Emission spectroscopy - Analytical Chemistry (ACS Publications)

Walter J. Boyko , Peter N. Keliher , and Joseph M. Patterson. Analytical ... D. W. Burns , M. P. Murphy , M. L. Parsons , L. A. Hickle , R. T. Staten...
0 downloads 0 Views 3MB Size
lOOR

ANALYTICAL CHEMISTRY, VOL. 50, NO.

5, APRIL 1978

(16A) J. H. Lundsford, Crit. Rev. Solid State Sci., 6, 337 (1976). (17A) T. A. Miller, Ann. Rev. Phys. Chem., 27, 127 (1976). (18A) M. Schara, “Proc. Int. Sch. Phys. “Enrico Fermi”, 1973”, pp 638-55, publ. 1976. (19A) K. A. Mueller, ibid., pp 201-54. (20A) H. Gasparoux and J. Prost, Ann. Rev. Phys. Chem., 27, 175 (1976). (21A) S.M. Rezende, AIP Conf. Proc., 34, 1 (1976). (22A) H. Gabriel, Hyperfine Interact., 2, 91 (1976). (23A) G. Fischer, Top. Curr. Chem., 66, 115 (1976). (24A) P. H. Kasai, ACS Monograph, 171, 350 (1976). (25A) M. I.loktev and A. A. Slinkin, Usp. Khim., 45, 1594 (1976). (26A) G. S.Bystrov, G. A. Grigor’eva, and N. I.Nikolaev, iba., 45, 1621 (1976). (27A) P. M. Richards, Ref. 18A, p 539. (28A) W. T. Roubal, Progr. Chem. fats Other Lipids, 13, 61 (1973). (29A) P. F. Kane and G. B. Larrabee, Anal. Chem., 49, 221R (1977). (30A) K. Tsuji, A m . Chem. Soc., Div. Org. Coat. Plast. Chem. Pap., 3 5 , 167 (1975). (31A) G. D. Watkins in “Point Defects in Solids”, J. H. Crawford, Jr., and L. M. Slifkin, Ed., Plenum, New York, N.Y., 1975, VoI. 2, p 333. (32A) B. Gaffney and C. McNamee, Methods Enzymol., 32, Part B, 161 (1974). (33A) F. Baer, A. Berndt, and K. Dimroth, Chem. Unserer Zeit, 9, 18, 35 (1975). (34A) W. Oosterhuis, Struct. Bonding, 20, 59 (1974). (35A) J. Smith in “Mod. Phys. Tech. Mater. Technoi.”, T. Mutvey and R. Webster, Ed., Oxford University Press, 1974, p 291. (36A) C. Rudowicz, Acta Phys. Pol., A47, 305 (1975). (37A) B. Flockhart, Proc. SOC. Anal. Chem., 9, 134 (1972). (38A) C. Scala, Aust. Gemmol., 12, 119 (1974). (39A) W. More, Pure Appl. Chem., 40, 211 (1974). (40A) 0. Shaltiel, At. Energy Rev., 12, 699 (1974). (41A) J. Villafranca, Met. Ions. Bioi. Systems, 4, 29 (1974). (42A) M. Rak, Biochemie, 57, 483 (1975). (43A) P. Sullivan, Magn. Reson. Rev., 3, 251 (1974).

(44A) K. Hauser, “Methodicum Chimicum”, F. Korte, Ed., Academic Press, New York, N.Y., 1974, Vol. 1, F’t. A, pp 318, 375. (45A) B. Kastening, Adv. Anal. Chem. Instrum., 10, 421 (1974). (46A) P. Narasimhan, J. Indian Chem. Soc., 52, 275 (1975). (47A) M. Seehra and D. Huber. AIP Conf. Proc., 1974, 24, 261 (1975). (48A) R. McWeeny in “Orbital Theory of Molecules and Solids”, N. Marsh, Ed., Oxford University Press, 1974, p 199. (49A) S.Nagakura, Excited States, 2, 321 (1975). (50A) M. Cohn, Ciba found. Symp.. 31, 87 (1975). (51A) B. Gilbert, Phys. Methods Heterocycl. Chem., 6, 95 (1974). (52A) H. Shields, Magn. Reson. Rev., 3, 375 (1974). (53A) K. Evenson and C. Howard, “Laser Spectrosc., Proc. Int. Conf. 1973”, R. Brewer and A. Mooradian, Ed., NTIS. Springfield, Va., 1974, p 539. (54A) J. Baker in “Cryst. Fluorite Structure”, W. Hayes, Ed., Oxford University Press, 1974, p 341. (55A) 0. Williams-Smith and S.Wyard, Prog. Med. Chem., 12, 191 (1975). (56A) D. Newman and W. Urban, Adv. Phys., 24, 793 (1975). (57A) P. Richards, NATO Adv. Study Inst. Ser., Ser. B , 7, 147 (1975). (56A) P. Knowles, Amino-Acids, Pept., Proteins, 7, 196 (1976). (59A) F. King, Chem. Rev., 76, 157 (1976). (60A) W. Orme-Johnson and R. Sands, “Iron-Sulfur Proteins”. W. Lovenberg, Ed., Academic Press, New York, N.Y., 1973, Vol. 2, p 195. (61A) Y. Servant, Magn. Reson. Rev., 4, l(1975). (62A) A. Shklyaev and V. Anufrienko, Zh. Strukt. Khim., 16, 1082 (1975). (63A) D. L. Beveridge in “Semiempirical Methods of Electronic Structure Calculation: Part B: Applications”, G. A. Segal, Ed., Plenum Press, New York, N.Y., 1977, Chap. 5. (64A) P. H. Kasai in “Solid State Chemistry and Physics”, P. F. Welier, Ed., M. Dekker, New York, N.Y., 1973, Chap. 6. (65A) 2. G. Suos and D. J. Klein in “Treatise on Solid State Chemistry”, N. B. Hannay, Ed., Plenum, New York, N.Y., Vol. 3, 1976, Chap. 9. (66A) E. Tsuchida and H. Nishida, Adv. Polym. Chem., 24, 1 (1977).

Emission Spectroscopy Ramon M. Barnes Department of Chemistry, GRC Tower 1, University of Massachusetts, Amherst, Massachusetts 0 1003

This 16th article in the series of biennial reviews of emission spectroscopy surveys with emphasis and format employed previously (2A)the emission spectrochemical literature appearing in refereed publications during 1976 and 1977. Books and eneral reviews of emission spectroscopy and closely relate$ subjects are considered in the first section, whereas specific reviews and texts are included in each of the five topical sections. Spectral descriptions and classifications are examined in the second section. An abbreviated instrumentation section follows, and standards, samples, calibrations, and calculations are evaluated in the fourth section. The emphasis on excitation sources reflects the size of section five. In the sixth section, important applications are explored.

BOOKS AND REVIEWS A number of excellent books and reviews of emission spectroscopy appeared during the past two years. Maintaining their position as the major sourcebooks for atomic spectrochemical analysis, the 5th and 6th volumes of “Annual Reports on Analytical Atomic Spectroscopy” continue to provide yearly review and commentary on published and conference activities in atomic absorption, emission, and fluorescence spectroscopy during 1975 and 1976 (13A,14A). These timely volumes consider all major emission and absorption instrumentation and applications. A 1977 supplement to the ASTM “Methods for Emission Spectrochemical Analysis” was published (IA), as were the plenary and invited lectures from the XVIIIth and XXth Colloquium Spectroscopicum Internationale edited by Robin (32A)and Rubeska et al. (33A),respectively. Of the recent books, Schrenk‘s text “Analytical Atomic Spectroscopy” includes instrumentation, procedures, and applications for combustion and electrical sources in spectrochemical analysis suitable for advanced undergraduate and beginning graduate students (34A).In contrast, Epstein’s practical monograph “Chemical Analysis by Emission Spectroscopy” is oriented toward technicians or hobbyists

(IOA).

0003-2700/78/0350-10OR$05.00/0

In “Trace Analysis: Spectroscopic Methods for Elements”, editor Winefordner combines chapters on optical, x-ray, nuclear, and mass spectroscopic methods into a comprehensive reference source (43A).In addition to the chapters on atomic and optical spectroscopic methods written by Veillon (39A), instrumentation by Elser (9A),O’Haver (25A,26A) d’iscusses sample handlin and other analytical considerations. Barnes e d i t e j a unique book, “Emission Spectroscopy”, consisting of 39 reprinted papers, patents, or excerpts from benchmark publications in emission spectroscopy during the past century complemented by an extensive and comprehensive bibliography and editorial commentary (3A).This volume provides an in-depth view of emission spectroscopy beginning before Kirchhoff and Bunsen, and covers developments in qualitative and quantitative emission spectroscopy, as well as the progress in the design and understanding of electrically generated excitation sources which range from arc and spark to high frequency plasmas. In keeping with the spirit of the American Revolution bicentennial celebration, Laitinen and Ewing included in “A History of Analytical Chemistry” a fascinating chapter on analytical spectroscopy opening with atomic spectroscopy (21A).Walsh also reviewed the progress in spectrochemistry during the past century (41A).Walker (40A)and Klinkenberg (19A)prepared chapters on atomic spectroscopy, while James (36A), Kantor (18A), and Pinta (30A)published chapters on emission spectroscopy. Laqua (22A)presented an excellent overall review of optical emission spectrochemical applications, and Winefordner et al. (42A)critically reviewed multielement atomic spectroscopic methods. Fike et al. (11A)considered some properties of flames and electrical discharges in high-temperature atomic and molecular spectroscopy, and Hastie (15A)discussed plasmas in “High Temperature Vapors”. Among translations, “Spectrochemical Analysis” by Torok et al. (37A)is available in an up-dated version of the 1974 Hungarian original. In “Spectrochemical Analysis of Pure

D 1978 American Chemical Society

ANALYTICAL CHEMISTRY, VOL. 50, NO. 5, APRIL 1978 Ramon M. Barnes, Associate Professor of Chemistry at the University of Massachusetts in Amherst, teaches analytical chemistry with emphasis on microcomputer applications and spectroanalytical chemistry His current research interests include analytical instrumentation and spectrochemical analysis, and present research projects involve investigation of radiofrequency inductively coupled plasma (ICP) dsdwges, lowpresswe oxygen piasmas, time-resolved spark spectroscopy, spectroscopic detectors for chromatography, and spectral analysis based on chelating resin techniques. Dr Barnes also edits the monthiy ICP Information Newsletter, directs a SAS short course on modern emission spectroscopy, and serves on tbe eddorlal board of Progress in Analytical Atom/c Spectroscopy and the Canadian Journal of Spectroscopy. He received his B S. in Chemistry from Oregon State University in 1962, a M.A from Columbia University in 1963, and a Ph.D , in analytical chemistry from the University of Illinois in 1966 He was on military assignment during 1967-68 at NASA Lewis Research Center in Cleveland, and he was a postdoctoral associate at the Ames Laboratory of Iowa State University from 1968 until he pined h e Chemistry Department at the Universrty of Massachusetts in the fall of 1969.

Table I. Selected References to Atomic Spectra Wavelengths (A), Energy Levels ( E ) ,and Series Limit Ionization Energy (I) Element, Ionization level isotope I B I C Mg

I IV I1

A1

V

Si

V

P S

111, IV I-VI1 I, I1

Ca Ti V Cr

I

0

Na

Mn Substances”, an English revision of the 1971 Russian volume, Zil’bershtein (47A)examines principles and basic relationships, excitation sources, and preliminary concentration techniques of impurities as well as practical problems in analysis of pure substances (47A). Foreign-language books on emission spectroscopy were published in German by Mannkopf and Friede (23.4),Kipsch (20A),Wuensch (44A),and Schroen and Rost (35A);in Russian by Zaidel et al. (45A),Zaidel and Schreider (46A), Buravlev et al. (7A), and Peisakhson (28A); in Polish by Boboli et al. (5A), and in Portuguese by Elicker and Monte da Rocha (8A). Paksy (27A)reviewed the status of emission spectroscopy in Hungary, while Pilipenko and Volkova surveyed developments in Russian analytical chemistry (29A). Numerous useful references can be located in new books on plasmas and discharges. Some of these include Howatson’s “Introduction to Gas Discharges” ( I 7A),Franklin’s “Plasma Phenomena in Gas Discharges” (12A), and Massey’s “Negative Ions” (24A).Proceedings of conferences on ionized gases and atomic collisions edited by Risley and Geballe (31A)and Hoelscher and Schram (16A)were published as were two new volumes of the “Digest of Literature on Dielectrics” edited by Budenstein (6A)and Vau han and Johar (38A). Finally, a newsletter devotefto rapid information exchange covering the inductively coupled plasma discharge in spectrochemical analysis is being edited by Barnes (4A). SPECTRAL DESCRIPTIONS A N D CLASSIFICATIONS The recording, interpretation, and calculation of atomic spectra continues actively especially in fields using multiphoton excitation by tunable dye lasers and in the ultraviolet region with absorption and beam-foil techniques. Hagan (95B) compiled a bibliography on atomic energy levels and spectra; Fuhr et al. (86B)prepared a bibliography on atomic line shapes and shifts, and Heilig (106B)assembled one on experimental optical isotope shifts. Martin and Wiese (140B)compiled tables of critically evaluated oscillator strengths for the lithium isoelectronic sequence, whereas Corliss and Sugar (63B,185B) derived the energy levels of all stages of ionization for chromium and manganese. Moore (150B)published atomic energy levels and multiplet tables for atomic oxygen, while Meggers and Moore (143B)completed the analysis of the first spectrum of hafnium. Fawcett (81B)presented wavelengths and classifications of emission lines for 2 greater than 28, and Bashkin and Stoner (12B, 13B) published the first volume of their atomic energy levels and Grotrian diagrams. Pearse and Gaydon (160B) published the 4th edition of “The Identification of Molecular Spectra”, and Beck et al. (20B)compiled a table of all laser lines so far observed in gases and vapors. Selected references to atomic spectra are presented in Table I, and additional chosen references to atomic lifetimes, oscillator strengths, and transition probabilities are summarized in Table I1 for elements and ionization levels of particular interest in spectrochemical analysis. Information concerning

101 R

Fe

V V I-XXIV I11 VI1 I-xxv V I

cu

I11 IV V

Zn Ge Se

I

Sr Y

Ag Cd

Sn Xe

cs Ba La Nd

Tb Ho Yb

Hf Pb

Bi Th U NP 244

Cm

249Bk Z49Cf

I I IV I11 I I1 I I 11-v I1 I11 I I IV I I1 I11 I 11, I11 I I I1 I11 I

I, I1 VI I I I I1 I, I1

Ref. (169B) (82B) (150B) (147B) (144B) (37B) (38B) (135B,205B) (70~) (113B) (157B) (187B) ( 190B) (185B) ( 74B) (73B) (63B) (208B) (130B,131B) (208B) (186B) ( 145B) (191B) (40B) (41~) (207B) (97B) (77B) (39B) (167B) (40B) (42B) ( 109B) ( I 66B) (107B) (3B) (98B-1O O B ) (183B)

(iso~j

(180B,181B) (203B) ( 126B) (116B) ( 143B) (43B) ( 170B) (9B) (204B) (36B,148B) (115B) (83B,84B) (56B,57B,199B, 200B) 158B) (55Bj (55B,59B)

far ultraviolet spectra of highly ionized species and molecular emission spectra are excluded although a considerable literature exists. Williams (196B)reviewed fundamentals of spectral-line measurements, and Edlen (71B,72B)surveyed the status of Stewart (184B), atomic spectra term analysis. Richter (168B), Sinanoglu (177B), and Wiese (194B,195B) scrutinized atomic structure and oscillator strength data. Other topics reviewed include transition probabilities for ionized atoms by Weiss (193B), isotope shift by Bauche and Champeau (18B),highly ionized ion physics and autoionization ion level measurements by Sellin (I73B,174B),line width and line broadening by exGriem (93B),Hindmarsh (108B),and Shimoda (176B), perimental Stark widths by Konjevic and Roberts (122B)and Konjevic and Wiese (123B), and radiationless and radiative transition theory by Jortner and Mukamel (114B)and

102R

ANALYTICAL CHEMISTRY, VOL. 50, NO.

5, APRIL 1978

Table 11. Selected References t o Lifetimes ( T ) , Oscillator Strengths ( f ) ,Hyperfine Splitting (hfs) and Transition Probabilities ( A ) Ionization Ref. Element level TY Pe

I I, I1 I, I1 I11 I I1 I I I I I1 I I-VI1 I I I1

He B C

N

0

F Ne Na M€!

AI S

Ar

I I I1 I I1 V I I I I, 11 I I I I1 I I I1 I

K Ca

sc V Cr

Mn Fe

co

cu Zn Ga Se Br Kr 70,60,82,84,86Kr

I1 I I I1 I1

Rb Sr

Zr 1W.106

Pd

Cd 111.113

I Xe cs Ba

Pr

Nd Sm

Eu Gd 156,160Gd DY

Er

Tm Yb

Lu Hg

7

A 7

A A, 7 7 T 7

7 7 7

A, f A, 7,

f

7 7

(6B)

A

f isotope shift A , f, 7 7

f, 7

f hfs 7

A

I I1

f

I1 I1 I1 I, I1 I I1 I I

7

7 T

f

7,A A,f A ,T 7,

f

T

hfs

f , T , isotope shift

f, 7

( 2 B , 6B, 161B) (31B. 33B, 161B)

7

f f

isotope shift

I I I I1 I I, I1 I1 I I1

(llBj (141B, 141aB, 209B) (47B. 8 9 B ) (loli?, I53B) 1165B) (l02Bj (70B) (136B) (188B) (22B, 11 9B, 120B, 149B, 152B, 189B, 202B) (46B, 206B) ( 1OlB. 158B) ( 16 5 B ) (23B, 159B) ( 8 B , 156B) (137B) (29B, 62B, 155B) (44B) ( 120aB, 139B, 164B) (128B) (96B) ( 5 B , 165B) (78B, 102B) (118B) (24B) (67B) (35B) (69B. 182B) (92B; 133B; 151B) 17B. 101B. 117B. 158B) ( 16 5 B ) ' (4B) (1OB) (51B, 129B, 154B) (28B, 36B) ( 5 B , 165B) (102B) ( 132B, 155B) (201B, 202aB) (197B) (68B, 171B) (75B. 90B) (46B; 66B,' 79B, 80B, 133B, 138B, 162B) (25B, 158B) ( 103B, 198B) (52B) (6B) (6B)

I1 I I I, 11 I I I1 I

La

Ce

A

hfs, isotope shift

Cd

In Sn

39

I

7

f

f

isotope shift

f, isotope shift T

f , hfs

A , f, 7, isotope shift 7

A, f 7

(3B) (161B) (53B, 94B, 146B) ( 3 I B , 146B) (76B) (32B, 34B, 161B) (6B, 124B, 161B) (6B) ( l B , 163B) (5B)

ANALYTICAL CHEMISTRY, VOL. 50, NO. 5, APRIL 1978

103R

Table 11. (Continued) Element

T1

Ionization level I I

U

f, 7

A , f, T

isotope shift

23,236,238u

U

Ref. (102B, 127B) (49B. 50B. 60B.

Type

I1

f

Curnutte e t al. (64B). Finally, Gallagher (88B) prepared a bibliography of free-free transitions in atoms and molecules. The role played by beam-foil and tunable dye laser techniques in measuring lifetimes and atomic energy levels were reviewed by Bashkin (14B,15B,17B),Berry (27B),Cocke (54B),Curtis (65B),Esherick and Wynne (78aB),Head et al. (104B, 105B), Imhof and Read ( I I I B ) , Ishii and Fukuda (112B), Martinson (142B), Schlag (172B), and Sorensen (179B). Two books on beam-foil spectroscopy were edited by Bashkin (16B)and Sellin and Pegg (175B),while Fraga et al. (85B) published the “Handbook of Atomic Data” and Macomber (134B) discussed the dynamics of spectroscopic transitions. Ultimately, Hurst e t al. (IIOB) detected a single atom of a given kind in the presence of 10 or more exa-atoms of another kind using resonance ionization spectroscopy. This certainly deserved the prize in the contest over limits of detection.

INSTRUMENTATION The history and development of emission spectroscopy instrumentation was treated in detail by a number of authors during the recent celebration of the American Revolution Bicentennial. For example, Barnes ( 3 A )traced the progress during the past century of all emission instrumentation, including excitation sources, optics, spectrometers and spectrographs, recording techniques, and their applications; many of the instrumentation landmarks were documented by reprints of the original publications. In another example, noted American scientists who contributed to spectroscopy during the first 200 years of American history were described by Laitinen and Ewing (21A), Hodge (58C), Hyde (63C), Devons (35C),and Strong (119C). Harrison and Loewen (54C) documented the advances of ruled gratings and the evolution of wavelength tables. Reports of light sources, excitation sources, atomization systems, optics, data processing, and complete emission instruments during 1975 and 1976 were compiled by Fuller (13A, 14A). Morita (80C) reviewed equipment for emission spectroscopy, and Perman (92C) surveyed the present state of visual spectroscopy. In the books by Schrenk (34A),Torok et al. (37A),Zil’bershtein (47A),and Boboli et al. @ A ) ,optics, spectrometers, accessory equipment, and emission methods are presented. Radiation Standards. Radiation standards and methods for radiation calibration were reviewed by Fieffe-Prevost et al. (42C),Bespalov et al. (8C),and Marette (76C). Nicodemus (85C) edited a self-study manual on optical radiation measurements. Saunders and Shumaker (106C) discussed the NBS scale of spectral irradiance, and Bridges et al. (12C,13C) described spectral radiance sources and calibrations in the ultraviolet. Gilham (48C)reviewed radiation standards, and Preston (95C-97C) described a plasma standard of temperature and ultraviolet radiation. Fieffe-Prevost (41C) performed UV calibration using a hydrogen plasma, and Mount et al. (82C)described a platinum hollow cathode source for spectrometer absolute sensitivity calibration. Freeman and King (44C, 45C) evaluated Cu I1 spectral lines as wavelength standards. Synchrotron radiation as a radiation source and standard was described by Einfeld et al. (38C,39C), Key and Preston (68C),Lindau and Winick (73C), and Rowe and Weaver (104C). Mielenz (73C) appealed for more agreement in spectrometric nomenclature between optical physicists and others in the fields of spectrometry, and Baker and Romick (3C) discussed . . the selection of appropriate definition of the rayleigh. Optics. The fourth edition of Jenkins and White‘s

“Fundamentals of Optics” was published in 1976 (65C),and Liddell (72C)wrote “Design Techniques for Multilayer Filter Systems”. Ward (134C) described ultraviolet interference filters, and Res et al. (1OOC)characterized a series of new filter glasses for use in the visible region. Nussbaum and Phillips (88C) wrote “Contemporary Optics for Scientists and Engineers” which highlights elementary and advanced geometric optics, interferometry, a Fourier approach to physical optics, and the interaction of light and matter. Walters and co-workers have developed a remarkable optical arrangement for fundamental studies of spark discharges, which is based upon a rugged optical rail assembly. The overall approach was described by Walters (132C) and Coleman (24C)and details were presented by Coleman and Walters (25‘2, 26C). Goldstein and Walters (49C, 50C) reviewed considerations for high-fidelity imaging of laboratory sources, and Scheeline and Walters (107C,108C) examined the implementation of spatially-resolved spectrometry using the Abel inversion. Hosch and Walters (60C) explored the geometrical optical deliberations for high spatial resolution schlieren photography of spark discharges. Beenen et al. (6‘2) designed a digitally controlled shutter system for emission spectroscopy, and Walters et al. (133C)refined a simplified ball bearing holder for high-precision grating rotation. Watters and Walters (1332)designed an extraction nozzle and shutter device for stroboscopic extraction of atmospheric pressure species of a spark into a vacuum chamber. Furtak (46C) constructed a sinusoidal radiation chopper for the modulation of the maximum available light intensity, and Sastri (105C) employed an automatically driven Hartmann diaphragm for taking time-resolved spectra. Visser et al. (131C) developed a device for repetitively scanning a spectral line, and Rogoff (101C) presented an optical system for the automatic Abel inversion of emission from a cylindrical volume radiator. Gratings. Palmer et al. (9OC)reviewed the manufacturing techniques of diffraction gratings, Harrison et al. (55C) described the testing and improvement of echelle gratings, and Schmahl and Rudolph (138C)published a chapter on holographic diffraction gratings. Loewen et al. (75C) applied grating efficiency theory to blazed and holographic gratings, and Velzel (129C, 130C) presented a general theory of the aberrations of diffraction gratings and the imaging properties of holographic gratings. Namioka et al. (83C) discussed the possibilities of designing holographic concave gratings for specific applications, and Dahlbacka and Lindblom (31C) verified the off-plane stigmatic imaging of a spherical concave grating. The production of a S i c plane holographic grating was explored by Choyke et al. (22C), and Haensch (51C)ruled a second grating on the single master to obtain a wavelength self-calibration. Roumiguieres e t al. (103C) discussed the efficiencies of rectangular groove gratings, and the influence of groove depth and geometry on resonance anomalies was investigated by Loewen et al. (75C),Wheeler et al. (136C), and Rothballer (102C). Applications and properties of echelle grating spectrometers were surveyed by Keliher and Wohlers (67C),and Danielsson and Lindblom (32C,33C) described an image dissector echelle spectrometer system. Other echelle instruments were noted by Bardas (4C),Burton (18C),and Nubbemeyer and Wende (87C). A computer controlled programmable monochromator system with automated wavelength calibration and background correction was constructed by Spillman and Malmstadt ( I l S C ) , while Boumans et al. (11C) appraised the application of a computerized programmable monochromator for multielement analysis with an inductively coupled plasma (ICP) source. Blass (IOC) established for digitally sampling with a continuously scanning spectrometer a relationship

104R

ANALYTICAL CHEMISTRY, VOL. 50, NO. 5, APRIL 1978

between the system parameters and the sampling rate. Piuechard et al. (94C) patented a monochromator with a holographic concave grating. Spectrometers employed to record transient emission signal were described by Colles and Walrafen (27C),Turnbull and Illingworth (126C),and Sutter and Moeller (120C). Herkt and Muller (57C)discussed the adjustment of plane grating spectrometers, and Sidran (1IOC) outlined the wavelength calibration of a Littrow prism monochromator. A spectroscope for ferrous alloys was examined by Berthold (7C), and Ambrose and Hobson (2C) designed a remote, portable excitation source coupled to a spectrometer by a fiber-optic light guide for on-site steel analysis. Approaches to background correction systems were explored by Skogerboe e t al. (112C), Koirtyohann et al. (69C),and Sydor et al. (121C). The analytical applications of interferometry were reviewed by Nebe (84C),and Genzel and Sakai (47C) traced the development of interferometry during the past 25 years. Yuen and Horlick (140C) measured line emission spectra a t wavelengths as short as 300 nm with a Fourier transform spectrometer, and Pruiksma et al. (98C)described a technique for simultaneous multielement analysis based on a scanning Fabry-Perot interferometer. Torok et al. (125C) designed an optical arrangement comprising a double-beam imaging system and piezoelectrically controlled Fabry-Perot interferometer for general spectrochemical analysis and particular applications with a twin hollow cathode source. Kreye (71C) used a Fabry-Perot interferometer with a conventional double-slit monochromator to improve the spectral line-tonoise power ratio from line and continuum sources. Smith and Gray (113C) reviewed Fourier analysis of spectral line profiles, and Vanasse’s (127C) edited volume entitled “Spectrometric Techniques” features many reports on properties and applications of FTS. Winefordner et al. (137C) compared signal-to-noise ratios for sequential-linear and -slew scans, multichannel, and FTS and Hadamard transform spectroscopy approaches; the best approaches for simple and complex spectra were determined. Chester et al. (20C, 21C) compared FTS with single channel methods for the photon noise limited case and examined the throughput advantage and disadvantage in analytical spectrometry. Talmi et al. (122C, 123C), Crosmum (30C), and Ingle (64C) considered the characteristic noise spectra of some common analytical spectrometric sources. Detectors. Among the new books published on photoelectric detectors, Morton et al. (81C) edited two volumes on photo-electronic image devices, and Kondrashov (70C) explored the optics of photocathodes. Review articles include recent developments in photodetectors by Bhide and Rangarajan (9C),image intensifiers by Coleman and Boksenberg (23C), photomultipliers by Eckertova (36C), and negative affinity photocathodes by Spicer (116C, 11 7C). Jones (66C) discussed photomultiplier sensitivity variation with angle of incidence, Eppeldauer et al. (40C) considered the relative spectral sensitivity distribution of photoreceivers, and Sobieski (115C) described the ultraviolet response of semitransparent multialkaline photocathodes. The operation of a 1P28 photomultiplier with subnanosecond response time was explored by Beck (5C), Rayside et al. (99C) extended the dynamic range of a photomultiplier by a million-fold using a shutter arrangement, and Harris et al. (53C) constructed a squirrel-cage photomultiplier base for measurement of nanosecond signals. Hamm and Zeeman (52C) designed an inexpensive digitizer for PMT currents, and Hoyt and Ingle (62C) developed a simple cooled PMT housing. The limitations and optimal conditions for high precision pulse counting were examined by Hayes and Schoeller (56C). Shectman and Hiltner (109C)used a self-scanning linear diode array with an electrostatic image tube in the design of a photon-counting multichannel spectrometer, and Timothy and Bybee (124C)obtained a two-dimensional photon-counting detector array based on microchannel array plates. Perreault et al. (93C) described a single-channel printing scaler for photon counting, and Siefart (1I1C)discussed a fast, photon counting, digital lock-in. The availability of commercial vidicon spectrometers has increased the number of investigations and applications of image detectors. Howell and Morrison (6IC) evaluated the sensitivity characteristics of the UV-sensitized Si vidicon and

