (364C) Thorne, A. P., "Spectrophysics", Halsted. New York, 1974. (365C) Tien, P. K.. Sci. Am., 220 (4), 28 (1974). (366C) Timothy, J. G., Lapson. L. B., Appl. Opt., 13, 1417 (1974). (367C) Timperley, M. H.. Spectrochim. Acta, Pati B, 29, 95 (1974). (368C) Title, A. M., Pope, T. P., Andelin. J. P., Appl. Opt., 13, 2675 (1974). (369C) Title, A. M., Pope, T. P., Andelin, J. P.. Appl. Opt., 13, 2680 (1974). (370C) Treytl, W. J.. Marich. K. W.. Giick, D., Anal. Chem., 47, 1275 (1975). (371C) Tsuchiya. S., Inoue, H., Oyo Bufsuri, 43, 2 (1974); Chem. Abstr., 80, 1386759 (1974). (372C) Tull, R. G., Choisser, J. P., Snow, E. H.. Appl. Opt., 14, 1182 (1975). (373C) Ushioda, S.,Valdez, J. E., Ward, W. H., Evans, A. R., Rev. Sci. Instrum., 45,479 (1975). (374C) Van Dormael, A., lnd. Chlm. 6elae, 30, 121 (1974). (375C) Vargady, L. O., Appl. Opt., 14, 2335 f1875\ I.-._,.

(376C) Vaucamps, C., Chabrat, J. P., Lozano, P., Rouch, J., Serene, B., J. Phys. E, 6, 970 (1973). (377C) Vermeulen, J., Rev. Gen. Electr., 83, 589 (1974). (378C) Vest, C. M., Appl. Opt., 14, 1601 11975). ' (379C) Vogel, R. S.,Appl. Spectrosc., 20, 436 (1975). (380C) Voronov, E. G., U.S.S.R. 428,228 (15 May 1974); Chem. Abstr., 82, 38247s (1973). (381C) Voronov, B. G., Zh. Prikl. Spectrosk., 19, 568 (1973). (382C) Voronov. B. G., Zh. Prikl. Spectrosk., 20, 327 (1974). (383C) Walthall, F. G., J. Res. U.S. Geol. Surv., 2, 61 (1974). (384C) Walther, H., Phys. Scr., 9, 297 (1974). ( 3 8 3 3 Wampler, E. J., Methods Exp. Phys., 12A, 237 (1974). (386C) Warren, W. R., Jr., Astronaut. Aeronaut., 13, 36 (1975). (387C) Waymouth, J. F., Gaseous Electron.: Some Appl.. 47 (1974). (388C) Weber, J. H., Earnshaw, D. G., Severin, D. W. K., Decora, A. W., U.S. Bur. Mines, Rep. Invest., RI 7934, 14 pp (1974). (3896) Weimer, P. K., RCA Rev., 36, 385 ( 1975). (390C) Weiser, C., Rev. Scl. Instrum., 46, 830 (1975). (391C) West, M. A,, Photochemistry, 5, 80 (1974). (39212) Wevsenfeld, C. H.. ADD/. ODL 13. 2816 (1974). (393C) Whittaker, F. L., J. Phys. E, 6, 1032 (1973). (394C) Willett, C. S., "An Introduction to Gas Lasers: Population Inversion Mechanisms", Pergamon, Oxford, 1974. (39%) Willetts. D. V.. Freedman, P . A,, Jones, W. J., J. Raman Spectrosc., 2, 249 (1974). (396C) Witmer, A. W., Jansen. J. A. J., van Gool, G. H., Brouwer, G., Philips Tech. Rev., 34, 322 (1974). (397C) Wolbarsht, M. L., Ed., "Laser Applications in Medicine and Biology", Vol. 2, Plenum Press, New York, 1974. (398C) Wood, D. L.. Dargis, A. B , Nash, D. L., Appl. Spectrosc., 29, 310 (1975). (399C) Woodgate, B. E., J. Opt. SOC.Am., 64, 654 (1974). (400C) Woodruff, T. A,. Malmstadt, H. V., Anal. Chem 46. 1162 (1974) _ (40iC)(Wyman', C. L., Korsch, D., Appl. Opt., 13. 2064 119741. i402C)'Wyman. C. L., Korsch. D., Appl. Opt., 13, 2402 (1974). (403C) Wyman, C. L., Korsch, D., Appl. Opt., 14, 992 (1975) (404C) Yamashita, I., Jpn. J. Appl. Phys., 14, 833 (1975). (405C) Yasuda, M., Takahashi. T., Bunko Kenkyu, 23, 41 (1974). (406C) Young, A. T., Methods Exp. Phys., 12A, l(1974).

136R

(407C) Young, A. T., Methods Exp. Phys., 12A, 95 (1974). (408C) Zaharescu, M., Zoita, A,, Zoita, V.. Rev. Roum. Phys., 20, 357 (1975). (409C) Zanker, A,, Appl. Opt., 13, 2449 (1974). (410C) Carrington, R . A. G., "Computers for Spectroscopists", Halsted, New York, 1974. Standards, Samples, Callbrallon, Calculatlon (1D) Abbey, S., Gillieson. A. H.. Perrault. G., Can. J. Spectrosc., 20, 113 (1975). (2D) Abu-Samara, A,, Morris, J. S., Koirtyohann, S.R., Anal. Chem., 47, 1475 (1975). (3D) Agus, F., Hesp. W. R . , CSlRO Miner. Res. Lab., Invest. Rep., 100, 14 pp (1974). (40) Aspnes, D. E., Anal. Chem., 47, 1181 (1975). (5D) Baker, D. J., Appl. Opt., 13, 2160 (1974). (6D) Batistoni, D. A,, Capaccioli. J. H., An. ASOC. Ouim. Argent., 62, 85 (1974); Chem. Absb., 81, 130379d (1974). (7D) Belyaev, Yu. I., Krasnobaeva, N. M., Dokl. Bolg. Akad. Nauk, 26, 1339 (1973): Chem. Abstr., 80, 1 2 7 7 2 4 ~ (1974). (ED) Bosch, F. M., Broekaert, J. A. C., Anal. Chem., 47, 188 (1975). (9D) Broekaert, J. A. C., Bull. SOC. Chim. Bslg., 82, 561 (1973). (10D) Buravlev, Yu. M., Buyanov, N. V., Babanskaya, L. N., Zamkovaya, V. F., Korotkov, V. F., Titovets, A. V., Fiz. Tverd. Tela (Kharkov), 4, 49 (1974): Chem. Abstr., 83, 157384 (1975). (11D) Cleric, J. T., Kaiser, R., Rendl, J., Spitzy, H., Zettler, H.. Gottschalk, G., Malissa, H., Schwarz-Bergkampf, E., Werder, R. D., Fresenius' Z. Anal. Chem., 272 1 (1974). (12D) Cowgill, U. M., Appl. Spectrosc., 28, 455 (1974). (13D) Danzer, K.. Z . Chem., 15, 158 (1975). (14D) Den Harder, A., De Galan, L.. Anal. Chem., 46, 1464 (1974). (15D) De Voe, J. R., Shideler, R. W., Ruegg, F. C., Aronson, J. P.. Shoenfeld, P. S.,Anal. Chem., 46, 509 (1974). (16D) Doerffel, K., Zh. Anal. Khim., 30, 853 (1975). (170) Dugain. F., Rev. Alum., 420, 453 (1973). (18D) Dulaney, G., Anal. Chem., 47, 24A (1975). (19D) Eckschlarger, K., Chem. Listy, 60, 810 (1975). (20D) Eckschlarger, K., Collect. Czech. Chem. Commun., 38, 1380 (1973). (21D) Eckschlarger, K., Collect. Czech. Chem. Commun., 38, 1426 (1973). (22D) Eckschlager, K., Kodejs, Z., Chem. Prum., 24, 400 (1974); Chem. Abstr., 82, 50923s (1975). (23D) Eckschlager, K., Vajda. I., Collect. Czech. Chem. Commun., 39,3076 (1974). (24D) Edwards, T. H., Willson, P. D., Appl. Spectrosc., 28, 541 (1974). (25D) Engleman, R., Jr.. Radziernski, L. J., Jr., Appl. Opt., 14, 2821 (1975). (26D) Ersepke, Z.,Hutn. Listy, 29, 824 (1974); Chem. Abstr., 82, 14890511(1975). (270) Farhan, F. M., Pazandeh, H., Analusis, 3, 517 (1975). (28D) Faye, G. H., Ed., "Standard Reference Ores and Rocks Available from the Mines Branch as of October 1973 (IC 300)", 27 pp (1973). (29D) Faye, G. H., Bowman, W. S.,Sutarno, R., Can., Mines Br., Tech. Bull. 177, 50 pp (1973). (30D) Flaschka, H., Meyers, G., Fresenius' Z . Anal. Chem., 274, 279 (1975). (31D) Florence, T. M., Farrar, Y. J., Dale, L. S., Batley, G. E., Anal. Chem., 46, 1874(1974). (32D) Florian. K., Florianova, K., Matherny, M., Acta Chim. Acad. Sci. Hung., 82, 403 (1974). (33D) Florian, K., Lavrin, A,, Matherny, M., Chem. Zvesti, 27, 623 (1973). (34D) Florian, K., Lavrin. A,, Matherny, M., Chem. Zvesti, 28, 760 (1974). (350) French, C. L., Tuthill, S.M., ASTM Spec. Tech. Publ., STP 564, 73 (1974). (36D) Gegus, E., Moritz, P., Repas. P.. Banyasz. Kohasz. Lapok, Kohasz., 108, 18 (1975); Chem. Abstr.. 83, 157241r (1975). (37D) Gluzinska, M., Chem. Anal. (Warsaw), 19, 315 (1974). (38D) Gorokhov. 0. D.. Nikitin, V. N., Zh. Prikl. Spektrosk.. 20, 22 (1974). (39D) Gottschalk, G., Fresenius' 2. Anal. Chem., 275, l(1975). (400) Govindaraju, K.. Analusis, 3, 116 (1975).

ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

(41D) Grabowski, H., Lopata, K., Zesz. Nauk. Uniw. Jagiellon., Pr. Chem. No. 18, 81 (1973); Chem. Abstr., 80, 555042 (1974). (42D) Graff, P. R.. Bull., Nor. Geol. Unders., 20, 27 (1973). (43D) Green, A. E. S.,McPeters, R. D., Appl. Opt., 14, 271 (1975). (44D) Gries, W. H., Norval, E., Anal. Chim. Acta, 75, 289 (1975). (45D) Gusarskii, V. V., Zavod. Lab., 40, 1343 (1974). (46D) Harris, W. E., Kratochvil, B.. Anal. Chem., 46, 313 (1974). (47D) Harrison, S.H., LaFleur, P. D., Zoller, W. H., Anal. Chem., 47, 1685 (1975). (48D) Hesp, W. R., Rigby, D.. CSlRO Div. Miner. Chem., Invest. Rep., No. 93, 9 pp (1973). (490) Hobart, E. W., Kallman, S. K., ASTM Spec. Tech. Publ., STP 584, 68 (1974). (500) Holcombe, J. A., Brinkman, D. W., Sacks, R. D., Anal. Chem., 47, 441 (1975). (51D) Howarth, R. J., Analyst (London), 98, 777 (1973). (52D) Hurlock, S. C., Hanratty, J. R., Appl. Spectrosc., 28, 362 (1974). (53D) Ingamells, C. O., Talanta, 21, 141 119741 .I. (54D) Ingamells, C. 0.. Switzer, P., Talanta, 20, 547 (1973). (55D) Ingle, J. D. Jr., J. Chem. Educ., 51, 100 (1974). (56D) IUPAC Commission on Spectrochemical and Other Optical Procedures for Analysis, Appl. Spectrosc., 28, 398 (1974). (57D) Jecko, G.. Wittmann, A,, Cent. Doc. Slderurg., Circ. Inform. Tech., 31, 165 (1974). (58D) Jurs, P. C., Isenhour. T. L.. "Chemical Applications of Pattern Recognition", Wiley-lnterscience, New York, 1975. (59D) Kaiser, H., Meth. Chim., I A , (1974). (60D) Kantor, T., Pungor, E., Kem. Kozlem., 41, 1 (1974); Chem. Abstr., 81, 854572 (1974). (61D) Kantor, T.. Pungor, E., Spectrochim. Acta, Parl 6,29, 139 (1974). (62D) Kaplan, B. Ya.. Nedler, V. V., Zh. Anal. Khim., 29, 2072 (1974). (63D) Karp, S., J. Chem. Educ., 52, A346 (1975). (64D) Kelly, P. C., Horlick. G., Anal. Chem., 48, 2130 (1974). (65D) Kerekes, S.,Ambrus, J., Spectrochim. Acta. Pari 8, 28, 473 (1973). (66D) King, P. G., Deming, S.N.. Anal. Chem., 46, 1476 (1974). (670) Knoop, P., Anal. Chsm., 48, 965 (1974). (68D) Kowalski, B. R., Anal. Chem., 47, 1152A (1975). (69D) Kozlicka, M., Chem. Anal. (Warsaw), 18, 1141 (1973). (7OD) Krakovska, E.. Matherny, M., Chem. Zvesti, 20, 177 (1975). (71D) Krivchenkova. V. S..Khakhaev, A. D., Zh. Prikl. Spektrosk., 21, 419 (1974). (72D) Kuznetsov, Yu. N., Kuznetsova, G. A,, Zh. Anal. Khim., 29, 1041 (1974). (73D) LaFleur, P. D., Comp. Stud. Food Environ. Contam., Proc. Symp. 1973, 489 (1974). (74D) Larsen, I. L., Wagner, J. J., J. Chem. Educ., 52, 215 (1975). (75D) Lontsikh, S. V., Berkovits, L. A., Zh. Anal. Khim., 30, 213 (1975). (76D) Malinek, M., Can. J. Spectrosc., 20, 68 (1975). (77D) Malissa. H., Rendl, J., Marr, I. L., Talanta, 22, 597 (1975). (78D) Mason, G. L., Ed., ASTM Spec. Tech. Publ., STP 562 (1974); reviewed Anal. Chem., 47, 966A (1975). (79D) Massart, D. L., Kaufmand, L., Anal. Chem., 47, 1244A (1975). (8OD) Matherny. M., Fresenius' Z. Anal. Chem., 271, 101 (1974). (81D) Matherny, M., Spectrosc. Lett., 6 , 711 (1973). (82D) Mays, R. E., Czamanske, G. K., Heropouios, C., Appl. Spectrosc., 28, 462 (1974). (83D) McAdam, R. C.. Sutarno, R., Moloughney, P. E., Can., Mines Br., Tech. Bull., TB 182, 33 pp (1973). (84D) McKinney, C. N., Pollard, W. K.. Brit. Pat. 1,345,682 (2 Feb. 1972). (85D) McLauchlan, E. J., Metall. Met. Form., 42, 32 (1975). (86D) Morgan, S. L., Deming. S. N., Anal. Chem., 48, 1170(1974). (87D) Morrison, 0. H.. Pure Appl. Chem., 41, I . - -

