Emulsions in Enhanced Oil Recovery - American Chemical Society

E MULSIONS ARE OF GREAT IMPORTANCE in enhanced oil recovery (EOR) techniques ..... elongated drop in the center of the glass capillary tube. The shape...
0 downloads 0 Views 4MB Size
7 Emulsions in Enhanced Oil Recovery Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

Kevin C . Taylor and Blaine F. Hawkins Petroleum Recovery Institute, 3512 33rd Street N . W . , Calgary, Alberta, Canada T 2 L 2A6

Micellar-polymer flooding and alkali-surfactant-polymer (ASP) flooding are discussed in terms of emulsion behavior and interfacial properties. Oil entrapment mechanisms are reviewed, followed by the role of capillary number in oil mobilization. Principles of micellarpolymer flooding such as phase behavior, solubilization parameter, salinity requirement diagrams, and process design are used to introduce the ASP process. The improvements in “classical” alkaline flooding that have resulted in the ASP process are discussed. The ASP process is then further examined by discussion of surfactant mixing rules, phase behavior, and dynamic interfacial tension.

E M U L S I O N S A R E O F G R E A T I M P O R T A N C E i n e n h a n c e d o i l recovery ( E O R ) t e c h n i q u e s . I n some cases, e m u l s i o n s m a y be an u n w e l c o m e c o n s e q u e n c e o f the process, b u t i n o t h e r cases, the use o f emulsions is c r i t i c a l a n d f u n d a ­ m e n t a l to the o i l recovery process. I n general, processes that r e l y o n the i n j e c t i o n o f surfactants or s u r f a c t a n t - f o r m i n g materials i n t o a reservoir r e l y heavily o n e m u l s i o n technology. M i c e l l a r - p o l y m e r flooding a n d a l k a l i - s u r ­ f a c t a n t - p o l y m e r flooding are two examples i n w h i c h e m u l s i o n t e c h n o l o g y specific to the process has e v o l v e d to m e e t special needs. I n these processes it is necessary to u n d e r s t a n d the b e h a v i o r o f an e m u l s i o n as it is i n j e c t e d i n t o o r f o r m e d i n a reservoir, as it travels t h r o u g h that reservoir over a p e r i o d o f weeks o r m o n t h s , a n d as it flows out o f the reservoir t h r o u g h a p r o d u c i n g w e l l . T h i s chapter discusses the basics r e q u i r e d for an a p p r e c i a t i o n o f these processes. T h r o u g h o u t this chapter, m i c r o e m u l s i o n s w i l l be treated as a type o f e m u l s i o n , e v e n t h o u g h there are f u n d a m e n t a l differences b e t w e e n the t w o . M i c r o e m u l s i o n s are t h e r m o d y n a m i c a l l y stable a n d w i l l not segregate w i t h 0065-2393/92/0231-0263 $08.75/0 © 1992 American Chemical Society

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

264

EMULSIONS IN THE PETROLEUM INDUSTRY

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

t i m e . I n contrast, e m u l s i o n s w i l l e v e n t u a l l y separate w i t h t i m e a n d o w e t h e i r stability t o processes that d e l a y the a p p r o a c h t o e q u i l i b r i u m . T h e p r o g r e s s i o n f r o m m i c e l l a r - p o l y m e r flooding to a l k a l i - s u r f a c t a n t p o l y m e r ( A S P ) flooding has special significance i n this chapter. M i c e l l a r p o l y m e r flooding is t e c h n i c a l l y w e l l - d e v e l o p e d , relatively w e l l - u n d e r s t o o d , a n d has u n d e r g o n e n u m e r o u s t e c h n i c a l l y successful field trials. H o w e v e r , this process is i n h e r e n t l y expensive because o f the relatively large surfactant concentrations that m u s t b e i n j e c t e d i n t o t h e reservoir. A l k a l i - s u r f a c t a n t p o l y m e r flooding is a m u c h n e w e r technology, is m o r e c o m p l e x , a n d is n o t t e c h n i c a l l y w e l l - d e v e l o p e d . M a n y o f t h e lessons l e a r n e d f r o m m i c e l l a r p o l y m e r flooding c a n b e a p p l i e d t o t h e A S P process. A l k a l i - s u r f a c t a n t p o l y m e r flooding is i n h e r e n t l y m u c h less expensive t h a n t h e m i c e l l a r - p o l y ­ m e r process, p r i m a r i l y because t h e surfactant c o n c e n t r a t i o n is significantly l o w e r . F i e l d trials are i n progress, a l t h o u g h m a n y o f t h e details r e m a i n c o n f i d e n t i a l . T h i s t e c h n o l o g y is at t h e stage that t h e m i c e l l a r - p o l y m e r p r o ­ cess was i n d u r i n g the early 1970s. A s m o r e is l e a r n e d , this process m a y c o m e i n t o m u c h m o r e w i d e s p r e a d use.

Oil Entrapment and Mobilization in Porous Media O i l E n t r a p m e n t M e c h a n i s m s . E n h a n c e d o i l r e c o v e r y processes d e p e n d i n large part o n t h e e l i m i n a t i o n o r r e d u c t i o n o f c a p i l l a r y forces. C a p i l l a r y forces are t h e strongest that o c c u r u n d e r t y p i c a l reservoir c o n d i ­ tions, a n d are most r e s p o n s i b l e for o i l e n t r a p m e n t . V i s c o u s forces, w h i c h act to displace o i l , are c o m p o s e d o f t h e a p p l i e d pressure gradient, gravity, density differences b e t w e e n phases, a n d viscosity ratio. I n a p e r m e a b l e m e d i u m , c a p i l l a r y forces result w h e n t h e pores c o n s t r a i n t h e o i l - w a t e r interface t o a h i g h degree o f c u r v a t u r e . F r o m t h e L a p l a c e e q u a t i o n , t h e c a p i l l a r y pressure P i n a c a p i l l a r y tube c a n b e d e r i v e d : c

P ,P _P c

o

w

=

2iL£2L* r

(1)

w h e r e Ρ is t h e pressure i n a fluid phase (subscripts ο a n d w for o i l o r water, respectively), σ is t h e i n t e r f a c i a l t e n s i o n , r is t h e radius o f c u r v a t u r e o f the interface, a n d Θ is t h e contact angle, w h i c h is t h e angle that t h e o i l - w a t e r interface makes w i t h the s o l i d surface, as m e a s u r e d t h r o u g h the w a t e r phase. W h e n t h e contact angle is z e r o , t h e surface is said to b e h i g h l y water-wet. I f the contact angle is 180°, t h e n o i l c o m p l e t e l y wets t h e surface a n d i t is o i l w e t . T h e p r e f e r e n c e o f the surface for o i l o r w a t e r is its w e t t a b i l i t y . I n c r u d e o i l reservoirs, w e t t a b i l i t y varies f r o m relatively o i l - w e t i n carbonate reser­ voirs to relatively w a t e r - w e t i n sandstone reservoirs, w i t h m a n y exceptions.

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

7.