Si intensified vidicon (SIT) tubes. Chester et al. (21C) predicted that little or no use was expected for present SIT and many other image devices for multielement analysis, and Cooney et al. (29C)concluded that in atomic spectroscopy the system of choice will depend upon the number of emission lines to be examined and whether or not the lines are known prior to analysis. Broekaert (14C-17C) used a vidicon as a multichannel detector in the emission determination with ac arc and hollow cathode excitation sources, and van der Piepen et al. (128C) applied a vidicon spectrometer in the dc arc analysis of gold. Other applications of vidicon spectrometers were recorded by Meyling and Hesselink (78C),Pasachoff et al. (91C),Cook et al. (28C),Nieman and Enke (86C),de Haseth et al. (34C), Ostertag (89C),Lizunkov et al. (74C),and Mel’nik et al. (77C). Horlick (59C)examined the characteristics of photodiode arrays for spectrochemical measurements, and Snow (114C) described the configurations and properties of self-scanning photodiode arrays. Franklin et al. (43C) and Edmonds and Horlick (37C) used these photodiode arrays to record spatial emission profiles in flames and ICP discharges. Yates and Kuwana (139C) employed a diode array in a rapid scanning spectrometer. A bibliography on charge-coupled devices was prepared by Agajanian ( I C ) . S T A N D A R D S , S A M P L E S , CALIBRATION, CALCULATIONS Rules approved by the IUPAC Commission on Spectrochemical and Other Optical Procedures define the nomenclature and symbols related to data interpretation common to all fields of spectrochemical analysis ( 4 0 0 , 4 1 0 ) . These approved definitions include general concepts such as sensitivity and precision as well as analytical functions, and terms related to small concentrations. Two noteworthy books related to accuracy in analysis were published in 1976. La Fleur ( 5 4 0 ) edited the proceedings of an NBS symposium “Accuracy in Trace Analysis: Sampling, Sample Handling, Analysis” which contains in two volumes nearly 100 papers covering most aspects of accuracy, sampling, sample preparation and handling, and practical analyses. In “Contamination Control in Trace Element Analysis”, Zief and Mitchell ( 9 7 0 ) described the basic concepts of ultratrace analysis, container materials, reagent purification, contamination control, and selected methods for ultratrace elements including emission spectroscopy. Analytical Functions, Figures of Merit. Kaiser ( 4 3 0 ) outlined a calibration data acquisition strategy based on information theory with examples of spectroscopic analysis. Eckschlager (210-260) described information theory as applied to instrumental and quantitative analysis results. Parczewski and Rokosz ( 6 3 0 ) reviewed some basic concepts of information theory, and Danzer ( 1 4 0 ) used information theory to determine the efficiency and profitability of analytical procedures. Gottschalk ( 3 2 0 , 330) discussed mathematical methods in the standardization and selectivity of quantitative analysis procedures, and Routh et al. ( 7 7 0 ) introduced an improved simplex optimization procedure. Schwartz ( 8 0 0 ) considered the problem of finding the confidence limits for nonlinear calibrations, and Ingle and Wilson ( 3 9 0 ) examined the determination of detection limits with nonlinear curves. Hirschfeld ( 3 6 0 )evaluated classes of individual analysis parameters in establishing the limits of analysis. Krasil’shchik and Shteinberg ( 5 2 0 ) suggested a method for optimizing conditions for spectrographic analysis. Koch ( 4 9 0 ) proposed a nomenclature for units for trace content, and Toda et al. ( 9 0 0 ) considered definitions and expression of terms used in ultramicroanalysis. Standards. Michaelis (620)and Uriano and Gravatt (930) described the role of reference materials in analytical chemistry, and Anders ( I D ) outlined the proper use of reference materials and representative sampling. Cali ( 1 1 0 ) surveyed the NBS Standard Reference Material program, and Seward and Yolken ( 8 2 0 ) reviewed certification of SRM’s. Catalogues of standard reference materials are available (13A, 14A, 4 1 0 , 6 9 0 ) . Redfield et al. (760)described the preparation of high alloy aluminum spectroscopic reference materials by compacting alloy powder, and Pliner and Ustinova ( 7 4 0 ) reviewed methods for preparing standard samples for spectrochemical analysis. Certification procedures for spectrochemical analysis

ANALYTICAL CHEMISTRY, VOL. 50, NO. 5, APRIL 1978

standards were discussed by Raiskii and Nalimov (750). Naganuma and Kat0 ( 6 6 0 ) investigated the effects of pores in sample electrodes prepared by powder metallurgy on the intensity of spectral lines in a high-voltage spark. Berstermann ( 5 0 ) patented a pressed and sintered electrode for the spectrographic analysis of steel and alloys. Denshchikova et al. (150) prepared standard silver samples, and Stepin et al. (840, 940) examined new ferrous alloy standards. Sampling, Sample Preparation. Detailed methods and techniques related to sampling and sample preparation were given by Zief and Mitchell (970) and in the numerous reports t o be found in La Fleur’s volumes (540). Ingamells (380) derived the sampling constant equation for a two-mineral mixture of uniform grain size, and Krasil’shchik and Voropaev (530) described dispersing devices for known amounts of powder samples. Klockenkaemper (480) investigated the sampling error of inhomogeneous final assay samples. Sulcek (850) critically reviewed decomposition procedures in inorganic analysis, and various decomposition vessels were described by Bernas ( 4 0 ) ,Eggimann and Betzer ( 6 0 , 200), Kaszermann (450),Krasil’shchik (500),Nishimura (69D), and Uchida et al. (920). Martinie and Schilt (580) investigated the efficiencies of wet oxidation with perchloric acid mixtures for various organic substances, and Dabeka et al. (120) compared polypropylene, Teflon, and other materials for sub-boiling distillation and storage of high-purity acids and water. Moody and Lindstrom (650) and Weiss et al. (960) examined storage in plastic containers. Krasil’shchik and Shteinberg ( 5 1 0 ) constructed a device for purifying acids immediately before dissolution of high purity samples for dc arc analysis. Nepokoichitskii and Tukmachev ( 6 8 0 ) discussed preparation of samples for emission spectroscopy, and Svehla et al. (870) compared two methods of homogenization of powdered metallurgical samples for spectral analysis. Gorbunova et al. (310)measured losses during concentration combustion of pure graphite to find that except for Br improved sensitivity was achieved. Kapoor et al. (440) suspended powder samples in oil and analyzed the suspension using a rotating disk electrode. Taran (890) mixed spectroscopic powder samples in alcohol, then evaporated and dried the mixture before analysis. Asai (30) described a sample preparation procedure for steels which eliminated the sample surface structural changes resulting from cutting wheel heating. Schmitz et al. (790) developed a wet-grinding process for ferroalloys and oxide materials prior to spectral analysis. Fusion methods for titanium alloy samples were evaluated by Gusarskii et al. (340), and high-frequency induction melting techniques for various alloys were investigated by Kemp and Juste (470), Dimitrov et al. (160), Okochi et al. (700-720), Kayama (460), and Paton et al. (730). Photographic Emulsions. Engleman and Radziemski (270) evaluated the applications and relative spectral sensitivity of Polaroid type 57 positive film compared to conventional spectrographic emulsions. Burgudiev et al. (9D) found that the spectral properties of holographic and ordinary spectrographic plates were practically identical, although the lower fogging and higher contrast sensitivity of holographic plates gave better results in the visible region. Burgudzhiev et al. ( 8 0 ) used the contrast sensitivity but not the information sensitivity of the photographic plate to predict changes in detection limits in spectrographic analysis. Heltai and Torok (350) compared five developing techniques to discover that a low standard deviation of blackening and good contrast were achieved by turbulent flow and intermittent agitation in the developer. Laing and Oak (550) observed significant differences of uniformity of development among the eight different film developing methods investigated, and with the exception of the tray and hand brushing method, all machine processors provided better uniformity than any hand method. Dittrich et al. (170-190) described the method of equidensitometry and applied it to the characterization of the dc arc plasma structures for a variety of elements and in the presence of a magnetic field. Johnson (420) outlined a method for wavelength determinations of Ebert plates, and Dale and Whittem (130) developed a simple analog computing on-line microdensitometer. Hoeschen and Mirande (370) built a microdensitometer with a He-Ne laser as radiation source.

105 R

Fischer (290) applied spline functions for the smoothing of preliminary density curves obtained by the Churchill procedure. Blevins and O’Neill(70) applied a programmable desk calculator for emulsion and intensity ratio calculations. Sastry et al. (780) developed a computer program for emulsion calibration, background correction, and analysis calculations. Mai (560) described a semi-automatic computerized system and programs for interpreting photographic spectra. A computer method for the transformation of photographic spectra into an intensity scale was derived by Schwiecker (810), then applied to the calculation of radial distributions of spectral lines shapes and continuum intensities by the use of Abel’s inversion. Tait and Coats ( 8 8 0 ) applied a computer-connected microphotometer in developing a rapid method for the analysis of geological samples using a semiautomated plate evaluation method. Matherny (590410) evaluated the possibility of applying scatter diagrams and statistical tests of their parameters for determination of the optimum position of background measurement to obtain error-free background corrections. Computer Applications. Computer applications in spectrochemical analysis were reviewed by Margoshes (570). Walthall et al. (950) evaluated spectrographic data for 15 USGS rocks after semiquantitative analysis using a program to select the best data. Ape1 (20) developed an interactive basic program for spectrochemical calculations, and Gold et al. (300) and Statham ( 8 3 0 ) described deconvolution and background correction approaches. Suzuki et al. (860)explained the applications of computers in the treatment of emission data, and Minogashira et al. (640) reviewed the minicomputer control and processing of spectroanalysis. Butterworth and Hunt (100) determined correction factors by regression analysis for the determination of sulfur with a process control spectrometer, and Trilesnik and Romanova (910) increased accuracy using regression analysis on output data. EXCITATION SOURCES In addition to the numerous and widespread applications in routine analysis of classical arc and spark excitation sources (13A, 14A), both fundamental and developmental studies of emission excitation sources appear to have intensified recently as many analysts re-discovered the practical advantages of the simultaneous multielement capabilities of emission spectroscopy. Although the newest popular excitation source, the inductively coupled plasma (ICP), is receiving particular attention in fundamental and practical investigations, other discharge sources, including microwave plasmas, spark discharges, hollow cathode and glow discharges, and arcs, are being refined and applied. Laqua (22A) surveyed many of these developments, and Boumans (483) critically examined popular excitation sources and their relationships to the requirements for multielement analysis of solutions. The impact of research on the generation of lasing plasmas by means of electrical excitation sources seems not to have affected development of spectrochemical sources, and the emission spectroscopic application of lasers remains concentrated on microsample analysis. Plasma diagnostic techniques using laser probes, on the other hand, are finding more applications in exploring excitation sources. Walters (3483)interpreted the processes occurring in spark discharges, whereas Keirs and Vickers (161E) critically examined dc plasma arcs for elemental analysis. Slevin and Harrison (308E) scrutinized the hollow cathode discharge as a spectrochemical source, and Torok (3293) reviewed the theory and application of negative glow discharge excitation sources in spectrochemical analysis. The applications of lasers in analytical chemistry were examined critically by Sharp (300E) and Steinfeld (3153). Greenfield (123E) and Greenfield et al. (125E) reviewed the use of plasma emission sources in emission spectroscopy, and Sharp (301E) discussed different high-frequency electrodeless plasma types. Capacitively coupled and microwave induced plasma sources were analyzed and their applications described by Skogerboe and Coleman (3043). Larson and Fassel(192E) compared the analytical characteristics of a microwave-excited plasma and an inductively coupled discharge, and Kitagawa and Takeuchi (1673) reviewed various types of interferences and examples of analytical techniques using a plasma torch source.

106R

ANALYTICAL CHEMISTRY, VOL. 50, NO. 5, APRIL 1978

Rudnevskii and Rezchikov (280E) described combined sources of spectral excitation. Szabo (320E,321E) reviewed the role of chemical side reactions on the surface of electrodes during analysis of metals and the character of the gas atmosphere in emission spectroscopy. Guilpin and GarbarzOlivier (129E) studied the light emitted during electrolysis in solutions. High-Frequency Discharges. H F discharges employed for emission spectroscopy are typically operated at frequencies near 30 MHz and their applications must be distinguished from the numerous discharge types applied in plasma chemistry and engineering. Current literature related to ICP emission spectroscopy along with conference reports and original articles are published monthly in the “ICP Information Newsletter” ( 4 A ) . Descriptions of ICP analytical instrumentation and discharge properties and plasma capabilities were presented by Boumans (48E,49E, 52E), Fassel (98E,99E), Greenfield (122E, 125E), and Winefordner et al. (42A). These evaluations overwhelmingly support the use of the ICP as a powerful emission spectroscopic tool. The survey by Greenfield et al. (125E) is comprehensive and critical. Fassel (97E) compared the ICP as an alternative to electrothermal atomization atomic absorption spectrophotometry for the determination of trace elements in liquid samples of limited volume, and concluded that the ICP offers multielement simultaneous analysis and an unusual degree of freedom from interelement effects if solution nebulization techniques are employed. Olson et al. (245E)developed an ultrasonic nebulizer for the ICP which, when combined with aerosol desolvation, provided an order of magnitude or more improvement in multielement detection limits compared to those obtained with a pneumatic nebulizer. Mermet (214E) was able to establish a relationship between the detection limits obtained with the ICP and the spectral properties of the analyte elements. The analytical performance of the ICP and the dependence of compromise simultaneous multielement analysis conditions upon operating parameters was explored by Dube and Boulos (893)and Ajhar et al. (IOE)for emission, by Abdallah et al. (1E)and Mermet and Trassy (215E)for both emission and absorption, and by Montaser and Fassel (2223) for atomic fluorescence spectrometry. Boumans (50E) considered corrections for spectral interferences in analyses with the ICP source. Human et al. (139E) compared experimental to theoretical profiles of spectral lines emitted by the ICP, and they suggested a model of the distribution of species in the discharge. Franklin et al. (43C) and Edmonds and Horlick (37C) applied a linear diode array to profile the emission from the ICP under various experimental operating conditions. Boumans et al. (11C) outlined the role played by a computer-controlled programmable monochromator for ICP-AES. Allemand and Barnes (12E)and Genna et al. (111E) developed new ICP torch configurations which reduced Ar consumption. Larson et al. (1933) discovered that stray light produced substantial shifts in background with some spectrometers when the total composition of the sample introduced into an ICP changed, and they and Winge et al. ( 1 6 1 0 applied various methods, now adopted by instrument manufacturers, for the reduction, elimination, or correction of these effects. Background changes due to actual plasma effects were subsequently observed. Various interference effects in ICP atomic emission spectroscopy (AES) have been documented. In a comparison of ICP-AES with a microwave single electrode plasma, Larson and Fassel (192E) observed only negligible or small effects resulting from addition of easily ionizable elements in ICP-AES but severe changes in line emission from the microwave discharge. Boumans and de Boer (51E, 52E) scrutinized interference effects in a 50-MHz ICP operating with both ultrasonic and pneumatic nebulizers under compromise conditions for multielement analysis, and they distinguished nebulizer-desolvation effects from plasma effects, the latter of which were usually smaller than &lo% with a 1 mg/mL matrix concentration. Abdallah et al. ( I E ) found chemical interferences negligible in ICP-AES, but some interferences due to atomization were observed. Kornblum and de Galan (178E)reviewed all reports of interference studies in ICP-AES, and observed effects due to the combination of volatilization

interferences, excitation temperature enhancement, and shift in ionization equilibrium under extreme operating conditions. The spatially resolved radial excitation temperatures and radial electron density distributions experienced by analyte species in selected zones of the ICP were studied by Kalnicky et al. (1523, 153E),who observed little change with addition of sodium a t two different aerosol gas flow rates. Kornblum and de Galan (179E) obtained the spatial distribution of temperature and number densities of electrons and analyte species a t abnormal conditions for routine analysis. Robin and Trassy (276E)observed stimulated emission of aluminum and titanium in an ICP, and Mermet et al. (113B, 2E, 213E, 216E) investigated the excitation behavior of conventional Ar ICP discharges as well as those containing nitrogen and hydrogen sulfide. They concluded that the discharge departed from local thermal equilibrium and the ion lines from analyte species were more sensitive than atom lines, and proposed an excitation mechanism based upon energy transfer from metastable Ar atoms and ions through Penning ionization. Based on these results, Boumans and de Boer (52E)proposed a hypothetical model of the action of Ar metastables in the ICP discharge. Visser et al. (3383) also reported temperature determinations in an ICP discharge. Barnes and Nikdel (27E, 28E) modified a computer model of the ICP to allow calculations with nitrogen, and Allemand and Barnes (12E) applied a similar model in the design of a new ICP torch. Boulos (46E, 47E) developed a new mathematical model for the calculation of two-dimensional flow and temperature in an ICP and applied it to the heating of powders. Yoshida and Akashi (3653) also applied a numerical model to particle heating in an induction plasma. Eckert (93E) modeled a closed induction heated plasma which has been shown to hold Dromise for sDectrochemica1 analvsis of small samples ( 9 2 ~ ) : Greenfield et al. (124E)identified a physical interference in the Dneumatic nebulization of high acid concentrations and organic acids into the ICP whichhas attributed to the aspiration and nebulization system rather than to the discharge source. In practical analysis, the acid content of samples and standards are matched, or, as illustrated by Dahlquist and Knoll (BIE),an internal reference element is used. Ohls et al. (243E) compared the performance of two pneumatic nebulizers for ICP-AES. Applications of ICP-AES range widely. Greenfield et al. (125E) reviewed many of the past applications, and Fassel (98E)discussed the current and potential applications in the exploration, mining, and processing of materials. Ohls et al. (244E)reported the applications in a steel mill. Irons et al. (143E) evaluated the capabilities of ICP-AES and other techniques for biological materials, and Dahlquist and Knoll (81E) demonstrated the effectiveness of ICP-AES in the analysis of biological materials and soils. Nixon (240E)and Ward and Sobel (354E) also performed ICP trace element analysis of biomedical and environmental samples. Fassel et al. (IOOE, IOIE) determined wear metals in lubricating and edible oils as well as in liquid fuels derived from coal. Burman et al. (64E) described geochemical analyses by ICP spectroscopy, and Jones (149E)outlined the analysis of soil extracts and plant tissue ash by ICP-AES. Alder et al. (11E) determined traces of ammonium nitrogen in solutions of soil samples. Winge et al. (161F) determined multiple trace elements simultaneously in soft, hard, and saline waters. Scott et al. (2923,293E)determined uranium in rocks, and analyzed ferro-manganese alloys. Human et al. (1403)tested the use of a spark as a sampling-nebulizing device for solid alloys with ICP-AES. Gunn et al. (130E)determined P in milk powders, and Britske e t al. (58E) examined the analysis of alloys. Watson et al. (3553, 356E) analyzed metal concentrates, ores, metals, sands, matte-leach residues, and plant solutions. Newland and Mostyn (234E, 2353) analyzed Ni-base alloys, and determined rare earth elements in steel. Charalambous and Bruckner (73E) analyzed brewing materials. The number of ICP-AES applications is expected to increase significantly during the next few years as many of the recently purchased instruments begin their analytical service. A variety of other high frequency discharges have been studied. Walters et al. (353E)characterized the temperatures and ion concentrations in a 144-MHz induction plasma a t

ANALYTICAL CHEMISTRY, VOL. 50, NO. 5, APRIL 1978

pressures between 0.5 and 14 Torr. Unipolar high frequency discharges were characterized by Fischer (104E,105E),Moisan et al. (219E, 220E, 370E) developed new radiofrequency sources, the suratron and surfaguide, which use the propagation of a surface wave to obtain long plasma columns and produce metastable Ar densities greater than in the positive column of a glow discharge. Capacitively coupled R F discharges were applied by Zayakina et al. (372E)and Stephens (318E) as spectral sources for emission analysis of solutions and in Zeeman effect atomic absorption spectrophotometry. Koizumi and Yasuda (174E) also employed a 100-MHz source in Zeeman effect AAS. Kabanova and Sautina (151E)applied a 40-MHz induction configuration plasma for the analysis of Zr and Y from binary alloys. Nakashima and Sasaki (230E) analyzed high-purity molybdenum using a hf plasma discharge, and Malmary-Nebot and Ricard (199E),Runser and Frank (281E), and Murayama (226E) measured gas concentrations with hf-discharge sources. Microwave Discharges. Skogerboe and Coleman (304E) reviewed microwave plasma emission spectroscopy, and they evaluated a microwave-induced Ar plasma using a modified Evanson cavity, pneumatic nebulizer, spray chamber, and desolvation as a multielement excitation source (305E). Brassem et al. (54E, 55E) studied the influence of flow rate and pressure on excitation conditions in a low-pressure microwave induced plasma. Beenakker (34E, 35E) and Beenakker and Boumans ( 3 5 4 described a “pill box” shaped microwave cavity which operated at atmospheric pressure with either argon or helium, and he evaluated the plasma as a selective detector for gas chromatography (GC). In subsequent studies, this microwave discharge has operated successfully with dried aerosols from pneumatic nebulizers. Vidal and Dupret (3373)also evaluated new microwave cavity geometries for Ar and H discharges a t reduced pressures. Microwave discharges are particularly suited to excite effluents from gas chromatographs, and in addition to Beenakker’s (34E, 35E) investigations, Houpt (137E) examined the physical phenomena and optimum detection of stable isotopes in GC effluents containing organic compounds using a He microwave discharge. van Dalen et al. (335E) optimized a quarter-wave coaxial cavity as a detector for 10 nonmetallic elements. Kawaguchi et al. (159E, 160E) determined traces of Cu, Al, and Be by gas chromatography with a microwave plasma detector, and Talmi and Norvell (323E) developed a method for methylmercury chloride by GCmicrowave plasma spectroscopy. Black and Sievers (41E) determined Cr in human blood using the microwave discharge detector with gas chromatography. Houpt (137E)improved selectivity by wavelength modulation, and Rose et al. (277E) utilized an oscillating mirror rapid scanning spectrometer with an Ar microwave detector and a carbon cup sampler. Other electrical discharges are applied as detectors for chromatography. Adlar ( 6 E ) reviewed emission detectors for gas chromatography, and Feldman and Batistoni (102E)used a He-glow discharge. Rezchikov et al. (2743,275E)employed a high-voltage spark and Hedayati (132%) designed an rf electrodeless discharge detector for GC. Uden and Bigley (3333) reported a dc plasma arc detector for liquid chromatography. Govindaraju et al. (119E)developed a routine, automated bulk analysis of silicate rocks employing a microwave-excited discharge, direct reading spectrometer with samples fused, dissolved, and buffered with Sr for elimination of matrix effects. Analysis of solution samples using microwave discharges were also reported by Atsuya and Akatsuka (19E) for Mn in ferroalloys, by Kawaguchi et al. (160E)for trace elements, and by Wooten (362E) for various industrial, clinical, and environmental samples. Nakashima (2293) introduced evolved metal hydrides into a commercial UHF-plasma torch, and Nakashima and Sasaki (23IE)vaporized solid samples in an induction furnace into the UHF discharge. Sakamoto et al. (2843) introduced the sample from a tungsten filament into a microwave-induced plasma. Mitchell et al. (217E) measured organic carbon in the presence of inorganic carbon by volatilization from a furnace into a microwave discharge a t a rate of 20 samples per hour. Fricke (107E)combined a microwave induced plasma with a tantalum strip vaporizer for trace element analysis, and Zander et al. (371E) modified the capillary of a microwave induced plasma to minimize ex-

107R

tinguishing during analysis with a heated filament microarc. Kawaguchi et al. (159E, 160E) investigated the interelement effects and a possible excitation mechanism for metals vaporized from a filament into a low-pressure, microwave discharge. Serravallo and Risby (297E) determined C1 in organic compounds in air upon the direct injection of air samples into a reduced-pressure He discharge. Lampe et al. (191E) demonstrated that the number density of excited atoms in a low-pressure He discharge was consistent with electron impact excitation. Korovin et al. (180E)employed a microwave discharge as an atomizer for AAS. The preparation and characteristics of microwave-excited electrodeless discharge lamps were explored by Bentley and Parsons (39E),Childs and Schrenk (74E),and Castleden and Kirkbright (71E). In the development of photoelectron spectral sources, Garber and Taylor (IIOE) recorded the time-resolved spectra of a pulsed He microwave discharge, and Vorburger et al. (339E)optimized a microwave source for high photon flux at selected UV energies. Arc Discharges. Brenner et al. (56E)tested the long-term interlaboratory and interinstrumental (AAS and XRF) accuracy and precision of a dc carbon arc spectrographic method for determining the common trace and minor elements in silicate rocks and minerals; sources of systematic error were discussed. Maessen et al. (197E) applied a systematic and rigorous statistical approach in evaluating the accuracy and comparing six alternative dc arc spectrographic procedures for trace analysis of geological materials; fusion of both standards and samples before arcing markedly improved the accuracy of only moderately volatile elements. Gordon ( I 1 7.73) demonstrated minimal effects owing to the chemical form for a variety of very refractory metals, oxides, and carbides employing a stabilized and programmed, AgC1-buffered Ar dc arc spectrometric procedure; he related observed emission depressions for four of the most refractory materials to incomplete volatilization in terms of the vapor pressure of the solid materials placed on the anode and dissociation reactions in the discharge. Todorovic et al. (328B) measured the axial transport velocities of elements injected into a dc arc by a liquid jet, and Holclajtner et al. (136E)determined the axial radiation density distributions for elements of different ionization potentials evaporated from the anode. Dittrich et al. (170-190) employed equidensitometry to evaluate the structure of dc arc plasmas containing La, Ga, Ge, As, and other elements in the presence and absence of a magnetic field. Vukanovic et al. (340E,340aE) developed a new light source for spectrochemical analysis comprising a double plasma dc arc burning in a horizontal graphite tube in a magnetic field; prolonged residence time of analyte particles in the discharge contributed to the detection of very low concentrations of trace elements. Vukanovic et al. (341E)demonstrated an increase in line-to-background ratio upon addition of Ga to a sample in an earlier version of the horizontal dc arc burning in a graphite tube; application of a magnetic field rotated the single arc column leading to a homogeneous heating of the tube. Nickel et al. (238E,288E) studied the effects of homogeneous magnetic fields and additives on emission spectrographic results in a 10-A dc arc by determining the axial and radial distributions of analyte emission. Pavlovic and Mihailidi (25223)observed that only in the case of cathodic excitation were notable changes in spectral lines recorded in the presence of an external rotating magnetic field for a 9-A dc arc in air. Golightly et al. (116E)characterized a number of lines for precise spectrographic temperature and pressure measurements in dc arc analysis of geological materials in an argon-oxygen stream. Cain and Barnett (69E) recorded the volatilization behavior of 22 elements in a 12-A dc arc in the presence of graphite and with variable sample concentrations. Zadgorska et al. (368E) measured by neutron activation analysis the time variation of elements left on the surface of an arc electrode in the presence and absence of three salts. Krasnobaeva et al. (184E,185E) measured the effect of flowing argon on the dc arc emissions from dry residues of solutions; plasma temperature, electron density, and line intensities increased with Ar flow. Apolitskii (15E) measured the temperature, electron density, and axial velocity changes with sodium addition.