~

395 (1975). (88D) Nasser, M. I., Appl. Spectrosc., 28, 356 (1974). (89D) Natl. Bur. Stand. (U.S.), Spec. Pubi., 260-1775-76, Catalog, 90 pp (1975). (9OD) Ondov, J. M., Zoller, W. H., Olmez, L., Aras, N. K., Gordon, G. E., Ranciteili. L. A,, Abel, K. H., Filby, F. H., Shah, K. R., Ragaini. R . C., Anal. Chem., 47, 1102 (1975). (91D) Pravceva, Kh., Delijska. A,, Ninova, V., Fresenius' Z. Anal. Chem., 272, 120 (1974). (92D) Pupyshev, A. A., Muzgin, V. N., Zolotavin, V. L., Zh. Prikl. Spektrosk., 19, 983 (1973). (930) Raikhbaum, Ya. D., Smirnova, E. V., Luvsandorzhi, M., Malykh. V. D., Zh. Prikl. Spektrosk., 20, 955 (1974). (94D) Rains, T. C., Olson, C. D., Veiapoidi, R. A.. Wicks, S. A., Menis, O., Rep. NBSIR-74-439, 13 pp (1974). (95D) Risova, J., Plsko, E., Chem. Zvesti, 27, 770 (1973). (96D) Risova, J.. Plsko, E.. Chem. Zvesti. 27, 775 (1973). (97D) Ritter, G. I , Lowry. S. R.. Wilkins, C. L., Isenhour, T. L., Anal. Chem., 47, 1951 (1975). (9813) Roberts, R. W., Anal. Chem., 47, 648A 11975) - -, (99D) Saint-Dizier, J. P., Gagne, J M.. Appl. Opt., 13, 1740 (1974). (100D) Samadi, A. A,, Grynszpan, R., Fedoroff, M., Radiochem. Radioanal. Lett., 19, 171 (1974). (101D) Severin. E. N., Zh. Prikl. Spektrosk., 19, 614 (1973). (102D) Skogerboe, R. K., Adv. X-Ray Anal., 17, 68 (1974). (103D) Smith, E. W., Parsons, M. L., J. Chem. Educ., 50, 679 (1973). (104D) Stamp, C., McKenzie, P., Harrison, T. S., Met. Metal Form.. 40, 222 (1973). (105D) Steele, T. W., Levin, J., Copelowitz, I., Natl lnst. Metall., Repub. S. Afr., Rep., 1896, 50 PP (1975). (106D) Stoch, H., Natl lnst. Metall., Repub. S. Afr.. Rep., 1849, 29 pp (1974). (107D) Strong, F. C., ill, Appl. Spectrosc., 29, 265 (1975). (108D) Subrahmaniam, P. Rao, H. T., Trans. lndian lnst. Met., 27, 256 (1974). (109D) Subramaniam, P., Tamhankoar, R. V., Indian. J. Technol., 10, 380 (1972). (1 10D) Sutarno, R., Faye, G. H., Talanta, 22, 675 (1975). (111D) Svehia, A,, Salcerova, M., Hutn. Listy, 30, 206 (1975); Chem. Abstr.. 83, 90289s (1975). (112D) Svoboda, V., Kleinmann, I., Radioisotopy, 14, 867 (1973). (113D) Tetley, N. W., Turek, A,, Anal. Leff., 7, 621 (1974). (1 14D) Thomas, C. P., J. Res. U.S. Geol. Surv., 3. 181 - (19751. - -, (1150) Tunney, A. A,, Hughes, H., Br. Steel Corp., (Open Rep.) GSflECH/251/1/73/C, 10 pp (1973). (116D) Van der Linden, Fresenius' 2. Anal. Chem.. 289. 26 (1974). (1 17D) Van Tassel,' R. A,, Pauisen, D. E., Appl. Opt., 14, 559 (1975). (11813) Wachi, I., Suzuki, T., Tsuji, N., Satoh, H., Tokai Jigyo-sho. Doryoku-do, Kaku-nenryo Kaihatsu Jigyo-dan, (Rep.) 1972, 88 (1973): Chem. Abstr., 80, 33500t (1974). (1 19D) Waiter, H., Arch. Eisenhuedw., 46, 209 (1975). (120D) Wilson, A. L., Talanta, 21, 1109 (1974). (12113) Witkowska, S., Kozlicka, M., Fudal, A,, Chem. Anal. (Warsaw), 18, 1235 (1973). (122D) Yoshimori, T.. Tanaka, T., Bunseki Kagaku, 22, 1251 (1973). (123D) Zenitani, F., Minami, S., Oyo Butsuri, 43, 138 (1974): Chem. Abstr., 81, 43959j (1974). \

-.

%

Excitation Sources (1E) Ackermann, G., Muenx. M., Talanta, 22, 107 (1975). (2E) Aksenov, I. I., Belous, V. A,. Smirnov, S. A,, Zh. Tekh. Fiz., 45, 1717 (1975). (3E) Alder, J. F., Mermet, J. M., Spectrochim. Acta Part B, 28, 421 (1973). (4E) Alduan, F. A., Capdevila, C., An. Quim., 70, 601 (1974); Chem. Abstr. 82, 38199c (1975). (5E) Alduan. F. A., Capdeviala. C.. Roca, M., Rep JEN-269, 12 pp (1973). (6E) Aieksandrov, V. Ya., Gruzdeva, N. S.. Podmoeshenski, I. V., Opt. Spektrosk., 37, 649 (1974).

(7E) Alekseev, M. A., Kapitonov, A. N., Zh. Priki. Spektrosk., 22, 595 (1975). (8E) Amaya, C. B., Guido, 0. D., Rep. CNEA268, 18 pp (1974); Nucl. Scl. Abstr., 31, 25210 (1975). (9E) Amaya. C. E.. Guido, O., Talanta, 21, 533 (1974). (10E) Andreev, S. I., Novikova, G. M., Pis'ma Zh. Tekh. Fir., 1, 654 (1975): Chem. Abstr., 83, 1870051 (1975). (1 IE) Anisimova, Z. A,, Patrikeeva, N. A,, Zavod. Lab., 41, 693 (1975). (12E) Aref'ev, V. I., Grishin, S. D., Kuz'min, L. A,, Leshkov, L. V., Mikhalev, V. G., High Temp., 11, 222 (1973). (13E) Atnashev, Yu. E . , Muzgin, V. N., Zh. Prikl. Spektrosk., 21, 414 (1974). (14E) Atnashev, Yu. E . , Muzgin. V. N., Gavrilov, F. F., J. Appl. Spectrosc., 18, 1 (1973). (15E) Atsuya, I., Anal. Chim. Acta, 74, 1 (1975). (16E) Avni, R . , Winefordner, J. D., Spectrochim. Acta, PartB. 30, 281 (1975). (17E) Avni, R., Winefordner, J. D., Nickel, H., Ber. Kernforschungsanlage Juelich. JUEL-I 188, 52 pp (1975). (18E) Aziz, A,, Solgaard, P., Rep. RISO-M1735, 16 pp (1974). (19E) Bachurina. L. G., Perminova, V. M., Savostin, S. A,, Zavod. Lab., 40, 1348 (1974). (20E) Barnes, R. M., Nikdel, S., Appl. Spectrosc., 29, 477 (1975). (21E) Barnes, R. M., Schleicher, R. G., Anal. Chem., 46, 1342 (1974). (22E) Barnes, R . M., Schieicher, R . G., Spectrochim. Acta, Part B, 30, 109 (1975). (23E) Batenin, V. M., Zrodnikov, V. S., Roddatis, V. K., Chinnov, V. F.. Teplofiz. Vys. Temp., 13, 270 (1975). (24E) Baudin, G., Bull. lnf. Sci. Tech., Commis. Energ. At. (Fr.),200, 83 (1975). (25E) Baudin, G., Bull. lnf. Sci. Tech., Commis. Energ. At. ( F r . ) ,200, 205 (1975). (26E) Bayle, P., Bayle, M., Z. Phys., 266, 275 (1974). (27E) Belousov, E. V., Bryukhovetskii, A. S., Prokopov, A. V., Zh. Tekh. Fiz., 44, 91 (1974). (28E) Belov, V. A,, Krivenkov, G. V., Tsypulev, Yu. V., Teplofiz. Vys. Temp., 13, 178(1975). (29E) Berenshtein, L. E., Gai'perina, E. M., Segal, I. D., Zavod. Lab., 40, 400 (1974). (30E) Bevan, D. G., Kirkbright, G. F., Anal. Chim. Acta, 76, 361 (1975). (31E) Bieber, E . , Jena Rev., 19 (4), 248 (1974). (32E) Bieber, E . , Stejskaiova, A,, Hutn. Listy, 28, 742 (1973); Chem. Abstr.. 80, 66363d (1974). (33E) Bobrov, Yu. K., Sov. Phys.-Tech. Phys., 19, 1442 (1975); Zh. Tekh. Fiz., 44, 2340 (1974). (34E) Ref. deleted in revision. (35E) Bondarenko, B. F., Zh. Priki. Spektrosk., 20, 13 (1974). (36E) Borovich, E. L., Grigor'ev, P. G.. Zuev. V. S.,Rozanov, V. E., Startsev, A. V., Shirokikh, A. P., Tr. Fiz. Inst. Akad. Nauk SSSR, 76, 3 (1974). (37E) Boumans, P. W. J. M., Philips Tech. Rev., 34, 305 (1974). (38E) Boumans, P. W. J. M., deBoer, F. J., Roc. Anal. Div. Chem. SOC., 12, 140 (1975). (39E) Boumans, P. W. J. M., deBoer, F. J., Spectrochim. Acta, Part 8,30, 309 (1975). (40E) Boumans, P. W. J. M., deBoer, F. J.. Dahmen, F. J., Hoelzel, H., Meier, A,, Spectrochim. Acta, Part 8,30, 449 (1975). (41E) Bozhevol'nov, E. A,, Manova, T. G., Silakova. V. G., Krasil'shchik, V. Z., Tr., Vses. Nauchno-lssled. inst. Khim. Reakt. Osobo Chist. Khim. Veshchesfv., 35, 160 (1973); Chem. Abstr., 82, 51051t (1975). (42E) Bozhevol'nov, E. A., Manova, T. G., Silakova, V. G., Krasii'shchik. V. Z., Zh. Anal. Khim., 28, 1273 (1973). (43E) Brassem, P., Maessen, F. J. M. J.. Specfrochim. Acta, Part B, 29, 203 (1974). (44E) Brezna, E., Veis. S., Czech. J. Phys. (Engi. Trans/.) 825, 859 (1975). (45E) Brongersma, H. H., Meijer, F., Werner, H. W., Philips Tech. Rev., 34, 357 (1974). (46E) Bros, E., Lasa, J.. Kilarska, M., Chem. Anal. (Warsaw), 19, 1003 (1974). (47E) Brunet, A., C. R. Hebn. Seances Acad. Sci., Ser. B, 278, 195 (1974). (48E) Bryukhovestskii, A. S., Martynyuk, S. P.. Motornenko, A. P., Ukr. Fiz. Zh. (Russ. Ed,), 19, 1320 (1974). (49E) Bueger, P. A., Z. Naturforsch. A, 30, 216