TAYLOR AND HAWKINS

Emulsions in Enhanced Oil Recovery

265

A l t h o u g h the c a p i l l a r y t u b e is a s i m p l e r e p r e s e n t a t i o n o f fluid i n a p o r e , several v a l i d c o m m e n t s c a n b e m a d e . T h e c a p i l l a r y pressure increases as p o r e d i a m e t e r decreases, o r as i n t e r f a c i a l t e n s i o n ( I F T ) o r contact angle increases. C a p i l l a r y forces are t h e r e f o r e i n f l u e n c e d b y p o r e geometry, i n t e r facial t e n s i o n , a n d surface w e t t a b i l i t y .

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

W h e n an aqueous phase flows t h r o u g h a p o r o u s m e d i u m c o n t a i n i n g o i l , some o i l w i l l b e r e a d i l y d i s p l a c e d , b u t c a p i l l a r y forces w i l l act to trap o i l i n some o f the p o r e spaces. N o matter h o w m u c h aqueous phase flows t h r o u g h the m a t e r i a l , a c e r t a i n a m o u n t o f o i l , c a l l e d r e s i d u a l o i l , w i l l r e m a i n t r a p p e d . T h e r e s i d u a l o i l saturation is generally expressed as a p e r c e n t a g e o f t h e o r i g i n a l o i l i n place ( % O O I P ) , a n d c a n b e greater t h a n 4 0 % . T h i s o i l is t h e target o f m a n y e n h a n c e d o i l r e c o v e r y t e c h n i q u e s . T w o m o d e l s h e l p to e x p l a i n t h e m e c h a n i s m s b y w h i c h o i l is e n t r a p p e d i n p o r o u s m e d i a : t h e p o r e d o u b l e t a n d the s n a p - o f f m o d e l s . T h e p o r e d o u b l e t m o d e l was i n t r o d u c e d b y M o o r e a n d S l o b o d i n 1956 (1), a n d has b e e n c r i t i c a l l y r e v i e w e d b y C h a t z i s a n d D u l l i e n (2). I n this m o d e l , t w o capillaries o f d i f f e r e n t diameters are c o n n e c t e d at t h e i n l e t a n d outlet ends to create a n i d e a l i z e d m o d e l o f a p o r e structure. I n i t i a l l y , t h e d o u b l e t is f u l l o f o i l , a n d w a t e r w i t h viscosity t h e same as that o f the o i l flows i n f r o m o n e e n d ( F i g u r e l a ) . A s t h e w a t e r c o n t i n u e s to flow, t h r e e o u t c o m e s are p o s s i b l e : 1. O i l c o u l d b e c o m p l e t e l y d i s p l a c e d f r o m b o t h c a p i l l a r i e s . 2. S o m e o i l c a n r e m a i n i n t h e s m a l l e r c a p i l l a r y . 3. S o m e o i l c a n r e m a i n i n t h e larger c a p i l l a r y . F o r t h e first o u t c o m e to o c c u r , viscous a n d c a p i l l a r y forces w o u l d have to b e e q u a l , w h i c h is u n l i k e l y u n d e r realistic reservoir c o n d i t i o n s . M o r e likely, viscous forces w i l l b e s m a l l relative to c a p i l l a r y forces u n d e r n o r m a l flow c o n d i t i o n s i n a reservoir. I n this case, u n d e r w a t e r - w e t c o n d i t i o n s , c a p i l l a r y pressure is m u c h greater i n t h e c a p i l l a r y w i t h a s m a l l d i a m e t e r , so t h e w a t e r moves m o r e r a p i d l y , t r a p p i n g t h e o i l i n t h e larger c a p i l l a r y ( F i g u r e l b ) . Q u a l i t a t i v e l y , t h e m o d e l p r e d i c t s that t h e n o n w e t t i n g phase w i l l b e t r a p p e d i n large pores, w h i l e t h e w e t t i n g phase w i l l b e t r a p p e d i n s m a l l cracks a n d crevices. A s c a p i l l a r y forces are l o w e r e d , a decrease i n t r a p p i n g w i l l result i n the w a t e r - w e t case, because t h e relative v e l o c i t y o f t h e w a t e r i n t h e s m a l l c a p i l l a r y w i l l decrease relative to that i n t h e large c a p i l l a r y . T h e p o r e d o u b l e t m o d e l is a s i m p l e o n e that tends to greatly overestimate r e s i d u a l o i l satura­ t i o n i n p o r o u s m e d i a . H o w e v e r , it does s h o w h o w a n o n w e t t i n g phase c a n become trapped i n water-wet porous media. T h e snap-off m o d e l has b e e n d e t a i l e d w i t h e x p e r i m e n t a l w o r k b y C h a t z i s et a l . (4). I n this m o d e l , o i l i n i t i a l l y fills a series o f c o n n e c t e d p o r e

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

266

EMULSIONS IN THE PETROLEUM INDUSTRY

OU Phase (nonwetting)

^ Water Phase (wetting)

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

a) beginning of displacement

Water Phase (wetting) b) oil phase trapped Figure 1. Fore doublet model. (Reproduced with permission from reference 3. Copyright 1989 Prentice Hall.) b o d i e s ( F i g u r e 2). T h e surface o f each p o r e is w a t e r - w e t , h o w e v e r , a n d is c o a t e d w i t h a t h i n film o f water. C a p i l l a r y pressure varies a l o n g t h e flow p a t h , b e i n g highest at t h e p o r e throat c o n s t r i c t i o n s . A s w a t e r flows i n t o o n e e n d o f t h e p o r e series, some o i l w i l l b e d i s p l a c e d . B u t i f t h e c a p i l l a r y pressure b e c o m e s h i g h e n o u g h , t h e o i l phase w i l l snap o f f i n t o globules w i t h i n t h e pores i n t h e flow p a t h . S n a p - o f f begins to o c c u r as t h e ratio o f p o r e d i a m e t e r to p o r e throat d i a m e t e r (aspect ratio) exceeds a c r i t i c a l v a l u e . I n p o r o u s m e d i a the p o r e structure is m u c h m o r e c o m p l e x t h a n i n t h e s i m p l e s n a p - o f f m o d e l , d i s p l a y i n g a range o f p o r e sizes a n d aspect ratios. I n B e r e a sandstone, about 8 0 % o f t h e t r a p p e d n o n w e t t i n g phase occurs i n t h e snapo f f g e o m e t r y , a n d t h e r e m a i n i n g a p p r o x i m a t e l y 2 0 % occurs i n p o r e d o u b l e t s or c o m b i n a t i o n s o f the t w o (4). T h e n o n w e t t i n g r e s i d u a l o i l b e c o m e s t r a p p e d i n l a r g e r pores i n globules that c a n b e several p o r e diameters l o n g .

Figure 2. Pore snap-off model. (Reproduced with permission from reference 3. Copyright 1983 Society of Petroleum Engineers.)

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

7.

