32 Control of Particle Size Distribution Through Emulsifier Metering Based on Rate of Conversion
Downloaded by PENNSYLVANIA STATE UNIV on June 15, 2013 | http://pubs.acs.org Publication Date: October 7, 1981 | doi: 10.1021/bk-1981-0165.ch032
DANIEL L. GORDON and KARL R. WEIDNER Diamond Shamrock Plastics Corporation, Painesville, OH 44077
In emulsion polymerization of PVC, water and vinyl chloride monomer are charged to the reactor. The reactor is heated to the desired reaction temperature. Then the pumps, to continuously meter initiator and emulsifier into the reactor, are activated. As will be explained later, the particle size distribution is a function of the amount of emulsifier present at all times during the polymerization. The extent of polymerization can be followed by measuring the conversion of monomer which can be followed by quantifying the heat liberated from the reactor. By combining the knowledge of the extent of conversion with the effect of emulsifier on particle size distribution (PSD), an algorithm can be generated to produce a given PSD. Experimental Materials The reactor system used for these experiments is a 190 liter, jacketed, stainless steel vessel equipped with initiator and emulsifier metering system. The reactor is monitored and controlled by a minicomputer. The computer monitors: the reactor temperature and pressure, the jacket water inlet and outlet temperatures and flow rate, and the initiator and emulsifier flow rates. The computer calculates the amount of heat transferred through the jacket from the process measurements and transmits signals to control the reactor temperature and metering pumps. Determining Conversion Determining the conversion of monomer can only be as accurate as the method of quantifying the heat liberated from the reaction. The usual method is to take the difference between the inlet and outlet jacket water temperatures multiplied by the specific heat and flow rate of the water. This steady-state energy balance equation is: Q = wCp (Τ. ^) m - Τout 0097-6156/81/0165-0515$05.00/0 © 1981 American Chemical Society
In Emulsion Polymers and Emulsion Polymerization; Bassett, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
516
EMULSION POLYMERS
AND
EMULSION POLYMERIZATION
T h i s e q u a t i o n i s e a s i l y i m p l e m e n t e d i n an i n d u s t r i a l p l a n t using analog instrumentation. W i t h computers becoming a v a i l a b l e i n t h e p l a n t s , more a c c u r a t e methods o f o b t a i n i n g Q ( c a l / s ) , c a n be e m p l o y e d . The s t e a d y - s t a t e ( S S ) method i s c o m p l e t e l y a c c e p t a b l e a n d c o r r e c t i f , a n d o n l y i f T. a n d Τ a r en o t changing. But i f t h e y a r e , t h e v a l u e c a l c u l a t e d f o r Q w i l l be i n e r r o r . F o r e x a m p l e , w i t h t h e r e a c t o r empty, a s t e p change i n t h e j a c k e t i n l e t w a t e r t e m p e r a t u r e was made. The r e s p o n s e s o f t h e j a c k e t i n l e t a n d o u t l e t t e m p e r a t u r e s a r e shown i n F i g u r e 1. With n e g l i g i b l e h e a t b e i n g t r a n s f e r r e d , Q s h o u l d be z e r o , b u t t h e SS method gave t h e Q p r o f i l e shown i n F i g u r e 2 . The SS method h a s obvious limitations to i t s use. W i t h no h e a t b e i n g t r a n s f e r r e d t h r o u g h t h e j a c k e t , a n accurate p r e d i c t i o n o f t h e j a c k e t water o u t l e t temperature should be p o s s i b l e b y k n o w i n g t h e h i s t o r y o f t h e j a c k e t i n l e t temperature and t h e m i x i n g c h a r a c t e r i s t i c s o f t h e j a c k e t . T h e r e f o r e , t h e d i f f e r e n c e between t h e a c t u a l and p r e d i c t e d o u t l e t temperatures m u l t i p l i e d by t h e f l o w r a t e and s p e c i f i c heat o f t h e w a t e r s h o u l d a l s o e q u a l Q.