(1975). (50E) Bueger, P. A., El Alfy, S.. Z. Naturforsch. A, 30, 466 (1975). (51E) Buravlev, Yu. M., Buyanov, N. K., Babanskaya, L. N., Titovets, A. V., Tr. Khim. Khim. Tekhnol. (3). 83 (1973). (52E) Buravlev. Yu. M., Morokhovskaya, 1. I., Murav'ev, V. N., Nadezhda. E . P., Tr. Khim. Khim. Tekhnol. (3), 81 (1973). (53E) Buravlev, Yu. M., Nadezhda, E . P., Babanskaya, L. N., Zavod. Lab., 40, 165 (1974). (54E) Butler, C. C., Kniseley, R. N.. Fassel. V. A., Anal. Chem., 47, 825 (1975). (55E) Chan, P. W., Niimura, M., Churchill, R . J., Schanberg. E . C.. /E€€ Trans. Plasma Sci., PS-3, 174 (1975). (56E) Chan, P. W., Niimura, M., Schanberg, E. C., U.S. NTIS, PB Rep. 237580/8GA, 51 pp (1974). (57E) Cherevko, A. S.. Simonova, V. I., Zh. Prikl. Spektrosk., 19, 348 (1973). ( M E ) Ciura, A. I., Stud. Cercet. Fiz., 25, 951 . (1973); Chem. Abstr., 80, 75971c (1974). (59E) Coburn, J. W., Eckstein, E. W., Kay, E., J. Appl. Phys., 46, 2828 (1975). (60E) Coburn, J. W., Eckstein. E. W., Kay, E., J. Vac. Sci. Technol., 12, 151 (1975). (61E) Coburn. J. W., Kay, E., Crit. Rev. Solid State Sci.. 4, 561 (1974). (62E) Coburn, J. W., Taglauer, E., Kay, E., J. Appl. Phys., 45, 1779 (1974). (63E) Coburn, J. W.. Taglauer. E., Kay, E., Proc. In.. Vac. Congr., 6th, 501 (1974). (64E) Colby, E . N.. Evans, C. A,, Jr., Anal. Chem., 48, 1236 (1974). (65E) Couturand, J. C., Decroisette, M., Faure, C., Griesemann. J. C., Jacquet, M. L., Martineau, J., Meyer, E., Patou, C., Rabeau, M., Saleres, A,, Bull. lnf. Sci. Tech., Commis. Energ. At. (Fr.), 204, 17 (1975). (66E) Cristescu, C. P., Popescu, I. M., Preda, A., Rev. Roum. Phys.. 18, 859 (1973). (67E) Crosmun. R. V., Diss. Abstr. lnt. 6,35, 5271 (1975). (68E) Czakow, J., Chem. Anal. (Warsaw), 18, 891 (1973). (69E) Czernichowski, A,, Jurewicz. J., Pr. Nauk. lnst. Chem. Nieorg. Metal. Pierwiastkow Rzadkich Polifech. Wroclaw, 24, 3 (1975); Chem. Absfr., 83, 36273 (1975). (70E) Dagnali, R . M.. Sharp, E . L., Proc. SOC. Anal. Chem., I O , 89 (1973). (71E) Dagnall, R. M., West, T. S., Whitehead, P., Analyst (London), 98, 647 (1973). (72E) Dagnall, R . M., Whitehead, P., Proc. SOC. Anal. Chem., 9, 20 1 (1972). (73E) Dale, L. S., Appl. Spectrosc., 28, 564 (1974). (74E) Daughtrey, E. H., Jr., Diss. Abstr. lnt. E, 35, 2060 (1974). (75E) Daughtrey, E. H., Jr., Donohue, D. L., Slevin, P. J., Harrison, W. W., Anal. Chem., 47, 683 (1975). (76E) Daughtrey, E. H., Jr., Harrison, W. W., Anal. Chem., 47, 1024 (1975). (77E) Daughtrey, E. H., Jr., Harrison, W. W., Anal. Chim. Acta, 67, 253 (1973). (78E) David, D. J., "Gas Chromatographic Detectors", Wiley-lnterscience, New York, 1974. (79E) Decker, R. J., McFadden, P. A,, Specfrochim. Acta, Part B, 30, 1 (1975). (80E) DeJong, G. J., Piepmeier, E. H.. Anal. Chem., 48, 318 (1974). (81E) DeJong, G. J., Piepmeier, E. H., Spectrochim. Acta. PartB, 29, 159 (1974). (82E) DeJong, G. J.. Piepmeier, E. H.. Spectrochim. Acta, Part B, 29, 179 (1974). (83E) Deicroix, J. L.. Trindade, A. R., Adv. Electron Phys., 35, 87 (1974). (84E) Denton, H., Sharp, E. L., West, T. S., Ta/anta, 22, 379 (1975). (85E) Dhumwad, R. K., Joshi, N. V., Kulkarni. V. T., Patwardham, A. E., lndia AEC Bhabba At. Res. Cent. (Rep), BARC-887, 8pp (1973). (86E) Dhumwad, R . K., Kulkarni, V. T., Patwardhan, A. B., lndia AEC Bhabha At. Res. Cent. (Rep), BARC-750, 7pp (1974). (87E) Dikhter, I. Ya., Zeigarnik, V. A,, Teplofiz. ~ y s Temp., . 13, 483 (1975). (88E) Dimitrov, G., Petrakiev, A,, God. Sofii. Univ., Fiz Fak., 1970-7972, 531 (1973); Chem. Abstr., 83, 90299v (1975). (89E) Dobrosavljevic, J. S., Marinkovic, M., Spectrochim. Acta, Part E, 29, 87 (1974). (90E) Doerf.fel. K., Ganeva-Arpadjan, S., Jena Rev., 19 (6), 342 (1974).

ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

137R

(91E) Donohue, D. L., Harrison, W. W., Anal. Chem.. 47, 1528 (1975). (92E) Dreher, 0. E., Frank, C. W., Appl. Spectrosc., 28, 191 (1974). (93E) Dresser, R . D., Mooney, R. A,, Heithmar. E. M., Plankey, F. W., J. Chem. Educ., 52, A503 (1975). (94E) Dresvin, S.V., Zh. Priki. Mekh. Tekh. Fiz. 14, 3 (1973). (95E) Drobyshev, A. I., Yu. I. Turkin, Zh. Priki. Spektrosk., 22, 755 (1975). (96E) Dryakhiov, A. I., Tr. Khim. Khim. Tekhnoi., (3), 77 (1973). (97E) Durmosch, R., Islam, K. U.. Oelert, H. H., Chem.-hg. Tech., 48, 961 (1974). (98E) Eaton, W. S., Diss. Abstr. int. 8, 36, 1177 ( 1975). (99E) Eberhardt. W., Pressler, G., Guenther, K., Beitr. Plasmaphys., 14, 51 (1974). (100E) Eckert, H. U., High Temp. Sci.. 8, 99 (1974). (101E) Eckert, H. U., I€€€ Trans. Piasma Sci.. PS-2, 308 (1974). (102E) Eckstein, E. W., Coburn, J. W., Kay, E., int. J. Mass Spectrom. /on Phys., 17, 129 (1975). (103E) Eremin, N. I.,Mineral. Mag., 40, 312 (1975). (104E) Evans, C. A,, Jr., Anal. Chem., 47, 818A (1975). (105E) Evans, D. E., Opt. Meth. fiasma Diagn., 145 (1974). (106E) Fassel, V. A., Kniseley, R. N., Anal. Chem., 48, lllOA(1974). (107E) Fassei, V. A,, Kniseley, R. N., Anal. Chem., 1155A (1974). (108E) Flinn, C. G., Stephens, R., Can. J. Spectrosc., 20, 14 (1975). (109E) Fiorian. K.,Chem. Zvesti, 28, 204 (1974). (1lOE) Florian. K., Chem. Zvesti, 28, 306 (1974). (111E) Fricke, F. L., Rose, O., Caruso, J. A,, Anal. Chem., 47, 2018 (1975). (112E) Fukushima, H., Nakajima, T., Bunko Kenkyu, 24, 148 (1975); Chem. Abstr., 83, 185260q (1975). (113E) Galazka, J., Buhl, F., Gala, W., f r . Nauk. Uniw. Siask. Katowicach., 41, 29 (1973); Chem. Absfr., 82, 80074h (1975). (114E) Galazka, J.. Buhl. F., Gaia, W.. f r . Nauk. Uniw. Slask. Kafowicach.. 83, 29 (1974): Chem. Abstr., 83, 125639k (1975). (115E) Gatzke, J., Spectrochim. Acta, Part 8, 30, 235 (1975). (116E) Gerasimov, R. D., Eilenkrig, G. S., Zh. Priki. Spektrosk., 19, 791 (1973). (1 17E) Glick, D., Marich, K. W.. Ciin. Chem., 21, 1238 (1975). (118E) Gol'dfarb, V. M., High Temp., 11, 150 (1973). (119E) Golightly, D. W., Harris, J. L., Appi. Specfrosc., 29, 233 (1975). (120E) Gonchar, N. I., Zvyagintsev, A. V., Mitin, R. V.. Pryadkin, K. K., Zh. Tekh. Fiz.. 45, 657 (1975); Sov. Phys. Tech. Phys., 20, 407 (1975). (121E) Grampurohit. S. V., Dixit, V. S., Anal. Left., 7, 293 (1974). (122E) Grampurohit, S. V., Dixit, V. S., india AEC Bhabha At. Res. Cent. (Rep.), BARC-714, 7 pp (1973). (123E) Greene, J. E., Sequeda-Osorio, F.. Natarajan, B. R., J. Appi. Phys., 48, 2701 (1975). (124E) Greene, J. E., Sequeda-Osorio, F., Natarajan, B. R . . J. Vac. Sci. Technoi. 12, 366 (1975). (125E) Greene. J. E . , Sequeda-Osorio, F., Streetman, B. C.. Noonan, J. R., Kirkpatrick, C. G., Appi. Phys. Lett.. 25, 435 (1974). (126E) Greenfield, S., Jones, I. LI., McGeachin, H. McD., Smith, P. 6.. Anal. Chim. Acta, 74, 225 (1975). (127E) Greenfield, S.,McGeachin, H. McD.. Smith, P. E., Taianta, 22, l(1975). (128E) Greenfield, S., McGeachin, H. McD., Smith, P. E., Taianta, 22, 553 (1975). (129E) Grekova, G. V., Lapshln, I., Okhmatovskii, G. V., Pis'ma Zh. Takh. Fiz., 1, 299 (1975). (130E) Grlgor'eva, 0.A,, Zhigllnskil, A, G., Turkin, Yu. I., Zh. Prikl. Sprktrosk.. 10, 787 (1973). (131E) Grove, E. L,, Losoke, W. A,, Appi. Spectroac., 28, 373 (1974). (132E) Gruahat8kli, S. V., Yas'ko, 0. I., inzh.-Fiz. Zh., 28, 1001 (1974); Chem. Abstr., 81, 89909t (1974). (133E) Haarema, J. P. S.,daJong, G. T., Agtordonboa, Spacfrochlm. Acta, PartB, 20, 1 (1974). (134E) Harrleon, W. W., Magae, C. W., Anal. Chem., 48, 481 (1974). (135E) Hattorl, S., Chinrn, S., J. Quant. Spectrosc. Radiat. Transfer, 13, 1309 (1973). (136E) Heshmat-Cahaaban, G., Triche, CI., Fresenius'Z. Anal. Chem., 272, 114 (1974). (137E) Hess, H., Radtke, R., J. Phys. D, 8, 661 (1975). ( 1 3 W Hill, R. D., J. Appi. Phys.. 46, 2910 (1975).