TAYLOR AND HAWKINS

267

Emulsions in Enhanced Oil Recovery

Capillary Number in Oil Mobilization, T h e c a p i l l a r y n u m b e r N is a d i m e n s i o n l e s s ratio o f viscous to c a p i l l a r y forces; i t p r o v i d e s a m e a ­ sure o f h o w strongly t r a p p e d r e s i d u a l o i l is w i t h i n a g i v e n p o r o u s m e ­ d i u m (5). V a r i o u s definitions have b e e n u s e d f o r c a p i l l a r y n u m b e r , b u t the f o l l o w i n g e q u a t i o n is c o m m o n : c

N = ^ σ

(2)

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

c

w h e r e υ is D a r c y v e l o c i t y , μ is the viscosity o f the d i s p l a c i n g phase, a n d σ is the i n t e r f a c i a l t e n s i o n b e t w e e n the d i s p l a c e d a n d d i s p l a c i n g phases. T h e D a r c y v e l o c i t y is expressed i n units o f distance over t i m e a n d is o b t a i n e d b y d i v i d i n g t h e flow rate i n t o a p o r o u s m e d i a b y t h e cross-sectional area t h r o u g h w h i c h flow occurs. F i g u r e 3 shows several c a p i l l a r y n u m b e r curves o b t a i n e d f r o m the literature f o r w a t e r - w e t B e r e a sandstone. T h e shape o f the c u r v e is affected b y w e t t a b i l i t y a n d p o r e size d i s t r i b u t i o n . F o r the o i l phase, m o b i l i z a t i o n o f r e s i d u a l o i l u s u a l l y begins at a c a p i l l a r y n u m b e r o f about 10" (the c r i t i c a l c a p i l l a r y n u m b e r ) , a n d c o m p l e t e o i l r e c o v e r y occurs at h i g h values o f N o f about 10~ . F o r a variety o f w a t e r - w e t sandstones, C h a t z i s a n d M o r r o w (6) f o u n d a c r i t i c a l c a p i l l a r y n u m b e r o f 10~ a n d c o m ­ p l e t e r e c o v e r y o f o i l at N o f 10" . 5

2

c

5

3

c

T h e c a p i l l a r y n u m b e r f o r flow i n a t y p i c a l o i l r e s e r v o i r u n d e r g o i n g w a t e r - f l o o d i n g can easily be c a l c u l a t e d . A t a flow rate o f about 0.26 m/day (3 χ 10" m/s), an o i l - w a t e r i n t e r f a c i a l t e n s i o n o f 30 m N / m , a n d w a t e r viscosity 6

10"

6

10"

5

1CT

4

10

-3

10'

2

Capillary Number Figure 3. Capillary number correlations from the literature. Key: . . Gupta and Trushenski (34); - - -, Taber (5); and —-, Chatzis and Morrow (6).

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

268

EMULSIONS IN THE PETROLEUM INDUSTRY

o f 1 mPa-s, the c a p i l l a r y n u m b e r is 1 x 10" . T h i s n u m b e r is 2 orders o f m a g n i t u d e b e l o w the c r i t i c a l value r e q u i r e d to b e g i n m o b i l i z a t i o n o f r e s i d u a l o i l . T o r e c o v e r a l l o i l , the c a p i l l a r y n u m b e r must b e i n c r e a s e d b y a factor o f 10 . T h i s increase c o u l d b e d o n e b y d e c r e a s i n g the I F T to 3 x 10~ m N / m ; s u c h a decrease is possible i n some s u r f a c t a n t - o i l systems. A n increase i n viscosity b y 4 orders o f m a g n i t u d e is not feasible because o f w e l l - b o r e injectivity p r o b l e m s , a l t h o u g h an increase o f 1 o r d e r o f m a g n i t u d e c o m b i n e d w i t h a decrease i n I F T b y 3 orders o f m a g n i t u d e w o u l d suffice. A n increase o f the flow rate b y several orders o f m a g n i t u d e is i m p r a c t i c a l because the r e s u l t i n g pressure w o u l d fracture the o i l - b e a r i n g f o r m a t i o n . A l s o , i n j e c t i o n w e l l s u s u a l l y d o not have significant u n u s e d i n j e c t i o n capacity. So, to greatly increase c a p i l l a r y n u m b e r , i n t e r f a c i a l t e n s i o n can be decreased b y a large a m o u n t , a n d d i s p l a c i n g phase viscosity c a n be i n c r e a s e d m o d e r a t e l y . 7

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

4

3

Interfacial Parameters Important in Enhanced Oil Recovery Interfacial Tension. A s already seen, i n t e r f a c i a l t e n s i o n is o f f u n ­ d a m e n t a l i m p o r t a n c e i n d e t e r m i n i n g the c a p i l l a r y forces a c t i n g o n t r a p p e d o i l w i t h i n p o r o u s m e d i a . Interfacial t e n s i o n arises f r o m an i m b a l a n c e i n the forces o f attraction b e t w e e n m o l e c u l e s i n the b u l k phase a n d m o l e c u l e s at the interface. It c a n be d e f i n e d as the i s o t h e r m a l reversible w o r k o f f o r m a ­ t i o n o f u n i t area o f interface i n a system o f constant c o m p o s i t i o n (7). I f i n t e r f a c i a l t e n s i o n b e t w e e n t w o phases b e c o m e s z e r o , t h e n the t w o phases b e c o m e m i s c i b l e . T h i s result is the u l t i m a t e a i m o f m a n y types o f E O R : to m a k e o i l - w a t e r i n t e r f a c i a l t e n s i o n e q u a l to 0, so that a d i s p l a c i n g fluid c a n m i s c i b l y displace o i l t r a p p e d i n the p o r o u s m e d i u m . I n p r a c t i c e , it is d i f f i c u l t to m a k e i n t e r f a c i a l t e n s i o n a p p r o a c h 0 f o r l i q u i d s o f s u c h d i f f e r e n t characteristics as o i l a n d w a t e r . V e r y l o w values o f I F T are usually m e a s u r e d w i t h the s p i n n i n g d r o p m e t h o d m a d e p r a c t i c a l b y C a y i a s et a l . (8), because this m e t h o d is the most versatile m e t h o d for t a k i n g measurements at values o f 0.1 m N / m a n d l o w e r . C l a s s i c a l m e t h o d s s u c h as the c a p i l l a r y rise, d u N o u y ring, W i l h e l m y plate, a n d d r o p w e i g h t (and v o l u m e ) m e t h o d s are generally u s e d for i n t e r f a c i a l t e n s i o n measurements o f greater t h a n 1 m N / m . T h e s p i n n i n g d r o p m e t h o d also has the advantage o f b e i n g able to measure d y n a m i c changes i n I F T . T h e o n l y o t h e r p o t e n t i a l l y u s e f u l m e t h o d to date is laser l i g h t scattering, w h i c h is largely u n p r o v e n f o r c r u d e - o i l - w a t e r i n t e r f a c i a l t e n s i o n measure­ m e n t (9). I n the s p i n n i n g d r o p m e t h o d , an o i l d r o p l e t o f a p p r o x i m a t e l y 1 is p l a c e d i n a glass c a p i l l a r y (2 m m i.d.) f u l l o f aqueous s o l u t i o n . T h e glass tube is sealed a n d s p u n h o r i z o n t a l l y a r o u n d its axis at 5000 to 10,000 r p m . C e n t r i f u g a l force w i l l cause the l i g h t e r phase (usually the oil) to f o r m an

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

7.