Downloaded by PENNSYLVANIA STATE UNIV on June 15, 2013 | http://pubs.acs.org Publication Date: October 7, 1981 | doi: 10.1021/bk-1981-0165.ch032
U
UN-SS E n e r g y B a l a n c e . To p r e d i c t t h e o u t l e t t e m p e r a t u r e , a n u n s t e a d y - s t a t e ( U N - S S ) , e n e r g y b a l a n c e (1) must b e w r i t t e n a r o u n d the reactor j a c k e t . That balance i s : pVCp
dT —--at Q
I
= wCp (T. -T ) + UA (T. -T _)-U'A (T -T ) * i n out i n out out Ε J
The r a t e o f c h a n g e o f t h e o u t l e t t e m p e r a t u r e t i m e s t h e h e a t c a p a c i t y o f t h e j a c k e t e q u a l s t h e heat accumulated by t h e water f l o w p l u s t h e heat t r a n s f e r r e d from t h e r e a c t o r t o t h e j a c k e t minus t h e h e a t t r a n s f e r r e d from t h e j a c k e t t o t h e environment. The UN-SS e q u a t i o n r e d u c e s t o t h e SS e q u a t i o n i f dT / d t = 0 and t h e heat t r a n s f e r t o t h e environment i s negligible: Q = -UA (Τ -T ) = wCp (Τ. -T R out * i n out D i v i d i n g t h e UN-SS e q u a t i o n b y wCp p r o d u c e s : PVCp
dT
wCp
dt
1
UA
__2H_ = (T. -T in
)
out
+
—
_ wCp
( T - T
R
) out
U'A (T -T ) out Ε wCp n
Let: τ I
In Emulsion Polymers and Emulsion Polymerization; Bassett, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Downloaded by PENNSYLVANIA STATE UNIV on June 15, 2013 | http://pubs.acs.org Publication Date: October 7, 1981 | doi: 10.1021/bk-1981-0165.ch032
32.
GORDON AND WEIDNER
^Tôô
40.00
80.00
Metering
120.00
160.00
TIME ( S )
of Particle
200-00
, 240.00
Size
Distribution
280.00
320-00
517
3*0.00
·10'
Figure 1. Jacket water inlet and outlet temperatures in response to a —33°C (Test II) change in the inlet. The response of the jacket outlet temperature typifies a first-order mixing model.
Figure 2.
Plot of the heat transferred from the reactor to the jacket using the SS equation on the data from Figure 1
In Emulsion Polymers and Emulsion Polymerization; Bassett, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
518
EMULSION POLYMERS AND
EMULSION POLYMERIZATION
Downloaded by PENNSYLVANIA STATE UNIV on June 15, 2013 | http://pubs.acs.org Publication Date: October 7, 1981 | doi: 10.1021/bk-1981-0165.ch032
This equation i s f i r s t order i n Τ with respect to t . A f i r s t o r d e r m i x i n g p a t t e r n h a s b e e n assumed, a n d a f i r s t o r d e r p a t t e r n i s e x h i b i t e d by most " w e l l - m i x e d " v e s s e l s t h a t do n o t h a v e b a f f l e s o r f l o w d i r e c t i n g n o z z l e s . How c l o s e l y t h i s f i r s t o r d e r e q u a t i o n f i t s t h e a c t u a l p r o c e s s w i l l be d e t e r m i n e d l a t e r . Determining Model Parameters. To s i m p l i f y f i t t i n g this f i r s t o r d e r e q u a t i o n t o t h e a c t u a l d a t a , t h e UN-SS e q u a t i o n m u s t be r e d u c e d . H e a t t r a n s f e r t o t h e e n v i r o n m e n t , t h e U'A' t e r m , may b e assumed n e g l i g i b l e ( f o r a f i r s t a p p r o x i m a t i o n a n y w a y ) . With no r e a c t i o n o c c u r r i n g and t h e r e a c t o r empty, t h e h e a t t r a n s f e r from t h e r e a c t o r t o t h e j a c k e t , and t h e h e a t r e t a i n e d i n t h e j a c k e t w a l l s , t h e UA t e r r a , may be assumed t o b e z e r o . The r e m a i n i n g e q u a t i o n (2^.3) i s : dT
out
=
dt
(T. - Τ ) xn out
G i v e n t h e d e r i v a t i v e ( d T ^ ^ / d t ) and t h e t e m p e r a t u r e T^, t h i s equation w i l l p r e d i c t the value of the o u t l e t temperature w i t h a l l external heat t r a n s f e r equal t o zero. The s o l u t i o n o f t h i s d i f f e r e n t i a l e q u a t i o n ( a s s u m i n g dT. / d t = 0) x s : -t/x
-t/τ Τ
= Τ
out
,.,.β out(x)
+T.