108 R

ANALYTICAL CHEMISTRY, VOL. 50, NO. 5, APRIL 1978

Shmidt and Goryachev (303E) confirmed the use of a thermodynamic approach in the study of arc electrode processes, and Yaroslavskaya (3633)considered the effect of physical properties of electrode material on the atom concentration. Karpel and Fedorchuk (156E) examined the mechanism of trace element entry from powder graphite in a dc arc using radioactive and stable isotopes, and Ognev et al. (242E) explored the effect of mass transport processes in carbon electrodes on the kinetics of impurity element vaporization. Spliverstova et al. (294E) studied the dynamics in the near electrode region for an arc discharge between electrodes of different chemical composition. Mente1 (212E) photographed a t high speed the electrode spots in various atmospheres to find the appearance of the arc roots resulted from the superposition of several phenomena. Raikhbaum et al. (265E) determined the thermodynamic properties of melts using arc spectroscopy. The volatility of some elements in a dc arc from Mo and W oxides was investigated by Khlystova et al. (163E). Matherny et al. (106E,208E-21OE) considered the significance of spectrochemical matrix effects on calibration curves in the arc analysis of geological materials and solutions. Delijska et al. (84E)evaluated organic compounds compared to graphite as thermochemical agents in arc emission spectroscopy; tetraethylammonium iodide was employed in the determination of impurities in Mo materials. Rajic et al. (270E) measured the effect of NaCl and NaF carriers on electrode reactions and volatilization using a controlled evaporator and x-ray diffraction. No evidence was found for the formation of fluorides or chlorides although the carriers enhanced vaporization of elements. Dale (82E) applied thermogravimetric analysis of mixtures of boron and silicon oxides in the presence of two copper fluoride salts to show that volatilization of the oxides coincided with evolution of H F from the Cu compounds and that the increase in sensitivity in the determination of B and Si was due to the formation of volatile fluorides. Karyakin et al. (157E) studied thermogravimetrically the chemical reactions in the electrode crater of silicate with halogenation reagents including inorganic fluorides, fluoropolymers, and organic halides. Grampurohit and Dixit (120E) determined trace impurities in calcium fluoride using CuOF carrier, and Brown and Hillier (59E) determined trace impurities in high-purity zirconium using a carrier distillation technique in which the temperature was limited to 1300 OC by operating in an Ar atmosphere. Peric e t al. (2543, 2643) observed changes in spectral intensities in the presence of ammonium fluoride owing to a possible chemical reaction in the discharge and possible changes in spatial plasma temperature distribution. Martell and Myers (207E) evaluated spectrographic standards for the carrier distillation analysis of plutonium dioxide. Krasil’shchik and Shteinberg (51D) used a carrier technique for the analysis of antimony oxide after chemical matrix separation. Ovechkin and Sandrigailo (248E,2493) measured contours and widths of Ca lines and established the radial distribution of temperature profile in a dc arc. Chan et al. (72E) applied a Thomson scattering technique to obtain the axial distribution of electron temperature and number density in a free-burning Ar arc a t 15 A. Sergienko and Fokov (296E) calculated the radial temperature distribution in a cylindrical Ar arc with a 6-mm diameter discharge channel and currents of 30 to 110 A. A theoretical equation was derived by Barakat et al. (25E)for the calibration curve in emission spectroscopy assuming local thermal equilibrium (LTE) in an arc plasma a t atmospheric pressure in air. Processes in ac arcs were studied; Raikhbaum et al. (2653-267E) considered atom migration and mass transport in the ac arc in the spectrographic analysis of geological materials as well as methods for improving accuracy and precision of the analysis of powder samples blown into the arc discharge. Snopov and Zholobova (313E) studied the vaporization of powder samples in the ac arc, and Kapitonov and Alekseev (155E) measured the axial distributions of effective temperature and electron density. Baranova and Tskhai (26E) determined Zn concentration in a 5-A ac arc using absorption techniques. Nichiporovich and Yankovskii (236E,2373) measured relative rates of migration of elements from the bulk of an electrode through its molten tip. The interrelation of various physical characteristics of an ac metallic arc was examined by Pollyul and Pavlukhina (253E)

for different electrode materials. Kukarina et al. (188E) investigated the matrix effect on La spectral intensities in an ac arc. Vecsernyes (336E) reviewed dc arc and dc plasma j e t solutions to some problems in the analysis of high-purity materials used in the electronics industry. Kantor et al. (154E) described an arc-nebulizer for flame spectroscopy, and Benko and Toth (38E) described an apparatus for the continuous introduction of a powder sample into an arc between graphite electrodes. Brost (3263) and Kubota (187E) studied a commercial capillary arc discharge source. Brost (3263)employed the arc solids nebulizer for sampling steel; 0.5 mg of steel was evaporated in 20 seconds and transported in an argon stream to the capillary arc discharge for analysis. Kubota (187E), in contrast, characterized only the capillary arc source when attached to a solution nebulizer-desolvation arrangement; the effects of arc current and argon flow were studied, and detection limits reported for 10 elements. Walters (3493)patented a gas flow stabilized dc arc device in which a uniquely designed cathode chamber produced a stream of metastable argon which flowed across the arc gap to the anode containing the sample. Although no analytical results or performance data are given, Walters’ claims indicate that the device should provide a stable dc arc source. Braman et al. (53E) applied Braman’s dc discharge cell in He to detect As and determine nanogram amounts of inorganic arsenic and methylarsenic compounds. DC Arc Plasma Jets. Keirs and Vickers (161E)critically surveyed the devices and many properties of dc plasma arcs. The commercial availability of the dc plasma developed by Elliott combined with an echelle spectrometer system has led to a variety of reports of its analytical performance and spectrochemical properties. Skogerboe et al. (306E)measured plasma temperature distributions for the dc plasma arc. Bankston and Fisher (24E)applied the arrangement for the determination of Ba in microamounts of diatom ash, and Cox (79E) determined 34 elements in seawater. Gilbert (112E) determined Hg using cold-vapor sampling with the dc plasma arc. Miyazaki et al. (218E) determined submicrogram amounts of As and Sb in waste and seawater by sweeping generated hydrides into the dc plasma arc. In the first reported application as an element-specific detector for liquid chromatography, Uden and Bigley (333E)distinguished metal diethyldithiocarbamates using the dc plasma arc. Yudelevich and Cherevko (267E)studied the influence of matrix and powder grain size on line intensities in a wallstabilized dc plasma arc. Uchida and Negishi (3323) compared a dc arc plasma jet with Ar plasma gas and a desolvation system combined with an ultrasonic nebulizer to a nitrogen plasma arc to find lower background and greater stability with Ar. Zheenbaev and Engel’sht (95E, 96E) developed a high-current double-jet dc plasma jet for spectrochemical analysis. Ageev and Yankovskii ( 9 E ) studied the effect of electrode torches on the spatial orientation of a plasma jet. Flow determinations in plasma jets were recorded by means of Fabry-Perot interferometry by Aeschliman and Evans (7E) and with Doppler laser anemometry (118E)by Gouesbet and Trinite. Hollow Cathode Discharges. Caroli et al. (70E)observed that hollow cathode excitation provided better reproducibility than glow discharge and spark sources. Walsh (346E) described a general purpose low-pressure sputtering source for AAS, AFS, and emission spectroscopy, and Bruhn and Harrison (60E)studied cathode sputtering in a glow discharge as an atomizer for AAS. Rambow (271E) developed an inexpensive, simple, and versatile hollow cathode discharge lamp which produced intense ion resonance radiation, and Mount et al. (82C) described a new compact Pt HCD lamp for wavelength ranges between 115.0 and 320.0 nm. Teodorovich and Semenova (3253) investigated the spectra of gold in a HCD. Johnson et al. (148E) designed a system for complete computer control of the important current waveform variables in the operation of pulsed HCD lamp, variables which can be utilized with simplex optimization. Bevan and Kirkbright (40E)studied the influence of operating parameters on the profile of the Ca 422.7 nm resonance line emitted by a demountable HCD lamp, and Torok et al. (125C) investigated a twin HCD lamp with a interferometer-spectrometer system.

ANALYTICAL CHEMISTRY, VOL. 50,

Broekaert (14C-1 7C) used a vidicon spectrometer in the emission spectroscopy applications of hollow cathode excitation to rare earth and other elements. Sabatovskaya et al. (2823,2833)measured picogram-level limits of detection by using a HCD source in He. Rudnevskii et al. (2583,279E, 2983) studied the excitation conditions in HCD’s for analysis of graphite powder, and semiconductor silicon. Zhechev and co-workers (91E,25OE, 251E, 3733-3773) characterized the shapes of emission lines, radial inhomogeneities in excitation, and population levels in HCD’s. Zhiglinskii et al. ( % ] E ,3823) made spectroscopic and physical probe measurements of the HCD to determine the distribution of metal atom concentrations. Brunet (61E)performed diagnostic measurements in an Ar-flowing HCD, and Kirichenko et al. (1663)considered the effect of geometry, cathode material, and filler gas on optimum pressure of a HCD. A theoretical treatment of HCD processes was developed by Ferreira (1033). Apostol et al. (16E, 173) calculated the concentration and temperature of low-energy electrons in a hollow cathode, and Kojadinovic and Ricard (1753) determined the Ar and Ne metastable concentration inside a HCD. Various plasma parameters were studied in He HCD’s by Iova et al. (142E),Kohsiek (1723, 1733), Bobrov et al. ( 4 3 3 ) , Cristescu et al. (803),and Tkachenko and Tyutunnik (327E). Dobrosavljevic and Vujisic (88E)examined the electrical and spectroscopic characteristics of hot HCD‘s. The theory of sputtering was reviewed by Oechsner (2413) and described by Winters (3613) and Kelly (162E). The mass-energy analysis of ions in the cathode region of a hollow cathode was made by Bondarenko ( 4 5 3 ) ,and Wallace et al. (3446) studied the effect of cathode geometry on ion intensities with a hollow cathode ion source in mass spectrometry. Glow Discharge Lamps. A number of commercial versions of the Grimm glow discharge lamp (GDL) are presently available. Lowe (196E) increased the excitation of sample atoms sputtered by the discharge by incorporating a secondary high current density discharge; the simplified spectra produced allowed detection with a lower resolution monochromator than with conventional GD excitation. Butler et al. (66E)studied an analytical system consisting of a GDL and resonance detector with a dual-gated integrator; the design of a cathodic sputtering cell resonance detector with exchangeable cathodes was also described. West and Human (3603)measured the Ca 422.7 nm and Cr 425.4 nm emission line shapes produced in a Grimm GDL using a pressure-scanning Fabry-Perot interferometer; self-absorption and reversal occurred in the discharge a t high currents and concentrations. Using a pure Cu cathode in the Grimm GDL, Naganuma et al. (227E) investigated the influence of anode ring inner diameter, gap distance, discharge voltage, Ar pressure, discharge time, and cathode surface roughness. Waitlevertch and Hurwitz (343E)evaluated the GDL for the determination of in-depth concentration profiles and analysis of metal surfaces. Marcyk and Streetman (2053)improved the performance of glow discharge measurements of As-implanted Si by use of Kr as a discharge gas, dual detection system to measure impurity and substrate sputtering, and a Ni overcoat for accurate measurements near the surface. Sequeda-Osorio and Green (2953) described the application of glow discharge emission spectroscopy for in-situ monitoring of sputtering and deposition rates, analysis of microvolume samples, and plasma diagnostics. Marcyk and Streetman (204E) applied the technique to measure the distributions of implanted B in Si before and after annealing. Blum et al. (42E) examined the redeposition of Cu during sputtering in a GDL. Jung (1503)determined C in cast iron with a Grimm GDL, and Butterworth (67E)refined the GDL system for iron and steel analysis. Hirokawa and Takada (135E) determined rare earth elements in solution with the Grimm GDL after depositing and evaporating 1 0 - ~ L samples on a cleaned Cu plate. Khristov (164E)considered the excitation of spectral lines in the cold cathode region of a glow discharge in Ar,and Denk (85E)performed mass and energy analysis of ion currents at the cathode of an anomalous glow discharge. Purdes et al. (2633)studied the reactive sputtering of Cu in an 0-Ne rf discharge by glow discharge mass spectrometry. Krat’ko and Nekrashevich (1863) spectroscopically investigated the transition of glow to arc discharges.

NO. 5,

APRIL 1978

109R

Spark Discharges. Results from the unique and dedicated effort of Walters and co-workers (3483) in elucidating the spectroanalytical spark discharge are now reaching print, and during the past two years as many as four patents and 20 publications related to this research were published or submitted. Walters (3483) presented a comprehensive overview of the capabilities and needs in spark emission spectroscopy, the experimental tools developed for the minute observation and control of spark discharges, the properties of light emitted from controlled sparks, the interpretation of spatial and temporal emission patterns recorded, the observation of postdischarge phenomena such as a toroid surrounding the spark channel recorded by schlieren techniques, the role played by absorbing species surrounding the discharge, and the types and number of chemical reactions occurring in energy-rich regions of the discharge. He also discussed the directions for future work on fundamental properties such as vacuum ultraviolet absorption measurements and practical analyses, including monitoring heterogeneity of the sparked sample, and masking noise from the discharge. Many of the details of these investigations are given in companion publications. For example, the design and construction of the optical arrangements are examined by Walters (132C),Coleman (24C),and Walters et al. (25C, 26C, 49C, 50C, 60C, 107C, 108C). The design of a number of electronic, adjustable-current waveform spark sources was explained and detailed by Walters (3473), Coleman and Walters (763, 773, 351E), Walters and Bernier (3503),and of a 323-MHz quarter-wave spark source by Rentner et al. (2733). Klueppel et al. (1693)reported the explicit optical, mechanical, and electrical component descriptions for a fourth-generation spectrometer developed for time-gated, spatially resolved studies of repetitive spark discharges. Scheeline et al. (2903) presented the equations and a calculation procedure for modeling the operation of an electronic, adjustable-waveform and other types of high-voltage spark sources. The time-dependent capacitor voltages, charging current, and complete discharge break pattern were computed to within 1 to 5% relative accuracy of the experimental measurements. Scheeline et al. (2893) also examined the measurement procedures for describing and controlling the behavior of high-voltage capacitive-discharge spark sources. Available reports of the recent observations made on these controlled spark discharges include time-resolved spectral and schlieren photographic evidence for an ionic toroidal postdischarge environment noted by Coleman and Walters (75E), and time and spatially resolved schlieren studies of positionally stabilized sparks at up to kHz repetition rates by Klueppel et al. (1703). When the complete results of present and further investigations defined by Walters (348E)are presented, the view of the spark discharge can be expected to become remarkably clearer than ever in the past. Other basic studies of spark discharges include the ultrahigh-speed photographic observation of the electrode erosion process during the spark in argon by Takahashi et al. (3223). Brezna and Veis (573) determined the time development of electron temperature in a spark discharge plasma. The applications of spark discharges in the spectrochemical analysis of solutions continues. Moselhy et al. (22CiE) optimized the conditions for the simultaneous analysis of up to 20 elements in water and related environmental solutions using a rotating disk electrode and a condensed spark technique. Malamand (2003) demonstrated that the vaporization of liquid from a graphite-wick electrode depended upon the type of acid solution. Ackermann and Muenx ( 4 3 ) studied the influence of organic solvents in a solution spark technique utilizing pneumatic nebulization of the liquid through a hollow counter electrode. Zheleznova and Tarasevich (3243, 3783, 3793) determined microquantities of elements in organic extracts by nebulizing them into the spark. De Gregorio and Savastano (83E) determined rare earths using the sparkin-spray technique, and Kvaratskheli and Khromilin (190E) patented a solution system with an ultrasonic nebulizer. Krasil’shchik e t al. (1823,1833) studied the characteristics of a discharge in a narrow channel as an excitation source for solutions. Kashima and Umemura (158E)observed a decrease of the matrix effect in the analysis of cast iron when the electrode was heated to 740 K. Poljak (261E)found improved C analysis in C steel occurred in a n Ar-H mixture compared to Ar alone.

llOR

ANALYTICAL CHEMISTRY, VOL. 50, NO. 5, APRIL 1978

Slickers et al. (309E) described the arrangement for the analysis of samples with diameters less than 18 mm, and Nepokoichitskii and Tukmachev (2333) studied the localization of spark discharge in emission spectroscopy. Skotnikov (3073) determined the relation between the erosion of metals in the spark and properties of their oxides. Arslanov and Tret’yakov (183) determined A1 in steel, and Zhurko (3833) used Cu line pairs to evaluate the instability of excitation sources. Kuznetsova et al. (189E)studied the effect of repetition rate on the precision of determination of Cr and Ni in steel, and Zhiglinskii et al. (380E) determined the optimum conditions for spark parameters. Grisar and Berstermann (1263) patented an apparatus for controlling the production of unipolar spark discharges in the quality control of steel. Rezchikov et al. (2753)examined the spectroanalytical characteristics of a unipolar pulsed discharge, and Nikitina et al. (2393) studied the temporal scanning of the spectra obtained by an arc and a low-voltage spark excitation source. Ageev et al. @ E )investigated the erosion of electrodes for pulsed discharges with increased current density on the electrode resulting from limited migration of the channel. Kondrashov et al. (177E) theoretically and experimentally examined the electrode destruction caused by concentrated heat fluxes with a pulsed discharge. Kolesnikov e t al. (114E, 176E) determined the electron number density distributions in a pulsed discharge column, and Baksht et al. ( 2 1 3 ) investigated the spark channel and cathode spot formation in a low-pressure pulsed discharge. Radial and temporal distributions of species and electrons in pulsed discharges were also determined by Bokova and Ivansenko (144E),Vagner e t al. (334E),and Pozdeev et al. (2623). Ling and Sacks (1953) investigated the dependence of emission line and background intensities on experimental parameters in the analytical development of exploding foil excitation. Triche and Perarnau (330E)measured the plasma pressure and dissociation rate of gas surrounding exploding copper wires. L a s e r Analysis. The rapid technological developments of laser production and the extensive investigations and applications of lasers in all areas of spectroscopy merit a unique review impossible in this short article. In emission spectroscopy, laser applications have generally been restricted to laser microprobe analysis which is reviewed here. The magnitude of reference materials related to lasers is large as well, and only a few selected reviews and reference books are included for the interested reader. Books on lasers including proceedings of laser topical conferences were prepared by Anderson ( 1 3 3 ) ,Balian (223),Basov (3OE-33E), Beesley (36E), Bekefi ( 3 7 3 ) , Corney (78E), Duley (90E), Goldman (115E), Gross and Bott (127E), Hughes (138E), Jacobs et al. (1463), Koechner (1713), Letokhov (19431, Mooradian et al. (2233),Moore (2243),Naray (232E),Pike (260E),Raizer (269E),Ross (278E),Schaefer (287E),Schwartz and Hora (2913), Shapiro (2993), Shimoda (30.2~9,Sona (3143),Steinfeld (315E,316E),Svelto (319E),Young (366E), and Walther (353E). Bibliographies were compiled on gas dynamic, carbon monoxide, and GaAs lasers by Werner (357&359E), Smith (310E), and McDaniel et al. (211E), carbon dioxide lasers by Smith (311E),and on Soviet laser developments by Hibben and Minkus (133E, 134E). Mann (2023, 2033) and Onda e t al. (246E) reviewed CO lasers, Gudzenko (128E)surveyed laser plasma theory, and Heavens (131E) and Fujioka and Obara (108E) examined recent progress in gas lasers. Other reviews include laser action on materials by Buckle (162E),lasers below 300 nm by Ormonde (247E),pulsed laser applications by Reid (272E),and dye lasers by Smith (31231, Picque and Stroke (25931, Green (1213),Marowsky (206E),and Wallenstein (3453). Perry et al. (2553) designed a microprocessor-controlled, scanning dye laser for spectrometric analytical systems. Laser microprobe publications were included in a bibliography by Eichler and Lenz (94E),and Klockenkaemper and Laqua (168E)investigated the essential obstacles for detection of low absolute masses by means of the laser microprobe with spark cross excitation. Giovannini et al. (1133) prepared relative standards of five elements for the laser microprobe analysis of biological materials. The matrix effects of the laser microprobe were studied by Kirchheim et al. (1653) by means of single crystal metals and alloys of high purity and different orientation. Yoshida and Murota (3643) performed quan-

titative microprobe analysis of rocks for some components after fusing the samples. Kozak (181E)corrected spectral line intensities for the mass vaporized in laser spectrographic microanalysis. Nakajima et al. (2283) excited laser evaporated samples in a low-pressure high-frequency discharge. Mankevich et al. (201E)described an industrial laser for spectral microanalysis, and Petukh et al. (2563, 2573, 342E) used laser plasmas without additional electrical excitation for spectrochemical analysis. Dimitrov and Gagov (863) and Dimitrov et al. (873) studied the influence of atmosphere on the laser vaporization of samples, and Buravlev et al. (63E) considered the effect of ferrous sample structure on spectrochemical results. Burragato and Rondelli (653) applied the laser microprobe to spectrographic analysis of silicate rocks, and Garbarino et al. (109E) studied other geochemical materials. Other laser microprobe analyses include trace elements concentrated on filter paper after solvent extraction by Uchida and Iwasaki (3313),airborne particulates by Adachi et al. (5E), carbon in steel by Antonov et al. (14E),inclusions in steel by Jagiello-Puczka and Klimecki (147E), welded seams by Maksimov et al. (198E),rare earth ores by Idzikowski (1413), and rare earth elements by Ishizuka et al. (144E). Zahn and Dietze (3693) determined the number of ions, electrons, and atoms in laser microplasmas from solids, and Ishizuka et al. (1453) used a Q-switched laser to vaporize samples for AAS. Barton (29E)modified a laser microprobe for transmitted light illumination. S P E C T R O C H E M I C A L ANALYSIS Reviews and compilations of practical emission spectrochemical applications can be found in the “Annual Reports on Analytical Atomic Spectroscopy” (13A, 14A) and in the Applications Reviews of this journal appearing in 1977. Among these are general reviews containing references of emission spectroscopy in the fields of air pollution by Saltzman and Burg (121F),clinical chemistry by Evenson (46F),fertilizers by Gehrke et al. (59F), food by Foltz et al. (57F), inorganic and geological materials by Dinnin (33F),lubricants by Fick (53F), metals in oils by Terrell (144F), fuels by Hattman et al. (67F),nonferrous metals by Seim et al. (126F), ferrous metals by Straub and Hurwitz (136F), and water analysis by Fishman and Erdman (55F). Ohls (122F) described the role of analytical chemistry including emission techniques in the ferrous metal industry, and Van Loon (151F), and Beamish and Van Loon (9F) discussed emission spectroscopy of noble metals. Webb and Thompson (158F) considered spectrographic methods in exploration geochemistry, and White (159F)included emission spectroscopy in a review of the analysis of nonferrous metals. Of the semiquantitative methods reported, Mosier (104F) examined native gold, Markov and Dimitrov (99F)determined Co in steels, Danzer (3117) applied the Harvey procedure for trace elements in thin layers, and Le Trung (93F) applied a double-cathode dc arc technique in the analysis of various pulverulent samples with a single series of synthetic standards. Morozova and Morozov (103F) and Dabrowska (28F) used semiquantitative arc methods in the analysis of minerals and ores. Sterlace and Wise (135F)semiquantitatively determined impurities in high-purity Mo. T r a c e Element Analysis. Zil’bershtein (47A) examined in detail the emission spectroscopic methods and techniques for trace analysis of pure materials, and Veillon (39A) summarized atomic spectroscopic methods in trace analysis. Benko and Ujhidy Farkas ( I O F ) reviewed new trends and methods in spectrographic trace analysis. Winefordner (43A) detailed techniques and methodology for spectroscopic trace element analyses. Toelg (IOOF, 146F-1488 reviewed essential aids to extreme trace element analysis and methods for improving precision and accuracy in the analysis of high-purity materials. Valkovic (1508‘) published a general book on trace element analysis, and Blyum and Zolotov (12F) reviewed the determination of trace elements in geological materials. A g r i c u l t u r a l , Clinical, Environmental Materials. Dulka and Risby (42F) surveyed ultratrace metals in some environmental and biological systems. Dixit et al. (36F) reported determination of trace elements in plant materials, and Dahlquist and Knoll (81E)along with Nixon (240E),Ward and Sobel (3543),and Irons et al. (1433) analyzed soil and

ANALYTICAL CHEMISTRY, VOL. 50, NO.

biological materials with the inductively coupled plasma discharge. Jones (149E)and Alder et al. (11E)also analyzed soil samples, Winge e t al. (161F) studied water samples, and Gunn et al. (1303) analyzed milk powder. Jones (71F) reviewed the elemental analysis of biological substances using emission spectroscopy with a spark discharge. Dale and Matulis (29F) analyzed soil extract solutions using a rotating disk electrode and a high-voltage spark with a direct reading spectrometer. Scott et al. (125F) determined 24 elements in atmospheric particulates collected on glass fiber filters after acid extraction and spark excitation of LiCl stabilized solutions with a rotating disk electrode. Sugimae (138F) determined six elements in airborne particulates collected on glass fiber filters; sample disks were punched from the filter and excited in a boiler cup electrode with a 15-A arc. Chao et al. (24F) determined seven elements collected in fiber glass air filters using dc arc excitation. Gunchenko et al. (65F) examined potential losses of elements caused by different pretreatments of atmospheric dust samples. The results for spectroscopic examination of airborne particulates for Cleveland were reported by King et al. (78F, 107F) and for Copenhagen by Flyger et al. (36F). Brinkmann (17F) reviewed the determination of trace elements in water, and a variety of concentration techniques were reported in conjunction with spectroscopic analysis for trace elements in water. Moselhy (2253)used a rotating disk spark electrode and direct reading spectrometer for water analysis. Winge et al. ( 1 6 1 0 demonstrated the simultaneous determination of 20 or more elements a t trace levels in soft, hard, and saline waters using ICP-AES; they described the experimental arrangements, operating procedures, typical results, and the conditions for stray light correction. Miyazaki and Umezaki (102F) discussed conditions for the determination of trace elements in water by plasma emission spectroscopy. Tarkovskaya et al. (141F) concentrated impurities on oxidized carbon, Katalevskii and Eremenko (75F) electrodeposited heavy metals on electrodes, Moskvin et al. ( 1 0 5 9 combined electroosmotic and ion exchange preconcentration, and Kerfoot (15F) applied a patented chelate-ion-exchange resin sandwiched between membrane filters to collect transition metals in aqueous solutions before emission spectroscopic determination. Zheleznova et al. (169F) determined elements in muddy water. Geological Materials. Emission spectroscopic analysis of geological and mineral materials were included in reviews prepared by Rubeska (12OF), Onishi (113F),White (160F), White (159F),Galibin (58F),Laktionova (89F), Webb and Thompson (1580, and Nicol(108F). Schroll(123F) reviewed the progress in emission analysis of geological materials. Raikhbaum et al. (116F) published “Emission Spectrographic Analysis in Geochemistry”, and Raikhbaum et al. (265E-2673) applied ac arc techniques in the spectrographic analysis of geological materials. Samsoni (122F) reviewed applications of emission spectrography in agrochemical studies. Ward and Fishman (157F) surveyed analytical methods for the determination of P b in soils, rocks, and other materials. Brenner et al. (563)conducted an interlaboratory and interinstrument evaluation of spectrochemical precision in the analysis of silicate rocks and minerals. Faye (51nemployed emission spectroscopy and XRF for analysis of rocks after fusion. Maessen et al. (19773)developed a dc arc spectrographic procedure for trace analysis of geological materials. An automated and routine method for analysis of silicate rocks using a microwave discharge was perfected by Govindaraju et al. (11973). Scott et al. (2923) determined uranium in rocks using ICP-AES, and Burman et al. ( 6 4 3 ) compared microwave with induction plasma sources for geochemical analysis. Watson et al. (355E,3563) analyzed many types of geochemical and mineral materials with ICP-AES. Dutra (43F) evaluated the use of a direct-reading spectrometer in the analysis of rocks and geochemical materials. Dombi e t al. (38F, 39F) studied parameters in three spectrographic excitation sources in the determination of trace elements in silicate matrices. Balakishieva (4F) studied various buffers for the dc arc determination of 15 elements in different types of rocks, and Orlova et al. (114F) detailed the spectrographic determination of elements in carbonate rocks. Borovik-Romanova and Belova ( I 3 9 determined B and other trace elements in soils and rocks using an ac arc