TAYLOR AND HAWKINS

Emulsions in Enhanced Oil Recovery

269

e l o n g a t e d d r o p i n the c e n t e r o f the glass c a p i l l a r y t u b e . T h e shape o f this d r o p is the result o f a n e q u i l i b r i u m b e t w e e n r o t a t i o n a l forces a c t i n g to elongate the d r o p a n d c o n t r a c t i o n b y i n t e r f a c i a l t e n s i o n a c t i n g to m i n i m i z e surface area. P r o v i d i n g that the d r o p is q u i t e l o n g relative to its w i d t h , i n t e r f a c i a l t e n s i o n c a n be c a l c u l a t e d w i t h V o n n e g u t ' s f o r m u l a (10):

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

σ

= ^ 1

(3)

w h e r e Δ ρ is the density d i f f e r e n c e b e t w e e n the t w o phases, ω is the angular v e l o c i t y , a n d R is h a l f o f the d r o p w i d t h . W h e n the d r o p is not l o n g relative to its w i d t h , a m o r e c o m p l i c a t e d treatment is r e q u i r e d (8). I n t e r f a c i a l t e n s i o n is g e n e r a l l y at a m i n i m u m w h e n the i n t e r f a c i a l c o n ­ c e n t r a t i o n o f a d s o r b e d surfactant m a t e r i a l is at a m a x i m u m . Possibly, m a x i ­ m u m a d s o r p t i o n at the interface occurs w h e n the surfactant is e q u a l l y s o l u ­ b l e i n the o i l a n d aqueous phases. Shah et a l . (II) s h o w e d that the I F T b e t w e e n an o i l a n d an aqueous s u r f a c t a n t - c o n t a i n i n g phase is at a m i n i m u m w h e n the p a r t i t i o n c o e f f i c i e n t is u n i t y . T h i s c o n d i t i o n occurs w h e n the surfactant is e q u a l l y soluble i n b o t h phases.

Interfacial Viscosity. I n a c l e a n system i n w h i c h t w o p u r e l i q u i d s p r o d u c e an interface, the viscosity o f the interface s h o u l d be the same as the b u l k s o l u t i o n viscosity. H o w e v e r , surfactant o r i m p u r i t y a d s o r p t i o n at an interface c a n cause a resistance to flow to o c c u r that c a n be m e a s u r e d as the i n t e r f a c i a l shear viscosity. T h i s viscosity is d e f i n e d as the ratio b e t w e e n the shear stress a n d the shear rate i n the p l a n e o f the interface (12). M e t h o d s u s e d to m a k e these measurements i n c l u d e a viscous t r a c t i o n surface v i s c o m ­ eter (12), d r o p l e t - d r o p l e t coalescence (13), the r o t a t i n g r i n g v i s c o m e ­ ter (14), a n d surface laser l i g h t scattering (9). L o w i n t e r f a c i a l viscosity is desirable i n e n h a n c e d o i l r e c o v e r y o p e r a ­ tions, so that d i s p l a c e d o i l globules may r e a d i l y coalesce i n t o an o i l bank. E m u l s i o n stability decreases as i n t e r f a c i a l viscosity decreases, a n d this c o n ­ d i t i o n increases the ease w i t h w h i c h an o i l b a n k c a n b e f o r m e d . W a s a n et al. (15) f o u n d a qualitative c o r r e l a t i o n b e t w e e n coalescence rates a n d i n t e r ­ facial viscosities f o r c r u d e o i l . In extreme cases, m a t e r i a l c a n adsorb at an interface to create a film. I n t e r f a c i a l film f o r m a t i o n c a n o c c u r i n c r u d e - o i l systems a n d has b e e n r e p o r t e d b y B l a i r (16), a n d b y R e i s b e r g a n d D o s c h e r (17), F i l m f o r m a t i o n is relatively c o m m o n w i t h c r u d e oils a n d c a n effectively stabilize e m u l s i o n s b y p r e v e n t i n g d r o p l e t coalescence e v e n w i t h h i g h values o f i n t e r f a c i a l t e n s i o n .

Surface Charge at Interfaces. T h e interface i n a c r u d e - o i l - w a ­ ter system u s u a l l y carries a net charge, w h i c h c a n be c a u s e d b y the a d s o r p ­ t i o n o f surface-active ions. T h e s e surfactants m a y be c a r b o x y l i c acids that

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

270

EMULSIONS IN THE PETROLEUM INDUSTRY

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

originate f r o m the o i l o r synthetic surfactants a d d e d to the system. T h e r m a l m o t i o n o f the c o u n t e r i o n s i n the aqueous phase results i n a d i f f u s e d d o u b l e layer adjacent to the i n t e r f a c e w i t h a n excess o f c o u n t e r i o n s . T h e s e c o u n t e r i o n s screen the attraction b e t w e e n ions a d s o r b e d at the interface a n d c o u n t e r i o n s that are m o r e distant. T h i s s c r e e n i n g causes c o u n t e r i o n c o n ­ c e n t r a t i o n to decrease e x p o n e n t i a l l y w i t h distance f r o m the interface, a n d a net charge results. I n f o r m a t i o n about the surface charge o f droplets i n an e m u l s i o n c a n b e o b t a i n e d f r o m e l e c t r o p h o r e s i s . I n this process, a s o l u t i o n c o n t a i n i n g s m a l l o i l d r o p l e t s is p l a c e d b e t w e e n o p p o s i t e l y c h a r g e d electrodes. B y m e a s u r i n g the v e l o c i t y o f a p a r t i c l e u n d e r a k n o w n field gradient a n d d i v i d i n g v e l o c i t y b y field gradient, the e l e c t r o p h o r e t i c m o b i l i t y is o b t a i n e d . I n g e n e r a l , the absolute v a l u e o f e l e c t r o p h o r e t i c m o b i l i t y is at a m a x i m u m w h e n I F T is at a m i n i m u m i n s u r f a c t a n t - c r u d e - o i l systems (9, 18) as w e l l as i n a c i d i c c r u d e o i l - s o d i u m h y d r o x i d e systems (19). T h u s , surface charge is at a m a x i m u m w h e n surface-active ions are present at m a x i m u m c o n c e n t r a t i o n at the i n t e r ­ face. C h a n g e s i n surface charge c a n result i n changes i n the w a y that o i l d r o p l e t s react w i t h t h e i r s u r r o u n d i n g s . A negative surface charge w i l l r e d u c e the attraction o f o i l d r o p l e t s to negatively c h a r g e d s a n d surfaces, f o r i n ­ stance. C h i a n g et a l . (18) f o u n d that o i l r e c o v e r y i n sand packs a n d B e r e a sandstone was at a m a x i m u m w h e n the absolute value o f surface charge was at a m a x i m u m . T h e y f o u n d that surface charge was at a m a x i m u m a n d i n t e r f a c i a l viscosity at a m i n i m u m b e t w e e n 3.5 w t % s o d i u m c h l o r i d e s o l u t i o n a n d Seeligson c r u d e o i l . I n s a n d packs, r e c o v e r y i m p r o v e d f r o m 6 5 % O O I P to 7 3 % O O I P w h e n i n c r e a s i n g the salinity o f the d i s p l a c i n g phase f r o m 0 to 3 . 5 % . I n B e r e a sandstone, r e c o v e r y i m p r o v e d f r o m 48 to 5 8 % O O I P . I m ­ p r o v e d o i l r e c o v e r y c o u l d not b e a c c o u n t e d f o r b y e i t h e r the alteration o f w e t t a b i l i t y o r the s m a l l increase i n c a p i l l a r y n u m b e r .