xn
(1-e
)
To a c c o u n t f o r l a g o r d e a d t i m e a s w i t h p l u g f l o w , a d e l a y , Θ, may b e i n c l u d e d i n t h e e q u a t i o n . -(t-6)/ T
4_=T
out
..e out(x) t /
T
+
T.
( 1-e xn
-(t-6)/T )
The two p a r a m e t e r s , θ a n d τ , n e e d t o b e d e t e r m i n e d ( 4 ) . B o t h may be o b t a i n e d f r o m a p l o t o f t h e j a c k e t i n l e t a n d o u t l e t t e m p e r a t u r e t o a s t e p change i n t h e j a c k e t i n l e t ( s e e F i g u r e 1 ) . For the f i r s t approximations, θ w i l l equal the d i f f e r e n c e i n time between the observed changes of t h e i n l e t and outlet temperatures, χ equals t h e time taken f o r the o u t l e t temperature to a c h i e v e 63.2% o f i t s f i n a l change. (The d e f i n i t i o n o f a t i m e c o n s t a n t o r τ i n t h i s case i s the time f o r a response t o a t t a i n 63.2% o f i t s f i n a l v a l u e . ) V a l u e s f o r t h e two t e s t s a r e shown below.
In Emulsion Polymers and Emulsion Polymerization; Bassett, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
32.
Metering
GORDON AND WEIDNER
of Particle
Size
519
Distribution
TABLE I TEST 2 S t e p Change Flow Rate θ Κ τ τ K
-39.5°C 567.7cm / s 18.5 s 10500 130.2 s 86.4 s 1.502
2
Downloaded by PENNSYLVANIA STATE UNIV on June 15, 2013 | http://pubs.acs.org Publication Date: October 7, 1981 | doi: 10.1021/bk-1981-0165.ch032
TEST 2 -33.0°C 525.7cm / s 23.5 s 12350 143.4 s 93.6 s 1.532
Earlier, was s e t e q u a l t o pV/w. The v o l u m e , d e n s i t y , a n d f l o w r a t e a r e known s o t h a t t h i s "ideal"τ c o u l d h a v e b e e n calculated. R e a l i s t i c a l l y , t h e i d e a l and a c t u a l , τ , w i l l differ. i s the compensating f a c t o r t h a t r e l a t e s the i d e a l t o t h e a c t u a l , and h e n c e :
θ was assumed t o b e a f u n t i o n o f w, a n d θ t o w as i n : θ = wK
i s used t o
relate
1
The f i r s t o r d e r c u r v e s were compared t o t h e a c t u a l d a t a i n F i g u r e s 3 a n d 4. A v e r a g e Κ v a l u e s f o r θ a n d were u s e d . The f i t s a r e r e l a t i v e l y good a n d s u b s t a n t i a t e t h e a s s u m p t i o n s o f f i r s t order with a delay time. B e f o r e t h e UN-SS e q u a t i o n c a n b e i m p l e m e n t e d o n t h e c o m p u t e r t h e t e m p e r a t u r e s a m p l i n g r a t e s a n d method o f c a l c u l a t i n g dT / d t must be d e c i d e d . The s m a l l e r t h e t i m e c o n s t a n t , t h e s m a l l e r t h e s a m p l i n g r a t e s h o u l d be. A l l d a t a i n t h i s r e p o r t was o b t a i n e d a t 3 s e c o n d i n t e r v a l s ( a b o u t 2.2% o f t h e t i m e c o n s t a n t ) . The d e r i v a t i v e , d T / d t , may b e c a l c u l a t e d by p e r f o r m i n g a l e a s t s q u a r e s f i t arouncf 'N number o f p o i n t s . Ν s h o u l d be chosen i n v e r s e l y p r o p o r t i o n a l t o the accuracy and s t a b i l i t y o f t h e t e m p e r a t u r e m e a s u r e m e n t s . The h i g h e r t h e a