5, APRIL 1978

111 R

discharge. Antonijevic et al. (2F)applied a stabilized arc to determine A1 in aluminosilicates, and Snopov and Zholobova (132F) optimized conditions for the ac arc analysis in aluminosilicates. Emission spectroscopic analyses of ores and concentrates were reported by Kolosova et al. (84F),Sin’kov and Minaeva (129F),and Breckenridge ( 1 6 0 . Tait and Coats (880)used a semiautomatic plate reader for the rapid analysis of geological samples, and Waltham et al. (950)evaluated the spectrographic results for 15 USGS rocks. Metals. Although the majority of emission spectroscopic analysis of metals appears concentrated in ferrous metals, reviewed by Ohls (12F) and Straub and Hurwitz (136F), spectroscopic analysis of noble metals, reviewed by Van Loon et al. (9F, 151F), and nonferrous metals, surveyed by White (1590 and Seim et al. (126F) received considerable attention. Van der Piepen (128C) analyzed high-purity Au using dc arc excitation and a vidicon spectrometer. Cooley et al. (25F) described the analysis for the Pt-group metals and Au by direct dc arc spectrographic analysis of a fire-assay Ag bead. Other analyses of noble metals reported included determination of impurities in Au by Toelle (149F) and Cordis et al. (26F),in Ag by Lordello and Tognini (95F) and Zolotov et al. (171F),in P d by Kozin et al. (85F),of Rh in Pt-Rh by Vogt (156F), of low concentrations of Au by Aleksandrov and Matseevskii (IF), Simonova and Tsimbalist (128F), and Rakhlina et al. (117F). Schoenfeld (124F) compared four techniques for the emission spectrographic determination of Au in Ag, and Gladyshev et al. (60F) determined Ag in Hg. Koleva and Gatsinska (83F) determined noble metals in Cu ore concentrates, and Fal’kova and Dobrushina (50F) optimized the dc arc determination of Au in petroleum sulfides. Newland (2353)analyzed Ni-base alloys, Scott et al. (293E) studied ferro-manganese alloys, and Ohls ( I 12F) measured steels with ICP-AES. Comparisons of spectroscopic techniques in steel analysis were made by Bruch and Thierig ( 1 8 0 and Matsumoto et al. (101F). Ihida (69F, 70F) discussed the limits of detection in emission spectrometric analysis of iron and steel, and Kishitaka (81F, 82F) examined the precision and accuracy of the spark emission determination of 22 elements in iron and steel. Buyanov (21F)measured the accuracy of spectrometric steel analysis, and Takahari et al. (239F) developed the spectrometric analysis of stainless steels. Kipsch and Kipke (80F) determined Zr in steel, and Nikitina et al. (11OF) determined spectrographically B, Ce, Nb, Ta, and Zr in ferrous alloys. Krivenkova et al. (86F) applied a pre-extraction technique in the determination of nonferrous metals in alloyed steels, and Nishisaka et al. ( I I I F ) patented a technique for the emission spectrometric determination of compositional distribution in cast steel. Nikitina et al. (109F) analyzed oxidic inclusions in steel, Pruvcheva and Deliiska (1150 determined Be, and Dimitrov et al. ( 3 5 3 measured Cr. Dobrovol’skaya et al. (37F) determined Ca in steel, and Kipke ( 7 9 0 analyzed ferroalloys for trace elements. Asai and Kamatsuki (103F)determined A1 in steel using the Mo spectral line, and Tanaka et al. (1409 studied the spectral interference of Mn on Nb line. Wittmann et al. (162F) described the emission spectroscopic analysis of liquid steel. Spectroscopic analyses of aluminum were reported by Mannweiler (97F),Chandola and Machado (22F),Zhivopistsev et al. (170F),Duda (41F),and Zakhariya et al. (165F). The emission analyses of copper and brasses were considered by Burmistrov et al. @OF), Dryakhlov and Shishkina ( 4 0 9 ,Haase (66F), Temma e t al. (143F), Vlastnikova et al. (155F), and Bragilevskaya and Martinkov ( 1 4 9 . Ermashova and Rotman (45F) determined W in Co-based alloys, and Ivanova et al. (96F) and Khurstaleva et al. (77F) analyzed Cr-containing alloys. Baranova et al. ( 6 0 determined Zn in pure Ga, and Bazovkin e t al. ( 8 0 analyzed silicomanganese alloys. Clarke (27F) patented a correction method for spark emission spectrometric determination of an element in an alloy based upon a single calibration curve, and Grisar (64F) patented a portable emission spectrometer for on-site analysis of metallic parts. Gases and Isotopes. The emission spectrometric detection of gases in conjunction with gas chromatography is described in the section on Microwave Discharges. In addition Nemets et al. (106F) determined hydrogen spectroscopically in other gases using isotopic labeling and gas separation. RezchikoTv and Rudnevskii (119F) determined H in Ti excited with an

112R

ANALYTICAL CHEMISTRY, VOL. 50, NO. 5, APRIL 1978

unipolar discharge, and Barasheva and Lindstrem (7F) optimized conditions for the spark excitation of H in Ti, Zr, and their alloys. Fabinski and Faulhaber (47F) determined nitrogen dioxide in a gas mixture using a hollow cathode discharge source, and Zakorina and Petrov (167F) determined the isotopic composition of H-D mixtures in a hollow cathode source. Smirnov (130F) evaluated N lines for the emission determination of N, and Egorov (44F) used a dc arc for the spectrographic-isotopic determination of N in metals. Lazeeva et al. ( 9 2 9 and Manuccia and Clark (98F) reported spectroscopic studies on the isotopic composition of nitrogen in discharges. Yoneyama et al. (163F) prepared ammonium solutions for the emission spectrographic analysis of 15N,and Alder et al. (11E) determined ammonium nitrogen in soils using the ICP source. Zakorina and Petrov (167F)performed isotopic spectral analysis of 0 as CO in a hot hollow cathode, and Sonobe et al. (134F) investigated uranium isotopic analysis. Abdallah and Mermet (23E)and Jarosz and Mermet (113B) used the inductively coupled plasma to study N and S emission from gases. Heshmat-Chaaban and Triche (68F) determined halogens in a pulsed emission source. Rare Earth, Actinide Elements. Broekaert (15C, 16C) determined all rare earths in solutions using hollow cathode excitation and a vidicon spectrometer. Fadeeva et al. (48F, 49F, 73F, 74F) determined factors influencing the sensitivity and accuracy of spark excitation of rare earth elements in nonconducting samples. Reports of rare earth determinations in various materials were made by Dittrich and Borzym (34F), Kuznetsov e t al. (88F), De Brito et al. (32F), Fedtsova and Postogvard (52F),and Dalvi et al. (30F). Chao et al. ( 2 3 0 determined trace elements in U rod, and Vereshchagina et al. (153F) examined several spectrographic methods for determination of 38 impurities in metallic Pu. Martell and Myers (207E) used carrier distillations for the analysis of plutonium dioxide. Nonmetals. A diversity of materials are analyzed by emission spectroscopy, and many are tabulated each year in the "Annual Reports on Analytical and Atomic Spectroscopy" (13A, 14A). Recent analyses include determination of nonferrous metals in glass by Khabarova et al. (176F),Pd in catalyst by Yunusov et al. (164F), and Ba in electrolytes by Smolyak and Shaevich (131F). The following materials were also analyzed by emission spectroscopy: ammonium hydrogen phosphate (62F),aluminum gallium arsenide ( 5 4 0 ,aluminum oxides (154J7, boron carbide (137F), boron nitride ( 1 5 2 n , graphite (94F), calcium fluoride (120E, 61F, 62F), Cd salts (91F, 142F), GaAs (133F),Mn salts (19F),Mo oxide (118F), Si and Si compounds (72F, 90F, 127F), Se (5F, 87J7, Te (145E3, and titanium dioxide (168F).

ACKNOWLEDGMENT Preparation of this review was supported in part by a grant from the Alcoa Foundation, by the Department of Energy (Office of Basic Energy Sciences) through contracts EE-77S-02-4320.A and EG-774-02-4471, and "The ICP Information Newsletter". The editoral assistance of D. Barnes and C. Poirier is greatly appreciated. LITERATURE CITED BOOKS AND REVIEWS

(1A) American Society for Testing and Materials, "Methods for Emission Spectrochemical Analysis-1977 Supplement", American Society for Testing and Materials, Philadelphia, Pa., 1977. (2A) Barnes, R. M., Anal. Chem., 48, 106R (1976). (3A) Barnes, R. M., Ed., "Emission Spectroscopy", Dowden, Hutchinson and Ross, Stroudsburg, Pa., 1976. (4A) Barnes, R. M., Ed., "ICP Information Newsletter", Department of Chemistry. University of Massachusetts, Amherst, Mass. 01003. (5A) Boboli, K., Czakow, J., Fijalkowski. J., Gahzka, J., Kucharzewski, B., Mole&, K., Strzyzewska. 8.. "Zadadnienia Podstawowe Spektralnej Analizy Atomowej", Wydawnictwa Naukowo-Techniczne, Warsaw, 1972. (6A) Budenstein, P. P., Ed., "Digest of Literature on Dielectrics", Vol. 36, 1972, Natl. Acad. Sci., Washington, D.C., 1974. (7A) Buravlev, Yu. M., Rudnevskii, N. K.. WkR, I.A,, "Spectral Analysis of Metals and Alloys (Processes on Electrodes)", (Spektral'nyi Anaiiz Melallov i Splavov (Protsessy na Elektrodakh)), Tekhnika,,,Kiev, Ukr. SSR, 1976. (8A) Elicker, K., Monte da Rocha, R., Introduction to Spectral Analysis: Instrumentation", (Introducao a Analise Espectral; Instrumentacao), Ed. Emma, Port0 Alegre, Brazil, 1973.

(9A) Elser, R. C., Chem. Anal. ( N . Y.), 46 (Trace Anal.:Spectrosc. Methods Elem.), 107-21 (1976). (1OA) Epstein, S., "Chemical Analysis by Emission Spectroscopy", Franklin Publishing Co.. Palisade, N.J., 1977. (11A) Fike, R. S., Frank, C. W., Dreher, G. B., Crit. Rev. Anal. Chem., 7 , 37 (1977). (12A) Franklin, R. N., "Oxford Engineering Science Series: Plasma Phenomena in Gas Discharges", Oxford Univ. Press, Fair Lawn, N.J., 1976. (13A) Fuller, C. W., Ed., "Annual Reports on Analytical Atomic Spectroscopy Reviewing 1975, Vol. 5", Chem. SOC.,London, Engl., 1976. (14A) Fuller, C. W., Ed., "Annual Reports on Analytical Atomic Spectroscopy Reviewing 1976, Vol. 6", Chem. SOC.,London, Engi., 1977. (15A) Hastie, J. W., "High Temperature Vapors", Academic Press, New York, N.Y., 1975. (16A) Hoeischer, J. G. A., Schram, D. C., Ed., "Phenomena in Ionized Gases (Proceedings of the 12th International Conference, Eindhoven, 18-22 Aug 1975), Part I , Contributed Papers: Part 11, Invited Papers", North Holland, Amsterdam, 1975, 1976. (17A) Howatson, A. M., "An Introduction to Gas Discharaes, 2nd ed.",Peroamon, Elmsford, N.Y, 1976. (18A) Kantor, T., Comp. Anal. Chem., 5 (Emission Spectroscopy, Analytical Microwave Spectroscopy, Analytical Applications of Electron Microscopy), 1-193 11975) (19A) Klinkenburg, P. F. A., Methods. Exp. Phys., 13 (A Spectroscopy), 253-346 (1976). (20A) Kipsch, D., "Emission Spectrometry", (Lichtemissions-Spektrometrie), Deut. Verlag Grundstoffind, Leipzig, 1974. (21A) Laitinen, H. A., Ewing, G. W., "A History of Analytical Chemistry", Div. Anal. Chem. Amer. Chem. SOC.,Washington, D.C., 1977. (22A) Laqua, K., Pure Appl. Chem., 49, 1595 (1977). (23A) Mannkopf, R., Friede, G., "Principles and Methods in Chemical Emission Spectral Analysis. An Introduction with Practical Hints", (Grundlagen und Methoden der Chemischen Emissionsspektralanalyse. Eine Einfuehrung mit Praktischen Arbeitshinweisen), Verlag Chemie, Weinheim, Ger., 1975. (24A) Massey, H., "Negative Ions", Cambridge Univ. Press, Cambridge, 1976. (25A) O'Haver. T. C., Chem. Anal. ( N . Y , ) ,46 (Trace Anal.: Spectrosc. Methods Elem.), 15-62 (1976). (26A) O'Haver, T. C., C b m . Anal. (N.Y.), 46 (Trace Anal.: Spectrosc. Methods Elem.), 63-78 (1976). (27A) Paksy, L., Kem. Kozl., 43, 561 (1975). 128A) Peisakhson, I.V., "Optics of Spectral Instruments. 2nd ed." (Optika Spektral'nykh Priborov), Mashinostroenie, Leningr. Otd., Leningrad, USSR, 1975. (29A) Pilipenko, A. T., Volkova, A. I., Zavod. Lab., 41, 1425 (1975). (30A) Pinta, M., "Modern Methods for Trace Element Analysis", Ann Arbor Sci., Ann Arbor, Mich., 1977. (31A) Risky, J. S., Geballe, R., Ed., "The Physics of Electronic and Atomic Collisions. Invited Lectures, Review Papers, and Progress Reports on the 9th International Conference on the Physics of Electronic and Atomic Collisions", Univ. Wash. Press, Seattle, Wash., 1976. (32A) Robin, J. P., Ed., "XVIII Colloquium Spectroscopicurn Internationale,knary Lectures", Pergamon, Oxford, Engl., 1977. (33A) Rubeska, I., Mostecky, J., Ksandr, Z.,"Proceedings of the XX Colloquium Spectroscopicum Internationale and 7 International Conference on Atomic Spectroscopy Praha 1977, Vol. I , Invited Lectures: Vol. 11, Abstracts", Statni Pedagogicke Nakiadatelstvi, Prague, Czech.. 1977. (34A) Schrenk. W. G., "Modern Analytical Chemistry: Analytical Atomic Spectroscopy", Plenum, New York, N.Y., 1975. (35A) Schroen, W., Rost, L., "Atom-Spektralanalyse", VEB Deut. Veriag Grundstoffindustrie, Leipzig. 1969. (36A) Stanton, R. E., "Analytical Methods for Use in Geochemical Exploration", Edward Arnold Publ., Ltd., 1976; reviewed in Anal. Chem., 49, 348A (1977). (37A) Torok, T., Mika, J., Gegus, E., "Spectrochemical Analysis", Adam Hilger, Bristol, 1977. (38A) Vaughan, W. E., Johar, G. P., Ed., "Digest of Literature on Dielectrics, Vol. 37, 1973", Nat. Acad. Sci., Washington, D.C., 1975. (39A) Veilion, C., Chem. Anal. ( N . Y . ) , 46 (Trace Anal.: Spectrosc. Methods Elem.), 123-81 (1976). (40A) Walker, S..Spectroscopy (3rd Ed.), 1. 1 (1976). (41A) Walsh, A., Proc. R . Aust. Chem. Inst., 42, 297 (1975). (42A) Winefordner, J. D., Fitzgerald. J. J., Omenetto, N., Appl. Spectrosc.. 29, 369 (1975). (43A) Winefordner, J. D., Ed., "Chemical Analysis Series, Vol. 46: Trace Analysis: Spectroscopic Methods for Elements", Wiley-Interscience, New York, N.Y., 1976. (44A) Wuensch, G., "Goeschen Coliection, No. 2606: Optical Anatysis Methods for the Determinationof Inorganic Materiils", (SammlungGoeschen, Nr. 2606: Optisdie Analysenmethoden zur Bestimmung Anorgankcher Stoffe), de cluyter, Berlin, Ger., 1976. (45A) Zaidel, A. N., Ostrovskaya, G. V., Ostrovskii, Yu. I., "Techniques and Practice Of Spectroscopy, 2nd ed.",(Tekhnika i Praktika Spektroskopii),Nauka, Moscow, USSR, 1976. (46A) Zaidel, A. N., Schreider, E. Ya., "Vacuum Spectroscopy and Its Use", (Vakuumnaya Spektrosckopiya i Ee Primenenie), Nauka, Moscow, USSR, 1976. (47A) Zil'bershtein, Kh. I . , "Spectrochemical Analysis of Pure Substances", Crane Russak, New York; Adam Hilger, Bristol, Engl., 1977. SPECTRAL DESCRIPTIONS AND CLASSIFICATIONS

(1B) Abjean. R., Johannin-Giiles, A,. J . Quant. Spectrosc. Radiat. Transfer, 16. 369 11976). (28) Ahmad: S. A,', Saksena, G. D., Pbysica B+C(Amster&m), 8 5 , 191 (1976). (3B) Ahmad, S. A,, Saksena, G. D., Venugopahn, A,, Physica B+C(Amste&m), 81, 366 (1976). (48) Ahmed, 2 . Ben, Verges, J., Wilson, M., Physica B+C(Amsterdam), 81, 275 (1976).

ANALYTICAL CHEMISTRY, VOL. 50, NO. 5, APRIL 1978 (48) Allen, M. S., Pubi. Astron. Soc. Pac., 88, 338 (1976). (58) Andersen, T., Poulsen, O., Ramanujam, P. S., J . Quant. Spectrosc. Rad/at. Transfer, 16,521 (1976). (6B) Andersen, T., Pouisen, O.,Ramanujam, P. S., Petkov, A,, Sol. Pbys., 44, 257 (19751. -. - -, (7B) Andrae, H. J., Pioehn, H. J., Wittmann, W., Gaupp, A,, Stoner, J. O., Jr., Gaillard, M., J . Opt. SOC.A m . , 65, 1410 (1975). \

(8B) Arnesen, A., Bengtsson, A., Curtis, L. J., Hallin, R., Nordiing, C.. Noreland, T., Pbys. Lett. A , 56,355 (1976). (9B) Augustyniak, L., Pbys. Scr., 15, 63 (1977). (10B) Baird, P. E. G., P . R . Soc. London, Ser. A , 351,267 (1976). (1 1B) Baruschka, G., Schulz-Gulde, E., Astron. Astropbys., 44,335 (1975). 1128) Bashkin. S . . Stoner. J. 0..Jr.. Eds.. "Atomic Enerav Levels and Grotrian Diagrams, Voi. 1: Hydrogen Ito PhosphorusXV", No&-Holland, Amsterdam, 1975, American Elsevier, New York, N.Y., 1976. (138) Bashkin, S. Stoner, J. O., Jr., J . Opt. SOC. Am., 66, 1067 (1976). (14B) Bashkin, S., Beam-FoilSpectrosc., Proc. Int. Conf., 4th. 1, 129 (1975). (158) Bashkin, S.,Top. Cum. Phys., 1 (Beam-Foil Spectrosc.). 5-32 (1976). (16B) Bashkin, S., Ed., "Beam-Foil Spectroscopy, Topics in Current Physics, Vol. I", Springer-Verlag, 1976. (178) Bashkin, S., U . S . N T I S , AD Rep. AD-A036984, 93 pp, 1977. (I8B) Bauche, J., Champeau, R. J., Adv. At. Mol. Pbys.. 12, 39 (1976). (198) Beck, D. R., Nicolaides, C. A,, Pbys. Len. A , 61,227 (1977). (208) Beck, R., Englisch. W., Guers, K., "Table of Laser Lines in Gases and Vapors", Springer-Verlag, Berlin, 1976. (218) Becker, U., Bucka, H., Schmidt, A., Astron. Astropbys., 59, 145 (1977). (228) Behringer, K., Thoma, P., J , Quant. Spectrosc. Radiat. Transfer, 16, ~

605 (1976). (238) Bell, G. D., Lyzenga, G. A,, P. R. Soc. London, Ser. A , 351,581 (1976). (24B) Bengtsom, R. D., Miller, M. H., Pbys. Rev. A , 14, 1915 (1976). (258) Bernhardt, A. F., Duerre, D. E., Simpson, J. R., Wood, L. L., J. Opt. SOC. Am., 66,416 (1976). (26B) Berry, H. G., Pbys. Scr., 13,36 (1976). (27B) Berry, H. G., Rep. Prog. Pbys., 40, 155 (1977). (288) Biaeon. M. C., ChanteDie, M., Cojan, J. L., Landais, J., J . Phys. (Paris), 36, 1671 (1975). (298) Blackweil, D. E., Ibbetson, P. A.. Petford, A. D., Willis, R. B., Mon. Not. R . Astron. Soc., 177,219 (1976). (308) Blaise, J., Radziemski, L. J., Jr., J . Opt. SOC.Am., 66,644 (1976). (318) Blagoev, K. B.. Komarovskii. V. A,, Opt. Spektrosk., 42,407, and 594 119771. (328) Biagoev, K. B., Komarovskii, V. A,, Penkin, N. P., Opt. Spektrosk., 40, 622 (1976). (338) Blagoev, K. B., Komarovskii, V. A,, Penkin, N. P.. Opt. Spektrosk., 42, 424 (1977). (348) Brandt, H. W., Camus, P., Z . Pbys. A , 283,309 (1977). (358) Brechignac, C., Gerstenkorn. S., J . Pbys. 6 ,IO. 413 (1977). (368) Brimicombe, M. S.W. M., Stacey, D. N., Stacey, V., Huehnermann, H., Menzei, N., P . R . Soc. London, Ser. A , 352, 141 (1976). (378) Brillet, Wan-U L., Artu, M. C., J . Opt. SOC. Am., 65, 1399 (1975). (388) Brillet, Wan-U, L., Artu, M. C., Pbys. Scr., 14,285 (1976). (39B) Brown, C. M., Ginter, M. L., J . Opt. SOC.Am., 67, 1323 (1977). (408) Brown, C. M., Tilford, S. G., Ginter, M. L., J . Opt. Soc. Am., 65,1404 (1 975). (418) Brown, C. M., Tilford, S. G., Ginter, M. L., J . Opt. SOC.Am., 67,584 (1977). (428) Brown, C. M., Tilford, S. G., Ginter, M. L., J . Opt. Soc. Am., 67,607 (1977). (438) Brown, C. M., Tilford, S. G., Ginter, M. L., J . Opt. Soc. A m . , 67,1240 (1977). (448) Brzozowski, J., Erman, P., Lyyra, M., Phys. Scr., 14,48 (1976). (458) Bukow, H. H., Heine, G., Reinke, M., J . Pbys. 6 ,10, 2347 (1977). (468) Buios, B. R.. Gupta, R., Happer, W., J . Opt. Soc. Am., 66,426 (1976). (47B) Burgmans, A. L. J., Pbys. Lett. A , , 60,453 (1977). (48B) Campbell, J., Jr., Head, C. E., Pbys. Rev. A , 13, 1965 (1976). (498) Carlson, L. R.. Johnson, S. A., Worden. E. F., May, C. A,, Solarz, R. W., Palsner, J. A,. Opt. Commun., 21, 116 (1977). (508) Carlson, L. R., Paisner, J. A., Worden, E. F., Johnson, S. A,, May, C. A., Solarz, R. W., J . Opt. Soc. Am., 66,846 (1976). (518) Chantepie, M., Cojan, J. L., Landais. J., J. Phys. (Paris),36, 1067 (1975). (528) Childs, W. J., Goodman, L. S.,J . Opt. SOC.Am., 67, 1230 (1977). (538) Childs, W. J., Goodman, L. S., J . Opt. SOC.Am., 67, 747 (1977). (54B) Cocke, C. L., Metbods Exp. Pbys., 13 (B, Spectroscopy), 213-72 (1976). (558) Conway, J. G., Lawrence Berkeley Lab., (Rep) LBL, LBL-4366 (1976). (568) Conway, J. G., Blaise, J., Verges, J., Lawrence Berkeley Lab. (Rep) LBL, LBL-3401 (1975). (578) Conway, J. G., Blaise. J., Verges, J., Spectrocbim. Acta, Part B , 31, 31 (1976). (58B) Conway, J. G., Wwden, E. F., Blaise. J., Camus. P., Verges, J., Speckxhim. Acta, Part B , 32, 101 (1977). (598) Conway, J. G., Worden, E. F., Verges, J., Spectrocbim. Acta, Part 6 , 32,97 (1977). (60B) Corliss, C. H.. J . Res. Natl. Bur. Stand., Sect. A , 80, 1 (1976). (618) Corliss, C. H.. J . Res. Natl. Bur. Stand., Sect A , 80, 429 (1976). (628) Corliss, C. H., J . Res. Natl. Bur. Stand., Sect A , 80, 787 (1976). (638) Coriiss, C., Sugar, J., J . Pbys. Cbem. Ref. Data, 6, 1253 (1977). (648) Curnutte, B., Spangler, J., Weaver, L., Methods Exp. Pbys., 13 (A, Spectroscopy), 31-1 14 (1976). (658) Curtis. L. J., Top. Curr. Pbys., 1 (Beam-Foil Spectrosc.), 63-109 (1976). (66B) Deech, J. S., Luypaert, R., Pendrill, L. R., Series, G. W., J . Pbys. 6 ,10, L137 (1977). (678) Delage, A., Carette, J. D., J . Pbys. 6 ,9,2399 (1976). (68B) Delage, A,, Carette, J. D., Pbys. Rev. A , 14, 1345 (1976). (69B) Donneliy, K. E., Kindlmann, P. J., Bennett, W. R., Jr., J . Opt. SOC.Am., 65, 1359 (1975). ~I

113R

(708) Dynefors, B. I., Martinson, I., Beam-Foil Specfrosc., Proc. Int. Conf., 4th 1975, I, 223 (1976). (718) Edlen, B., At., Mol. Lasers, Lect. Int. Winter Coli. 1973, 93 (1974). (72B) Edlen, B., Beam-Foil Spectrosc., Proc. I n t . Conf., 4th 1975, 1, 1-27 (1 976). (738) Ekberg, J. O., Pbys. Scr., 13,245 (1976). (748) Ekberg, J. O.,Pbys. Scr., 14, 109 (1976). (758) El Sherbini, T. M., J . Pbys. B , 9, 1665 (1976). (768) Enaman, B.. Stoner, J. O., Jr., Martinson, I., Cerne, N. E., Phys. Scr.. ' 13,363 (1976). (778) Epstein, G. L., Reader, J., NASA Tech. Memo, 1974, NASA-TM-X-74271, 6 pp (1974). (788) Erdevdi, N. M., Shimon, L. L., Opt. Spektrosk., 41, 1084 (1976). (78aB) Esherick, P., Wynne, J. J.. Comments At. Mol. Pbys., 7,43 (1977). (798) Exton, R. J., J . Quant. Spectrosc. Radiat. Transfer, 16,309 (1976). (8OB) Fabry, M., J . Quant. Spectrosc. Radiat. Transfer, 16, 127 (1976). (818) Fawcett, B. C., At. Data Nucl. Data Tables. 16, 135 (1975). (828) Feldman, U., Brown, C. M., Doschek, G. A., Moore, C. E., Rosenberg, F. D., J . Opt. SOC.Am., 66,853 (1976). (838) Fred, M., Tomkins, F. S., Blaise, J. E., Camus, P., Verges, J., J . Opt. SOC.Am., 67,7 (1977). (848) Fred, M., Tomkins, F. S., Biaise, J. E., Camus, P., Verges, J., Report, ANL-76-68, 231 pp (1976). (858) Fraga, S., Karwowski, J., Saxena, K. M. S., "Handbook of Atomic Data", Elsevier, Amsterdam, Oxford, New York, 1976. (868) Fuhr, J. R., Martin, G. A., Specht, B. J., Nati. Bur. Stand. (U.S.), Spec. Pub/., 366,Suppi. 2, 67 pp (1975). (878) Gagne, J. M., Nguyen, Van, S., Saint-Dizier, J. P., Pianarosa, P.. J . Opt. SOC.A m . , 66, 1415 (1976). (888) Gallagher, J. W., Rep., Inf. Cent., Jt. Inst. Lab. Asfropbys., 16, 48 pp (1977); Cbem. Abstr., 87,75752b. (898) Gallagher, T. F., Edelstein, S. A., Hill, R. M., Pbys. Rev. A , 14,2360 (1976). (908) Garpman, S.,Spector, N., J . Opt. SOC.Am.. 66 904 (1976). (91B) Goiy, A,, Astron. Astropbys., 52,43 (1976). (928) Gounand, F., Fournier, P. R., Cuvellier, J., Berlande, J., Pbys. Lett. A , 59, 23 (1976). (938) Griem. H. R., Adv. At Mol. Pbys., 11, 331 (1975). (948) Grundevik, P., Gustavsson, M., Svanberg, S., Phys. Lett. A, 56,25 (1976). (958) Hagan, L., Natl. Bur. Stand. ( U . S . ) , Spec. Pub/ , 363,Suppl. 1, 181 DD (1977). (966) 'Hamel-Garcia, J., Opt. Commun., 16,289 (1976). (97B) Hansen, J. E., Persson, W., Pbys. Scr., 13, 166 (1976). (98B) Hassan, G. E. M. A.. Abbas, A., Turki, A,, Bull. Fac. Sci., Riyadh Univ., 7,339 (1975); Cbem. Abstr., 85, 114221h. (99B) Hassan, G. E. M. A., Abbas, A,, Turki, A. H., Indian J . Pbys., 49,729 (1 975). (1008) Hassan, G. E. M. A., Abbas, A., Turki, A. H., J . Natl. Sci. Math., 14, 67 (1974). (1018) Havey. M. D., Balling, L. C., Wright, J. J., J . Opt. Soc. Am., 67,488 (1977). (102B) Havey, M. D., Balling, L. C., Wright, J. J., J . Opt. SOC.Am., 67,491 (1977). (103B) Havey, M. D., Balling, L. C., Wright, J. J., Pbys. Rev. A , 15,2332 (1977). (1048) Head, C. E., Lawrence, T. N., Head, M. E., Beam-FoilSpectrosc., Proc. Int. Conf., 4th 1975, 1, 155-63 (1976). (105B) Head, M. E., Head, C. E., Lawrence, T. N., Beam-FoilSpectrosc., Proc. Inte. Conf., 4th 1975, 1, 147-54 (1976). (106B) Heiiig, K., Spectrocbim. Acta, Part 6.32, 1 (1977). (1078) Hellentin, P., Pbys. Scr., 13, 155 (1976). (lO8B) Hindmarsh, W. R., At., Mol. Lasers, Lect. Int. WinterColl. 1973, 133-73 (1974). (109B) Hoffmann, V., Toschek, P. E., J . Opt. SOC.Am., 66, 153 (1976). (1lOB) Hurst, G. S., Nayfeh, M. H., Young, J. P., Pbys. Rev. A , 15,2283(1977). ( I l l B ) Imhof, R. E., Read, F. H., Rept. Prog. Pbys., 40, 1 (1977). (1128) Ishli, K., Fukuda, K., Bunko Kenkyu, 24, 1 (1975). (1138) Jarosz, J., Mermet, J. M., J . Quant. Spectrosc. Radiat. Transfer, 17, 237 (1977). (1148) Jortner, J., Mukamel, S., Int. Rev. Sci.: Pbys. Cbem., Ser. Two, 1, 327 (1975). (1158) Kaufman, V., Radziemski, L. J., Jr., J . Opt. SOC.Am., 66,599 (1976). (116B) Kaufman, V., Sugar, J., J . Opt. SOC.Am., 66, 1019 (1976). (1178) Kelly, F. M., Mathur, M. S . , Can. J . Pbys., 54,800 (1976). (1188) Kernahan, J. A., Pang, P. H. L., Can. J . Pbys., 54, 103 (1976). (1198) King, D. B., Head, C. E., Pbys. Rev. A , 13, 1778 (1976). (1208) King, G. C., Mohamed, K. A,, Read, F. H., Imhof, R. E., J . Pbys. B , 9, 1247 (1976). (120aB) Klotz, W. D.. Becker, U., Goebel, L. H., Astron. Astropbys., 61,51 (1977). (121B) Klose. J. Z., Proc. SOC.Photo-Opt. Instrum. Eng., 76 (Ultra High Power Lasers Pract. Appl.), 150 (1976). (1228) Konjevic, N., Roberts, J. R., J . Pbys. Cbem. Ref. Data, 5,209 (1976). (1238) Konjevic, N., Wiese, W. L., J . Pbys. Cbem. Ref. Data, 5,259 (1976). (124B) Kozlov, M. G., Opt. Spektrosk., 40, 961 (1976). (1258) Kozlov, M. G., Kotochigova, S. A., Opt. Spektrosk., 41,360 (1976). (126B) Kozlov, M. G., Kotochigova, S. A., Opt. Spektrosk., 42, 3 (1977). (127B) Kozlov, M. G.. Krylov, B. E., Opt. Spektrosk., 41,719 (1976). (128B) Krellmann, H., Siefart, E., Weihreter, E., J . Pbys. B , 8,2608 (1975). (1298) Laniepce, B., Landais, J.. Chantepie, M., Opt. Commun., 19,92 (1976). (1308) Litzen, U., Pbys. Scr., 14, 165 (1976). (1318) Litzen, U., Verges, J., Pbys. Scr., 13, 240 (1976). (132B) Lotrian, J., Cariou, J., JohanninGilles, A,, J . Quant. Spectrosc. Radiat. Transfer, 16,315 (1976). (1338) Lundberg, H., Svanberg, S., Phys. Lett. A , 56, 31 (1976). (1348) Macomber, J. D., "The Dynamics of Spectroscopic Transitions", Wiiey. New York, N.Y., 1976.