Surface Wettability. A s m e n t i o n e d earlier, w e t t a b i l i t y affects cap­ i l l a r y pressure a n d thus the e n t r a p m e n t a n d d i s p l a c e m e n t o f o i l i n p o r o u s m e d i a . T h e i m p o r t a n c e o f w e t t a b i l i t y o n the d i s p l a c e m e n t o f o i l b y w a t e r o r b r i n e solutions has l o n g b e e n k n o w n . I n 1956, after several t h o u s a n d flood­ i n g e x p e r i m e n t s i n a v a r i e t y o f p o r o u s m e d i a , M o o r e a n d S l o b o d (I ) c a m e to the c o n c l u s i o n that w e t t a b i l i t y is the single most i m p o r t a n t factor a f f e c t i n g w a t e r - f l o o d r e c o v e r y efficiency. L a t e r (20, 21), i n t e r m e d i a t e w e t t a b i l i t y was s h o w n to be u n f a v o r a b l e f o r e n h a n c e d o i l r e c o v e r y processes, because the c a p i l l a r y n u m b e r r e q u i r e d for o i l m o b i l i z a t i o n is h i g h e r t h a n occurs w i t h w a t e r - w e t p o r o u s m e d i a , a n d less o i l is available to b e r e c o v e r e d . W a t e r flood o i l r e c o v e r y f r o m w e a k l y w a t e r - w e t cores was h i g h e r t h a n that o b ­ t a i n e d w i t h strongly w a t e r - w e t B e r e a sandstone. Surface w e t t a b i l i t y is p a r ­ t i c u l a r l y i m p o r t a n t i n e n h a n c e d o i l recovery, because the fluids u s e d c a n change the surface w e t t a b i l i t y d u r i n g the course o f the r e c o v e r y process.

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

7.

TAYLOR AND HAWKINS

271

Emulsions in Enhanced Oil Recovery

T h i s change i n w e t t a b i l i t y i n t u r n c a n change relative p e r m e a b i l i t y a n d flow characteristics o f b o t h o i l a n d w a t e r i n p o r o u s m e d i a .

Principles of Micellar-Polymer Flooding M i c e l l a r - p o l y m e r flooding relies o n t h e i n j e c t i o n o f a surfactant s o l u t i o n t o l o w e r i n t e r f a c i a l t e n s i o n t o u l t r a l o w levels, o n t h e o r d e r o f 10" m N / m . T h e r e s u l t i n g increase i n c a p i l l a r y n u m b e r allows t h e r e c o v e r y o f r e s i d u a l o i l f r o m p o r o u s m e d i a . T h e t e r m " m i c e l l a r " is u s e d because the concentrations o f i n j e c t e d surfactant solutions are always above t h e i r c r i t i c a l m i c e l l e c o n ­ c e n t r a t i o n . T h a t is, t h e y are always above t h e c o n c e n t r a t i o n at w h i c h m i ­ celles f o r m .

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

3

Microemulsions. T h e structure o f m i c r o e m u l s i o n systems has b e e n r e v i e w e d (22). B o t h b i c o n t i n u o u s a n d d r o p l e t - t y p e structures, a m o n g o t h ­ ers, c a n o c c u r i n m i c r o e m u l s i o n s . T h e d r o p l e t - t y p e structure is c o n c e p t u a l l y m o r e s i m p l e a n d is a n extension o f the e m u l s i o n structure that occurs at relatively h i g h values o f I F T . I n this case, v e r y s m a l l t h e r m o d y n a m i c a l l y stable droplets o c c u r , t y p i c a l l y s m a l l e r t h a n 10 n m (7). E a c h d r o p l e t is separated f r o m the c o n t i n u o u s phase b y à m o n o l a y e r o f surfactant. B i c o n t i n u o u s m i c r o e m u l s i o n s are those i n w h i c h o i l a n d w a t e r layers i n t h e m i c r o e m u l s i o n m a y b e o n l y a f e w m o l e c u l e s t h i c k , separated b y a m o n o l a y e r o f surfactant. E a c h layer m a y e x t e n d over a m a c r o s c o p i c distance, w i t h m a n y layers m a k i n g u p t h e m i c r o e m u l s i o n . C o m p o s i t i o n s o f i n j e c t e d m i c e l l a r .fluids c a n vary greatly. T h e y i n c l u d e aqueous o r o l e i c solutions o f surfactant as w e l l as c o m p l e x mixtures c o n t a i n ­ i n g c o m p o n e n t s s u c h as cosurfactants, cosolvents, o r stabilizers, i n a d d i t i o n to surfactant, o i l , a n d b r i n e . Regardless o f t h e c o m p o s i t i o n o f t h e i n j e c t e d fluid, o n c e i n t h e reservoir t h e fluid system consists p r i m a r i l y o f o i l , w a t e r , and surfactant. T h e phase b e h a v i o r o f the fluid system c a n b e q u i t e c o m p l e x b u t m a y b e a p p r o x i m a t e l y d e s c r i b e d b y means o f p s e u d o t e r n a r y diagrams i n w h i c h the p s e u d o c o m p o n e n t s are surfactant, b r i n e , a n d o i l ( F i g u r e 4). D e ­ p e n d i n g o n the system b e i n g s t u d i e d , the p s e u d o c o m p o n e n t s c a n range f r o m p u r e substances to c o m p l e x mixtures. F o r e x a m p l e , the o i l m a y b e a p u r e h y d r o c a r b o n o r a c r u d e - o i l m i x t u r e . T h e surfactant c a n i n c l u d e cosurfactants a n d cosolvents, a n d t h e b r i n e m a y i n c l u d e a variety o f i o n i c constituents. T h e p s e u d o t e r n a r y d i a g r a m is separated b y a m u l t i p h a s e b o u n d a r y i n t o a single phase r e g i o n above a n d a m u l t i p h a s e r e g i o n b e l o w t h e phase b o u n d a r y .