c c u r a c y , t h e l o w e r Ν can be. Ν was c h o s e n t o b e 7 i n t h e s e t e s t s . A c o m p a r i s o n o f t h e SS a n d UN-SS e q u a t i o n s a r e shown i n F i g u r e 5 a s a p p l i e d t o t h e e a r l i e r s t e p change i n F i g u r e 1. The UN-SS e q u a t i o n was r e a r r a n g e d so b o t h s i d e s e q u a l t h e h e a t t r a n s f e r r e d t h r o u g h t h e r e a c t o r . The UN-SS e q u a t i o n p l o t t e d is : τ
Qt
1
UN-SS:
Q = -UA ( T ^ o u t * =
( T
in@(t-ef
T
K
I 2
( d T
out
/ d t )
T
- out
) w C
In Emulsion Polymers and Emulsion Polymerization; Bassett, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
P
Downloaded by PENNSYLVANIA STATE UNIV on June 15, 2013 | http://pubs.acs.org Publication Date: October 7, 1981 | doi: 10.1021/bk-1981-0165.ch032
520
EMULSION POLYMERS AND EMULSION
POLYMERIZATION
Figure 3. Comparison of the actual and predicted jacket water outlet temperatures. Average values of θ = 21.7 and τ = 142.3 were used for the predicted temperature.
cο ο ο.
ο.
Ό.00
40.00
80.00
120.00
160.00
TIME ( S )
Figure 4.
200-00
240.00
280.00
320.00
360.00
·10'
Plot of the heat transferred from the reactor to the jacket using the UN-SS equation on the data from Figure 1
In Emulsion Polymers and Emulsion Polymerization; Bassett, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
32.
GORDON AND WEIDNER
Metering
of Particle
Size
Distribution
521
The UN-SS e q u a t i o n i s a n i m p r o v e m e n t o v e r t h e SS e q u a t i o n . The t o t a l a r e a b e t w e e n t h e c u r v e a n d 0.00 c a l / s s h o u l d b e z e r o . The UN-SS e q u a t i o n d o e s h a v e some d r a w b a c k s . The d T / d t terra i s s e n s i t i v e t o n o i s e and t o t h e f l u c u a t i o n s i n t h e l a s t b i t o f t h e d i g i t a l t o a n a l o g c o n v e r t e r i n t h e c o m p u t e r . T h i s n o i s e may b e c o n t r o l l e d b y v a r y i n g 'Ν' u n t i l a n a c c e p t a b l e a g r e e m e n t i s r e a c h e d between n o i s e and a c c u r a c y . To f u r t h e r i m p r o v e t h e UN-SS e q u a t i o n , t h e v a r i a b l e s , θ and , may b e v a r i e d t o o p t i m i z e t h e f i t , o r a h i g h e r o r d e r m o d e l may b e n e c e s s a r y f o r a s m o o t h e r r e s p o n s e . U'A may b e d e t e r m i n e d by t r i a l a n d e r r o r , o r t h e UN-SS e q u a t i o n may b e s o l v e d f o r a n o n - z e r o U'A t o improve t h e accuracy o f t h e equation. Q
t
τ
1
Downloaded by PENNSYLVANIA STATE UNIV on June 15, 2013 | http://pubs.acs.org Publication Date: October 7, 1981 | doi: 10.1021/bk-1981-0165.ch032
1