114R

ANALYTICAL CHEMISTRY, VOL. 50, NO. 5, APRIL 1978

(1358) Magnusson, C. E., Zetterberg, P. O., Phys. Scr., 15, 237 (1977). (1368) Maleki, L., Head, C. E., Phys. Rev. A , 12, 2420 (1975). (1378) Marek, J., Astron. Astrophys., 44, 69 (1975). (1388) Marek, J., Phys. Len. A , 60, 190 (1977). (1398) Marek, J., Vogt, K., 2. Phys. A , 280, 235 (1977). (1408) Martin, G. A., Wiese, W. L., J . Phys. Chem. Ref. Data, 5, 537 (1976). (1418) Martin, P., Campos, J., J . Opt. SOC.Am., 67, 1327 (1977). (141aB) Martin, P., Campos, J., J . Phys. B. 10, 1265 (1977). (1428) Martinson, I., Top. Curr. Phys., 1 (Beam-Foil Spectrosc.), 33 (1976). (1438) Meggers, W. F., Moore, C. E., Natl. Bur. Stand. (U.S.),Monogr., 153, 114 pp (1976). (144B) Mehlrnan, G., Weiss, A. W., Esteva, J. M., Astrophys. J . , 209 (2, Pt. l), 640 (1976). (1458) Meinders, E., Physica B+C(Amsterdam), 84, 117 (1976). (146B) Miller, G. E., Ross, J. S.,J . Opt. SOC.Am., 66, 585 (1976). (1478) Minnhagen, L., J . Opt. SOC. Am., 66, 659 (1976). (1488) Miron, E., Levin, L. A., Erez, G., Lavi, S., Opt. Commun., 18, 536 (1976). (1498) Mohamed, K. A., King, G. C., Read, F. H., J . Phys. B , 9, 3159 (1976). (1508) Moore, C. E., Natl. Stand. Ref. Data Ser.. Natl. Bur. Stand., 3, Sect. 7, 30 pp (1976). (I5lB) Nikolaich, A. Ya., Osherovich, A. L., Vestn. Leningr. Univ., Fiz. Khim. (2), 44 (1976). (1528) Nubbemeyer, H., J. Quant. Specfrosc. Radiat. Transfer, 16, 395 (1976). (1538) Osherovich, A. L., Pul'kin, S. A,, Vestn. Leningr. Univ., Fiz. Khim., 22, 40 (1976). (1548) Osherovich, A. L., Verolainen, Ya. F., Nikoiaich, A. Ya., Privalov, V. N., Vestn. Leningr. Univ., Fiz. Khim., ( l ) , 69 (1976). (1558) Ostroumenko, P. P., Opt. Spektrosk., 39, 413 (1975). (156B) Palenius, H. P., Curtis, L. J., Lundin, L., J . Phys. B , 9, L473 (1976). (1578) Paienius, H. P., Risberg, G., J . Phys. B , 10, L435 (1977). (1588) Parkinson, W. H., Reeves, E. M., Tomkins, F. S., J . Phys. B , 9, 157 (1976). (1598) Parkinson, W. H., Reeves, E. M., Tomkins, F. S.,P. R . SOC.London, Ser. A , 351, 569 (1976). (160B) Pearse, R. W. B., Gaydon, A. G., "The Identification of Molecular Spectra", Halsted-Wiiey, New York. N.Y., 1976. (I6lB) Penkin, N. P., Komarovskii, V. A., J . &ant. Specfrosc. Radiat. Transfer, 16, 217 (1976). (1626) Pichler, G., J . Quant. Spectrosc. Radiat. Transfer, 16, 147 (1976). (1638) Pilz, W., Seehawer, J., Proc. Int. Conf. Phenorn. Ioniz. Gases, 72th, 1, 146 (1975). (1648) Pinnington, E. H., Weinberg, P., Verfuss, W., Lutz, H. O., Z . Phys. A , 281, 325 (1977). (165B) Rambow, F. H. K., Schearer, L. D., Phys. Rev. A , 14, 1735 (1976). (166B) Reader, J., Phys. Rev. A , 13, 507 (1976). (167B) Reid, R. D.. Johnson, W. L., McNeil, J. R., Collins, G. J., I€€€ J . Quantum Electron., 12, 778 (1976). (1688) Richter, J., Phys. Ioniz. Gases, Proc. Invited Lect. Yugosl. Symp Summer Sch., 7th, 603 (1974). (169B) Roig, R. A., Tondello, G., J . Phys. 8 ,9. 2373 (1976). (1708) Ross, C. B., Wood, D. R., Scholl, P. S., J. Opt. Soc.Am.. 66, 36 (1976). (1718) Sabbagh, J., Sadeghi, N., J . Quant. Spectrosc. Radiat. Transfer, 17,

297 (1977). (1728) Schlag, E. W., NATOAdv. Study Inst. Ser., Ser. B 1975, 12 (Spectrosc. Excited State), 225 (1976). (1738) Sellin. I.A.. Adv. A t . Mol. Phys., 12, 215 (1976). (1746) Sellin, I.A., Top. Curr. Phys., 1 (Beam-Foil Spectrosc.), 265 (1976). (1758) Sellin, I.A., Pegg, D. J., Ed.. "Beam-Foil Spectroscopy, Vol. 1: Atomic Structure and Lifetimes, and Vol. 2: Collisional and Radiative Processes", Plenum, New York, N.Y., 1976. (1768) Shirnoda, K., Top. Appl. Phys., 13 (High-Resoiut. Laser Spectrosc.), 11 (1976). (1778) Sinanogiu, O.,Top. Curr. Phys., 1 (Beam-Foil Spectrosc.), 111 (1976). (1788) Sjoedin, R., Hallin. R., Report, UUIP-930, 7 pp (1976); Chem. Abstr., 87, 9 3 0 3 1 ~ . (1798) Soerensen. G., Beam-Foil Spectrosc. Proc. Int. Conf., 4th 1975, 1, 165 (1976). (180s) Spector, N., Astrophys. J . , 211 (2, P t l), 600 (1977). (1818) Spector, N., Phys. Scr., 13, 181 (1976). (1828) Spector, N., Garpman, S.,J . Opt. SOC.Am., 67, 155 (1977). (1838) Spector, N., Sugar, J., J . Opt. SOC.Am., 66, 436 (1976). (1848) Stewart, A. L., A t . Processes Appl., 249 (1976). (I85B) Sugar, J., Corliss, C., J . Phys. Chem. Ref. Data, 6, 317 (1977). (1866) Sugar, J., Martin, W. C., J . Res. Natl. Bur. Stand., Sect. A , 80, 465 (1976). (1878) Svensson, L. A., Phys. Scr., 13, 235 (1976). (1886) Vallee, O., Ranson, P., Chapelle, J., J . Phys. (Paris),38, 1201 (1977). (189B) Van der Sijde, B., Dielis, J. W. H., Graef, W. P. M.. J. Quant. Spectrosc. Radiat. Transfer, 16, 1011 (1976). (19OB) Van Deurzen. C. H. H., J . Opt. SOC.Am., 67, 476 (1977). (1918) Van Kleef, T. A. M., Raassen, A. J. J., Joshi, Y. N., Physica B+C (Amsterdam), 84, 401 (1976). (1928) Voigt, P. A., Kornblith, R. L., J . Opt. SOC. Am., 66, 492 (1976). (1938) Weiss, A. W , Beam-Foil Spectrosc., Proc. Int Conf , 4th 1975, 1, 51 11976). > , (1948) Wiese, W., Top. Curr. Phys., 1 (Beam-Foil Spectrosc.), 147 (1976). (1958) Wiese, W. L., Martin. G. A., Phys. Ioniz. Gases, Proc. InvitedLect. VugOsl. Symp. Summer Sch., 7th, 675 (1974). (196B) Williams, D. R. W., Methods f x p . Phys., 12 (C), 19 (1976). (1978) Williams, L. G., Diss. Abstr. Int. B. 37, 2284-5 (1976). (198B) Winter, H., Gaillard, M.. 2. Phys. A , 281, 311 (1977). (199B) Worden, E. F., Conway, J. G., J . Opt. SOC. Am., 66, 109 (1976). (2008) Worden, E. F., Hulet, E. K., Gutmacher, R. G., Conway, J. G., At. Data Nucl. Data Tables, 18, 459 (1976).

(2018) Wujec, T., Musielok. J., Astron. Astrophys., 50, 405 (1976). (202B) Wuiec, T., Musielok, J., Musielok, B., Zesz. Nauk. Wyzsz. Szk. Pedagog. Opolu, Fiz., 17, 9 (1976); Chem. Abstr., 87, 60104t. (202aB) Wujec, T., Weniger, S.,J . Quant. Spectrosc. Radiat. Transfer, 18, 509 (1977). (203B) Wyart, J. F.. Crosswhite, H. M., Hussain, R., phvsica B+C(Amsterdam), 85, 386 (1976). (2048) Zalubas, R., J . Res. Natl. Bur. Stand., Sect A , 80, 221 (1976). (205B) Zetterberg, P. O., Magnusson, C. E., Phys. Scr., 15, 189 (1977). (206B) Zimmermann, D.. J . Phys. A , 275, 5 (1975). (2078) George, S.,Fredrickson, J. E., Tucker, A. W., Sci. Light (Tokyo). 26, 53 (1977). (2088) Ryabtsev, A. N., Astron. Zh., 54, 919 (1977). (209B) Czernichowski, A., Holys, A,, Roberts, J. R., J . Phys. (Paris),38, 1065 (1977). INSTRUMENTATION

(1C) Agajanian, A. H., Solid State Techno/., 19, 48 (1976). (2C) Ambrose, A. D., Hobson, J. D., Analyst (London), 101, 356 (1976). (3C) Baker, D. J., Romick, G. J., Appl. Opt., 15, 1966 (1976). (4C) Bardas, D., Pub/. Astron. SOC.Pac., 89, 104 (1977). (5C) Beck, G., Rev. Sci. Instrum., 47, 537 (1976). (6C) Beenen, G., Rentner, J. R., Walters, J. P., Appl. Spectrosc., 31, 444 (1977). (7C) Berthold, M., VDI Z., 118, 119 (1976); Chem. Abstr., 84, 188907n. (8C) Bespalov, Yu. B., Kayander, M. S.,Minaev, P. V., Tr. Metro/. Inst. SSSR, 181, 45 (1975). (9C) Bhide, G. K., Rangarajan, L. M., Proc. Symp. Quantum-Opfo-Electron., 135 (1974). (1OC) Blass, W. E., Appl. Spectrosc., 30, 287 (1976). (1 1C) Boumans, P. W. J. M., Van Wl, G. H., Jansen, J. A. J., Ana&st(London). 101, 585 (1976). (12C) Bridges. J. M., Ott, W. R., Appl. Opt., 16, 367 (1977). (13C) Bridges, J. M., Ott, W. R., Pitz, E., Schulz, A.. Einfeld, D.. Stuck, D., Appl. Opt., 16, 1788 (1977). (14C) Broekaert, J. A. C., Bull. SOC. Chim. Belg., 84, 1159 (1975). (1%) Broekaert, J. A. C., Bull. SOC. Chim. Belg., 85, 261 (1976). (16C) Broekaert, J. A. C., Bull. SOC. Chim. Belg., 85, 471 (1976). (17C) Broekaert, J. A. C., Bull. SOC. Chim. Belg., 85, 755 (1976). (18C) Burton, W. M.. Observatory, 97, 132 (1977). (19C) Chester, T. L., Fitzgerald, J. J., Winefordner, J. D., Anal. Chem., 48, 779 (1976). (20C) Chester, T. L., Haraguchi, H., Knapp. D. O., Messman. J. D.. Winefordner, J. D., Appl. Spectrosc., 30, 410 (1976). (21C) Chester, T. L., Winefordner, J. D., Anal. Chem., 49, 119 (1977). (22C) Choyke, W. J., Partlow, W. D., Supertzi, E. P., Venskytis, F. J., Brandt, G. B., Appl. Opt., 16, 2013 (1977). (23C) Coleman, C. I.,Boksenberg, A., Contemp. Phys., 17, 209 (1976). (24C) Coleman, D. M., Diss. Abstr. Int. B , 37, 5022 (1977). (25C) Coleman, D. M., Walters, J. P., Appl. Spectrosc., 31, 172 (1977). (26C) Coleman, D. M., Walters, J. P., Spectrochim. Acta. PartB, 33, (1978). (27C) Colles, M. J., Walrafen, G. E., Appl. Spectrosc., 30, 358 (1976). (28C) Cook, T. E.. Santini, R. E., Pardue, H. L., Anal. Chem., 49, 871 (1977). (29C) Cooney, R. P., Boutilier, G. D., Winefordner, J. D., Anal. Chem., 49, 1048 (1 977). (30C) Crosmun, R., Report, TID-26947, 174 pp, 1974. (31C) Dahibacka, J., Lindblom, P., Appl. Opt., 16, 288 (1977). (32C) Danielsson, A., Lindblom, K. P., Appl. Opt., 15, 1888 (1976). (33C) Danielsson, A., Lindblom, P., Appl. Spectrosc., 30, 151 (1976). (34C) de Haseth, J. A.. Woodward, W. S.,Isenhour, T. L., Anal. Chem., 48. 1513 (1976). (35C) Devons, S.,Appl. Opt., 15, 1731 (1976). (36C) Eckertova, L., Proc. Summer Sch. Optoelectron. Integr. Opt., 2, 367 (1976). (37C) Edmonds, T. E., Horlick, G., Appl. Spectrosc., 31, 536 (1977). (3%) Einfeid, D., Stuck, D., Opt. Commun., 19, 297 (1976). (39C) Einfeld, D., Stuck, D., Behringer, K., Thoma, P., Z . Naturforsch. A , 31, 1131 (1976). (40C) Eppeldauer, G., Graner, J., Schanda, J., Vanyek, U. M., Appl. Opt., 16, 255 (1977). (41C) Fieffe-Prevost, P., Rev. Phys. Appl., 12, 1243 (1977). (42C) Fieffe-Prevost, P., Watteau, J. P., Wuiileumier, F.. Rev. Phys. Appl., 12, 913 (1977). (43C) Franklin, M., Baber. C.. Koirtyohann, S.R., Spectrochim. Acta, Part8, 31, 589 (1977). (44C) Freeman, G. H. C.. Freeman, I., Report, NPL-OU-35, 27 pp (1977): Chem. Abstr., 87, 2 0 9 0 7 0 ~ . (45C) Freeman, G. H. C., King, W. H., J . Phys. E , 10, 894 (1977). (46C) Furtak. T. E.. Aool. Oot.. 16. 803 (1977). (47C) Genzel, L , Sakai, K , J ODt SOC A m , 67, 871 (1977) (48C) Gilham, E. J., Appl. Opt.. 16, 300 (1977). (49C) Goldstein, S.A., Watters, J. P., Specfrochim. Acta, Parts, 31, 201 (1976). 150C) Goldstein. S.A,. Walters. J. P.. Soecfrochim. Acta. Part 8. 31. 295 11976). . , (SIC) Haensch, T. W., Opt.'Leff.; 1, 191 (1977). (52C) Hamm, F. M., Zeeman, P. B., Appl. Spectrosc., 30, 70 (1976). (53C) Harris, J. M., Lytle. F. E., McCain, T. C., Anal. Chem., 48, 2095 (1976). (54C) Harrison, G. R., Loewen, E. G., Appl. Opt., 15, 1744 (1976). (55C) Harrison, G. R.. Loewen, E. G., Wiley, R. S.,Appl. Opt., 15, 971 (1976). (56C) Hayes, J. M., Schoeller, D. A,, Anal. Chem., 49, 306 (1977). (57C) Herkt, W., Mulier, G., Appl. Spectrosc., 31, 466 (1977). (58C) Hodge, E. S., Appl. Opt., 15, 1722 (1976). (59C) Horlick, G., Appl. Spectrosc., 30, 113 (1976). (60C) Hosch, J. W., Walters, J. P., Appl. Opt., 16, 473 (1977). (61C) Howell, N. G., Morrison, G. H., Anal. Chem., 49, 106 (1977). (62C) Hoyt, S. D.. Ingle, J. D., Jr., Anal. Chem., 48, 232 (1976). (63C) Hyde, W. L., Appl. Opt., 15, 1726 (1976). (64C) Ingle, J. D., Jr., Anal. Chem., 49, 339 (1977).

ANALYTICAL CHEMISTRY, VOL. 50, NO. 5, APRIL 1978 (65C) Jenkins, F. A,, White, H. E., "Fundamentals of Optics, 4th Ed.", McGawHill, New York, N.Y., 1976. (66C) Jones, D. P., Appl. Opt., 15, 910 (1976). (67C) Keliher, P. N., Wohler, C. C., Anal. Chem.. 48, 333A (1976). (68C) Key, P. J., Preston, R. C., Appl. Opt., 16, 2477 (1977). (69C) Koirtyohann, S. R., Glass, E. D., Yates, D. A., Hinderberger, E. J., Lichte, F. E., Anal. Chem., 49, 1121 (1977). (70C) Kondrashov, V. E., "Optics of Photocathodes", Nauka. Moscow, USSR, 1976; reviewed in Appl. Opt., 16, 1456 (1977). (71C) Kreye, W. C.. J . Opt. SOC. A m . , 65, 1427 (1975). (72C) Liddell, H., "Design Techniques for Mukibyer Filter Systems", Adam Hilger, London, 1976. (73C) Lindau, I., Winick, H., Comments At. Mol. Phys., 6, 133 (1977). (74C) Lizunkov, G. P., Chubrik, N. I., Shimanovich, V. D., Zh. Prikl. SpeMrosk., 27, 410 (1977). (75'2) Loewen, E. G.. Neviere, M., Maystre, D., Appl. Opt., 16, 2711 (1977). (76C) Marette, G., €SA Sci. Tech. Rev.. 2, 55 (1976). (77C) Mel'nik, N. N., Podobedov, V. B., Pyndyk, A. M., Sterin, Kh. E., Zh. Prikl. Spektrosk., 24, 9 (1976). (78C) Meyling, J. H., Hesselink, W. H., J . Phys. E , IO, 438 (1977). (79C) Mielenz. K. D., Anal. Chem., 46, 1093 (1976). (8OC) Morita, K., KinzokuZairyo, 15, 29 (1975); Chem. Abstr., 87, 47564~. (81C) Morton, L., Morgan, B. L., Airey, R. W., McMullan, D., Ed., "Advances in Electronics and Electron Physics, Vol. 40A and B: Photc-Electronic Image Devices", Academic, London, Engl., 1976. (82C) Mount, G. H., Yamasaki, G., Fowler, W.. Fastie, W. G., Appl. Opt., 16, 591 (1977). (83C) Namioka, T.. Seya, M., Noda, H., Jpn. J . Appl. Phys., 15, 1181 (1976). (84C) Nebe, W., Compr. Anal. Chem., 8, 391 (1977). (85C) Nicodemus, F. E., Ed., Natl. Bur. Stand. ( U . S . ) Tech. Note, 910-1, 82 pp 1976. (86C) Nieman, T. A., Enke, C. G., Anal. Chem., 48, 619 (1976). (87C) Nubbemeyer, H., Wende. B., Appl. Opt., 16, 2708 (1977). (88C) Nussbaum, A., Phillips, R. A,, "Contemporary Optics for Scientists and Engineers", Prentice-Hall, Engiewood Cliffs, N.J., 1976. (89C) Ostertag, E., Rev. Sci. Instrum., 48, 18 (1977). (9OC) Palmer, E. W., Hutley, M. C., Franks, A., Verrill, J. F., Gale, B., Rep. Frog. Phys.. 36, 975 (1975). (91C) Pasachoff, J. M., Muzyka, D. F., Schierer, J. P.. Jr., Appl. Opt., 15, 2884 119761. (92'C) Perman, J., Kem. Kozl., 45, 259 (1976). (93C) Perreault, G. J., Cookingham, R. E., Spoonhower, J. P., Lewis, A,, Appl. Spectrosc., 30, 614 (1976). (94C) Piuechard, G., Flamand, J., Cordelle, J., US. Patent, 3909 134 (30 Sept 1975) and 3 930 728 (6 Jan 1976). (9%) Preston, R. C., Inst. Phys. Conf. Ser., 26 (Temp. Meas.), 348 (1975). (96C) Preston, R. C., J . Phys. € 3 , IO, 1377 (1977). (97C) Preston, R. C., J . Quant. Spectrosc. Radiat. Transfer, 18, 337 (1977). (98C) Pruiksma, R.. Ziemer, J., Yeung, E. S., Anal. Chem., 48, 667 (1976). (99C) Rayside. J. S., McLendon, W. B., Fletcher, W. H.. Chem. Instrum., 7, 271 (1976). (1OOC) Res, M. A., Kok, C. J., Bednarik, J., Kroger, K., Appl. Opt., 16, 1908 (1977). (101C) Rogoff, G. L., J . Opt. Soc. A m . , 67, 44 (1977). (102C) Rothballer, W., Opt. Commun., 20, 429 (1977). (103C) Roumiguieres, J. L., Maystre. D.. Petit, R., J . Opt. SOC. Am.. 66, 772 (1976). (104C) Rowe, E. M., Weaver, J. H., Sci. Am., 236, 32 (1977). (10%) Sastri, V. D. P., Appl. Spectrosc., 31, 246 (1977). (106c) Sunders, R. D.. Shumaker. J. 8.. NBS Tech. Note(U.S.), 594-13(1977). (107C) Scheeline, A., Walters, J. P., Anal. Chim. Acta, 95, 59 (1977). (108C) Scheeline, A., Walters, J. P., Anal. Chem., 48. 1519 (1976). (10%) Shectman, S. A., Hiltner. W. A., Pub/.Astron. Soc. Pac.. 88, 960 (1977). (llOC) Sidran, M., Appl. Opt., 16, 2791 (1977). (111'2) Siefart, E., Appl. Opt., 16, 1163 (1977). (112C) Skogerboe, R. K., Lamothe, P. J., Bastiaans, G. J., Freeland, S. J., Coleman, G. N., Appl. Spectrosc., 3 0 , 495 (1976). (113C) Smith, M. A,, Gray, D. F., Publ. Astron. Soc. Pac., 88, 809 (1977). (114C) Snow, E. H., Res.lDev., 27 (4), 18 (1976). (115C) Sobieski, S., Appl. Opt., 15, 2298 (1976). (116C) Spicer, W. E., Appl. Phys., 12, 115 (1977). (117C) Spicer, W. E., Tech. Dig.-Int. Nectron Devices Meet., 57 (1975). (118C) Spillman, R. W., Malmstadt, H. V., Anal. Chem., 48, 303, (1976). (119C) Strong, J., Appl. Opt.. 15, 1741 (1976). (120C) Sutter, E., Moeller, W., Optik(Stutfgarf),48, 471 (1977). (121C) Sydor, R. J., Sinnamon. J. T., Hieftje, G.M., Anal. Chem., 46, 2030 (1976). (122C) Talmi, Y., Crosmun, R., Larson, N. M., Anal. Chem., 48, 326 (1976). (123C) Talmi, Y., Crosmun, R., Anal. Chem., 49, 340 (1977). (124C) Timothy, J. G., Bybee, R. L., Rev. Sci. Instrum., 46, 1615 (1975). (125C) Torok, T., Buzasi, A,, Zaray, Gy., Spectrochim. Acta, PartB, 31, 501 (1977). (126C) Turnbull, R. S., Illingworth, R., J . fhys. E. 9, 333 (1976). (127C) Vanasse. G. A.. Ed.. "SDectrometric Techniaues. Vol. 1". Academic. New York, N.Y., 1977. (128C) van der Piepen, H., Claase. C., de Villiers, D. B.. Spectrochim. Acta, Part E . 31. 389 11976). ( i z g c ) velzei, C. H. F., j . opt. SOC. ~ m .66, , 346 (1976). (130C) Velzel, C. H. F.. J . Opt. SOC. Am., 67, 1021 (1977). (131C) Visser, K., Hamm. F. M., Zeeman, P. B., Appl. Spectrosc.,30, 72(1976). (132C) Walters, J. P., Contemp. Top. Anal. Clin. Chem., 2, (1978). (133C) Walters, J. P., Hollar, 8. D., Coleman, D. M., Anal. Chem., 48, 1261 (1976). (134C) Ward, J., Thin Solid Films, 34, 417 (1976). (13%) Watters, R. L., Jr., Walters, J. P., Rev. Sci. Instrum., 48, 643 (1977).