Phase Behavior. N e l s o n a n d c o - w o r k e r s ( 2 3 - 2 5 ) a n d H e a l y et al. (26) have w r i t t e n extensively o n phase b e h a v i o r i n m i c e l l a r flooding. I n Nelson's methodology, three different phase-behavior environments occur

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

272

EMULSIONS IN THE PETROLEUM INDUSTRY

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

surfactant

brine

oil

Figure 4. Pseudoternary diagram of oil-water-surfactant system with three compositions of interest. (Reproduced with permission from reference 40. Copyright 1977 Academic Press.) ( F i g u r e 5). T h e s e are the type I I ( - ) , the type II(+), a n d the type I I I phase environments. B o t h t h e type I I ( - ) a n d t h e type II(+) phase e n v i r o n m e n t s have a m a x i m u m o f t w o phases. I n b o t h eases, o n e phase o n l y m a y be present at h i g h surfactant c o n c e n t r a t i o n s . T y p e s I I ( - ) a n d II(+) phase e n v i r o n m e n t s are d i s t i n g u i s h e d w h e n the phases are p l o t t e d o n a p s e u d o t e r n a r y d i a g r a m . T h e tie lines i n the two-phase r e g i o n give e i t h e r a negative slope f o r type I I ( - ) b e h a v i o r o r a p o s i t i v e slope for type II(+) b e h a v i o r . W i n s o r (27) as­ s i g n e d m i c r o e m u l s i o n s o c c u r r i n g i n the two-phase r e g i o n o f a type I I ( - ) d i a g r a m as type I, a n d d e f i n e d t h e m as a m i c r o e m u l s i o n i n e q u i l i b r i u m w i t h excess o i l . T h e m i c r o e m u l s i o n contains m o s t l y b r i n e a n d surfactant, a n d any o i l present is s o l u b i l i z e d i n m i c e l l e s . A s s u c h i t is a n o i l - i n - w a t e r (waterexternal) e m u l s i o n . T h e p l a i t p o i n t o f the p s e u d o t e r n a r y d i a g r a m tends to be close to the o i l apex. M i c r o e m u l s i o n s i n the two-phase r e g i o n o f a type II(+) phase e n v i r o n m e n t c o r r e s p o n d t o a W i n s o r type I I e m u l s i o n . T h e m i c r o e m u l s i o n is i n e q u i l i b r i u m w i t h excess b r i n e a n d contains m o s t l y o i l a n d surfactant. T h e b r i n e is s o l u b i l i z e d i n m i c e l l e s ; thus this is a w a t e r - i n - o i l (oil-external) e m u l s i o n . I n this case, the p l a i t p o i n t o f the p s e u d o t e r n a r y d i a g r a m tends to be close to the b r i n e apex. T h e type I I I phase e n v i r o n m e n t m a y c o n t a i n a m a x i m u m o f t h r e e phases. W h e n this is the case, the e m u l s i o n present c o r r e s p o n d s to W i n s o r type I I I , i n w h i c h a m i c r o e m u l s i o n is i n e q u i l i b r i u m w i t h p u r e o i l a n d p u r e b r i n e phases. H o w e v e r , type I I ( - ) b e h a v i o r a n d type II(+) b e h a v i o r m a y also b e o b s e r v e d u n d e r c e r t a i n c o n d i t i o n s . I n p r a c t i c e , type I I ( - ) or II(+) behav­ i o r occurs w h e n a l l o f t h e b r i n e o r o i l c a n b e i n c o r p o r a t e d i n t o t h e m i c r o e m u l s i o n o r w h e n i n s u f f i c i e n t surfactant is present to p r o d u c e a m e a ­ surable m i c r o e m u l s i o n .

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

7.

TAYLOR AND HAWKINS

Emulsions in Enhanced Oil Recovery

273

surfactant

Typell(-)

two phases plait point

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

brine

overall Oil composition

surfactant

P fS^r two phases three phases na

Type III brine

overall Oil composition

surfactant

Typell(+)

p l a l t p o i n t

brine

two phases

overall °^ composition

Figure 5. Phase-behavior environments. (Reproduced with permission from reference 24. Copyright 1978 Society of Petroleum Engineers.)

A n u m b e r o f factors c a n affect t h e phase type that is o b s e r v e d . T h e s e factors g e n e r a l l y act b y c h a n g i n g t h e p a r t i t i o n i n g o f the surfactant b e t w e e n the b r i n e a n d o i l phases. I n g e n e r a l , any change i n the s u r f a c t a n t - o i l - b r i n e system that increases t h e s o l u b i l i t y o f surfactant i n o i l relative t o b r i n e w i l l cause t h e phase e n v i r o n m e n t type t o shift f r o m I I ( - ) t o I I I t o II(+) as i n d i c a t e d i n the f o l l o w i n g s c h e m e :

i n c r e a s i n g surfactant s o l u b i l i t y i n o i l

->

N e l s o n type I I ( - ) W i n s o r type I

N e l s o n type I I I W i n s o r type I I I

N e l s o n type II(+) W i n s o r type I I

l o w e r phase

m i d d l e phase

u p p e r phase m i c r o e m u l s i o n

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

274

EMULSIONS IN THE PETROLEUM INDUSTRY

I n c r e a s i n g salinity g e n e r a l l y decreases the s o l u b i l i t y o f the surfactant i n the b r i n e phase. T h i s d e c r e a s e d s o l u b i l i t y tends to shift the phase b e h a v i o r f r o m I I ( - ) to I I I to II(+). C h a n g i n g the o i l type so that the surfactant is m o r e s o l u b l e i n the o i l w i l l also shift the phase b e h a v i o r f r o m left to r i g h t . B y i n c r e a s i n g the m o l e c u l a r w e i g h t o f the h y d r o p h o b i c part o f the surfactant, s o l u b i l i t y i n the aqueous phase w i l l g e n e r a l l y decrease, a n d phase b e h a v i o r w i l l shift f r o m left to r i g h t . D e c r e a s i n g the a m o u n t o f b r a n c h i n g w i l l have the same effect. S i m i l a r l y , d e c r e a s i n g the p o l a r i t y o f the h y d r o p h i l i c g r o u p w i l l also decrease s o l u b i l i t y i n the aqueous phase. T h e effects o f changes i n surfactant s t r u c t u r e o n phase b e h a v i o r have b e e n d i s c u s s e d i n d e t a i l (28). T h e f o l l o w i n g changes w i l l also shift phase b e h a v i o r f r o m I I ( - ) to I I I to H(+): • decrease i n t e m p e r a t u r e f o r a n i o n i c surfactants • increase i n t e m p e r a t u r e f o r n o n i o n i c surfactants • increase i n a l c o h o l c o n c e n t r a t i o n (alcohols o f f e w e r t h a n f o u r carbons) • decrease i n a l c o h o l c o n c e n t r a t i o n (alcohols o f m o r e t h a n f o u r carbons) • increase i n the d i v a l e n t i o n c o n c e n t r a t i o n o f the b r i n e

Solubilization Parameter.

T h e s o l u b i l i z a t i o n p a r a m e t e r (S) is d e ­

fined as S = ^

or

^

(4)

w h e r e V is the o i l v o l u m e , V is the v o l u m e o f surfactant, a n d V is the v o l u m e o f w a t e r , a l l three m e a s u r e d i n the m i c r o e m u l s i o n phase. I n t e r f a c i a l t e n s i o n σ c a n b e m e a s u r e d b e t w e e n the m i c r o e m u l s i o n a n d o i l phases ( a ) or b e t w e e n the m i c r o e m u l s i o n a n d w a t e r phases ( a ) . A s e i t h e r measure o f i n t e r f a c i a l t e n s i o n decreases, the s o l u b i l i z a t i o n p a r a m e t e r increases. H e a l y a n d R e e d (29) first s h o w e d that l o w i n t e r f a c i a l t e n s i o n correlates w i t h h i g h s o l u b i l i z a t i o n p a r a m e t e r , a n d H u h (30) s h o w e d it to be t h e o r e t i c a l l y v a l i d . G l i n s m a n n (31) a n d G r a c i a a et a l . (28) have v a l i d a t e d the c o n c e p t e x p e r i ­ 0

s

w

mo

m w

m e n t a l l y . T h i s c o r r e l a t i o n is v e r y u s e f u l because it enables the results o f p h a s e - b e h a v i o r e x p e r i m e n t s to p a r t i a l l y r e p l a c e the e x p e r i m e n t a l l y m o r e difficult measurement of interfacial tension.