Experimental Polymerization. The o n l y r e a l t e s t o f t h e UN-SS e q u a t i o n i s w i t h a c t u a l d a t a . Figure 6 i l l u s t r a t e s the j a c k e t i n l e t , j a c k e t o u t l e t , a n d r e a c t o r t e m p e r a t u r e s d u r i n g an e m u l s i o n r u n . The c o n t r o l was i n t e n t i o n a l l y underdamped t o i n s u r e the temperatures o s c i l l a t e d , thereby imposing a f a i r l y s t r i n g e n t t e s t o n t h e two m e t h o d s . F i g u r e 7 i s t h e SS c u r v e , a n d F i g u r e 8 i s t h e UN-SS. B o t h m o d e l s a c c o u n t f o r t h e m a j o r c h a n g e s i n t h e j a c k e t t e m p e r a t u r e , b u t t h e UN-SS e q u a t i o n h a n d l e d t h e s p i k e i n t h e j a c k e t i n l e t much b e t t e r . U n l i k e t h e SS e q u a t i o n , a t no a p p r e c i a b l e t i m e was t h e j a c k e t " h e a t i n g " t h e r e a c t o r ( s h o w i n g a p o s i t i v e c a l / s ) when i t was t h e r m οdynamically i m p o s s i b l e t o do s o . The UN-SS e q u a t i o n r e d u c e d t h e e f f e c t b y r e d u c i n g t h e a r e a e n c o m p a s s e d by t h e s p i k e i n t h e h e a t t r a n s f e r curve. W i t h an a c c u r a t e t o t a l and r a t e o f h e a t e v o l v e d from t h e r e a c t o r , t h e t o t a l and r a t e o f c o n v e r s i o n i s e a s i l y c a l c u l a t e d . Now a n a l g o r i t h m r e l a t i n g e m u l s i f i e r a d d i t i o n t o c o n v e r s i o n c a n be d e v e l o p e d a n d p r o p e r l y i m p l e m e n t e d . Applications A l g o r i t h m s , computer p r o c e s s c o n t r o l e q u a t i o n s , have been developed t o c o n t r o l e m u l s i f i e r metering r a t e s based on i n f o r m a t i o n o b t a i n e d from r a t e o f c o n v e r s i o n . Using this t e c h n i q u e o f e m u l s i f i e r m e t e r i n g , p a r t i c l e s i z e growth can be modified during the polymerization. Particle size distribution i s n o r m a l l y c o n t r o l l e d f o r e m u l s i o n PVC t h r o u g h h o r a o g e n i z a t i o n (_5 ) o r b y u s i n g seeded p o l y m e r i z a t i o n (§_t2.) · S e e d e d p o l y m e r i z a t i o n s normally produce a bimodal p a r t i c l e s i z e (PSD). F i g u r e 9 shows a t y p i c a l PVC l a t e x b i m o d a l PSD (6,1). N o t e o n e f r a c t i o n o f p a r t i c l e s i s l a b e l e d " l a r g e s " and t h e o t h e r f r a c t i o n i s l a b e l e d " s m a l l s " . P a r t i c l e s i z e i n c r e a s e s from r i g h t t o l e f t . P a r t i c l e s i z e was d e t e r m i n e d by a n I C I - J o y c e L o e b l Disc C e n t r i f u g e MK I I I w i t h p h o t o s e d i m e n t o m e t e r . This instrument measures p a r t i c l e s i z e and p a r t i c l e s i z e d i s t r i b u t i o n by c e n t r i f u g a t i o n u s i n g a p h o t o c e l l d e t e c t i o n system ( 8 , 9 ) .
In Emulsion Polymers and Emulsion Polymerization; Bassett, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
522
EMULSION POLYMERS AND EMULSION
POLYMERIZATION
8
8 8 3 ο
Downloaded by PENNSYLVANIA STATE UNIV on June 15, 2013 | http://pubs.acs.org Publication Date: October 7, 1981 | doi: 10.1021/bk-1981-0165.ch032
78
4b.00
·0.00
120.00
160.00
TIME ( S )
Figure 5.
200.00
. 240.00
2*0.00
320.00
360.00
·10'
Superposition of Figures 2 and 4. The area between the curves and 0.0 cal/s represents the error in each calculation.
8
ah 8
M 8
Ji UJ