115 R

(136C) Wheeler, C. E., Arakawa. E. T., Ritchie, R. H., Phys. Rev. 6 , 13, 2372 (1976). (137C) Winefordner, J. D., Avni, R., Chester, T. L., Fitzgerald, J. J., Hart, L. P., Johnson, D. J., Plankey, F. W., Spectrochim. Acta, ParfB, 31, l(1976). (138C) Wolf, E., Ed., "Progress in Optics, Voi. XIV", North-Holland, New York, N.Y., 1977. (139C) Yates, D. A., Kuwana, T., Anal. Chem., 48, 510 (1976). (140C) Yuen, W. K., Horlick, G., Anal. Chem., 49, 1446 (1977). STANDARDS, SAMPLES, CALIBRATION, CALCULATIONS

Anders. 0. U., Anal. Chem.. 49, 33A (1977). Apel, C. T.. Report, LA-6010, 18 pp, 1975. Asai, H., Bunko Kenkyu, 25, 25 (1976). Bernas, B., Am. Lab., 8 (a), 27 (1976). Berstermann, W., Ger. Patent, 2607596 (17 Feb. 1977). Betzer, P. R., Eggimann, D., U.S. Patent, 4013419 (22 Mar 1977). Blevins, D. R., O'Neill, W. R., Appl. Spectrosc., 30. 190 (1976). Burgudzhev, Z., L'ochkova, M., Stefanova, D., Koleva, I., Mikrochim. Acta, 1_ ,4. 4. 1. (19761 -,. (9D) Burgudiev, Z., Zimmer, K., Boblina, E., Mag. Kem. Foly., 83, 110 (1977). (1OD) Butlerworth, A., Hunt, M., U.S. NTIS, PB Rep., PB-256052, 12 pp (1976). 1llD1 Cali. J. P.. Anal. Chem.. 48. 802A 11976). i l 2 D j Dabeka. R. W.. Mvkvtiuk, A,. Berman. S.S ,'Russell, D. S.,Anal. Chem., .. ' 46, 1203 (1976). (13D) Dale, L. S..Whittem. R. N., Appl. Spectrosc., 3 0 , 469 (1976). (14D) Danzer, K., Z. Chem., 15, 326 (1975). (15D) Denshchikova, 0. A., Ronin, V. A,, Mawh, V. D., ZasVozhin, S. I., Khrapai, V. P.. Belova. R. A,. Zavod. Lab.. 42. 1347 11976). (16D) dimitrov, 'I., Mikhovski, M., Dyulgerov. K.; Teneva, M., Manolova, V., Bradvarova, D., Kovacheva, R., Dundarov, S., Tekh. Mlsul, 13, 89 (1976). (17D) Dittrich, K., Niebergall, K., Roessler, H., Spectrochim. Acta, Part E , 31, 331 (1976). (18D) Dittrich. K., Roessler, H., Niebergall. K., Acta Chim. Acad. Sci. Hung., 89, 347 (1976). 119D) Dittrich. K.. Nieberaall. K.. Roessier. H.. Acta Chlm. Acta. Sci. Huna., ' 86, 365 (1976). (20D) Eggimann, D. W., Betzer, P. R., Anal. Chem., 48, 886 (1976). (21D) Eckschlager, K., Anal. Chem., 49, 1267 (1977). (22D) Eckschlager, K., Co//ect. Czech. Chem. Commun., 40, 3627 (1975). (230) Eckschlager, K., Collect. Czech. Chem. Commun.. 41, 1875 (1976). 124D) Eckschlaoer. K.. Collect. Czech. Chem. Commun.. 41, 2527 (1976). (25Dj Eckschlaier, K., Collect. Czech. Chem. Commun., 42, 225 (1977). (26D) Eckschlager, K., Fresenius' Z . Anal. Chem., 277, l(1975). (27D) Engieman, R., Jr.. Radziemski, L. J., Jr., Appl. Opt., 14, 2821 (1975). (28D) Fassel, V. A., Anal. Chem., 48, 2294 (1976). (29D) Fischer, D., Kreitz, N., Fresenius' Z. Anal. Chem., 261, 115 (1976). (300) Gold, H. S., Rechsteiner, C. E., Buck, R. P., Anal. Chem., 46, 1540 (1976). Sukhov, G. V., Zh. (31D) Gorbunova, L. B., Kuteinikov, A. F., Marunina, N. I., Anal. Khim., 31, 2061 (1976). (32D) Gottschalk, G., Fresenius' Z . Anal. Chem., 276, 81 (1975). (33D) Gottschaik, G., Fresenius' Z . Anal. Chem., 276, 257 (1975). 134D) Gursarskii, V. V., Fridman, G. I.. Borisenko. V. E.. Medvedeva. M. S.. Zh. Anal. Khim., 31. 2187 (1976). (35D) Heltai, G., Torok, T., Spectrochim. Acta, Part B , 32, 107 (1977). (36D) Hirschfeld, T.. Anal. Chem., 46, 16A (1976). (37D) Hoeschen, D., Mirande, W., Optik(Stuttgart),48, 459 (1977). (38D) Ingamells, C. O., Talanta, 23, 263 (1976). (39D) Ingle, J. D., Jr., Wilson, R. L, Anal. Chem., 48, 1641 (1976). (40D) IUPAC Analytical Chemistry Division, Pure Appl. Chem., 45, 99 (1976). (41D) IUPAC Physical Chemistry Division, Pure Appl. Chem., 48, 503 (1976). (42D) Johnson, G. D., Appl. Spectrosc., 31, 565 (1977). (43D) Kaiser, H., Meas., Detect. ControlEnviron. Pullut., Proc. Int. Symp., 467 (1976). (44D) Kapoor, S. K., Singh, I. D., Gupta, P. I., Appl. Spectrosc., 31. 473 (1977). (45D) Kaszerman, R., Anal. Chem., 48, 2293 (1976). (46D) Kayama, E., Chutanzo, 28, 3 (1975); Chem. Abstr., 85, 127913k. (47D) Kemp. N.. Juste, R., S. Afr. Spectrosc. Conf. (Proc.) Znd, IX, 16 pp. (1972). (48D) Klockenkaemper, R., Fresenius' Z . Anal. Chem., 285. 345 (1977). (49D) Koch, 0. G., Anal. Chim. Acta, 82, 19 (1976). (50D) Krasil'shchik, V. Z.,Zavod. Lab., 42, 153 (1976). (51D) Krasil'shchik, V. Z., Shteinberg, G. A., Zavod. Lab., 42, 279 (1976). (52D) Krasil'shchik, V. Z., Shteinberg, Zh. Anal. Khim., 31, 5 (1976). (53D) Krasil'shchik, V. Z.,Voropaev, E. I., Zavod. Lab., 42, 424 (1976). (54D) La Fleur, P. D. Ed., "Accuracy in Trace Analysis: Sampling, Sample Handling, Analysis, Vol. 1 and 2 : Proceeding of the 7th Materials Research Symposium held at National Bureau of Standards, Gaithersburg. Md., October 7-11, 1974", Natl. Bur. Stand. ( U . S . ) Spec. fubl., 422, 1304 pp, 1976. (55D) Laing, R. A., Oak, S. M., Appl. Opt., 15, 1276 (1976). (56D) Mai, H., Stahlberg, U., Jena Rev., 21, 316 (1976). (57D) Margoshes, M., Comput. Chem. Instrum.. 5 (Lab. Syst. Spectrosc.), 89-139 (1977). (58D) Martinie, G. D., Schiit, A. A,, Anal. Chem., 48, 70 (1976). (59D) Matherny, M., Chem. Zvesti, 3 0 , 153 (1976). (60D) Matherny, M., Kem. Kozl., 45, 145 (1976). (61D) Matherny, M., Spectrosc. Lett., 9, 113 (1976). (62D) Michaelis, R. E., Pure Appl. Chem., 49, 1483 (1977). (63D) Michalowski, T., Parczewski, A,. Rokosz. A., Chem. Anal. (Warsaw), 21, 979 (1976). (64D) Minogashira, T., Shiokawa, Y., Suzuki, S , Kagaku No Ryoiki, 29, 420 119751: Chem Abstr . 84. 1 5 9 1 2 2 ~ (65D) Moody, J. R., Lindstrom, R. M., Anal. Chem., 49, 2264 (1977) (66D) Naganuma, K., Kato, M.. Bunko Kenkyu, 24, 342 (1975). (67D) National Bureau of Standards, "National Bureau of Standards Special Publication 260: Catalog of NBS Standard Reference Materials. 1975-76 Ed.", 87 pp (1975).

(1D) (2D) (3D) (4D) (5D) (6D) (7D) (8D)

I

ll6R

ANALYTICAL CHEMISTRY, VOL. 50, NO. 5, APRIL 1978

(68D) Nepokoichitskii,A. G., Tukmachev, G. V., Zh. Prikl. SpeMrosk., 25, 172 (1976). (69D) Nishimura, K., Gendai Kagaku, 70, 34 (1977). (70D) Okochi, H., Takahashi, K., Suzuki, S., Sato, K., Sudo, E., Nippon Kinzoku Gakkaishi, 41, 492 (1977); Chem. Abstr., 87, 7 1 9 4 6 ~ . (71D) Okochi, H., Takahashi, K.. Suzuki. S., Sub,E., Nippon K/nzoku Gakkaishi, 40, 638 (1976); Chem. Abstr., 85, 127912). (72D) Okochi, H., Takahashi, K., Suzuki, S., Sudo, E., Trans. Natl. Res. Inst. Met., 19, 19 (1977). (73D) Paton, B. E., Lakomsky, V. I., Torkhov, G. F., Trigub, V. K.. Sheiko, I. V.. Verkhovtsev, E. V., Bakumenko, S. P., Ponomarev, N. A,, Kuzmin, A. A., U.S. Patent, 4017672 (12 Apr. 1977). (74D) Pliner, Yu. L., Ustinova, V. I., Zavod. Lab.. 42, 1450 (1976). (75D) Raiskii. S. M., Nalimov, V. V., Zh. Prikl. Spektrosk., 26, 927 (1977). (76D) Redfield, H. L.. Wagoner, W. S., Mohr. R. H.. Anal. Chem., 49, 679 (1977). (77D) Rouh M. W., Swartz, P. A., Denton, M. B., Anal. Chem., 49, 1422 (1977). (78D) Sastry. M. D.. Page, A. G., Joshi, B. D., India, A.E.C., 8habha At. Res. Cent. (Rep.). BARC-879, 26 pp (1976). (79D) Schmitz, L., Loose, W., Koch, K. H., fresenius' Z. Anal. Chem., 276, 111 (1975). (BOD) Schwartz, L. M., Anal. Chem.. 49, 2062 (1977). (81D) Schwiecker, H., J. Quanf. Spectrosc. Radiat. Transfer, 18, 623 (1976). (82D) Seward, R. W., Yolken. H. T., Natl. Bur. Stand. ( U . S . ) , Spec. Pub/., 483, VII.4.1-VII.4.14 (1977). (83D) Statham, P. J., Anal. Chem., 49, 2149 (1977). (84D) Stepin, V. V., Pliner, Yu. L., Ustinova, V. I., Kuz'min, I.M., Zavod. Lab., 42, 249 (1976). (85D) Sulcek, Z.,Povondra, P., Dolezal, J., Crit. Rev. Anal. Chem., 8, 255 (1977). (86D) Suzuki. T., Asakawa, H., Nishjama, S., Tetsu To &gam, 62, 1560 (1976); Chem. Abstr., 86, 50169h. (87D) Svehia, A., Salcerova, M., Schiessl, O., Chem. Listy, 69, 1189 (1975). (88D) Tait, B. A. R., Coats, J. S., Inst. Geol. Sci. London, Rep., 76-11, 1 (1976). (89D) Taran, R. I., Steklo Keram., (IO), 36 (1976). (9OD) Toda, S.,Dokiya, Y., Yamazaki, S., Kagaku No Ryoiki, 29, 627 (1975); Chem. Abstr., 85, 28111r. (91D) Triiesnik. I.I., Romanova, V. D., Zh. Prikl. SpeMrosk., 25, 587 (1976). (92D) Uchida, T., Nagase, M., Iida, C., Anal. Lett., 8, 825 (1975). (93D) Uriano, G. A., Gravatt, C. C., Crit. Rev. Anal. Chem.. 6, 361 (1977). (94D) Ustinova, V. I., Stepin, V. V., Kuz'min, I.M., Politov. P. G., Zavod. Lab., 42, 1149 (1976). (95D) Walthali, F. G., Dorrzapf, A. F., Jr., Flanagan, F. J., U . S . Geol. Surv.. Prof. Pap., 840, 99-115 (1976). (96D) Weiss, H. V., Shipman, W. H., Guttman, M. A,, Anal. Chim. Acta, 81, 211 (1976). (97D) Zief, M., Mitchell, J. W., "Chemical Analysis: Monographs on Analytical Chemisby and Its Appliikns, Vd. 47: Contamination Conbol in Trace Element Analysis", Wiiey, New York, N.Y., 1976. EXCITATION SOURCES

(IE) Abdaliah, M. H., Diemiaszonek, R., Jarosz, J., Mermet, J. M., Robin, J., Trassv. C.. Anal. Chim. Acta. 84. 271 119761. (2E) Abdallah. M. H.. Mermet. J. M.. J . Quant Radiat. Soectrosc. Transfer, 19, 83 (1978) (3E) Abdailah, M. H , Mermet, J. M., Trassy. C , Anal. Chim. Acta, 87, 329 119761 (4E) Ackermann, G., Muenx, M., Talanta, 24, 91 (1977). (5E) Adachi, F., Mori, O., Negishi, R., U c h i i , H., Kanagawa-Ken K c g o Shikensho Kenkyu Hokoku, 48, 67 (1976); Chem. Abstr., 87, 27930m. (6E) Adlar. E. R., Crit. Rev. Anal. Chem., 5 , 1 (1975). (7E) Aeschliman. D. P., Evans, D. L., J. Quant. Spectrosc. Radiat. Transfer, 16. 119761. .., 191 .. - . -I (8E) Ageev, V. A,, Koiesnik, A. V., Strelkov. L. A,, Yankovskii, A. A,, Zh. Prikl. Soektrosk.. 26. 213 (1977). (9E) 'Ageev, V. A.; Yankovski(, A. A., Zh. Prikl. Spektrosk., 25, 605 (1976). (10E) Ajhar, R. M., Dalager, P. D., Davison, A. L., Am. Lab., 8 (3), 71 (1976). (11E) Alder, J. F., Gunn, A. M., Kirkbright, G. F., Anal. Chim. Acta, 92, 43 (1977). (12E) Allemand, C. D., Barnes, R . M., Appl. Spectrosc., 31, 434 (1977). (13E) Anderson, J. D., Jr., "Gas Dynamic Lasers: An Introduction", Academic, New York, N.Y., 1976. (14E) Antonov, G. S., Borisevich, T. K., Kiselevskii. L. I., Kurikina. T. M., Zh. Prikl. Spektrosk., 25, 532 (1976). (15E) Apolitskii, V. N., Zh. Prikl. Spektrosk., 24, 539 (1976). (16E) Apostol. I., Kagan, Yu. M., Lyagushchenko, R. I., Khvorostovskii, S. N., Khodorkovskii, M. A,, Opt. Spektrosk., 42, 256 (1977). (17E) Apostol, I., Kagan, Yu. M., Lyagushchenko, R. I., Khvorostovskii, S. N., Khodorkovskii, M. A,, Zh. Tekh. Fiz.. 48, 1997 (1976). (18E) Arslanov, D. I., Tret'yakov, M. A,, Zavod. Lab., 41, 1333 (1975). (19E) Atsuya, I., Akatsuka, K., Anal. Chim. Acta, 81, 61 (1976). (20E) Atsuya, I., Kawaguchi, H., Veillon, C., Vallee, B. L., Anal. Chem., 49, 1489 (1977). (21E) Baksht, R. B.. Korolev, Yu. D., Mesyats, G. A,, f i z . Plazmy(Moscow), 3, 652 (1977). (22E) Balian, R., Haroche, S., Liberman, S., Ed., "Les Houches, Vol. 27, Pt. 1: Frontiers in Laser Spectroscopy" (Les Houches, Vol. 27, F-t. 1: Aux Frontieres de la Spectroscopie Laser), North-Holland, Amsterdam, 1977. (23E) Balian, R., Haroche, S., Liberman, S., Ed., "Les Houches, Vol. 27, Pt. 2: Frontiers in Laser Spectroscopy" (Les Houches, Vol. 27, F-t. 2: Aux Frontieres de ia Spectroscopie Laser), North-Holland, Amsterdam, 1977. (24E) Bankston, D. C., Fisher, N. S., Anal. Chem., 49, 1017 (1977). (25E) Barakat, N., Shawky, I., Hekmat, S. M., Acta Phys. Acad. Sci. Hung., 40, 19 (1976). (26E) Baranova, I . D., Tskhai, N. S., Zh. Priki. Spektrosk.. 26, 413 (1977). (27E) Barnes, R. M., Nikdei. S., Appl. Spectrosc., 30, 310 (1976). (28E) Barnes, R . M.. Nikdel, S., J . Appi. Phys.. 47, 3929 (1976). I

(29E) Barton, H. N., Appl. Spectrosc., 30, 634 (1976). (30E) Basov, N. G., Ed., "Proceedings (Trudy) of the P. N. Lebedev Physics Institute, Vol. 76: Lasers and Their Applications", Consultants Bureau, New York, N.Y., 1976. (31E) Basov, N. G., "Proceedings (Trudy) of the P. N. Lebedev Physics Institute, Voi. 78: Research in Molecular Laser Plasmas", Consultants Bureau, New York, N.Y., 1976. (32E) Basov, N. G., Ed., "Proceedings (Trudy) of the P. N. Lebedev Physics Institute, Voi. 81: Pulse Gas-Discharge Atomic and Molecular Lasers", Consultants Bureau, New York, N.Y., 1976. (33E) Basov, N. G., Ed., "Proceedings (Trudy) of the P. N. Lebedev Physics Institute, Vol. 84: Temporal Characteristics of Laser Pulses and Interaction of Laser Radiation with Matter", Consultants Bureau, New York, N.Y., 1977. (34E) Beenakker, C. I.M., Spectrochim. Acta, Part 8 ,31, 483 (1976). (35E) Beenakker, C. I. M., Spectrochim. Acta, Part 8 ,32, 173 (1977). (35aE) Beenakker, C. I.M., Boumans, P. W. J. M., Spectrochim. Acta, Part 8,33, 53 (1978). (36E) Beesley, M. J., "Lasers and Their Applications", Taylw and Francis, London, Engl., 1976. (37E) Bekefi, G., Ed.. "Principles of Laser Plasmas", Wiley, New York, N.Y., 1976. Toth, J., Magy. Kem. foly., 82, 571 and 575 (1976). (38E) Benko, I., (39E) Bentiey, G. E.. Parsons, M. L., Anal. Chem., 49, 551 (1977). (40E) Bevan, D. G., Kirkbright, G. F., Appl. Spectrosc., 30, 162 (1976). (41E) Black, M. S.,Sievers, R. E., Anal. Chem., 48, 1872 (1976). (42E) Bium. F., Bueger, P. A.. Ferreira, N. P., Z. Naturforsch. A, 32, 785 (1977). (43E) Bobrov, A. A., Volkova, L. M., Devyatov. A. M., Faziaev, V. Kh., Vestn. Mosk. Univ.. f i z . , Astron., 17, 617 (1976). (44E) Bokova, N. A., Ivasenko, N. F., Zh. Prikl. Spektrosk., 25, 593 (1976). (45E) Bondarenko, A. V.. Zh. Tekh. f i z . , 48, 2535 (1976). (46E) Boulos, M. I., I€€€ Trans. Plasma Sci., 4, 28 (1976). (47E) Boulos, M. I., I€€€ Trans. Plasma Sci., 8, (1978). (48E) Boumans, P. W. J. M., fresenius' Z. Anal. Chem., 279, 1 (1976). (49E) Boumans, P. W. J. M., Proc. Anal. Div. Chem. Soc., 14, 143 (1977). (50E) Boumans, P. W. J. M., Spectrochim. Acta, Part 8 ,31, 147 (1976). (51E) Boumans, P. W. J. M., De Boer, F. J., Spectrochim. Acta, Part8, 31, 355 (1976). (52E) Boumans, P. J. W. M., De Boer, F. J., Spectrochim. Acta, Part 8,32, 365 (1977). (53E) Braman, R. S.,Johnson, D. L., Foreback, C. C., Ammons, J. M.. Bricker, J. L., Anal. Chem., 49, 621 (1977). (54E) Brassem, P., Maessen, F. J. M. J., Spectrochim. Acta, Parts, 30, 547 (1975). (55E) Brassem, P., Maessen, F. J. M. J.. De Galan, L., Specfrochim. Acta, Part 8 ,31, 537 (1976). (56E) Brenner, I.B., Geit, L., Harel, A,. Appl. Spectrosc., 30, 335 (1976). (57E) Brezna, E., Veis, S.,Acta Phys. Slovaca, 26, 168 (1976). (58E) Britske, M. E., Sukach, Yu. S., Filimonov, L. N., Zh. Prikl. Spektrosk.. 25, 5 (1976). (59E) Brown, C. P., Hillier, C. R., Can. J . Spectrosc., 20, 145 (1975). (60E) Bruhn, C. G., Harrison, W. W., Anal. Chem., 50, 16 (1978). (61E) Brunet, A., Rev. Phys. Appl., 12, 1105 (1977). (62E) Buckle, E. R., J . Sheffield Univ. Metall. Soc., 13, 39 (1974). (63E) Buravlev, Yu. M., Morokhovskaya, I. I., Murav'ev, V. N., Nadezhda, B. P., Zavod. Lab., 42, 169 (1976). (64E) Burman, J. O., Bostrom, B., Bostrom, K., Geol. Foeren. StockholmFoerh., 99. Pt. 2. 102 119771. (65E)' Burragato, F., Rondelli, F., Rend. Soc. Ita/. Mineral. Petrol., 32, 661 (1976). (66E) Butler, L. R. P., Kroeger, K., West, C. D., Spectrochim. Acta, P a r t 8 , 30, 489 (1975). (67E) Butterworth, A., U . S . NTIS, P8 Rep., PB-256051, 12 pp (1976). (68E) Bykovskii, Yu. A,, Babenkov, L. M., Basova, T. A,, Belousov, V. I., Ghdskoi, V. M., Gorshkov, V. V., Degtyarev, V. G., Laptev, I.D.. Nevolin, V. N.. Prib. Tekh. ~ k s p . (21, , 163 (1977). (69E) Cain, D., Barnett, P. R., Appl. Spectrosc., 31, 321 (1977). (70E) Caroli, S., Milazzo, G., Benincasa, M., Spectrosc. Lett., 10, 655 (1977). (71E) Castleden, S. L., Kirkbright. G. F., Proc. Anal. Div. Chem. SOC., 13, 331 (1976). (72E) Chan, P. W., Niimura, M., Churchill, R. J., Schanberg, B. C., If€€ Trans. Plasma Sci., 3, 174 (1975). (73E) Charalambous, G., Bruckner, K. J., M8AA Tech. Quarter&, 14, 197 (1977). (74E) Chlids, A. H., Schrenk, W. G., Appl. Spectrosc., 30, 507 (1976). (75E) Coleman, D. M., Walters, J. P., J . Appl. Phys., 48, 3297 (1977). (76E) Coleman, D. M., Walters, J. P., Spectrochim. Acta, Part 8,31, 547 (1976). (77E) Coleman. D. M., Walters. J. P.. Watters, R. L., Jr., Soectrochim. Acta, Part 8 ,32, 287 (1978) (78E) Corney, A,, "Atomic and Laser Spectroscopy", Oxford Univ. Press, Fair Lawn, N.J., 1977. (79E) Cox, W. G., Int. Conf. Environ. Sensing Asses., (Proc.) 1975, 1, 24 (1976). (80E) Cristescu, C. P., Cone, G. F., Popescu, I.M., Preda, A. M., Rev. Roum. Phys., 21, 153 (1976). (81E1 Dahiauist. R. L.. Knoll. J. W.. A m i . Soectrosc.. 32. 1 119781 , , i82Ej Daie,'L. S., Spectrochim. Acta,'Part'B, 31, 515 (1976). (83E) De Gregorio, P., Savastano, G., Metall. Ita/., 88, 463 (1976). (84E) Delijska, A., Pravceva, C., Toncev, N.. Spectrochim. Acta, Part 8 ,31, 121 (1976). (85E) Denk, H. J., "Massen- und Energieanaiyse des Ionenstromes an Kathode einer anomalen Glimmentladung", Ph.D. Dissertation, Dusseidorf, 1975. (86E) Dimitrov, G., Gagov, V., Spectrosc. Lett., I O , 337 (1977). (87E) DimCov, G.. Pebakiev. A., Dimov, D.. Paneva, A,. Chem. Anal. (Warsaw), 20, 723 (1975) (WE) Dobrosavljevtc. J S , Vujisic, B R , Glas Hem Drus , Beogard, 41, 415 (1976), Chem Abstr , 87, 209962f

ANALYTICAL CHEMISTRY, VOL. 50, NO. 5, APRIL 1978 (89E) Dube, G., Boulos, M. I.. Can. J . Spectrosc., 22, 68 (1977). (90E) Duley, W. W., "Cakon Dioxije Lasers. Effects and Applications", Academic, New York. N.Y., 1976. (91E) Dyulgerova, R., Zhechev, D., Pacheva, I., Rashev, S., Spectrosc. Lett.. 8, 1001 (1975). (92E) Eckert, H. U., Aerospace Corp. Rep., ATR-77(9472)-2, 1977. (93E) Eckert, H. U., J . Appl. Phys., 48, 1467 (1977). (94E) Eichler, J., Lenz, H., Appl. Opt., 16, 27 (1977). 195E) Engel'sht, V. S..Urmanbetov. K. U.. Zheenbaev. Zh. Zh.. Zavod. Lab.. 42, 174 (1976). (96E) Engei'sht, V. S., Zheenbaev, Zh. Zh., Izv. Akad. Nauk Kirg. SSR, (2), 3 (1977); Chem. Abstr., 87, 9 4 8 5 0 ~ . (97E) Fassel, V. A., ASTM Spec. Tech. Pub/., 618 (Flameless At. Absorpt. Anal.: Uodate. Svmo.. 1975). 22 11977). (96E) Fassel, V. A,,'Pbre Appl:'Cheb., 49, 1533 (1977). (99E) Fassel, V. A., S. Afr. Spectrosc. Conf. (Proc.), 2nd, VII, 37 pp (1972). (100E) Fassel, V. A., Layton, E. M., Peterson, C., Kniseley, R. N., Workshop Anal. Needs Future Appl. Coal Liquefaction, (Proc.), 271 (1974). (101E) Fassel, V. A., Peterson, C. A., Abercrombie, F. N., Kniseley, R. N., Anal. Chem., 48, 516 (1976). (102E) Feldman, C., Batistoni, D. A,, Anal. Chem., 49, 2215 (1977). (103E) Ferreira, C. M., Delcroix, J. L., J . Phys. (Paris), 38, 1233 and 1241 (1975). (104E) Fischer, D., Spectrochlm. Acta, Part B , 31, 347 (1976). (105E) Fischer, D., 2. Naturforsch. A, 31, 156 (1976). (106E) Fiorian, K., Matherny, M., Zbornk Vedeckych Prac. VSTK, 2, 183 (1977). (107E) Fricke. F. L.. Rose, O., Jr., Caruso, J. A., Talanta, 23, 317 (1976). 1108E) Fuiioka. T.. Obara. M , Ovo Butsuri. 45. 920 (1976): Chem. Abstr.. 86. 147888e. (109E) Garbanno, C., Padalino, G., Tocco, S., Violo, M., Rend. Soc. Itai. Mineral. Petrol.. 32, 779 (1976). (IIOE) Garber, C. C., Taylor, J. W., Anal. Chem., 48, 2070 (1976). (111E) Genna, J. L., Barnes, R. M., Allemand, C. D., Anal. Chem., 49, 1450 11 977). ( I l 2 E ) Gilbert, T. R., Anal. Lett., 10, 599 (1977). (113E) Giovannini, E., Principato. G. B., Rondelli, F., Anal. Chem., 48, 1517 (1976). (114E) Gippius, E. F., Ilyukhin, B. I., Kolesnikov, V. N., Shumskaya, L. I., Zh. Prikl. Spektrosk., 24, 406 (1976). (115E) Goldman, L., Ed., "Annals of the New York Academy of Science, Vol. 267: Third Conference on the Laser, January 30, 1976", N.Y. Acad. Sci., New York. N.Y.. 1976. (116E) Golightly, D. W., Dorrzapi, A. F., Thomas, C. P., Spectrochim. Acta, Part B , 32, 313 (1977). (117E) Gordon, W. A., Appl. Spectrosc.. 30, 329 (1976). (118E) Gouesbet, G., Trinite, M., Lett. Heat Mass Transfer, 4, 141 (1977). (119E) Govindaraju, K., Mevelle, G., Chowrd, C., Anal. Chem., 48, 1325 (1976). (120E) Grampurohit, S. V., Dixit, V. S., Indian J . Pure Appl. Phys., 15, 215 (1977). (121E) Green, R. B., J . Chem. Educ., 54 (9), A365 (1977). (122E) Greenfield, S..Proc. Anal. Div. Chem. SOC., 13, 279 (1976). (123E) Greenfield, S., Proc. R . Aust. Chem. Inst., 44, 24 (1977). (124E) Greenfield, S..McGeachin, H. M., Smith. P. B.. Anal. Chim. Acta, 84, 67 (1976). (125E)'Greenfield, S., McGeachin, H. McD.. Smith, P. B., Tahnta, 23, 1 (1976). (126E) Grisar, U.. Ger. Patent, 2513267 (30 Sep 1976). (127E) Gross, R. W. F., Bott, J. F., Ed., "Handbook of Chemical Lasers", Wiley, New York. N.Y.. 1976. (128E) Gudzenko, 17 Shelepin, L A , Yakovlenko, S I, Tr F,r Inst , Akad Nauk SSSR. 83 100 (1975) (129E) Guilpin, &rbarz:Olli&, J., Spectrochim. Acta, Part& 32, 155 (1977). (130E) Gunn, A. M., Kirkbright, G. F., Opheim, L. N., Anal. Chem., 49, 1492 (1977). (131E) Heavens, 0. S., Contemp. Phys., 17, 529 (1976). (132E) Hedayati, M. A., Bull. Iran Pet. Inst., 58, 5 (1975). (133E) Hibben, S. G., Minkus, C., U . S . NTIS, ADRep., AD-A037817, 139 PP (1977). (134E) Hibben, S. G., Minkus, C., U.S.NTIS, ADRep.. AD-A037816, 110 PP (1977). (135E) Hirokawa, K., Takada, K., Bunseki Kagaku, 26, 141 (1977). (136E) Holcbjtner, I., Georgijevic, V., Vukanovic, V., Fresenius' Z. Anal. Chem., 280, 353 (1976). (137E) Houpt, P. M., Anal. Chim. Acta, 86, 129 (1976). (138E) Hughes, T. P., "Plasmas and Laser Light", Wiley, New York, N.Y., 1975. (139E) Human, H. G. C., Scott.R. H., Spectrcxhim.Acta, PartB, 31, 459(1976). (140E) Human. H. G.C., Scott, R. H., Oakes, A. R., West, C. D., Analyst(London), 101, 265 (1976). (141E) Idzikowski, A., Pr. Nauk. Inst. Chem. Nieorg. Metal. Pierwiastkow Rzadkich Politech. Wroclaw, 32, 47 (1975); Chem. Abstr., 84, 3 3 6 2 6 ~ . (142E) Iova. I., Capota, P., Porumbescu, S., Rev. Roum. Phys., 21, 781 (1976). (143E) Irons, R. D., Schenk, E. A., Giauque, R. D., Clin. Chem. (Winston-Salem, N.C.), 22, 2018 (1976). (144E) Ishizuka, T., Nakajima, K., Tanaka, K., Sunahara, H., Nagoya Kogyo GJutsu Shikensho Hokoku, 25, 299 (1976); Chem. Abstr., 87, 110908f. (145E) Ishizuka, T., Uwamino. Y., Sunahara. H.,Anal. Chem., 49, 1339 (1977). (146E) Jacobs, S. F., Sargent, M., 111, Scully, M. O., Walker, C. T., Ed., "Physics of Quantum Electronics, Vol. 4: Laser Photochemistry, Tunable Lasers, and Other Topics", Addison-Wesley, Reading, Mass., 1976. (147E) JaglelloPuczka, W., Klimecki, W., Chem. Anal. (Warsaw),20, 993 (1975). (148E) Johnson, E. R., Mann, C. K., Vlckers, T. J., Appl. Spectrosc., 30, 415 (1976). (149E) Jones, J. B., Jr., Comm. Soil Sci. Plant Anal., 8, 349 (1977). (150E) Jung, H., Giesserei, 64, 133 (1977). (151E) Kabanova, M. A., Sautina, E. N., Zh. Prlkl. SpeMrosk., 25, 21 (1976). (152E) Kalnicky, D. J., Fassel, V. A., Kniseley, R. N., Appl. Spectrosc., 31, 137 (1977).

i 6..