138R

(139E) Hirokawa, K., BunkoKenkyu, 22, 317 (1973); Chem. Abstr., 82, 3 6 1 9 4 ~ (1975). (140E) Holcombe, J. A,, Sacks, R. D., Specfrochlm. Acta, Part 8, 28, 451 (1973). (141E) Holzer. F., Hohenegger. M., Mikrochim. Acta, (4), 711 (1974). (142E) Human, H. G. C.. Zeegers, P. J. Th., Van Elst, J. A.. Spectrochim. Acte, Part B, 20, 111 (1974). (143E) Idzikowski, A.. Pr. Nauk. lnst. Chem. Nieorg. Metal. Pierwiasfkow Rzadkich Politech. Wrociaw., 32, 37 (1975); Chem. Abstr., 82, 167698~(1975). (144E) ldzikowski, A,, Sachanbinski, M., Przegl. Geol. 23, 115 (1975); Chem. Abstr.. 83, 12557611 (1975). (145E) idzikowski, A., Schroen, W., Pr. Nauk. inst. Chem. Nieorg. Met. Pierwiastko w Rzadkich Politech. Wroclaw. 18, 3 (1973); Chem. Abstr., 80, 66448k (1974). (146E) Jaeger, H., Anal. Chim. Acta, 71,43 (1974). (147E) Jaeger, H., Blum, F., Spectrochim. Acta, Part B, 29, 73 (1974). (148E) Jansen, B. J., Hollander, Tj., Franken, L. P. L., Spectrochim. Acta, Part 8, 20, 37 (1974). (149E) Jarosz, J., Mermet, J. M., Robin, J., C. R. Hebd. Seances Acad. Sci., Ser. B. 278, 885 (1974). (150E) Jensen, K., Veje, E., Z. Phys., 269, 293 (1974). (151E) Kagan, Yu. M., Lyagushchenko, R. I., Khvorostovskii, S. N., Opt. Spektrosk., 35, 422 (1973). (152E) Kagan, Yu. M., Lyagushchenko. R. I., Khvorostovskii, S.N., Zh. Tekh. Fiz,, 43, 2332 (1973). (153E) Kagan, Yu. M.. Lyagushchenko, R. I., Khvorostovskii, S. N., Khcdorkovskii, M. A,, Zh. Tekh. Fiz., 45, 1839 (1975). (154E) Kagan, Yu. M., Taroyan. A. S..Opt. Spektrosk., 35, 417 (1973). (155E) Kaiser, G., Goetz, D., Schoch, P., Toelg, G.. Taianta, 22, 889 (1975). (156E) Kalinin, Yu. S., Kuznetsova. T. I., Turilova, 0. M., Tr. Khim. Khim. Tekhnoi.. No. 3, 89 (1974). (157E) Kalinin, Yu. S., Vakina. L. M.. Tr. Khim. Khim. Tekhnol., No. 3, 91 (1974). (158E) Karyakin. A. V., Pavlenko, L. I., Babicheva, G. G., Zh. Anai. Khim.. 28, 2402 (1973). (159E) Kashima. J., Umemura, F., Bunko Kenkyu, 22, 126 (1973). (160E) Kashima. J., Umemura, F.. Bunko Kenkyu, 23, 29 (1974). (161E) Kashima. J.. Umemura, F., Rep. Cast. Res. Labs., Wasenda Univ., 25, 1 (1974). (162E) Kato. A., Osumi, Y.. Nakane, M., Miyake, Y., BunsekiKagaku, 23, 1036 (1974). (163E) Kato, M., Shimizu, R., Ishitani, T., Technoi. Rep. Osaka Univ., 24, 451 (1974). (164E) Kawaguchi, H.. Auld, 0. S..Ciin. Chem., 21, 591 (1975). (165E) Kawaguchi. H..Saga, T., Mizuike, A,, Bunko Kenkyu, 22,331 (1973). (166E) Kawaguchi, H., Saga, T., Mizuike, A,, Bunko Kenkyu, 24, 99 (1975). (167E) Kawaguchi, H., Vallee, B. L., Anal. Chem., 47, 1029 (1975). (168E) Kazennova, M. N., Taganov, K. I., Zh. Prikl. Spektrosk., 21, 799 (1974). (169E) Keintzel. G., Ber. Kernforschungsanlage Juelich, JUEL-973-RW, 105 pp (1973). (170E) Kekez, M. M., Savic, P., J. Phys. D.. 7, 620 (1974). (171E) Keiiher, P. N., Wohlers, C. C., Appl. Spectrosc., 29, 198 (1975). (172E) Kessler, W., Ger. Offen. 2,336,050 (6 Feb 1975). (173E) Kharizanov, Yu., izv. Otd. Khim. Nauki, Bug. Akad. Nauk., 5, 509 (1972); Chem. Abstr., 80, 32069x (1974). (174E) Kidrasov, F. Kh., Devyatov, A. M., Volkova. L. M., Arkhipova, L. V., Vesfn. Mosk. Univ., Fiz. Astron., 15, 232 (1974). (175E) Kidrasov, F. Kh., Devyatov, A. M., Volkova, L. M., Arkhlpova, L. V., Vrstn. Moak. Univ., Fiz., ASfron., 16, 382 (1974). (178E) Kidrasov, F. Kh., Dovyatov, A. M., Volkova, L. M., Arkhlpova, L. V., Vesfn.Mosk. Unlv., Fiz., AsIron., 15, 563 (1974). (177E) Klrkbright, G. F., Proc. Ansi. Div. Chem. Soc., 12, 8 (1975), (178E) Kirkbrlght, G. F., Ward, A. F., Telanfa, 21, 1145 119741. (179E) K'lrkbright, G. F., West, 1. S., Wllson, P. J., Anal. Chim. Acte, 88, 462 (1874). (18OE) Klrkbrlght, G. F., Wilson, P. J., Anal. Chem., 48, 1414 (1974). (181E) Kltagawa, K., Takeuchi, T., Anal. Chim. Acta. 67, 453 (1973). (182E) Kleinmann, I., Svoboda, V., Chem. Listy, 89.

ANALYTICAL CHEMISTRY, VOL. 48, NO.

5, APRIL 1976

633 (1975) (163E) Kleinmann. I., Svoboda, V., Radioisoropy, 15. 7 (1974). (l64E) Kilska-Matic, M., Marinkovic, M.. Glas. Hem. Drus., Beograd, 38, 357 (1973); Chem. Abstr., 81, 855881(1974). (185E) Klubnikin, V. S., Tepiofiz. Vys. Temp.. 13, 473 (1975). (186E) Kniseiey, R. N., Oiss. Abstr. intB, 34, 3139 (1974). (187E) Koifman, M. D., Olzhataev, B. A,, Nedugova. G. A., Shugurov, E. V., lzv. Akad. Uzb. SSR, Ser. F k Mat. Nauk, 18, 60 (1974). (188E) Kolesnik, A. V., Shirokanov. A. D., Zh. Priki. Spektrosk., 22, 220 (1975). (189E) Konomov, N. I., Paviovic, B.. Petrovic, D., Fizika, 5, 199 (1974). (190E) Kornblum, G. R., De Galan, L., Spectrochim. Acta, Part B, 29, 249 (1974). (191E) Kosarev, V. M., Kostko, V . S., Zh. Priki. Spektrosk., 21, 730 (1974). (192E) Krasnobaeva, N., Nedyalkova-Daskaiova, N., izv. Otd. Khim. Nauki, Bulg. Akad. Nauk, 7, 385 (1974); Chem. Abstr., 83, 5 2 6 9 5 ~(1975). (193E) Krasnobaeva, N., Nedyalkova-Daskalova, N., izv. Otd. Khim. Nauki, Bulg. Akad. Nauk, 7, 399.; Chem. Abstr., 83, 52762h (1975). (194E) Krasnobaeva, N., Nedyalkova-Daskalova, N., Jena Rev. 18(5), 288 (1973). (195E) Krasnobaeva, N., Zadgorska, Z.,Spectrochim. Acta, fartB, 29, 191 (1974). (196E) Kravchenko, V. F., Mikhalevskii, V. S..Papakin, V. F., Zh. Tekh. Fir., 43, 2173 (1973). (197E) Kravchenko, V. F., Papakin. V. F., Zh. Tekh. Fir., 43, 2057 (1973). (198E) Krivchikova, E. P., Zh. Anal. Khim.. 30, 167 (1975). (199E) Krokhin, 0. N., Laser Handb., 2, 1371 (1972). (200E) Kubota, M., Ishida, R.. Bunko Kenkyu. 23, 74 (1974). (201E) Kubota, M., ishida, R., Bunko Kenkyu, 24, 89 (1975). (202E) Kucherenko, E. T., Zykova. E. V., Radiotekh. Elekfron., 20, 438 (1975). (203E) Kupkova. D.,Sb. Geoi. Ved, Technoi., Geochem., 12, 135 (1974). (204E) Kurochkina, A. M., Rubinovich. R . S., Zh. friki. Spektrosk., 22, 802 (1975). (205E) Lakatos. I., Acta Chim. (Budapest), 78, 149 (1973). (206E) Lakatos, I., Acta Chim. (Budapest), 82, 379 (1974). (207E) Lakatos, I., Acta Chim. (Budapest), 82, 391 (1974). (208E) Lakatos, I., Paksy. L., Acta Chim. (Budapest), 81, 31 (1974). (209E) Lakatos, I., Paksy. L., Magy. Kem. Foiy 79, 392 (1973). (210E) Laktionova, N. V.. Karyakin, A. V., Ageeva, L. V.. Zh. Anal. Khim.. 30. 703 119751. (211E) Laktionova,'N. V.,Karyakin, A. V., Zh. Anal. Khim., 29, 1327 (1974). (212E) Larson, G. F., Fassel, V. A,, Scott, R . H., Kniseley. R. N., Anal. Chem., 47, 238 (1975). (213E) Lesnikova, E. I., Zh. friki. Spektrosk., 21, 804 (1974). (214E) Lindinger, W., Howorka, F., Rev. Sci. lnstrum.. 44, 1473 (1973). (21%) Ling, C. S.,Sacks, R . D., Anal. Chem.. 47, 2074 (1975). (216E) Lishanskii, G. Ya., Zh. Priki. Spektrosk.. 20, 9 (1974). (217E) Lopez de Azcona, J. M., Aivarez-Arenas, E. A., Anaiusis, 3, 291 (1975). (218E) Lowke, J. J., J. Ouant. Spectrosc. Radiat. Transfer, 14, 111 (1974). (219E) Lowke, J. J., Zollweg. R. J., Liebermann, R. W., J. Appl. Phys., 46, 850 (1975). (220E) Lura, F., Ger. Offen 2,349,085 (19 Sap 1974). (221E) Lyman, L. R . . Hieftje, G. M., Anal. Chem., 47, 194 (1975). (222E) Maiorov, i. A., Fiilmonov, L. N., Yarkln, 8 . V., Zh. Priki. Spektrosk., 22, 561 (1975). (223E) Mamot, Zh. A., Dedrsh, V. D., Lyublmova, L. F., Zh. Priki. Spektrosk., 21, 41 (1874). (224E) Mannkopff, R . , Frieda, G., Menzel, A. U., Specfrochlm. Acta, Parte, 28, 417 (1973). (225E) Marinkovic, M., JenJic.J., Jankovlc, D., Hem. ind., 19, 171 (1975): Chem. Abstr., 83, 90341c (1975). (226E) Marode, E., J. App. Phys.. 48, 2005 (1975). (227E) Marode, E., J. App. Phys., 46, 2016(1975), (228E) Marriott, D. R., Proc. SOC.Anal. Chem., 10, 90 (1973).

(229E) Martell, C. J., Rep LA-5454, 6 pp (1974). ( 2 3 0 ~ )Mazurkiewicz, M., Ber. Kernforschungsanlage Juelich, JUEL 934-RW, 108 PP (1973). ( 2 3 1 ~ )Mazurkiewicz, M., Nickel, H., Freseni ~ s ' zAnal. . Chem., 288, 9 (1974). ( 2 3 2 ~ )McElfresh, P. M., Parsons, M. L.. Anal. Chem., 48, 1021 (1974). (233E) McGillivray, R., R o c . Anal. Div. Chem. Soc., 12, 232 (1975). (234E) McWhirter, R. W. P.. Wilson. R., J. Phys. B, 7, 1588 (1974). (235E) Merchant, P. Jr., Veillon, C., Anal. Chim. Acta, 70, 17 (1974) (236E) Merrnet, J. M.. Spectrochim. Acta, Part B, 30, 383 (1975). (237E) Merrnet. J. M., Robin, J., Anal. Chim. Acta, 75, 271 (1975). (238E) Mitin, R. V., Zvyagintsev, A. V., Pryadkin, K. K., High Temp., 11, 443 (1973). (239E) Miyake, S., Takeuchi, S.. Arata. Y . , Jpn J. Appl. Phys., 13, 296 (1974). (240E) Mochalov, K. N., Kocherezhkina, E. I., Zh. Prikl. Spektrosk., 21, :395 11974). (241E) Mohr, J., Exp. Tech. Phys., 22, 327 (1974). (242E) Molnar, C. J., Chuang, F. S.. Winefordner, J. D., Spectrochim. Acta, Part 8, 30, 183 (1975). (243E) Moore, J., West, T. S., Dagnall, R. M., Proc. SOC.Anal. Chem., I O , 197 (1973). (244E) Morello, B.. DeGregoiro, P.. Savastano, G., Appl. Spectrosc., 28, 14 (1974). (245E) Morgan, C. G., Rep. Prog. Phys., 38, 621 (1975). (246E) Morris, W. F.. Worden. E. F., Appl. Spectrosc., 29, 255 (1975). (247E) Moselhy, M. M., Cart. J. Spectrosc., 18, 119(1973). (248E) Murdick, D. A., Jr.. Pieprneier, E. H., Anal. Chem., 46, 678 (1974). (249E) Murota. M., Hyomen, 12, 139 (1974); Chem. Abstr., 81, 20398rn (1974). (250E) Murty, P., Sreerarna, P.. Marather, S. M., Bai, P. R.. lndia AEC Bhabha AT. Res. Cent. (Rep.) BARC-703, 5 pp (1973). (251E) Musha, S.. Inoue, Y . , Bunko Kenkyu, 23, 174 (1974). (252E) Muzgin, V. N.. Sergienko. N. D.. Lisienko, D. G.. Zh. Anal. Khim. 28, 1605 (1973). (253E) Nakashirna, R., Sasaki, S., Shibata. S., Anal. Chim. Acta, 70, 265 (19'74). (254E) Nakashirna. R., Sasaki, S., Shibata, S., Anal. Chim. Acta, 77, 65 ( 1975). (255E) Narnitokov, K. K., Frenkel, 2. M., Zh. Tekh. Fiz., 45, 1683 (1975). (256E) Narita, K., Matsumura, T., Tokuda, T., Morooka, R., Nonornura, E., Tetsu To Hagane, 80, 1879 (1974); Chem. Abstr., 82, 51035r (1975). (257E) Natarajan. B. R., US NTIS, AD/A Rep. 004837/1GA, 80 pp (1974). (258E) Nickel, H.. Mazurkiewicz, M., Fresenius'Z. Anal. Chem., 268, l(1974). (259E) Nikolaev, A. V., Gaganov, Yu. I., Sarnoilenko, M. V., Borzhov, A. P , Fiz. Khim. Orbab. Mater., NO. 2, 26 (1974); Chem. Abstr., 81, 7359e (1974). (260E) Nikolaev. A. V., Tokrnakov, V. P., Fiz. Khim. Orbab. Mater., No. 4, 6 (1974): Chem. Abstr., 81, 1 4 2 8 7 8 ~ (1974). (261E) Nishirnura, Y . , Takenouchi, T., Sakai. W., High Temp-High Press., 8, 149 (1974). (262E) Nixon. D. E., Fassel, V. A,, Kniseley, R. N., Anal. Chem., 48, 210 (1974). (263E) Nursultanov, 0. S., Polak. L. S., Popov, V. T., Khlm. Vys. Energ., 8, 395 (1974). (264E) Ohls, K., Becker. G., Grother. H., Jena Rev., 19, 245 (1974). (265E) Oishi, K.. Yasuda, K . . New Methods Environ. Chem. Toxicol., Collect. Pap. Res. Conf. New Methodol. Ecol. Chem. 1.973, 83 (1973). (266E) Onodera, M., Saeki, M., Nishizaka, K., Sakata, T., Ono, J., Fukui, I., Irnamura, N., Tetsu TO Hagane, 80, 2002 (1!374); Chem. Abstr., 82, 67782t (1975). (267E) Ostrovskaya. G. V., Zaidel. A. N.. Usp. Fiz. Nauk, I l l , 579 (1973). (268E) Paksy, L.. Lakatos, I., Acta Chim. Acad. Sci. Hung., 85, 233 (1975). (269E) Paksy, L., Lakatos, I., Acta Chim. Acad. Sci. Hung., 85, 249 (1975). (270E) Paksy, L.. Lakatos, I., Magy. Kem. Foly., 80, 67 (1974). (271E) Paksy, L., Lakatos, I., Magy. Kem. Foly., 80, 249 (1974).