Salinity Requirement Diagrams. M a x i m u m s o l u b i l i z a t i o n p a ­ r a m e t e r occurs v e r y close to the salinity at w h i c h m a x i m u m c o r e - f l o o d o i l

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

7.

TAYLOR AND HAWKINS

275

Emulsions in Enhanced Oil Recovery

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

r e c o v e r y is o b t a i n e d . T h e salinity r e q u i r e m e n t o f a c h e m i c a l flooding system is d e f i n e d b y N e l s o n (32) as the salinity at w h i c h a type I I I m i c r o e m u l s i o n is at m i d p o i n t salinity. T h i s c o n d i t i o n occurs w h e n the o i l a n d b r i n e c o n c e n t r a ­ tions i n the m i c r o e m u l s i o n m i d d l e phase are e q u a l . M a n y authors (24, 25, 32-34) have r e p o r t e d that o i l r e c o v e r y is at a m a x i m u m i n a m i c e l l a r flood w h e n the system is near m i d p o i n t salinity. A salinity r e q u i r e m e n t d i a g r a m aids i n the design a n d u n d e r s t a n d i n g o f a m i c e l l a r - p o l y m e r system. T o construct a salinity r e q u i r e m e n t d i a g r a m , 5 to 10 d i f f e r e n t b r i n e salinities are p r e p a r e d f o r at least three surfactant concentrations i n screwcap test tubes. T y p i c a l l y , surfactant c o n c e n t r a t i o n w i l l range f r o m 0 to 10 w t % , a n d salinity w i l l vary a c c o r d i n g to the reservoir o f interest. S a m p l e tubes a l l c o n t a i n an i d e n t i c a l a m o u n t o f b r i n e , u s u a l l y b e t w e e n 50 a n d 8 0 % by v o l u m e . S a m p l e tubes are m i x e d r e g u l a r l y f o r several days, t h e n a l l o w e d to e q u i l i b r a t e . T h e e q u i l i b r a t i o n process c a n take a n y w h e r e f r o m several days to several m o n t h s , d e p e n d i n g o n e m u l s i o n stability. F i g u r e 6 shows a n i d e a l i z e d salinity r e q u i r e m e n t d i a g r a m . W i t h i n the type I I I phase e n v i r o n m e n t , three phases o c c u r i n the area i n d i c a t e d , b u t two phases o c c u r i n the rest o f the type I I I r e g i o n . T y p e II(+) phase b e h a v i o r occurs above the type I I I r e g i o n , a n d the type I I ( - ) b e h a v i o r occurs b e l o w . M i d p o i n t salinity is s h o w n near the m i d d l e o f the type I I I r e g i o n . M i d p o i n t salinity generally decreases w i t h d e c r e a s i n g surfactant c o n ­ c e n t r a t i o n . A s surfactant c o n c e n t r a t i o n decreases, the type I I I phase e n v i -

l

0

ι

2

4

6

8

Total Surfactant (volume %)

.

1

10

Figure 6. Idealized salinity requirement diagram. (Modified and reproduced with permission from reference 32. Copyright 1982 Society of Petroleum Engi­ neers.)

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

276

EMULSIONS IN THE PETROLEUM INDUSTRY

r o n m e n t b e c o m e s n a r r o w e r . T h i s n a r r o w i n g has i m p o r t a n t i m p l i c a t i o n s w h e n c a r r y i n g out a m i c e l l a r flood i n reservoir c o r e . I f a constant salinity flood is c a r r i e d out i n w h i c h the salinity is the same i n the w a t e r - f l o o d b r i n e , the c h e m i c a l s l u g , a n d the p o l y m e r d r i v e , recovery w i l l generally be i n f e r i o r to a salinity gradient flood, even t h o u g h b o t h floods use the same o p t i m u m c h e m i c a l c o m p o s i t i o n . F o r instance, w i t h a constant salinity flood d e s i g n e d to be at m i d p o i n t salinity, surfactant c o n c e n t r a t i o n w i l l decrease i n the front a n d rear m i x i n g zones. T h e surfactant s l u g w i l l t h e n change f r o m type III b e h a v i o r to type II(+) b e h a v i o r . I f a salinity gradient is u s e d , the f o l l o w i n g may o c c u r . A h i g h salinity w a t e r - f l o o d , w i t h salinity h i g h e r than m i d p o i n t salinity, is f o l l o w e d b y a c h e m i c a l s l u g w i t h salinity at o r just b e l o w m i d p o i n t salinity. T h e c h e m i c a l s l u g is f o l l o w e d by a p o l y m e r d r i v e that is m u c h b e l o w m i d p o i n t salinity. In the front m i x i n g z o n e , type III phase b e h a v i o r q u i c k l y develops f r o m i n i t i a l type II(+) behavior. A t the rear m i x i n g z o n e , type III b e h a v i o r is m a i n t a i n e d b e f o r e type I I ( - ) b e h a v i o r occurs. In the l o w e r salinity p o l y m e r d r i v e , surfactant that h a d p a r t i t i o n e d i n t o any r e m a i n i n g o i l partitions back i n t o the l o w e r salinity aqueous phase a n d thereby keeps the system i n type III b e h a v i o r for a l o n g e r p e r i o d . T y p i c a l l y , less surfactant a d s o r p t i o n occurs w i t h a salinity gradient flood than w i t h a constant salinity flood.