117R

(153E) Kalnicky, D. J.. Kniseley, R. N., Fassel, V. A., Spectrochim. Acta, Part 8 ,30, 511 (1975). (154E) Kantor, T., Fcdor, P., Youssef, Y. S.,Pungor, E., Hung. Sci. Instrum., 36, 19 (1976). (155E) Kapitonov, A. N., Alekseev, M. A,, Zh. Prikl. SpeMrosk., 25, 210 (1976). (156E) Karpel. N. G., Fedorchuk, 0. K., Zavod. Lab., 42, 928 (1976). (157E) Karyakin, A. V., Semenova, L. F., Ozhegov, P. I., Zh. Anal. Khim., 32, 679 (1977). (158E) Kashima, J., Umemura, F., Bunko Kenkyu, 24, 21 (1975). (159E) Kawaguchi, H., Atsuya, I., Vailee, B. L., Anal. Chem., 49, 266 (1977). (160E) Kawaguchi, H., Okada, M., Mizuike, A,. BunsekiKagaku, 25,344 (1976). (161E) Keirs, C. D., Vickers, T. J., Appl. Spectrosc., 31, 273 (1977). (162E) Kelly, R., Radiat. Eff., 32, 91 (1977). (163E) Khlystova, A. D., Razmadze, G. B., Artemova, T. N., Zh. Anal. Khlm., 31, 2293 (1976). (164E) Khristov, N., J . Quant. Spectrosc. Radiat. Transfer, 18, 373 (1977). (165E) Kirchheim, R., Nagorny, U.. Maier. K., Toig, G., Anal. Chem., 48, 1505 (1976). (166E) Kirichenko, V. I., Tkachenko, V. M., Tyutyunnik, V. B.. Zh. Tekh. Fiz., 46, 1857 (1976). (167E) Kitagawa, K., Takeuchi, T., Kagaku (Kyoto). 30, 892 (1975); Chem. Abstr., 85, 136518n. (168E) Klockenkaemper, R., Laqua, K., Spectrochim. Acta, Part 6 ,32, 207 (1977). (169E) Klueppel, R. J., Coleman, D. M., Eaton, W. S., Goldstein, S. A,, Sacks, R. D., Walters, J. P., Spectrochim. Acta, Part B. 33, 1 (1978). (170E) Klueppel, R. J., Coleman, D. M.. Hosch, J. W., Wakers, J. P., Spectrochm. Acta, Part 8,33, (1978). (171E) Koechner, W., "Springer Series in Optical Sciences, Vol. 1: Soli-State Laser Engineering", Springer-Verlag, New York, N.Y., 1976. (172E) Kohsiek, W., J . Quant. Spectrosc. Radiat. Transfer, 16, 1079 (1976). (173E) Kohslek, W., Plasma Phys., 17, 1083 (1975). (174E) Koizumi, H., Yasuda, K., Spectrochim. Acta, PartB, 31, 237 (1976). (175E) Kojadinovic. J., Ricard, A., J . Phys. (Paris) Lett., 38, 9 (1977). (176E) Kolesnikov, V. N.. Fomin, V. K., Shumskaya, L. I., Zh. Prlkl. SpeMrosk., 24, 592 (1976). (177E) Kondrashov, N. G., Kolesnik, A. V., Asimova, V. D., Inzh.-Fiz. Zh., 29, 902 (1975). (178E) Kornblum, G. R., DeGabn, L., Spectrochim. Acta, Part B , 32, 455 (1977). (179E) Kornblum, G. R., De Gabn, L., Spectrochim. Acta, Part 6,32, 71 (1977). (180E) Korovin, Yu. I., Kuchumov, V. A., Ignashkin, A. N., Zh. Prlkl. SpeMrosk., 26, 971 (1977). (181E) Kozak, J., Chem. Listy, 71, 424 (1977). (182E) Krasil'shchik, V. Z., Raginskaya, L. K.. Manova, T. G., Zh. Wk/. Spekirosk., 28, 219 (1977). (183E) Krasil'shchik. V. Z., Raginskaya, L. K., Manova, T. G., Zh. Wkl. SpkWsk., 26, 408 (1977). (184E) Krasnobaeva, N., Nedyalkova-Daskalova,N., Zh. Prikl. SpeMrosk., 23, 768 (1975). (185E) Krasnobaeva, N., Nedyalkova-Daskalova,N., Zh. Prikl. SpeMrosk., 28, 201 (1977). (186E) Krat'ko, S. A., Nekrashevich,I.G., Zh. Prikl. SpeMrosk., 23, 774 (1975). (187E) Kubota, M., Anal. Chim. Acta. 88, 79 (1977). (188E) Kukarina, L. V., Kalmykova, I.S., Shavrin, A. M., Zh. Prikl. SpecMrosk., 24, 516 (1976). (169E) Kuznetsova, L. A., Petrova. N. G.. Podmoshenskava. S. V.. Zh. Prlkl. Spektrosk.. 24, 576 (1976). (190E) Kvaratskheli, Yu. K., Khromilin, M. I., USSR Patent, 479996 (5 Auq 1975); Chem. Abstr., 84, 12042n. (191E) Lampe, F. W., Risby. T. H., Serravallo, F. A,, Anal. Chem., 49, 560 (1977). (192E) Larson, G. F., Fassel, V. A,, Anal. Chem., 48, 1161 (1976). (193E) Larson, G. F., Fassel, V. A,, Winge. R. K., Kniseley, R. N., Appl. speck^^^., 30, 384 (1976). (194E) Letokhov, V. S., Chebotayev, V. P., "Springer Series in Optical Sciences, Vol. 4: Nonlinear Laser Spectroscopy", Springer-Verlag, Berlin, 1977. (195E) Ling. C. S., Sacks, R. D., Anal. Chem., 48, 1500 (1976). (196E) Lowe, R. M., Spectrochim. Acta, Part E , 31, 257 (1976). (197E) Maessen, F. J. M. J., Eicersma. J. W.. Boumans. P. W. J. M.. Soectrochim. Acta, Part 5 ,31, 179 (1676). (198E) Maksimov, D. E., Rudnevskii, N. K., Ryabchikova, V. P., Chekhonin, S. M., Shlyapnikov, I.V.. Shklyaeva, I. S., Zavod. Lab., 43, 445 (1977). (199E) Malmary-Nebot, M. F., Ricard, A., C . R . Hebd. Seances Acad. Sci., Ser. B . 283. 171 11976). (200E) Malamand, F.: Anajusis, 5, 127 (1977). (201E) Mankevich, V. N., Nepokoichiikii, A. G., Skiba, P. A,, 2%. M l . SpeeMrosk., 25, 719 (1976). (202E) Mann, M. M., AIAA Pap., 75-34, 22 pp (1975). 1203E) Mann. M. M.. AIAA J . . 14. 549 (19761. (204Ej Marcyk, G. T..'Streetman, B. G.,J. €kctr&km. Soc., 123, 1388 (1976). (205E) Marcyk, G. T., Streetman, B. G., J. Vac. Sci. Techno/., 14, 1165 (1977). (206E) Marowsky. G., Opt. Acta, 23, 855 (1976). (207E) Martell, C. J., Myers, W. M., Report, LA-6354, 22 pp (1976). (208E) Matherny, M., Chem. Anal. (Warsaw),21, 339 (1976). (209E) Matherny, M., Chem. Anal. (Warsaw), 21, 1053 (1976). (210E) Matherny, M., Pliesovska, N., Rybarova, 2.. Zbornik Vedeckvch Prac VSTK, 2, 169 (1977). (211E) McDaniel, E W., Ellis, H. W., Eisele, F. L., Thackston, M. G., U . S . NTIS, AD Reo.. AD-A037680. 206 DD 119761. (212E) Mentel, J., Appl. Phys., '1'4,'269 (1977). (213E) Mermet, J. M., C. R . Hebd. Seances Acad. Sci., Ser. 5,281, 273 ( 1975). (214E) Mermet, J. M., C. R . Hebd. Seances Acad. Sci., Ser. B , 284, 319 (1977). (215E) Mermet, J. M., Trassy, C., Appl. Spectrosc., 31, 237 (1977). (216E) Mermet, J. M., Trassy, C., Rev. Phys. Appl., 12, 1219 (1977)

118 R

ANALYTICAL CHEMISTRY, VOL. 50, NO. 5, APRIL 1978

(217E) Mitchell, D. G., Aldous, K. M., Canelli, E., Anal. Chem., 49, 1235 (1977). (218E) Miyazaki, A., Kimura, A.. Umezaki, Y., Anal. Chim. Acta, 90, 119 (1977). (219E) Moisan, M., Beaudry, C., Bertrand, L., Bloyet, E., Gagne, J. M.. Leprince, P., Marec, J., Mitchel, G., Ricard, A.. Zakrzewski, Z., I€€Conf. Publ., 143 (Int Conf. Gas Discharges, 4th). 382 (1976). (220E) Moisan, M., Leprince, P., Beaudry, C., Bloyet, E., U.S. Patent, 4049940 (20 Sep 1977). (221E) Moisan, M., Ricard, A,, Can. J . Phys., 55, 1010 (1977). (222E) Montaser, A., Fassel, V. A., Anal. Chem., 48, 1490 (1976). (223E) Mooradian. A,, Jaeger, T., Stokseth, P., Ed., "Springer Series in Optical Sciences, Vol. 3: Tunable Lasers and Applications (Proceedings of the Loen Conference, Norway, 1976)", Springer, Berlin, Ger., 1976. (224E) Moore, C. B., Ed., "Chemical and Biochemical Applications of Lasers, Vol. 2", Academic, New York, N.Y., 1977. (225E) Moselhy, M. M., Boomer, D. W., Bishop, J. N., Diosady, P. L., Can. J . Spectrosc., 22, 12 (1977). (226E) Murayama, S., Bunko Kenkyu, 24, 231 (1975). (227E) Naganuma, K., Kubota, M., Kashima. J., BunsekiKagaku, 26, 25 (1977). (228E) Nakajima, S., Maruyama, Y., Kosasa, K., Osaka Kogyo GJutsu Sbikensho Kibo, 27, 232 (1976); Chem. Abstr.. 87, 31254m. (229E) Nakashima, R., Bunseki Kagaku, 25, 869 (1976). (230E) Nakashima, R., Sasaki, S.,Anal. Cbim. Acta, 85, 75 (1976). (231E) Nakashima, R., Sasaki, S., Bunseki Kagaku, 26, 145 (1977). (232E) Naray, Z., "Technical-Physical Monographs, Vol. 31 : Lasers and Their Uses. An Introduction" (Technisch-Physikalischen Monographien, Bd. 3 1: Laser und Ihre Anwendungen. Eine Einfuehrung), Akademische Verlagsgesellschaft Geest and Portig KG, Leipzig, Ger., 1976. (233E) Nepokoichitskii, A. G., Tukmachev, G. V., Zb. Prikl. Spektrosk., 26, 346 (1977). (234E) Newland, B. T. N., Mati. Qual. Assur. Dir., Engi., Rep., R258 (1977). (235E) Newland, B. T. N., Mostyn, R. A,, Mat/. Quai. Assur. Dir., Engi., Rep., R242 (1976). (236E) Nichiporovich, A. S., Yankovskii, A. A,, Zh. Prikl. Spektrosk., 25, 418 (1976). (237E) Nichiporovich, A. S., Yankovskii. A. A,. Zh. Prikl. Spektrosk., 25, 554 (1976). (238E) Nickel, H.. Schaeps, R., Fresenius' Z . Anal. Chem., 281, 193 (1976). (239E) Nikitina, 0. I., Sharapov, I.S., Antipenko, L. L., Zh. Prikl. Spektrosk., 24, 582 (1976). (240E) Nixon, D. E., Report, IS-T-719, 136 pp (1976). (241E) Oechsner, H., Appl. Phys., 8, 185 (1975). 1242E) Oanev. V. R.. Oaneva. E. Ya.. Zairova, G. M., Zh. Prikl. SDektrosk., ' 23,' 585 (1975) (243E) Ohls, K , Koch, K H., Grote. H I Fresenius' Z Anal Chem , 287, 10 (1977). (244E) Ohls, K., Koch, K. H., Grote, H., Fresenius' Z . Anal. Chem., 284, 177 (1977). (245E) Olson, K. W., Haas, W. J., Jr., Fassel, V. A,, Anal. Chem., 49, 832 (1977). (246E) Onda, K., Takano, K., Nakamura, T., Masuda, T., Denshi Gijutsu Sogo Kenkyusho Cbosa Hokoku. 190, 1 (1976); Cbem. Abstr., 87, 191286b. (247E) Ormonde, S., Ann. N . Y . Acad. Sci., 267, 16 (1976). (248E) Ovechkin. G. V., Sandrygailo, L. E., Vestsi Akad. Navuk BSSR. Ser. Fiz.-Mat. Navuk, (2), 92 (1977); Cbem. Abstr., 87, 4611211 (249E) Ovechkin, G. V., Sandrigailo, L. E., Zh. Prikl. SpeMrosk., 24, 227 (1976). (250E) Pacheva, I., Zhechev, D., Dyulgerova, R., Bulg. J . Phys., 2, 585 (1975). (251E) Pacheva, I., Dyulgerova, R., Zhechev, D., Videnova, V., Bulg. J. Phys., 3, 55 (1976). (252E) Pavlovic, B., Mihailidi, T., Appl. Spectrosc., 30, 422 (1976). (253E) Poliyul, Yu. P., Pavlukhina, A. V., Zh. Prikl. Spektrosk., 24, 910 (1976). (254E) Peric, J. B., Vukanovic, V. M., Glas. Hem. Drus., Beograd, 40, 201 (1975). (255E) Perry, J. A,, Bryant, M. F., Malmstadt, H. V., Anal. Chem., 49, 1702 (1977). (256E) Petukh. M. L., Satsunkevich, V. D., Yankovskii, A. A,, zh. Wkl. Spektrosk., 25, 33 (1976). (257E) Petukh, M. L., Satsunkevich, V. D., Yankovskii, A. A,, zh. Wkl, Spektrosk.. 25, 786 (1976). (258E) Pichugin, N. G., Rudnevskii, N. K., Maksimov, D. E., Zh. Anal. Khim., 32, 12 (1977). (259E) Picque, J. L., Stroke, H. H., Comments At. Mol. Phys., 5 , 141 (1976). (260E) Pike, E. R., Ed., "Institute of Physics Conference Series, No. 29: High-Power Gas Lasers, 1975 (Lectures Given at a Summer School Held in Capri, 22 September-4 October 1975)", Inst. Phys., Bristol, Engl., 1976. (261E) Poljak, B., Hutn. Listy, 31, 293 (1976). (262E) Pozdeev, V. V., Smoiyakov, S. S.,Mel'chenko, V. S.,Gryaznov, V. N., Izv. Vvssh. . , - - Uchebn. Zaved.. Fiz.. 19. 149 11976). (263E) Purdes. A. J.. Bolker, B. F. T.. Bucci, J. D:, Tisone, T. C., J . Vac. Sci. Technoi., 14, 98 (1977). (264E) Radic-Peric, J. B.,Peric, M. N., Vukanovic, V M.. Fizika(Zagreb). 7, 105 11975). -. (265E) Raikhbaum, Ya. D., Loseva, A . F., Al'mikhamedov, A. I., Luzhnova, M. A.. Tvumentsev. V. N.. Doki. Akad. Nauk SSSR, 226, 637 (1976). (266E) Raikhbaum, Ya. D., Popyalkovskaya, L. K., Somina, L. A., Izv. Vyssh. Uchebn. Zaved., f i z . , 20, 78 (1977). (267E) Raikhbaum, Ya. D., Somina, L. A., Kostyukova, E. S., Zh.Prikl. Spebosk., 25. 204 11976). (268E) Raikhbaum: Ya. D., Somina, L. A., Kostyukova, E. S., Zh. Priki. Spektrosk., 26, 195 (1977) (269E) Raizer, Yu P , "Laser-Induced Discharge Phenomena", Plenum, New York. N Y.. 1977. (270E) kajic,'S. R., Vrga, V., Pavlovic, A. R., Mikrochim. Acta, 1. 93 (1976). (271E) Rambow, F. H. K., Schearer, L. D., Rev. Sci. Instrum., 48, 92 (1977). (272E) Reid, E. S.,R o c . Anal. Div. Chem. Soc., 13, 91 (1976). (273E) Rentner, J. R., Uchtda, T.. Walters, J. P., Spectrochlm. Acta, Part 8, 32, 125 (1977). ~~

\

-I

~

(274E) Rezchikov. V. G.. Kuznetsova. T. S.. Zorin. A. D.. Zh. Anal. Kbim.. 32, 60 (1977) (275E) Rezchikov, V G I Rudnevskit, N K , Bulykov. S N , Zh Prkl SpeMrosk , 26, 579 (1977). (276E) Robin, J., Trassy, C., C. R . Hebd. Seances Acad. Sci., Ser. 6,281, 345 . . 119751. - -, (277E) Rose, O., Jr., Mincey, D. W., Yacynych, A. M., Heineman, W. R., Carsuo. J. A., Ana/yst(London), 101, 753 (1976). (278E) Ross, M., Ed., "Laser Applications, Vol. 3", Academic, New York, N.Y., 1977. (279E) Rudnevskii, N. K., Maksimov, D. E., Lazareva, L. P.. Zb. Prikl. SpeMrosk., 24, 136 (1976). (280E) Rudnevskii, N. K.. Rezchikov, V. G., T r . Khim. Khim. Tekhnol., ( Z ) , 47 11975) - -, (281E) Runser, D. J., Frank, C. W., Anal. Chem., 48, 514 (1976). (282E) Sabatovskaya. V. L., Kuzovlev, I. A,, Yudelevich, I . G, Izv. Sib. OW. Akad. Nauk SSSR, Ser. Khim. Nauk, (5),65 (1976). (283E) Sabatovskava, V. L., Kuzovlev, I. A,, Yudelevich, I . G., Zh. Prikl. ' Spektrosk., 26, 207 (1977). (284E) Sakamoto, T., Kawaguchi, H., Mizuike, A,, Bunko Kenkyo, 25, 35 (1976). (285E) Sakamoto, T., Kawaguchi, H., Mizuike, A,, J . Chromatogr., 121, 383 11976) - -, (286E) Sakamoto, T., Okada, M., Kawaguchi, H., Mizuike, A,, Bunseki Kagaku, 25, 85 (1976). (287E) Schaefer, F. P., Ed., "Topics in Applied Physics, Vol. 1: Dye Lasers. 2nd Rev. Ed.", Springer-Verlag, Berlin. Ger., 1977. (288E) Schaeps, R., Mazurkiewicz, M., Nickel, H., Fresenius' Z. Anal. Chem., l e i , 273 (i976). (289E) Scheeline, A,, Coleman, D. M., Walters, J. P., Appl. Spectrosc., 32, 215 . -11978). ~_ . - , . (290E) Scheeline, A., Klueppel, R. J., Coleman, D. M., Walters, J. P., Appl. Spectrosc., 32, 224 (1978). (291E) Schwarz, H. J.. Hora, H., Ed., "Laser Interaction and Related Plasma Phenomena: Vol. 4A, 4B", Plenum, New York, N.Y., 1977. (292E) Scott, R. H., Strasheim, A,, Kokot, M. L., Anal. Chim. Acta, 82, 67 (1976). (293E) Scott, R. H., Strasheim, A,, Oakes, A. R., Colloq. Spectrosc. Int. (Proc.), 18th, 1, 176 (1975). (294E) Seliverstova, I . F., Tsygankov, N. F., Zaitsev, N. K., Zh. Wkl. SpeMrosk., 24, 208 (1976). (295E) Sequeda-Osorio, F., Greene, J. E., Vide, 182, Suppl. (Colloq. Int. Pulverisation Cathod. Ses Appl., 2nd, 1976), 104 (1976). (296E) Sergienko, A. S., Fokov, G. A,, Inzh.-Fiz. Zb., 32, 637 (1977). (297E) Serravallo, F. A., Risby, T. H., Anal. Chem., 48, 673 (1976). (298E) Shabanova, T. M., Maksimov, D. E., Rudnevskii, N. K., Tr. Khim. Kbim. Tekhnol., (I), 65 (1975). (299E) Shapiro, S. L, Ed., "Topics in Applied Physics, Vol. 18: Ultrashort Light Pulses: Picosecond Techniques and Applications", Springer, Berlin, Ger., 1977. (300E) Sharp, B. L., Proc. Anal. Div. Chem. Soc., 13, 104 (1976). (301E) Sharp, B. L., Sel. Annu. Rev. Anal. Sci., 4, 37 (1976). (302E) Shimoda, K., Ed., "Topics in Applied Physics, Vol. 13: High-Resolution Spectroscopy", Springer, Berlin, Ger., 1976. (303E) Shmidt, N. G., Goryachev. V. N., Izv. Vyssh. Uchebn. Zaved., Fiz., 19, 153 (1976). (304E) Skogerboe, R. K., Coleman, G. N., Anal. Chem., 48, 611A (1976). (305E) Skogerboe, R. K., Coleman, G. N., Appl. Spectrosc., 30, 504 (1976). (306E) Skogerboe, R. K., Urasa, I. T., Coleman, G. N., Appl. Spectrosc., 30. 500 (1976). (307E) Skotnikov. S. A . , Fiz. Khim. Obrab. Mater., (6), 154 (1975). (308E) Slevin, P. J., Harrison, W. W., Appl. Spectrosc. Rev., 10, 201 (1975). (309E) Slickers, K., Geiseler, J., Arch. Eisenbueftenwes., 47, 363 (1976). (310E) Smith, M. F., Report, NTIS-PS-75-658, 170 pp (1975). (31 1E) Smith, M. F., Report, NTIS-PS-77-0709, 202 pp (1977). (312E) Smith, P. W., Opt. Acta, 23, 901 (1976). (313E) Snopov, N. G., Zholobova, L. V., Zh. Prikl. Spektrosk., 25, 215 (1976). (314E) Sona, A,, Ed., "Lasers and Their Applications (Proceedings of a Course on Lasers and Their Applications From the International School of Applied Physics, Erice, Sicily, 1970)", Gordon and Breach, New York, N.Y., 1976. (315E) Steinfeld, J. I., Crit. Rev. Anal. Chem., 5 , 225 (1975). (316E) Steinfeld, J. I., Ed., "Electronic Transition Lasers (Proceedings of the 2nd Summer Colloquium, Woods Hole, Massachusetts, 1975)", MIT Press, Cambridge, Mass., 1976. Ed., "Laser and Coherence Spectroscopy", Plenum, New (317E) Steinfeld. J. I., York, N.Y., 1976. (318E) Stephens, R., Talanta, 24, 233 (1977). (319E) Svelto, O., "Principles of Lasers", Plenum, New York. N.Y., 1976. (320E) Szabo, Z. L., Kem. Kozl., 44, 345 (1976). (321E) Szabo, Z. L., Kem. Kozl., 44, 357 (1976). 1322EI Takahashi. T.. Nakaiima, T., Matsui, H., Oda, S.,Anal. Chim. Acta, ' 91,' 345 (1977). (323E) Talmi, Y., Norvell, V. E., Anal. Chim. Acta, 85. 203 (1976). (324E) Tarasevich, N. I., Zheleznova, A. A., Okuneva, G. A,, Shcherbakov, V. I..Vestn. Mosk. Univ. Khim., 17, 69 (1976). (325E) Teodorovich, 2. S., Semenova, 0. P., Izv. Vyssh. Uchebn. Zaved., Fiz., 19, 32 (1976). (326E) Thoma, C., Brost, U., Stahlfisen, 96, 1027 (1976). (327E) Tkachenko, V. M., Tyutyunnik, V. B., Zh. Tekh. Fiz., 46, 1449 (1976). (3280 Tcdwovic, P. S., Vukanovic, V. M., Simic, M. M., Peric, M. N., Spectrucbim. Acta. . . - , -Part 6 . 31. 103 (1976). (329E) Torok, T., Kem. Kozl., 44, 335 (1976). (330E) Triche, C., Perarnau, G., Z . Naturforsch. A , 31, 503 (1976). (331E) Uchida, H., Iwasaki, K.. Bunseki Kagaku, 25, 752 (1976). (332E) Uchida, H., Negishi, R., Spectrosc. Lett.. 10, 133 (1977). (333E) Uden, P. C., Bigley, I. E., Anal. Chim. Acta, 94, 29 (1977). \