(272E) Patrikeeva. N. A., Zavod. Lab., 41, 693 (1975). (273E) Pavlenko, L. I., Sirnonova, L. V., Karyakin, A. V., Ozhegov, P. l., Popova, l. A,. Zh. Prlkl. Spektrosk.. 20, 962 (1974). (274E) Pavlovic, B., Ikonornov, N., Todorovic, M., Acta Chim. Acad. Sci. Hung., 82, 193 (1974). (275E) Pavlovic, B. V.. Petrovic, D. V., Ikonornov, N. N., Glas. Hem. Drus., Beograd., 38, 419 (1973). (276E) Pelukh, M. L., Zh. Prikl. Spektrosk., 21, 208 (1974). (277E) Pepper, C. E.. Blank, G. R., Rep. NLCO1105, 12 pp (1973). (278E) Perarnau, G., Triche, C., C. R. Hebd. Seances Acad. Sci., Ser. C278, 819 (1974). (279E) Peric, M. N., Todorovic. P. S., Vukanovic, V. M., Spectrochim. Acta, Part B, 30, 21 (1975). (280E) Peric, M. N., Vukanovic, V. M., Todorovic, P. S., Fresenius' 2. Anal. Chem., 274, 109 (1975). (281E) Petrakiev, A,, Milanova. R.. God. Sofii. Univ., Fiz. Fak., 1970-1972, 511 (1973). (282E) Pieprneier, E. H., De Galan, L., Spectrochim. Acta, Part E, 30, 21 1 (1975). (283E) Pieprneier, E. H..De Galan, L., Spectrochim. Acta, Part B, 30, 263 (1975). (284E) Podrnoshenskaya, S. V.. Podrnoshenskii, I. V., Zh. Prikl. Spektrosk., 22, 971 (1975). (2853 Podrnoshenskii, I. V.. Pukhov, A. M., Yakovleva, A. V., Zh. Prikl. Spektrosk., 19, 624 f147.1) .- . -,. ~

(286E) Polak, L. S..Slovetskii, D. I., Teplofiz. Vys. Temp., 12, 921 (1974). (287E) Polak, L. S., Slovetskii, D. I., Teplofiz. Vvs. Temo.. 13. 8 119751. '(288E) 'Polatbekov, P.' P., Mukhambetov, M. G., Dzhurnanov, K. B., Prikl. Teor. Fiz., 5, 185 (1973). (289E) Polatbekov, P. P., Zhukov. I. A,, Prikl. Teor. Fiz., 5, 178 (1973). (290E) Poppi, L., Szabo, Z. L., Acta Chim. (Budapest), 79, 27 (1973). (291E) Pukhov, A. M.. Zh. Prikl. Spektrosk., 22, 128 (1975). (292E) Pyatnitskii, L. N., Khaustovich. G. P., Korobkin, V. V., Teplofiz. Vys. Temp., 12, 876 (1974). (293E) Pyshnov, A. V.. Teplofiz. Vys. Temp., 13, 279 (1975). (294E) Radic-Peric, J. B., Vukanovic, V. M.. Fresenius'Z. Anal. Chem., 274, 177 (1975). (295E) Radrnacher, H. W., de Swardt, M. C., Spectrochim. Acta, Part 8, 30, 353 (1975). (296E) Ratinen, H., Acta Polyfech. Scand., Phys. lncl. Nucleon. Ser. 103, 37 pp (1974). (297E) Rautschke, R., Amelung, G., Dowe, C.. Nada, N.. Z. Chem., 14, 70 (1974). (298E) Rautschke, R . , Amelung. G., Nada. N.. Bournans. P. W. J. M.. Maessen, F. J. M. J., Spectrochim. Acta, Part 8, 30, 397 (1975). (299E) Rautschke, R., Dowe, C., Acta Chim. (Budapest), 80, 147 (1974). (300E) Rautschke, R., Dowe, C., Isensee, G., Herbeck, J., Z. Anorg. Allg. Chem., 413, 127 (1975). (301E) Rekalic. M., Vukanovic. V., Appl. Spectrosc., 28, 244 (1974). (302E) Rice, W. W., Beattie, W. H.,DeKoker, J. G., Fradkin, D. B., Bird, P. F.. Jensen, R. J., Rep., LA-5452, 99 pp (1974). (303E) Rippetoe. W. E., Johnson, E. R., Vickers, T. J.. Anal. Chem., 47, 436 (1975). (304E) Rippetoe, W. E., Johnson, E. R., Vickers. T. J.. Anal. Chem., 47, 2082 (1975). (30%) Rovinskii, R. E., Sobolev, A. P., Zh. Tekh. Fiz., 45, 1665, 1671 (1975). (306E) Rozovskii, M. O., Zh. Prikl. Mekh. Tekh. Fiz., 14, 42 (1973); J, Appl. Mech. Tech. Phys., 14, 181 (1973). (307E) Rudnevskii, N. K., Maksimov, D. E., Bakhareva, L. V., Zavod. Lab., 40, 1478 (1974). (308E) Rudnevskii, N. K., Masksimov, D. E., Lazareva, L. P., Zh. Anal. Khim., 29, 1422 (1974). (309E) Rudnevskii, N. K.. Maksimov. D. E., Pichugin. N. G., Khasyanov, R. Kh.. Zh Prikl. Spekbosk., 20, 707 (1974). (310E) Rudnevskii, N. K., Maksirnov, D. E., Shabanova, T. M., Bakhareva, L. V., Tr. Khim. Khim. Tekhnol., No. 4, 102 (1973). (31 1E) Rudnevskii. N. K., Pichugin. N. G.. Maksirnov. D. E., Tr. Khim. Khim. Tekhnol., No. 4, 126 (1973). (312E) Rudnevskii, N. K., Shabanova, T. M., Maksomiv. D. E., Tr. Khim. Khim. Tekhnol., No. 3, 75 (1973).

(313E) Runser, D. J., Frank, C. W., Appl. Spectrosc., 28, 175 (1974). (314E) Rybarova, Z., Todorovic, M., Vukanovic, V., Appl. Spectrosc., 28, 238 (1974). (315E) Saari, E., Ann. Acad. Sci. Fenn., Ser A2, 174, 37 pp (1974). (316E) Sacks, R. D., Cordasco, V. T., Anal. Chem., 46, 663 (1974). (317E) Sakarnoto, T., Kawaguchi. H., Mizuike, A,. BunsekiKagaku, 24, 457 (1975). (318E) Sato, K.. Nishirnura. Y., Sakai, W., Nakashio. F., Nippon Kagaku Kaishi, 1253 (1974). (319E) Savitskii. E. M., Skotnikov. S. A,, Povarova, K. B., Makarov, P. V., Fiz. Khim. Obrab. Mater., 16 (1975). (320E) Savkiv. S. V., Tsopka, P. N., Sabadakh, B. I., Energetik (3), 26 (1974). (321E) Schaeps, R:, Ber. Kernforschungsan/age Juelich, JUEL-1210, 107 pp (1975). (322E) Schleicher, R. G., Barnes, R. M., Anal. Chem.. 47, 724 (1975). (323E) Schneider, H., Schumann. H.. Rep. KFK-2009, 36 pp (1974); Nucl. Sci. Abstr., 31, 2772 (1975). (324E) Schoenfeld, I., Appl. Spectrosc., 28, 276 (1974). (325E) Schwarz, W., Milkowits, A,, Spectrochim. Acta, PartB, 30, 101 (1975). (326E) Scott, R. H., Fassel, V. A., Kniseley, R . N., Nixon. D. E., Anal. Chem., 46, 75 (1974). (327E) Scott, R. H., Kokot, N. L., Anal. Chlm. Acta, 75, 257 (1975). (328E) Scott, R. H., Strasheirn. A,, Anal. Chim. Acta. 76, 71 (1975). (329E) Seitz, W. R., Environ. Prot. Techno/. Ser. EPA-860/2-73-009, 19 pp (1974). (330E) Sernenenko, K. A,, Tarasevich. N. I., Vigant. G. T., Gul'ko, N. I., Zh. Anal. Khim., 29, 11 13 (1974). (331E) Serravallo, F. A,, Risby, T. H., Anal. Chem., 47, 2141 (1975). (332E) Serravallo, F. A,, Risby, T. H., J. Chromatogr. Sci., 12, 585 (1974). (333E) Shabanova, T. M.. Lazareva, L. P., Maksimov, D. E., Rudnevskii, N. K., Tr. Khim. Khim. Tekhnol., No. 3, 79 (1973). (334E) Shapunov, L. A,. Vil'dt, N. G., Okhrirnets, S. D.. Vil'dt, A . L., Zavod. Lab., 39, 959 (1973). (335E) Shavrin, A. M., Zotin, M. A,, Kozhevnikova, L. A,, Zh. Prikl. Spektrosk., 22, 195 (1975). (336E) Sherstyuk, A. I., Vovk, V. N., Vlasova, L. I., Zavod. Lab., 40, 1471 (1974). (337E) Shkarofsky, I. P., RCA Rev., 35, 48 (1974). (338E) Shurnaker, J. B.. J. Ouant. Spectrosc. Radiaf. Transfer, 14, 19 (1974). (339E) Shuvalova, E. I., Khlystova, A. D., Tarasevich, N. I., Gongalyuk, N. G.. Vestn. Mosk. Univ., Khim., 14, 490 (1973). (340E) Shuvalova, E. I., Khlystova, A. D., Tarasevich, N. I., Gongalyuk, N. G., Zh. Anal. Khim. 29, 384 (1974). (341E) Shvangiradze, R. R., Vysokova. I. L.. Zh. Prlkl. Spektrosk., 22, 618 (1975). (342E) Shvangiradze, R. R., Vysokova, I. L.. Grishutina, 0. A,, Zh. Prikl. Spektrosk., 22, 1102 (1975). (343E) Shvartsrnan, S. I., Fal'kova, 0. B., Zh. Prikl. Spektrosk., 22, 5 (1975). (344E) Silakova, V. G., Makulov, N. A,, Manova, T. G.. Bozhevol'nov, E. A,. Zh. Anal. Khim., 29, 1508 (1974). (345E) Silakova. V. G., Makuiov. N. A,. Monova, T. G., Bozhevol'nov, E. A,. Zh. Anal. Khim., 29, 1683 (1974). (346E) Simonova, V. I., Raikhbaurn, Ya. D., Drokov. V. G., Zh. Prikl. Spektrosk., 21, 787 (1974). (347E) Skotnikov, S. A,, Srnirnov, K. V., Fiz. Khim. Obrab. Mater., No. 2, 154 (1975). (348E) Slickers, K., Spectrochim. Acta, Part E, 28, 441 (1973). (349E) Slickers, K., Schmidt, J. C., Analusis, 3, 317 (1975). (350E) Slickers, K., Wild, E., Hofrnann. E., Aluminum (Duesseldorf), 50, 588 (1974). (351E) Slickers, K.. Wild, E., Hofrnann, E., CZChem.-Tech., 2, 293 (1973). (352E) Smirnova, E. V., Zh. Prikl. Spektrosk., 20, 371 (1974). (353E) Stachova, J.. Ber. Kernforschungsan/age Juelich, JUEL-1028-RW, 87 pp (1973). (354E) Staikov, A. I., Zakhariya, N. F.. Zh. Anal. Khim., 30, 1375 (1975). (355E) Stieber, M., Stern, W., Beitr. Plasma-

ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

* 139R

6

phys., 14, 29 (1974). (356E) Strasheim, A,, Blurn, F., Spectrochim. Acta, Pari 8,30, 147 (1975). (357E) Strelkov. L. A,, Yankovskii, A. A,, Zh. Prikl. Spektrosk., 19, 605 (1973). (358E) Stupp. H. J., Overhoff, Th., Spectrochim. Acta, Part B, 30, 77 (1975). (359E) Stupp, H. J., Overhoff, Th., Spectrochim. Acta, Part B, 30, 89 (1975). (360E) Subbaram, K. V., Vsudev. R., Jones, W. E., J. Opt. SOC.Am., 65, 318 (1975). (361E) Suzuki, N., Kikkawa, A,, Hirokawa, K., Bunko Kenkyu, 22, 247 (1973). (362E) Svoboda, V., Kleinmann, I., Radioisotopy, 15, 827 (1974). (363E) Szabo, Z. L.. Acta Chim. Acad. Sci. Hung., 85, 13 (1975). (364E) Szabo, Z. L., Spectrochim. Acta, Part B, 29, 21 1 (1974). (365E) Szabo, Z. L., Buzasi, A., Fejerdy. H., Acta Chim. (Budapest), 79, 245 (1973). (366E) Reference deleted in revision. (367E) Szabo, Z. L., Poppl, L., Acta Chim. (Budapest), 79, ll (1973). (368E) Szabo, Z. L., Poppl, L., Acta Chim. (Budapest), 79, 119 (1973). (369E) Szabo, Z. L., Poppl, L., Acta Chim. (Budapest), 79, 237 (1973). (370E) Taganov, K. I., Fainberg, L. M., Zh. Prikl. Spektrosk., 20, 57 1 (1974). (371E) Talmi, Y., Anal. Chem., 46, 1005 (1974). (372E) Talmi, Y., Anal. Chim. Acta, 74, 107 11975) (373E) Talmi. Y.. Andren, A. W., Anal. Chem., 46, 2122 (1974). (374El Talmi., Y... Bostick. D. T.. Anal. Chem.. 47; 2145 (1975). (375E) Talmi. Y., Novell, V. E., Anal. Chem., 47, 1510 (1975). (376E) Tarasevich, N. I., Sernenenko, K. A,. Solodova, E. K., Zh. Anal. Khim., 28, 2247 (1973). (377E) Thomas, G. E., de Kiuizenaar, E. E., van Kollenburg, L. W. J., Bastings, L. C., Anal. Chem., 47, 2357 (1975). (378E) Topham, D. R., Smy, P. R., Clements, R. M., Combust. Flame, 25, 187 (1975). (379E) Torok, T.. Zaray, Gy., Spectrochim. Acta, Part B, 30, 157 (1975). (380E) Trapitsyn, N. F., Poremskaya, N. N., Teplofiz. Vys. Temp., 13, 193 (1975). (381E) Triche, CI., Heshrnatt-Chaaban, G.. Spectrochim. Acta, Part B, 29, 121 (1974). (382E) Tsong, I. S. T., McLaren, A. C., Nature (London), 248, 43 (1974). (383E) Turulina, 0. P., Zakhariya, N. F., Zh. Anal. Khim., 28, 1754 (1973). (384E) Uchida, H., Adachi, F., Mori, O., Negishi, R.. BunsekiKagaku, 24, 325 (1975). (385E) Uhlenbusch, J., Gaseous Electron.: Some Appl., 101 (1974). (386E) Van der Piepen, H., Spectrochim. Acta, Part 8, 30, 179 (1975). (387E) Van Deurzen, C. H. H., Conway, J. G., Appl. Spectrosc., 28, 223 (1974). (388E) Van Dijck, F. S., Dutre, W. L., J. Phys. D, 7, 899 (1974). (389E) Van Montfort, P. F. E., Agterdenbos, J.. Taianta. 21. 680 (1974). (390E) Van Sandwijk, A,, Agterdenbos. J., Ta/anta, 21, 360 (1974). (391E) Vecsernves, L.. Acta Chim. (Budapest), 78, l(1973). (392E) Vidzhkh. A. K., Zh. Tekh. Fiz,, 43, 1560 (1973). (393E) Vigant, G. T., Sernenenko, K. A., Tarasevich, N. i., Zh. Anal. Khim., 30, 1223 (1975). (394E) Voitsenya, V. S., Voloshko, A. Ku., Konovaiov, V. G.. Solodovchenko, S. I., Zh. Tekh. Fiz., 44, 1455 (1974). (395E) Vukanovic, V.. Jena Rev., 19, 280 (1974). (396E) Vukanovic, V. M., Simic, M. M., Vukanovic. D. D., Spectrochim. Acta, Part B, 29, 33 (1974). (397E) Vukanovic, V. M., Todorovic, S., Todorovic, P. S., Mihailidi, T. A,. Spectrochim. Acta, PartB, 30, 31 (1975). (398E) Vysokova, I. L., Shvangiradze, R. R., Zh. Prikl. Spektrosk., 19, 1006 (1973). (399E) Wagenaar, H. C.. Novotny, I., De Galan. L., Specfrochim. Acta, Part B, 29, 301 (1974). (400E) Watling. R. J., Anal. Chim. Acta, 75, 281 (1975). (401E) Watson, A. E.. Russell, G. M., Nat. lnst. \

'

-I

,1 4 0 R

Met., Repub. S.Ab., Rep. No. 1556, 7 pp (1973). (402E) Watson, A. E., Russell, G. M., Nat. h s t . Met., Repub. S. Afr., Rep. No. 1656, 14 pp. (1974). (403E) Whelan, J. W., Greene, J. E., U.S. Patent 3,809,479 (7 May 1974). (404E) Wightman, J. P., Proc. /E€€, 62, 4 (1974). (405E) Yamane, T., Bunko Kenkyu, 22, 321 (1973). (406E) Yamashita, M., Hasunuma, H., Bunko Kenkyu, 24, 29 (1975). (407E) Yankovskii, A. A,, Kvantovaya Elektron. Lazernaya Spektrosk. 362 (1974); Chem. Abstr., 83, 52689q (1975). (408E) Yashin, P. S.. Smolentsev, V. P., Elektron. Obrab. Mater., No. 3, 15 (1974). (409E) Zadgorska, Z., Krasnobaeva, N., Dokl. Bolg. Akad. Nauk, 28, 485 (1975). (410E) Zadgorska, Z.. Krasnobaeva, N., Apostolov, D., Spectrochim. Acta, Part B, 30, 527 (1975). (411E) Zakhariya, N. F., Turulina, 0. P., Zh. Anal. Khim., 29, 1170 (1974). (412E) Zakharov, E. V., Myasoedov. E. F., Karyakin, A . V., Zh. Anal. Khim., 28, 2306 (1973). (413E) Zakharov. E. A,, Myasoedov, B. F., Karakin, A. V.. Ozhegov, P. I,, Zh. Anal. Khim., 29, 459 (1974). (414E) Zakharov, E. A,, Myasoedov, E. F.. Lebedev, I. A.. Zh. Anal. Khim., 30, 1344 (1975). (415E) Zakharov, E. A,, Myasoedov, B. F., Lebedev. I. A,. Ozhegov, P. i., Karyakin, A. v., Zh. Prikl. Spektrosk., 21, 239 (1974). (416E) Zakharov. E. A,, Myasoedov, B. F., Ozhegov, P. I., Karayakin, A. V., Zh. Prikl. Spektrosk., 21, 21 (1974). (417E) Zhechev, D., Dyulgerova, R.. Pacheva, I., J. Quant. Spectrosc. Radiat. Transfer, 15, 941 (1975). (418E) Zil'bershtein. Kh. I., Moshkovich, G. N., Fratkin, Z. G., Zh. Prikl. Spektrosk., 22, 794 (1975). (419E) Zvyagintsev, A. V., Mitin, R. V., Pryadkin, K. K.. Zh. Tekh. Fiz., 45, 278 (1975); Sov. Phys. Tech. Phys., 20, 177 (1975). (420E) Zynger. J., Crouch, S. R., Appi. Spectrosc., 29, 244 (1975). (421E) Kalnicky, D. J., Kniseley, R . N., Fassel, V. A,, Spectrochim. Acta, PartB, 30, 511 (1975). (422E) Brassem, P., Maessen. F. J. M. J.. Spectrochim. Acta, Part B, 30, 547 (1975).

Speclrochemlcal Analysis (1F) Ahuja, S., Cohen, E. M., Kneip, T. J., Lambert, J. L., Zweig, G., Ed., "Chemical Analysis of the Environment and Other Modern Techniques", Plenum, New York. 1973. (2F) Aidarov, T. K., Razyapov, A. Z., "Spectral Methods for Determining Noxious Substances in Air and Biological Materials" (Spektral'nye Metody Opredeleniya Vrednykh Veshchestv v Vozdukhe i Biologicheskikh Materialakh), Izd. Kazan Univ., Kazan USSR, 1973: Chem. Abstr., 80, 870879 (1974). (3F) Albert, Ph.. Revel, G., Monogr. Met. Haute Purete, 1, 11 (1972). (4F) Allen, H. E., J. Water Pollut. Control. Fed., 46, 1035 (1974). (5F) Alvarez-Arenas, E. A,, Sampedro Pineriro. A,, Rev. Metal(Madrid), 11, 13 (1975). (6F) Anand. V. D., White, J. M., Nino, H. V., Clin. Chem., 21, 595 (1975). (7F) Apoiitskii, V. N., Zh. Anal. Khim., 29, 2273 (1974). (8F) Baranovskaya, T. F.. Krasnoyarsk. lnst. Tsvetn. Met (Sb. Tr.), 6, 139 (1974); Chem. Abstr., 81, 162946n (1974). (9F) Baryshnikova, V. I,, Rezchikov. V. G., Rudnevskii, N. K.. Tr. Khim. Khim. Tekhnol., NO. 3, 87 (1974). (1OF) Beke, E., Rev. Chim. (Bucharest), 25, 155 (1974); Chem. Abstr., 81, 32914q (1974). (11F) Belopol'skii, M. P., Bunakova, N. Yu., Mikhailova, N. A,, "Chemical Analysis of Rocks and Minerals (Manual)" (Khimicheskii Anaiiz Gornykh Porod i Mineralov (Rukovodstvo)), Nedre, Moscow, 1974; Chem. Abstr., 81, 72282k (1974). (12F) Berenice, G., DaSilva, C. T. C. E., Appl. Spectrosc., 29, 269 (1975). (13F) Biktimirova, T. G., Mashireva, L. G.. Zavod. Lab., 39, 1086 (1973). (14F) Bito. J. F.. Antal. K . G.. Acta Tech. (Budapest), 76, 65 (1974). (15F) Bojic, M., Jecko. G., Wittmann, A., Rev. Met. (Paris), 70, 415 (1973).

ANALYTICAL CHEMISTRY, VOL. 48, NO. 5. APRIL 1976

(16F) Bozhevol'nov, E. A,. Bykova. I. N.. Manova, T. G., Silakova, V. S.,Zavod. Lab., 40, 170 (1974). (17F) Braier, H. A., Anal. Chem.. 47, 199R (1975). (18F) Braier, H. A,, Eppolito, J., Prepr., Div. Pet. Chem., Am. Chem. SOC., 18, 593 (1973). (19F) Braier, H. A., Eppolito, J.. Role Trace Met. Pet. 65 (1975). (20F) Braman, R. S., Johnson, D. L., Environ. Sci. Technol., 8, 998 (1974). (21F) Brenner, I. E., Eldad. H.. Argov. L., Harel, A,, Assous, M., Appl. Spectrosc., 29, 82 (1975). (22F) Brusdeylins, A., Chem.-Ztg., 97, 543 (1973). (23F) Buraviev, Yu. M., Motrii, N. I., Khorol'skaya, Z. N., Zh. Prikl. Spektrosk., 21, 587 (1974). (24F) Burreli, D. C., "Atomic Spectrometric Analysis of Heavy-Metal Pollutants in Water (Fresh and Marine)". Ann Arbor Science, Ann Arbor, Mich., 1974. (25F) Castro, R., Rev. Met. (Paris), 74, 409 (1974). (26F) Chalkov, N. Ya., Yudelevich, i. G., Ustimov, A. M., Yakovleva, A. V., Zh. Anal. Khim., 28, 1471 (1973). (27F) Chandola, L. C., Chem. Geoi., 15, 155 ( 1975). (28F) Chandola, L. C., Dixit, V. S.. Curr. Sci., 43, 372 (1974). (29F) Chandola, L. C., Karanjikar, N. P., Dixit, V. S., Chem. Anal. (Warsaw), 19, 749 (1974). (30F) Chandola, L. C., Machado, I. J., lndia AEC Bhabha At. Res. Cent. (Rep.), BARC-774, 6 PP (1974). (31F) Chandola, L. C., Mahajan, V., lndia AEC Bhabha At. Res. Cent. (Rep.), BARC-738, 6 pp (1974). (32F) Chandola, L. C., Venkatasubramanian, R., Fresenius'Z. Anal. Chem., 266, 127 (1973). (33F) Chang, C. C., Shih, J. S., Chang, C. T., Fresenius'Z. Anal. Chem., 270, 187 (1974). (34F) Clin. Chem., 21, 467-652 (1975). (35F) Cornil, J., Ledent, G.. Analusis, 3, 11 (1975). (36F) Danilova, F. I., Orobinskaya, V. A,, Parenova, V. s.. Nazarenko, R. M., Khitrov, V. A,, Belousov, G. E., Zh. Anal. Khim., 29, 2142 (1974). (37F) Davison, R. L., Natusch, D. F. S., Wallace, J. R., Environ. Sci. Technol., 8, 1107 (1974). (38F) DeKaib, E. L., Anal. Appl. Rare Earth Mater., NATOAdv. Study lnst. 1972, 61 (1973). (39F) Dinnin. J. I., Anal. Chem., 47, 97R (1975). (40F) Dittrich, K., Niebergaii, K., Chem. Anal. (Warsaw), 19, 921 (1974). (41F) Dittrich, K., Themmler. W., Niebergall. K., Wiss. Z. Karl-Marx-Univ.. Leipzig, Math.-Naturwiss. Reihe, 21, 31 (1972); Nucl. Sci. Abstr., 31, 13619 (175). (42F) Donaidson, E. M., "Methods for the Analysis of Ores, Rocks, and Related Materials", Mines Branch, Dept. Energy, Mines, and Resources, Ottawa, Canada, 1974. (43F) Dreher, G. B., Schleicher, J. A,. Adv. Chem. Ser. 14 1 (Trace Elem. Fuel, Symp. 1973), 35 (1975). (44F) Dudlich, G. K., Kilipenko, V. V., Muchkaev, A. A,, Nernets, V. M., Vestn Leningr. Univ., Fiz. Khim., No. 3, 68 (1974); Chem. Abstr., 82, 51002c (1975). (45F) Efimenko, N. i., Kushnareva, V. N., Zavod. Lab., 40, 1473 (1974). (46F) El-Khoiy, H. M. K.. PhD. Thesis, University of Aberdeen, 1972. 147Fi Farhan. F. M., Pazandeh, H., Analusis, 3, 201 (1974). (48F) Fassei, V A,, Kniseley, R. N.. Butler, C. C., Anal. Appl. Rare Earth Mater, NATO Adv. Study lnst. 1972, 71 (1973) 149FI Fiedler. R.. Proksch. G , Anal. Chim. A&, 78, 1 (1975). (50F) Fishmann, M. J.. Erdmann, D. E., Anal. Chem., 47, 334R (1975). (51F) Fleck, A,, Grit. Rev. Anal. Chem., 4, 141 (1974). (52F) Freger, S. V.. Ovrutskii. M. I., Doda, S. A,, Tovbis. N. B., Zavod. Lab., 40, 509 (1974). (53F) Fulkerson, W., Shults, W. D., Van Hook, R. I., "Proceedings of the First Annual NSF Trace Contaminants Conference 1973". 775 pp (1974); Nucl. Sci. Abst., 30, 20579 (1974). (54F) Gehrke, C. W., Rexroad, P. R., Anal. Chem., 47, 42R (1975). (55F) Ghodgaonkar, G. S., M i a AEC Bhabha