\

\

ANALYTICAL CHEMISTRY, VOL. 50, NO. 5, APRIL 1978 (334E) Vagner. S. D., Kagan, Yu. M.. Slsyshov, A. G., Opt. Spektrosk., 42, 1042 (1977). (335El Van Dalen, J. P. J., De Lezenne Coulander, P. A., De Galan, L., Anal. Chim. Acta, 94, l(1977). (336E) Vecsernyes, L., 25(Twenty-Five) Years TKI, Annu. Res. Insf. Telecornrnun., I, 199 (1975); Chem. Absfr., 85. 403569. (337E) Vidal, B.. Dupret. C., J . Phys. E , 9,998 (1976). (338E) Visser, K., Hamm, F. M., Zeeman, P. B., Appl. Spectrosc., 30,34 (1976). (339E) Vorburger, T. V., Wachwski, B. J., Sandstrom, D. R., Rev. Sci. Instrum., 47,501 (1976). (340E) Vukanovic, D., Simic, M., Vukanovic, V., Nickel, H., Mazurkiewicz, M., Spectrochim. Acta, Part B , 32,305 (1977). (340aE) Vukanovic, D., Simic, M., Kovacic, N., Vukanovic, V., Nickel, H., Mazurkiewicz, M.. Spectrochim. Acta, Part B, 32,445 (1977). (341E) Vukanovic, D. D., Vukanovic, V. M., Simic, M. M., Glas. Hem. Drus., Beogard, 41, 269 (1976). (342E)Vyzhekvskii, V. P., Dernova, I. N., Panteleev, V. V., Petukh, M. L., FWenko, 0. I., Troshin, 0. F., Yankovskii, A. A,, Zh. Prikl Spekfrosk.,23,515 (1975). (343E) Waitievertch, M. E., Hurwitz, J. K., Appl. Spectrosc., 30,510 (1976). (344E) Wallace, J. R., Natusch, D. F. S., Anal. Chem., 48, 118 (1976). (345E) Wallenstein, R., Opt. Acta, 23, 887 (1976). (346E) Walsh, A., Proc. Anal. Div. Chem. Soc., 13,325 (1976). (347E) Walters, J. P., Appl. Spectrosc., 31, 36 (1977). (348E) Walters, J. P., Science, 198, 787 (1977). (349E) Walters, J. P.,U.S. Patent, 4060 708 (29 Nov 1977) and Ger. Offen., 2641 618 (24 Mar 1977). (350E) Walters, J. P., Bernier, J. A,. U.S. Patent, 3973 167 (3 Aug 1976). (351E) Walters, J. P., Coleman, D. M., U.S. Patent, 4055783 (18 Nov 1977). (352E) Walters, P. E., Chester, T. L., Winefordner, J. D., Appl. Spectrosc., 31. 1 (1977). (353E) Wakher, H., Ed., "Topics in Applied Physics. Vol. 2: Laser Spectroscopy of Atoms and Molecules", Springer, Berlin, Ger., 1976. (354E) Ward, A. F.. Sobel, H. R., "Environmental Analysis". G. W. Ewing, Ed., Academic, New York, N.Y., 1977, pp 245-252. (355E) Watson, A. E., Russeli, G. M., Balaes, G., Natl. Inst. Mefall., Repub. S . Afr. Rep., 1815 (1976). (356E) Watson, A. E., Russell, G. M., Natl. Inst. Metall., Repub. S . Afr. Rep., 1907 (1977). (357E) Werner, K. G., Report, NTIS-PS-75-044. 119 pp (1975). (358E) Werner, K. G., Report, NTIS-PS-75-016, 88 pp (1975). (359E) Werner, K. G., Report, NTIS-PS-75-573, 169 pp (1975). (360E) West, C. D., Human, H. G. C., Spectrochim. Acta, Part 8 , 31,81 (1976). (361E) Winters, H. F., Adv. Chem. Ser., 158 (Radiat. Eff. Solid Surf. Symp., 1975), 1 (1976). (362E) Wooten. W., Edgewood Arsenal Spec. Pub/. (U.S. Dep. Army), EO-SP-76001, Proc. Annu. Symp. "Trace Anal. Detect. Environ.", 6th. 1975, 268-91 (1976). (363E) Yaroslavskaya, R. M., Zh. Prikl. Spekfrosk.. 24, 1110 (1976). (364E) Yoshida, M., Murota, M., J , Geosci., Osaka City Univ., 19,81 (1975). (365E) Yoshida, T., Akashi, K., J . Appl. Phys., 48,2252 (1977). (366E) Young, M., "Springer Series in Optical Sciences, Vol. 5: Optics and Lasers", Springer, Berlin, Ger., 1977. (367E) Yudelevich, I.G., Cherevko, A. S., Spectrochim. Acta, Part 6 ,31,93 11 ~.97fiI - . _,. (368E) Zadgorska, Z., Krasnobaeva, N., Apostolov, D., Spectrochim. Acta, Part B , 30, 527 (1975): 32, 357 (1977). (369E) Zahn. H.. D i k e . H. J.. Int. J . Mass Soectrom. Ion h v s . . 22. 111 (1976). (370E) Zakrzewski, Z., Moisan. M., Glaude. V. M. M., Beaudry. C., Lebrince, P , Plasma Phys , 19,77 (1977) (371E) Zander, A T , Williams, R K , Hieftje, G M , Anal Chem , 49,2372 (19771 (372E) iayakina. S. B., Epanchintsev, A. N., Shelpakova, I.R., Yudelevich, I.G., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, (5),59 (1976). (373E) Zhechev, D., Dyulgerova, R., Angelova, R., J. Quant. Smctrosc. Radiat. Transfer . . . -. , 17 .., 1fi5 . 11977) (374E) Zhechev, D.. Bulg. J . Phys., 3,319 (1976). (375E) Zhechev, D. Z., Opt. Spektrosk., 41,329 (1976). . 43. 590 11977). (376E) Zhechev. D. Z.. Chaika. M. P.. O D ~ Soektrosk.. (377Ej Zhechev, D., Dyulgerova, R.. Angelova, R . , Spectrosc.' Lett.,'9,40'1 (1976). (378E) Zheleznova, A. A., Tarasevich, N. I . , Vestn. Mosk. Univ., Khim., 16, 718 (1975). (379E) Zheleznova, A. A., Tarasevich, N. I . , Vestn. Mosk. Univ., Khlm., 17, 65 (1976). (380E) Zhiglinskii, A. G., Kalmakov, A. A,, Tsarev, V. I . , Shcherbakova, T. N., Zh. Prifi. Spekfrosk., 26, 809 (1977). (381E) Zhiglinskii, A. G., Kuchinskii, V. V., Milovanov, N. P., Presnukhina, I. P.. Oof. SDekfrosk.. 42. 427 11977). (382E) Zhiglihskii, A. G., Kund, G: G., Presnukhina, 1. P.,Zh. Tekh. Flz., 46, 2218 (1976). (383E) Zhurko, V. N., Zh. Prikl. Spektrosk.. 24, 367 (1976).

-

--

SPECTROCHEMICAL ANALYSIS

(IF) Aieksandrov, V. Ya., Matseevskii, B. P., Latv. PSRZinaf. Akad. Vestis, Kim. Ser., (4). 465 (1976). (2F) Antonijevic, V. G., Marinkovic, M. D., Dobrosavljevic, J. S., Pravica, M. B., Nikolic, V., Glas. Hem. Drus., Beograd, 41, 143 (1976). (3F) Asai, H., Kamatsuki, T., Bunko Kenkyu, 24,227 (1975). (4F) Balakishieva, B. A., Izv. Akad. Nauk Az. SSR, Ser. Nauk Zemle, ( l ) , 108 (1976); Chem. Abstr., 86,100439~. (5F) Bangia, T. R.. Joshi, B. D., Fresenlus' 2. Anal. Chem., 283,191 (1977). (6F) Baranova, L. L, Zotov, Yu. A., Lapina, E. F., Nazarova. M. G., Tyurina, G. V., Zh. Anal. Khim., 31,873 (1976). (7F) Barasheva, T. V., Lindstrem, I.S., Zavod. Lab., 41, 1336 (1975). (8F) Bazovkin, B. P.. Bukhtoyaraova,G. M., Stratiichuk, A. I., Zh. Wkl. Spektrosk., 24, 915 (1976).

119 R

(9F) Beamish, F. E., Van Loon, J. C., "Analysis of Noble Metals", Academic Press, New York, N.Y., 1977. (1OF) Benko, I., Ujhidy Farkas, K., Kem. Kozl., 44,375 (1976). (11F) Bennett, H., Physicochem. Methods Miner. Anal., 451 (1975). (12F) Blyum, I. A., Zolotov, Yu. A., Zh. Anal. Khim., 31. 159 (1976). (13F) Borovik-Romanova, T. F., Belova, E. A,, Zh. Anal. Khim., 32,539 (1977). (14F) Bragilevskaya. S. S., Martinkov, A. S., Zavod. Lab., 42,425 (1976). (15F) Brainard, E. C., 11, Kerfoot, W. B., Ocean 75,Conf. Rec., Comb. Meet. IEEE Conf. Eng. Ocean Environ. 1 Ith Annu. Meet. Mar. Technol. Soc., 901 (1975). (16F) Breckenridge, R. L., Russeli, G. M., Watson, A. E., Natl. Inst. Metall., Repub. S . Ah., Rep., 1783,17 pp (1976). (17F) Brinkmann, F. J. J., Chem. Tech. (Amsterdam), 31,485 (1976). (18F) Bruch, J., Thierig, D., Rev. Mefall. (Paris), 72,601 (1975). (19F) Buravleva, M. A., Kisel, N. G., Smutko, S. I., Zh. Anal. Khim., 31, 1726 (1976). (2OF) Burmistrov, M. P., Zakharova, Z. A,, Kireeva, N. P., Makulov, N. A,. Essen, A. I.. Zavod. Lab., 42, 1077 (1976). (21F) Buyanov, N. V., Zavod Lab., 41,676 (1975). (22F) Chandola, L. C., Machado, I. J., Indian J . Technol., 13,471 (1975). (23F) Chao, C. N., Lee, S. L., Tsai, H. T., Report, INER-0202, 44 pp (1976). (24F) Chao, C.-N., Lee, S. L., Tsai, H.-T., Wu, S.C., J. Chin. Chem. Soc. (Taipei?, 22, 69 (1975). (25F) Cooley. E. F., Curry, K. J., Carlson, R. R., Appl. Spectrosc., 30,52 (1976). (26F) Cordis, V., Sigartau, G., Pop, I., Fresenius' Z. Anal. Chem., 279,355 (1976). (27F) Clarke, K. A., U.S. Patent, 3 957 373 (18 May 1976). (28F) Dabrowska, J., Chem. Anal. (Warsaw), 20,855 (1975). (29F) Dale, L. S., Matulis, C. E., Aust. A.E.C., AAEC/E(Rep.), AAEC/E 388, 6 pp (1976). (30F) Dalvi, A. G. I . , Deodhar, C. S., Joshi, B. D., Talanta, 24, 143 (1977). (31F) Danzer, K., Zh. Anal. Khim., 31. 2327 (1976). (32F) De Brito, J., Lordello. A. R., Abrao. Publ. E A , 415, 29 pp (1976). (33F) Dinnin, J. I., Anal. Chem., 49,34R (1977). (34F) Dittrich, K., Borzym, Anal. Chim. Acta, 94,83 (1977). (35F) Dimitrov, I., Teneva, M., Dundarov, S., Metalurgiya(Sofia), 31,20 (1976). (36F) Dixit, M. N., Bhale, G. L.. Thomas, A,. Indian J . Pure Appi. Phys., 14, 485 (1976). (37F) Dobrovol'skaya, Z. B., Zueva, V. L., Zatselyapina, R. D., Egorova, N. I . , Kogan, R. D., Zavod. Lab.. 42, 1465 (1976). (38F) Dombi, A., Ujhidy, K.. Gegus, E., Magy. K e r n Foly., 83, 81 (1977). (39F) Dombi, A,, Gegus, E., Ujhidy, K., Magy. Kem. Foly., 83, 87 (1977). (40F) Dryakhlov, A. I . , Shishkinaa, Z. I., T r . Khim. Khim. Tekhnol., (2), 63 (1975). (41F) Duda, D., Rudy Mef. Niezelaz., 22,304 (1977). (42F) Dulka, J. J.. Risby, T. H., Anal. Chem., 48,640A (1976). (43F) Dutra, C. V., Min., Metal., 40,22 (1977). (44F) Egorov, V. N.. Zh. Anal. Khim.. 32, 82 (1977). (45F) Ermashova, S. P., Rotman, A. E., Zh. Prikl. Specfrosk., 23,901 (1975). (46F) Evenson, M. A,, Anal. Chem., 49, 16R (1977). (47F) Fabiski, W., Faulhaber, R., Ger. Offen. 2553563 (8 Jun 1977). (48F) Fadeeva, L. A., Karpenko, L. I., Shevchenko, L. D.. Zh. Prikl. Spektrosk., 25, 1128 (1976). (49F) Fadeeva, L. A.. Shevchenko, L. D., Karpenko, L. I . , Zh. Anai. Khlm., 31, 696 (1976). (50F) Fal'kova, 0 . B., Dobrushina, G. D., Zh. Prikl. Spektrosk., 25,973 (1976). (51F) Faye, G. C., Oedegard, M., Bull., Nor. Geol. Unders., 35,35 (1975). (52F) Fedtsova, V. D., Postogvard, G. I., Zavod. Lab.. 42, 1347 (1976). (53F) Fick, N. H., Anal. Chem., 49,238R (1977). (54F) Fischer, L., Kuehn, G., Bindemann, R . , Neumann, H., Krist. Tech., 12, 93 (1977). (55F) Fishman, M. J., Erdman, D. E., Anal. Chem., 49, 139R (1977). (56F) Flyger, H., Jensen, F. P., Kemp, K., Dan. A.E.C., Res. €stab/. Risoe, Rime Rep., 338,70 pp (1976). (57F) Foltz, A. K., Yeransian, J. A.. Sloman, K. G., Anal. Chem., 49, 194R (1977). (58F) Galibin, V. A., Mineral. Geokhim.. 5 , 123 (1975). (59F) Gehrke, G. W., Rexroad, P.R., Sweeney, R. A., Anal. Chem., 49, 186R ( 1977). (60F) Gladyshev, V. P., Savichpv. E. I., Shugurov, E. V., Storozhenko, G. S., Zh. Anal. Khim., 31, 1934 (1976). (61F) Grampurohit, S . V., Dixit, V. S., India, A.E.C., Bhabha At. Res. Cent. (Rep.), BARC 827, 4 pp (1975). (62F) Grampurohit, S. V., Kaimal, V. N. P., India, A .E.C., Bhabha At. Res. Cent. (Rep.), BARC-818, 6 pp (1975). (63F) Grampurohit, S. V., Thomas, A., India, A .E.C., Bhabha At. Res. Cent. (Reo.). BARC-829, 6 DD (1975). (64F) 'Grisar, U., Bersteimann, W:, Ger. Offen. 2513358 (5 Feb 1976). (65F) Gunchenko, A. I.. Panichev, N. A., Turkin, Yu. I., Vestn. Leningr. Univ., Fiz. Khim., 22, 141 (1976). (66F) Haase, H. J., Fresenius' Z. Anal. Chem., 281, 111 (1976). (67F) Hattman, E. A., Schultz, H.. McKinstry. W. E., Anal. Chem.. 49, 177R (1977). (68F) Heshmat-Chaaban, G., Triche, C., Z . Naturforsch. A , 32,270 (1977). (69F) Ihida. M., TetSu To Hagane, 62,749 (1976). (70F) Ihida, M., Trans. Iron Steel Inst. Jpn., 17,487 (1977). (71F) Jones, J. B., Jr., Am. Lab., 9, 15 (1976). (72F) Karyakin, A. V., Ozhegov, P. I., Semenova, L. F., Zh. Prikl. Spektrosk., 24. 370 (1976) (7%)' KarpenkolL. I., Fadeeva. L. A,, Shevchenko, L. D., Zh. Anal. Khim., 30, 1330 (1975). (74F) Karpenko, L. I., Shevchenko, L. D., Fadeeva, L. A,, Zavod. Lab., 42, 932 (1976). (75F) Katalevskii, N. N., Eremenko, V. Ya., Gidrokhim. Mater., 62,124 (1975). (76F) Khabarova, L. I., Semenov. N. N.. Krasnikova. L. G.. Nefedova. D. I.. Steklo Keram., (9), 34 (1977)

120R

ANALYTICAL CHEMISTRY, VOL. 50, NO.

5, APRIL 1978

(77F) Khrustaleva, L. A., Markova, L. V., Sidorova, V. I., Zavod. Lab., 42, 424 (1976). (78F) King, R. B., Fordyce, J. S.,Antoine, A. C., Leibecki, H. F., Neustadter. H. E., Sidik, S.M., J . Air Pollut. Control Assoc., 28, 1073 (1976). (79F) Kipke, E., Neue Huette, 21, 313 (1976). @OF) Kipsch, D., Kipke, E., Neue Huette, 21, 700 (1976). (81F) Kishitaka, H., Bunseki Kiki, 14, 281 (1976). (82F) Kishitaka, H., Bunseki Kagaku, 25, 196 (1976). (83F) Koleva, E., Gatsinska, M., God.Sofii. Univ., Kbim. f a k . 7972- 7973, 87, 93 (1976). (84F) Kolosova, L. P., Lisnyanskaya, M. G., Nadezhina, L. S., Novatskaya, N. V., Grinzaid, E. L., Zavod. Lab., 41, 1088 (1975). (85F) Kozin, L. F., Saprykina, T. I., Lysenko. A. I., Grushina, N. V., Izv. Akad. Nauk Kaz. SSR, Ser. Kbim., 25, 6 (1975). (86F) Krivenkova, N. P., Pavlenko, L. I., Spivakov, B. Ya., Popova, I.A,, Ploinikova, T. S.,Shkinev, V. M., Kharlamov, I.P., Zolotov., Yu. A,, Zb. Anal. Kbim., 31, 514 (1976). (87F) Kuchkarev, E. A., Kreshkov, A. P.. Davydova, V. Ya., Zavadskaya. N. F., Zavod. Lab., 42, 1335 (1976). (88F) Kuznetsov, A. P., Kukushkin, Yu. N., Markarov, D. F., Izv. Vyssb. Ucbebn. Zaved., Kbim. Kbim. Tekbnol., 20, 65 (1977). (89F) Laktionova, N. V., Zb. Anal. Kbim., 31, 984 (1976). (9OF) Larin, N. V., Shishov, V. N., Krylov, V. A,. Mishina, E. I., Zb. Anal. Kbim., 31, 2193 (1976). (91F) Larina, L. K., Makartseva, V. N., Zavod. Lab., 41, 1097 (1975). (92F) Lazeeva, G. S.,Petrov. A. A.. Chesnokova, E. F.. Yarmukhamedova. F: M., Zb. Prikl. Spektrosk., 26, 923 (1977). (93F) Le Trung, T., Analusis, 5 , 144 (1977). (94F) Lordello, A. R., Tognini. R. P., Pub/. IEA, 396, 14 pp (1975). (95F) Lordello, A. R.. Tognini. R. P.. Pub/. IEA, 411, 7 pp (1976). (96F) Magrilova, I. M., Ivanova. I. S.,Mustova, A. A,, Suris, K. G., Zavod. Lab., 42, 1346 (1976). (97F) Mannweiler, U., Erzmetall, 28, 386 (1975). (98F) Manuccia, T. J., Clark, M. D., Appl. Pbys. Lett., 28, 372 (1976). (99F) Markov, Zh.. Dimitrov, I.. Metalurgiya (Sofia), 31, 17 (1976). (IOOF) Marr, I.L., Tolg, G., Int. Rev. Sci.: Phys. Cbem., Ser. Two, 13, 187 (1976). (1OlF) Matsumoto, R., Yamaguchi, N., Taguchi, I., Kagaku Kogyo, 27, 966 (1976). (102F) Mlyazaki, A., Umezaki, Y., Kogyo Yosui, 226, 14 (1977). (103F) Morozova, L. F., Morozov, A. G., Zavod. Lab., 42, 940 (1976). (104F) Mosier, E. L., U . S . , Geol. Surv., Bull., 1408, 97 (1975). (105F) Moskvin, L. N., Kaiinin, N. N., Godon, L. A,. Tomilov, S.B., Kizyrn, G. I., Zh. Anal. Kbim., 31, 2396 (1976). (106F) Nemets, V. M., Petrov, A. A,, Yakimova, V. A,, Zavod. Lab., 41, 952 (1975). > -.-, (107F) Neustadter, H. E., Fordyce, J. S.,King, R. B., J. AirPollut. ControlAssoc., 28, 1079 (1976). (108F) Nicol, A. W.. "Phvsico-Chemical Methods of Mineral Analvsis". Plenum, New York, N.Y., 1975. (109F) Nikitlna, 0. I., Gorevaya. A. E., Kirzhner, 0. M., Korobeinik, S. V., Shapovalova, R. A,, Z b . Anal. Kbim., 31, 2171 (1976). (IlOF) Nikitina, 0. I., Gorevaya, A. E., Zhernokleeva, A. I., Poiupanov, V. I., Tkachenko, A. N., Krichun. L. I., Tkacheva, K. K., Zb. Anal. Kbim., 31, 172 (1 976). (11IF) Nishisaka, K., Sakata, T., Uemura, T., Jpn. Kokai, 75 63 989 (30 May 1975). (112F) Ohls, K., Pure Appi. Chem., 49, 1485 (1977). (113F) Onishi, H., Natl. Bur. Stand. (U.S.), Spec. Pubi., 422, 773 (1976). (114F) Orlova, K. B., Vares, V., Vingisaar, P., Razved. Okbr. Nedr., ( I l ) , 21 (1976); Cbem. Abstr., 87, 56076t. (115F) Pruvcheva, Kh., Metalurgiya (Sofia), 30, 12 (1975). (116F) Raikhbaum, Ya. D., Kostyukova, E. S., Kuznetsova, A. I., et al., "Emission Spectrographic Analysis in Geochemistry" (Emissionnyi Spektral'nyi Analiz v Geokhimii), Nauka, Sib. Otd., Novosibirsk, USSR, 1976. (117F) Rakhlina, M. L., Lomekhov, A. S.,Yudelevich, I. G., Gindin, L. M.. Vasil'eva, A. A., Tkacheva, N. A.. Andrievskii, V. N., Chernousova, G. A., Izv. Sib. Otd. Akad. Nauk SSSR. Ser. Khim. Nauk. (2) 71 (1977). (118F) Razmadze, G. B., Khiystova, A. D., Artemova, T. A,, Vestn. Mosk. Univ. Kbim., 17, 581 (1976). (119F) Rezchikov, V. G., Rudnevskii, N. K., Tr. Kbim. Kbim. Tekbnol.,( l ) , 105 (1975). (120F) Rubeska. I., Analusis, 4, 314 (1976). '

(121F) Saitzman, 8. E., Burg, W. R., Anal. Cbem., 49, 1R (1977). (122F) Samsoni, Z., Magy. Kem. Lapja, 31, 612 (1976). (123F) Schroil, E., fortscbr. Mineral., 54, 167 (1977). (124F) Schoenfeld, I., Anal. Cbim. Acta, 86, 293 (1976). (125F) Scott, D. R., Loseke, W. A., Holboke. L. E., Thompson, R. J., Appl. Spectrosc., 30, 392 (1976). (126F) Seim, H. J., Calkins, R. C., Macksey, J. A,, Anal. Cbem., 49, 72R (1977). (127F) Shelpakova, I.R.,Shcherbakova, 0. I., Yudelevich, I.G.. Z b . Anal. Kbim., 31, 2406 (1976). (128F) Simonova, V. I., Tsimbalist, V. G., Tr. Inst. Geol. Geofiz., Akad. Nauk SSSR, Sib. Otd., 255, 166 (1976). (129F) Sin'kov, N. A., Minaeva, N. A., Zb. Prikl. Spektrosk., 24, 771 (1976). (130F) Smirnov, K. V., Zavod. Lab., 42, 422 (1976). (131F) Smolyak, I.I., Shaevich, S. B., Zavod. Lab., 42, 429 (1976). (132F) Snopov, N. G., Zholobova, L. V., Zb. Prikl. SpeMrosk., 25, 408 (1976). (133F) Soltan. S. A., Shelpakova, I.R., Yudelevich, I.G., Z b . Anal. Khim., 32, 761 (1977). (134F) Sonobe, T., Ochiai, K., Tsutsumi, K., Aihara, W.. Takahata, S.,Shimmura, T., J . Nucl. Sci. Techno/., 13, 35 (1976). (135F) Sterlace, J. S.,Wise, W. M., Anal. Lett., 10, 769 (1977). (136F) Straub, W. A., Hurwitz, J. K., Anal. Cbem., 49, 54R (1977). (137F) Strauss. B. H., U . S . NTIS, AD Rep., AD-A038838, 12 pp (1977). (138F) Suglmae, A., Int. J . Environ. Anal. Cbem., 4, 97 (1975). (139F) Takahari, T., Yamamto, Y., Santo, Y., Tetsu To Hagam. 82, 238 (1976): Cbem. Abstr., 8 5 , 28206a. (140F) Tanaka, I., Sato, K.. Matsumoto, R., BunsekiKagaku, 24, 423 (1975). (141F) Tarkovskaya, I.A.. Lazebnik, K. I., Ovrutskii, M. I., Tomashevskaya, A. N., Ukr. Kbim. Zb. (Russ. Ed.), 42, 796 (1976). (142F) Taushkanov, V. P.. Blokhin, A . A,, Mironov, M. S.,Kuzin, 1. A,, Zavod. Lab., 42, 936 (1976). (143F) Temma, T., Takada, Y., Harada, Y., Kanzei Cbuo Bunsekisbobo, 17, l(1977); Cbem. Abstr., 87, 2105342. (144F) Terrell. R. E., Anal. Chem., 49, 255R (1977). (145F) Tiptsova-Yakovleva, V. G., Dvortsan, A. G., Semenova, I.B., Zb. Anal. Khim.. 30, 1577 (1975). (146F) Toelg, G., J . Less-Common Met., 43, 157 (1975). (147F) Toelg, G., Naturwissenscbaften, 83, 99 (1976). (148F) Toelg, G., Pure Appl. Cbem., 44, 645 (1975). (149F) Toeile, H., Mikrocbim. Acta, 1, 335 (1977). (150F) Valkovic, V., "Trace Element Analysis", Taylor and Francis, London; Halsted-Wiiey, New York, N.Y., 1975. (151F) Van Loon, J. C., Pure Appl. Cbem., 49, 1495 (1977). (152F) Vengsarkar. B. R., Machado, I.J., Malhotra, S. K., Talanta, 22, 903 (1975). (153F) Vereshchagina, T. Ya., Korovin, Yu. I., Krasii'nikov, V. N., Renard, I. M., Radiokbimiya, 18, 146 (1976). (154F) Vidisheva, A. Ya., Zinchenko. T. M., Zh. Anal. Kbim., 31, 1688 (1976). (155F) Vlastnikova, I., Kubon, K., Johodova, A., Hutn. Listy, 31, 733 (1976). (156F) Vogt, A., Neue Huette, 21, 308 (1976). (157F) Ward, R. N., Flshman, M. J., Geol. Surv. Prof. Pap. (U.S.),957, 81-84 (1976). (158F) Webb, J. S.,Thompson, M., Pure Appi. Chem., 49, 1507 (1977). (159F) White, R. A., Pure Appl. Cbem., 49, 1519 (1977). (160F) White, W. B., Eartb Miner. Sci., 44, 49 (1975). (161F) Winge, R. K., Fassel, V. A., Kniseley, R. N., DeKalb, E.. Haas, W. J., Jr., Spectrocbim. Acta, Part 6 , 32, 327 (1977). (162F) Wittmann, A.. Gatti, R., Nevez, G., Circ. Inf. Tech., {Cent. Doc. Sider., 34, 993 (1977). (163F) Yoneyama, T., Arima, Y., Kumazawa, K., Nippon Dojo-Hfyogaku Zassbi. 46, 146 (1975); Cbem. Abstr., 84, 25398h. (164F) Yunusov, 2. T., Voronina, M. A., Agievskii, D. A,, Talisman, L. V., Kbim. Tekhnol. Top/. Masel., (3), 57 (1977); Cbem. Absfr., 87, 1931 13s. (165F) Zakhariya, A. N., Dranitskaya,R. M., Vdisheva, A. Ya., Zb. Anal. Khim., 30, 1934 (1975). (166F) Zakorina, N. A., Petrov, A. A., Z b . Priki. Spektrosk., 23, 195 (1975). (167F) Zakorina, N. A,, Petrov, A. A,, Zb. Prikl. Spektrosk., 23, 379 (1975). (168F) Zatsepina, E. M., Zb. Prikl. Spektrosk., 28, 798 (1977). (169F) Zheleznova, A. A,, Rudnev, P. B.,Okuneva, G. A,, Vestn. Mosk. Univ., Ser. 2: Kbim., 16, 119 (1977). (170F) Zhivopistsev, V. P., Makhnev, Yu. A,, Petrov, B. I.. Trushkova, G. G., Zavod. Lab., 42, 17 (1976). (171F) Zolotov, Yu. A., Vanifatova, N. G., Chanysheva, T. A,, Yudelevich, I. G., Zb. Anal. Khim.. 32, 317 (1977).