At. Res. Cent. (Rep.), BARC-771, 3 pp (1974). (56F) Gochman, N.. Young, D. S., Anal. Chem., 47, 16R (1975). (57F) Gol'dberg, Yu. I., Zh. Prikl. Specktrosk., 21, 910 (1974). (58F) Gorbunova. L. B., Kuteinikov, A. F., Avdeenko, M. A,, Murashkina, V. N., Zawod. Lab., 41, 178 (1975). (59F) Gordanier, D. E., Winters, E. L., Rep., KY-653, 17 pp (1974); Nucl. Sci. Abstr., 30,'61 (1974). (60F) Goryanskaya, G. P., Kaplan. B. Ya., Merisov, Yu. I., Nazarova. M. G., Zawod. Lab., 40, 356 (1974). (61F) Grampurohit, S. V., Kaimal, V. N. P., Fresenius'Z. Anal. Chem., 274, 181 (1975). (62F) Grampurohit, S. V., Kaimal, V. N. P., lndia AEC Bhabha At. Res. Cent. (Rep)., BARC710, 6 pp (1973). (63F) Grampurohit, S. V., Sethumadhavan, A,, Fresenius'Z. Anal. Chem., 271, 25 (1974). (64F) Greifer, E., Taylor, J. K., Rep., NBSIR73-209, 238 pp (1973); Chem. Abstr., 81, 57768h (1974). (65F) Grilletto, C., Appl. Spectrosc.. 28, 369 (1974). (66F) Grinzaid, E. L., Nadezhina, L. S., Kolosova. L. P., Lisnyanskaya, M. G., Zh. Anal. Khim., 30, 190 (1975). (67F) Harizanov. Yu., lordanov, N., Talanta, 22, 485 (1975). (68F) Harrison, P. R.. Cycling Contr. Metals, Proc. Environ. Resour. Conf. 7972, 123 (1973). (69F) Haskin, L. A,, Korotev, R. L., Anal. Appl. Rare, Earth Mater., NATO Adw. Study lnst. 7972, 183 (1973). (70F) Hattman, E. A.. Schultz, H.. Smith, J. F., Anal. Chem., 47, 85R (1975). (71F) Hauptmann, G., Jager, G., Schmierungstechnik, 4, 235 (1973). (72F) Horkay, K., Bereznai, T., Hegedus, A. J., Mikrochim. Acta, 2, 343 (1975). (73F) Hume, D. N., Prog. Anal. Chem., 5, 3 (1973). (74F) Hurlbut, J. A,, Rep. RFP-2152, 26 pp (1974); Nucl. Sci. Abstr., 31, 13610 (1975). (75F) lida, C., BunsekiKagaku. 23, 842 (1974). (76F) Imai, S., Ito, K., Hamaguchi, A., Kusaka, Y., Warashina, M., Bunseki Kagaku, 22, 551 (1973). (77F) Inglot, J., Pr. lnstr. Hutn., 25, 97 (1973); Chem. Abstr., 80, 103387n (1974). (78F) Jeffery. P. G., "International Series of Monographs in Analytical Chemistry, Vol. 36: Chemical Methods of Rock Analysis", 2nd ed, Pergamon, Elmsford. N.Y., 1975. (79F) Job, V. A,, Kartha, S. B.. Krishnamurty, G., Gopal, S., lndia AEC Bhabha At. Res. Cent. (Rep.), BARC-715, 20 pp (1973). (8OF) Job, V. A,, Kartha, S. B., Krishnamurty. G., Gopal, S., Fresenius' Z. Anal. Chem., 271, 26 (1974). (81F) Joshi, B. D., Bangia, T. R., Dalvi. A. G. I., Mikrochim. Acta, 829 (1974). (82F) Joshi, B. D., Dalvi, A. G. I., Bangia, T. R., Fresenius'Z. Anal. Chem.. 266, 125 (1973). (83F) Karanjikar. N. P.. Saksena. M. D., Talanta, 21, 652 (1974). (84F) Karpenko, L. I., Fadeeva, L. A,, Shevchenko, L. D., Zh. Anal. Khim., 29, 454 (1974). (85F) Karpenko, L. I., Fadeeva, L. A,. Shevchenko, L. D.. Zh. Anal. Khim., 30, 1330 (1975). (86F) Karpenko, L. I., Fadeeva, L. A,, Shevchenko, I. D., Vidisheva, A. Ya.. Zh. Anal. Khim., 30, 1887 (1975). (87F) Karpova, A. F.. Litvinskaya, I. I., Kashlinskaya, S. E., Khardina, V. K., Kunilova, N. M., Zh. Anal. Khim., 30, 2279 (1975). (88F) Kato. S., Sumitomo Kinzoku, 14, 253 (1973); Chem. Abstr., 62, 1 7 9 8 5 7 ~(1975). (89F) Kawamura. K., Molita, N.. Tetsu To Hagane, 60, 1795 (1974); Chem. Abstr., 82, 79926f (1975). (9OF) Kim, K. H.. Song, H. S., Ryum, S. H., Punsok Hwahak, 12, 185 (1974); Chem. Abstr., 83, 107744m (1975). (91F) King, H. G.. Rep. Y-1937, 16 pp (1974). (92F) Kipsch, D., freiberg forschungsh., B 177, 60 pp (1973). (93F) Kiseleva, N. N.. Talakin, 0. G., Zverev, K. G., Dykhno, N. M., Zh. Anal. Khim., 29, 2019 (1974). (94F) Knight, D. M., Pyzyna, M. K., Appl. Spectrosc., 28, 372 (1974). (95F) Koch, 0. G., Koch-Dedic, G. A,. "Handbook of Trace Analysis. The Concentration and

Determination of Trace Elements by Chemical, Physical, and Microbiological Processes", R 1 and 2, 2nd ed, Springer, New York, 1974. (96F) Koch, 0. G.. Pure Appl. Chem., 37, 481 (1974). (97F) Kornilova, 0. A,. Zh. Anal. Khim., 29, 1427 (1974). (98F) Korolev, V. V., Timofeev, E. F., Zawod. Lab., 39, 969 (1973). (99F) Korolev. V. V.. Timofeev. E. F., Zawod. Lab., 39, 1150 (1973). (1OOF) Kowalczyk, J., Lukas, W., Tomasik, Z., Pr. Nauk. lnst. Chem. Nieorg. Metal. Pierwiastkow Rzadkich Politech. Wroclaw., 32, 17 (1975); Chem. Abstr., 83, 187746b (1975). (101F) Kraft, G., Eurisotop Off. lnf. Book/., 59, 47 pp (1972). (102F) Kraft, G., Eurisotop Off. lnf. Book/., 71, 23 pp (1972). (103F) Krasil'shchik, V. Z., Manova, T. G., Zh. Anal. Khim., 30, 971 (1975). (104F) Krasil'schchik. V. Z., Manova. T. G., Raginskaya, L. K., Kuznetsova. 0. S.. Zavod. Lab., 39, 935 (1973). (105F) Kreimer, S. E., Tuzhilina, N. V., Rakhlina. M. L., Stogova, A. V.. Gaeva, L. M.. Pruschai, L. P., Bernovskaya, F. M., Barkova. V. V.. Tyushkina, N. G., Zawod. Lab., 39, 1182 (1973). (106F) Krishnamurty. G., Gopal., K. S., Krishnan, S., lndia AEC Bhabha At. Res. Cent. (Rep.) BARC-669, 7 pp (1973). (107F) Krishnamurty, G., Saraswathy. K. M., Thomas, O., lndia A€C Bhabha At. Res. Cent. (Rep.) BARC-749, 21 pp. (1974). (108F) Kutyrkin, V. N., Pobegailo, T. A,. Zavod. Lab., 40, 964 (1974). (109F) Kuznetsova, A. P., Otmakhova, 2. I., Kataev, G. A., ZavW'. Lab., 39, 957 (1973). (IlOF) Kvyatkovskii, E. M., Ed., "Analytical Methods in Geochemical Sciences, Materials of the Geochemical Conference" (Analiticheskie Metody pri Geokhimicheskikh Issledovaniyakh, Materialy Geokhimicheskoi Konferentsii) 4th, Leningrad, May 18-20, 1970, Leningrad. Gorn. Inst., Leningrad, USSR, 1972. (1 11F) Benesovsky, F., Mikrochim. Acta, Suppi., 5, 291 (1973). (1 12F) Lazebnik, K. I., Ovrutskii, M. I., Tomashevskaya, A. N., Tarkovskaya, I. A,, Adsorbtsiya Adsorbenty, 2, 57 (1974); Chem. Abstr., 81, 114117w(1974). (113F) "Lead and Air Pollution: A Bibliography with Abstracts", EPA-450/1-74-001, 431 pp (1974). (114F) Lebedinskaya, M. P., Chuiko. V. T., Zh. Anal. Khim., 28, 2413 (1973). (1 15F) Lehmden, D. J.. Jungers. R. H., Lee, R. E., Jr., Anal. Chem., 46, 23 (1974). (116F) Leland, H. V.. Copenhaver, E. D., Corrill, L. S., J. Water Poll. ControlFed., 46, 1452 (1974). (117F) LeRoy, V. M.. Lincoln, A. J., Anal. Chem., 46, 369 (1974). (1 18F) Le Trung Tam, Analusis, 3, 23 (1975). (119F) Lichte, F. E., Skogerboe, R . K., Appl. Spectrosc., 28, 354 (1974). (120F) Lisnyanskaya, M. G., Fedorov, M. F., Kolosova, L. P., Grinzaid, E. L.. Zawod. Lab., 40, 1354 (1974). (121F) Loyd-Jones, C. P., Hudd, G. A., Hill-Cottingham, D. G., Analyst (London), 99, 580 (1974). (122F) Maciejewska. A,, Substyk, D., Pr. Nauk. inst. Chem. Nieorg. Metal. Pierwiastkow Rzadkich Politech. Wroclaw., 32, 67 (1975); Chem. Abstr., 83, 1 8 7 9 0 0 ~(1975). (123F) Mainka, E., Mueller, H. G., Ber. Kernforschungsanlage Juelich (Conf.), 11, Ed. 2, 59 f 19741. (124F)-(132F) References deleted in revision. (133F) Makhnev, Yu. A,, Petrov, B. I., Zhivopistsev, V. P.. Uch. Zap., Permsk. Gos. Univ., 269, 108 (1973); Chem. Abstr., 82, 80079p (1975). (134F) Matic-Dobrosavijevic, J. S., Gias. Hem. Drus., Beograd., 38, 367 (1973); Chem. Abstr., 81, 85551A (1974). (135F) Meister, W., Vibrans, G., Stuewe, H. P., Z. Metallkd., 65, 554 (1974). (136F) Melnick, L. M., Lewis, L. L., Holt, B. D., Ed., "Chemical Analysis (New York), Vol. 40: Determination of Gaseous Elements in Metals", Wiley-lnterscience, New York, 1974; reviewed in Anal. Chem. 47, 238A (1975). (137F) Middeiboe, V.. Appl. Spectrosc., 28, 274 (1974). (138F) Milanov, B.. Metalurgiya (Sofia), No. 4, ~

19 (1973); Chem. Abstr., 80, 22329t (1974). (139F) Minczewski, J., Chwastowska, J., Dybezynski. R., "Trace Analysis: Methods for Separation and Concentration" (Analiza Sladowa: Metody Rozdzielania i Zageszczania), Wyd. NaukTech., Warsaw, 1973: Chem. Abstr., 61, 57940h (1974). (140F) Mizuike, A,, Kawaguchi, H., Fukuda, K., Ochiai, Y., Nakayama, Y., Mikrochim. Acta, 915 (1974). (141F) Mohaupt, G., Paetzmann, G.. Jena Rev., 19 (4), 252 (1974). (142F) Morris, W. F., Rep., UCID-15952, 14 pp (1971); Nucl. Sci. Abstr., 30, 28944 (1974). (143F) Moseva, 2. P.. Pinchuk, G. P.. Sokolov, A. B., Karabashi, A. G., Peizulaev, Sh. I., Zh. Anal. Khim., 29, 1589 (1974). (144F) Mosier, E. L., Antweiier, J. C., Nishi, J. M., J. Res. U.S. Geol. Survey, 3, 625 (1975). (145F) Muchkaev, A. A,, Nemets. V. M., Petrov. A. A,, Skvortsova, G. V., Zh. Prikl. Spektrosk., 19, 879 (1973). (146F) Reference deleted in revision. (147F) Mueller. G., lsotopenpraxis, 9, 365 (1973). (148F) Murty, P. S., Khanna, P. P.. Curr. Sci., 43, 711 (1974). (149F) Murty, P. S., Marathe, S. M., Fresenius' Z.Anal. Chem., 272, 341 (1974). (150F) Murty, P. S., Marathe, S. M., Kapoor, S. K., Saraswathy, M., Fresenius' Z. Anal. Chem., 268, 285 (1974). (151F) Murty, P. S.. Marathe, S. M., RugminiBai, K. P., Anal. Lett., 7, 147 (1974). (152F) Nakajima. S., Oyo Butsuri, 43, 422 (1974); Chem. Abstr., 81, 1607039 (1974). (153F) Nikitina, 0. LI., Ivanova, N. K., Ryabeka, V . P., Zh. Prikl. Spektrosk., 23, 151 (1975). (154F) Nikolaev, A. V.. Yudelevich, I. G.. Vall, G. A., Torgov, V. G.. izw. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk (6), 93 (1974); Chem. Abstr., 82, 148977n (1975). (155F) Osumi, Y., Osaka Kogyo Gijutsu Shikensho Hokoku (345), 1 (1974); Chem. Abstr., 81, 162850b (1974). (156F) Otmakhova. 2. I., Chaschina. 0. V., Slezko. N. I., Kataev, G. A,, Tr. Tomsk. Gos. Univ.. 237, 75 (1973); Chem. Abstr., 80, 90857p (1974). (157F) Pacheva, I., Zhechev, D., lzv. Fiz. lnst. ANEB (At. Nauchnoeksp. Baza), Bulg. Akad Nauk, 24, 143 (1973); Chem. Abstr., 81, 130553r (1974). (158F) Pavlenko, L. I.. Malofeeva, G. I., Simonova, L. V., Andryushchenko. 0. Yu., Zh. Anal. Khim., 29, 1122 (1974). (159E) Pavlenko, L. I., Petrukhin, 0. M., Zolotov, Yu. A., Karyakin, A. V., Gavrilina, G. N., Tumanova, I. E., Zh. Anal. Khim., 29, 933 (1974). (160F) Peck, E. S., Anal. Chim. Acta, 80, 75 ( 19 75). (161F) Penchev. N., Piperov. N.. Belchev, S., Georgiev, 0. Fresenius' Z. Anal. Chem., 265, 250 (1973). (162F) Perry, H. M., Jr., Perry, E. F., Purifoy, J. E.. Erlanger, J. N., Trace Subst. Environ. Health, 281 (1973); Nucl. Sci. Abstr., 30, 5930 (1974). (163F) Proksch, G., Istop. Radiat. Soil-Plant Relat. lncl. Forest., Proc. Symp. 1971, 217 (1972). (164F) Rao. A. S.. Dixit, M. N.. India AEC Bhabha At. Res. Cent. (Rep.) BARC-759, 14 pp (1974). (165F) Rigin, V. I., Zawod. Lab.. 40, 1195 (1974). (166F) Rubin. A. J., "Aqueous-Environmental Chemistry of Metals", Ann Arbor Science, Ann Arbor, Mich., 1974. (167F) Ruch, R. R., Gluskoter, H. J., Shimp, N. F., Environ. Geol. Notes, 111. State Geol. Surv., 72, 96 pp (1974). (168F) Sahini, V. EM., Craiu, M.. Ivana, E., Rev. Roum. Chim., 19, 165 (1974). (169F) Saltzman, B. E., Cuddebakc, J. E., Anal. Chem., 47, 1R (1975). (170F) Sato. H., Asakura, Y.. Sonobe. T.. Shimomura, T., Yamauchi. H., Imai, S., Japan Kokai 74 46,994 (7 May 1974). (171F) Savunov, M. P.. Tr. Beloruss. Sel'skokhoz. Akad., 100, 111 (1973). (172F) Schmauch, G. E., Crit. Rev. Anal. Chem., 4, 107 (1974). (173F) Schoenfeld, I., Berman, A,, Anal. Chem.. 46, 1826 (1974). (174F) Scott, T. A., Humpherson, R., Lab. Pract., 23, 703 (1974).

ANALYTICAL CHEMISTRY, VOL. 48, NO.

5, APRIL 1976

141 R

(175F) Seim, H. J., Calkins, R. C., Macksey. J. A,, Anal. Chem., 47, 12813 (1975). (176F) Shapunov, L. A,, Vil'dt. N. G., Okhrimeta, S. D.. Vii'dt. A. L.. Zavod, Lab., 39, 959 (1973). (177F) Shemet, V. V., Burkova. L. V., Zaitseva. T. M., Kulikov, F. S., Luft, B. D., Novikov. V. B., Khusid, L. B., Zh. Anal. Khim., 28, 1806 (1973). (178F) Sim, P. G., Appl. Spectrosc., 28, 23 (1974). (179F) Skotnikov, S.A,, Zavod. Lab., 40, 405 (1974). (18OF) Sloman, K. G., Foltz, A. K.. Yeransian, J. A.. Anal. Chem., 47, 56R (1975). (181F) Sokolowska, W., Pr. Nauk lnst. Chem. Nleorg. Met. Plerwiastkow Rzadklch Politech. Wroclaw., 17, 405 (1973); Chem. Abstr., 80, 152435k (1974). (182F) Soldano, B. A,, Kwan, P. W. O., Appl. Spectrosc., 29, 271 (1975). (183F) Sonobe, T., Asakura, Y., Satoh, H., Imai, S., Yamanouchi, H.. Shimomura, T.. Tokai Jigyo-sho, Doryokudo, Kaku-nenryo Kaihatsu Jigyodan. (Rep.) 7972, 99 (1973): Chem. Abstr.. 80, 32958m (1974). (184F) Spectroscopy Division Report 1973-4, lndia AEC Bhabha At. Res. Cent. (Rep.), BARC783, 127 pp (1974). (185F) Sreeramamurty, P., Marathe, S.M., Kapoor, S. K., Saraswathy. M.. lndla AEC Bhabha At. Res. Cent. (Rep.), BARC-680, 5 pp (1973). (186F) Straub, W. A,, Hurwitz, J. K., Anal. Chem., 47, 112R (1975). (187F) Stroganova, N. S.. Ryabukhin, V. A,, Galkina, I. P., Ermakov, A. N., Zh. Anal. Khim., 28, 1313 (1973). (188F) Sudo, E., Saito, M., Tetsu To Hagane, 60, 1805 (1974); Chem. Abstr., 82, 799281.1 (1975). (189F) Sugimae, A., Anal. Chem., 46, 1123 (1974). (19OF) Sugimae, A,, Anal. Chem., 47, 1840 (1975). (191F) Sugimae, A., Appl. Spectrosc., 28, 458 (1974). (192F) Sugimae, A., Bunseki Kagaku, 22, 1350 (1973). (193F) Takao. Z.,Ed., "Standard Methods for Gas Determination in Metallic Materials" (Kinzoku

Zairyo no Hyoyun Gasu Bunseki Hoho) Maruzen, Tokyo, 1974; Chem. Abstr., 81, 163058m (1974). (194F) Tanaka, I., Sato, K., Matsumoto. R., Bunsekl Kagaku, 24,423 (1975). (195F) Tarasova, I. I., Dudenkova. L. S.. Khitrov, V. G., Belousov. G. E., Zh. Anal. Khim., 29, 2147 (1974). (196F) Temma. T., Miwa, S., Bunsekl Kagaku, 23, 863 (1974). (197F) Temma, T., Miwa, S., Bunseki Kagaku, 23, 1475 (1974). (198F) Tiptsova-Yakovleva, V. G., Dvortsan, A. G.. Semenova, I. E., Zh. Anal. Khim., 30, 1577 (1975). (199F) Toelg. G., Talanta, 21, 327 (1974). (200F) Toelle, H., Mikrochim. Acta, 771 ( 1973). (201F) Trokhachenkova, 0.P., Gradskova, N. A , , Zhinkin, D. Ya., Makulov, N. A., Zb. Anal. Khim., 30, 1380 (1975). (202F) Truksa, A,, Elektronika, 15, 112 (1974). (203F) Tumanov, A. A,, Shakhverdi, N. M., Tr. Khim. Khim. Tekhnol., No. 3, 43 (1973). (204F) Turina, N., Weber, K., Kem. lnd., 22, 595 (1973): Chem. Abstr., 82, 46105) (1975). (205F) Turulina, 0. P., Zakhariya, N. F., Zh. Prikl. Spektrosk., 21, 203 (1974). (206F) Ungureanu, C., isotopenpraxis, 11, 237 (1975). (207F) Ungureanu, C., Pascalau, M., Stud. Cercet. Fiz,, 25, 663 (1973): Chem. Abstr., 80, 22285a (1974). (208F) Vall, G. A,, Shatakaya, S. S., Yudeievich, I. G., Torgov, V. G., lzv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk. No. 5, 88 (1973). (209F) Van Raaphorst, J. G., Ordelman, J., Tolk, A,, Rep., RCN-215, 13 pp (1974). (210F) Varga, Gy., lzotoptechnika, 17, 80 (1974). (211F) Vassilaros, G. L., Talanta, 21, 803 (1974). (212F) Vengsarkar, B. R., Saksena, M. D., Curr. Sci., 44, 461 (1975). (213F) Venkatasubramanian, R., Dixit, R. M., Saranathan, T. R., Fresenius' Z. Anal. Chem., 271, 357 (1974). (214F) Vlasov. V. S.,Popova, G. D., Krasnikova, G. V., Yudelevich. I. G., Zavod. Lab., 39, 1048 (1973).

(215F) Von Lehmden, D. J., Jungers, R. H., Lee, R. E. Jr., Anal. Chem.. 46, 239 (1974). (216F) Vorob'eva, G. A,, Zolotov, Yu. A,, Izosenkova, L. A,, Karyakin, A. V., Pavlenko, L. I., Petrukhin, 0. M., Seryakova. i. V., Simonova, L. V., Shevchenko, V. N., Zh. Anal. Khim., 29, 497 (1974). (217F) Wetzel, K., Isotopenpraxis. I O , 85 (1974). (218F) Williams, C. J., Seidemann, H. J.. Jr.. Hawley, R. E., Am. Lab. 7 (e), 63 (1975). (219F) Winge, R. K., Fassel, V. A,. Chem. Anal. (N. V.) 40 (Determination Gaseous Elem. Met.) 221 (1974). (220F) Winge, R. K., Fassel, V. A,, Chem. Anal. (N.V . ) 40 (Determination Gaseous Hem. Met.) 265 (1974). (221F) Yamane, T., Yamada, N., Spectrochim. Acta, Part B, 30, 305 (1975). (222F) Yen, T. F., "The Role of Trace Metals in Petroleum", Ann Arbor Science, Ann Arbor, Mich., 1975; reviewed Anal. Chem., 47, 688A (1975). (223F) Yudelevich, I. G., Buyanova, L. M., Chuchalina, L. S.,Shelpakova. I. P., Shcherbakova, 0. I., Anufrieva, G. V., Ti. Khim. Khim. Tekhnol., (4), 78 (1973). (224F) Yudelevich. I. G., Kondratenko, L. A,. Protopova, N. P., lzv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, (5), 85 (1974). (225F) Yudelevich, I. G., Shaburova, V. P., Torgov, V. G., Shcherbakova, 0. I., Zh. Anal. Khim., 28, 1049 (1973). (226F) Yudelevich, I. G., Shelpakova, I. R.. Zayakina. S. B., Scherbakova, 0. I., Spectrochim. Acta. Part B, 29, 353 (1974). (227F) Zamirca, A., Olteanu, R., Cercet. Miniere, lnst. Cercet. Miniere, 14, 401 (1973): Chem. Abstr.. 80, 152426h (1974). (228F) Babus, S. P., Ed., "Advances in Chemistry Series 141: Trace Elements in Fuel", American Chemical Society, Washington, D.C.. 1975. (229F) Shendrikar, A. D., Sci. Total Environ., 3, 155 (1974). (230F) Chaplin. M. H.. Dixon, A. R., Appl. Spectrosc., 28, 5 (1974). (231F) Burridge. J. C., Scott, R. O., Spectrochim. Acta, Part B, 30, 479 (1975). (232F) Jones, J. B., Jr.. J. Assoc. Off. Anal. Chem.. 58, 764 (1975).

Flame Emission, Atomic Absorption, and Atomic Fluorescence Spectrometry Gary M. Hieftje" Department of Chemistry, Indiana University, Bloomington, Ind. 4740 7

Thomas I?.Copeland Department of Chemistry, Northeastern University, Boston, Mass. 02 7 75

Dorys R. de Olivares' Department of Chemistry, Indiana University, Bloomington, lnd. 4 740 I

This is the first biennial review to be prepared by the present authors, the previous three having been written by Professors James D. Winefordner of the University of Florida and Thomas J. Vickers of Florida State University. We all owe a deep debt of gratitude to both these men for their efforts on behalf of the analytical community. The title of this review section has been changed from "Flame Spectrometry" to the present one. This change rePresent address, F a c u l t a d de Ciencias, Universidad de Andes, M e r i d a , Venezuela.

142R

Los

ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976

flects the increasingly common usage of nonflame devices as atom cells in atomic absorption and atomic fluorescence spectrometry. Retention of the term flame emission" distinguishes this section from the review entitled "Emission Spectrometry", where emission from sources other than flames is covered. The present review covers books, articles, and chapters which appeared in the time period between January 1, 1974, and November 15, 1975. Unfortunately, any publication appearing between October 1973, and January 1, 1974 will not have been included either in the previous review