Process Design. T h e various applications o f m i c e l l a r flooding can be r e p r e s e n t e d o n a p s e u d o t e r n a r y d i a g r a m ( F i g u r e 4). T h e injected slug u s e d i n aqueous surfactant flooding, i n d i c a t e d b y p o i n t 1 o n the d i a g r a m , has no a d d e d o i l i n the slug m a t e r i a l . S o m e o i l may be i n t r o d u c e d f r o m either surfactant o r p o l y m e r m a n u f a c t u r i n g processes, but i n v e r y s m a l l amounts. A n o i l - i n - w a t e r m i c r o e m u l s i o n injectant is u s e d w h e n the c o m p o s i t i o n is r e p r e s e n t e d b y p o i n t 2. T h i s type o f system is u s e d i n a c o m m e r c i a l ( M a r a f l o o d ) process. C o m p o s i t i o n s i n d i c a t e d by p o i n t 3 are t e r m e d soluble o i l (35, 36) a n d can spontaneously e m u l s i f y water w i t h o i l r e m a i n i n g as the external phase. T h i s type o f c o m p o s i t i o n forms the basis o f another c o m m e r ­ c i a l ( U n i f l o o d ) process. Ideally, the injected m i c e l l a r solutions w i l l be m i s c i b l e w i t h the fluids that they are i n contact w i t h i n the reservoir a n d can thus m i s c i b l y displace those fluids. I n t u r n , the m i c e l l a r solutions may be m i s c i b l y d i s p l a c e d by water. H i g h e s t o i l recovery w i l l result i f the injected m i c e l l a r s o l u t i o n is m i s c i b l e w i t h the reservoir o i l . I f there are no interfaces, i n t e r f a c i a l forces that trap o i l w i l l be absent. Injection o f c o m p o s i t i o n s l y i n g above the m u l t i ­ phase b o u n d a r y i n i t i a l l y s o l u b i l i z e s b o t h w a t e r a n d o i l a n d displaces t h e m i n a m i s c i b l e l i k e m a n n e r . H o w e v e r as i n j e c t i o n o f the m i c e l l a r s o l u t i o n p r o ­ gresses, m i x i n g occurs w i t h the o i l a n d b r i n e at the flood front, a n d surfac­ tant losses o c c u r because o f a d s o r p t i o n o n the reservoir rock. T h e s e c o m p o ­ sitional changes move the system into the m u l t i p h a s e r e g i o n . T h e a b i l i t y o f

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

7.

TAYLOR AND HAWKINS

Emulsions in Enhanced Oil Recovery

277

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

the m i c e l l a r fluid t d r e c o v e r o i l is a l t e r e d d e p e n d i n g o n the phase e n v i r o n ­ ment. In the two-phase r e g i o n , the type II(+) system has an o i l - r i c h m i c e l l a r phase i n e q u i l i b r i u m w i t h an excess b r i n e phase. Surfactant is f o u n d almost exclusively i n the o i l - r i c h phase, a n d the c o n c e n t r a t i o n o f surfactant i n that phase can greatly e x c e e d the c o n c e n t r a t i o n o f surfactant i n the i n j e c t e d c h e m i c a l slug. I n the type II(+) e n v i r o n m e n t , the m i c e l l a r phase r e m a i n s m i s c i b l e w i t h the o i l b u t is i m m i s c i b l e w i t h the b r i n e . O i l c o n t i n u e s to b e r e c o v e r e d b y a m i s c i b l e l i k e process. T h e opposite occurs i f the phase e n v i ­ r o n m e n t is type I I ( - ) . T h e b r i n e - r i c h m i c e l l a r phase is i m m i s c i b l e w i t h the o i l phase, a n d o i l r e c o v e r y is b y l o w I F T i m m i s c i b l e d i s p l a c e m e n t . N e l s o n a n d P o p e (24) d e s c r i b e d these phase relationships a n d d e m o n ­ strated that phases o b s e r v e d i n l a b o r a t o r y test tube e x p e r i m e n t s also f o r m and are t r a n s p o r t e d i n a p o r o u s m e d i u m subjected to a c h e m i c a l flood at r e s e r v o i r flow rates. C h e m i c a l floods c o n t i n u o u s l y m a i n t a i n e d i n a type II(+) phase e n v i r o n m e n t r e c o v e r e d substantially m o r e r e s i d u a l o i l t h a n those m a i n t a i n e d i n a type I I ( - ) e n v i r o n m e n t . N e l s o n a n d P o p e c o n c l u d e d that c h e m i c a l flood design s h o u l d b e s u c h as to m a i n t a i n as m u c h surfactant as possible i n the type I I I phase e n v i r o n ­ m e n t . T h i s c o n d i t i o n c a n be a c c o m p l i s h e d b y d e s i g n i n g the m i c e l l a r fluid s u c h that the i n i t i a l phase e n v i r o n m e n t o f the i m m i s c i b l e d i s p l a c e m e n t is type II(+). A negative salinity g r a d i e n t is i m p o s e d , a n d it moves the phase e n v i r o n m e n t to type I I I a n d , eventually, to I I ( - ) . In p r a c t i c e , because o f e c o n o m i c constraints, a finite c h e m i c a l s l u g must b e i n j e c t e d a n d effectively d i s p l a c e d t h r o u g h the reservoir. T h i s step is a c c o m p l i s h e d b y u s i n g a p o l y m e r d r i v e fluid. T h e p o l y m e r d r i v e fluid, b e i n g aqueous, is i m m i s c i b l e w i t h type II(+) m i c e l l a r fluids b u t m i s c i b l e w i t h type I I ( - ) . T h u s , i f a type II(+) system w e r e to be d i s p l a c e d b y a p o l y m e r d r i v e fluid, phase t r a p p i n g o f the m i c e l l a r s o l u t i o n c o u l d o c c u r . T h e use o f salinity gradient to p r o d u c e a type I I ( - ) e n v i r o n m e n t at the t r a i l i n g edge o f the c h e m i c a l s l u g allows m i s c i b l e d i s p l a c e m e n t b y the p o l y m e r d r i v e fluid. F i g u r e 7 shows the g e n e r a l sequence o f a m i c e l l a r - p o l y m e r flood. A n i n i t i a l p r e f l u s h is sometimes u s e d to l o w e r salinity a n d d i v a l e n t i o n c o n ­ c e n t r a t i o n i n the reservoir. T h i s p r e f l u s h is f o l l o w e d b y the surfactant slug, c o n t a i n i n g a s u r f a c t a n t - p o l y m e r m i x t u r e d e s i g n e d to p r o d u c e a m i c r o e m u l s i o n w i t h the c r u d e o i l . A p o l y m e r d r i v e f o l l o w s , a n d it prevents " f i n g e r i n g " o f the b r i n e i n t o the surfactant slug. T h e p o l y m e r d r i v e is o f t e n i n j e c t e d w i t h a c o n c e n t r a t i o n gradient; p o l y m e r c o n c e n t r a t i o n decreases as the i n j e c t i o n progresses.

Oil Bank Formation. I f a surfactant o r s u r f a c t a n t - f o r m i n g mate­ r i a l is i n j e c t e d i n t o a r e s e r v o i r a n d m o b i l i z e s r e s i d u a l o i l , t h e n o i l r e c o v e r y is m o r e efficient i f the m o b i l i z e d o i l droplets c a n coalesce to f o r m an o i l bank.

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

278

EMULSIONS IN THE PETROLEUM INDUSTRY

flow

Brine

Polymer Drive

Surfactant Preflush Slug

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

Polymer Drive: 0 «100% pore volume 200 - 2500ppm polymer biocides Surfactant Slug: 5 - 20% pore volume 200 · 5000ppm polymer 1 - 20% surfactant 0 - 5% cosurfactant biocides Preflush:

0 -100% pore volume

Figure 7. Typical microemulsion injection scheme.

T h e o i l b a n k that f o r m s w i l l exist at an o i l saturation that is greater t h a n the r e s i d u a l o i l saturation. A t the f r o n t o f the bank, r e s i d u a l o i l is taken u p , w h i l e at the back, the c a p i l l a r y n u m b e r must r e m a i n h i g h to m i n i m i z e o i l e n t r a p ­ m e n t . I n this way, the o i l b a n k grows larger a n d forms slightly a h e a d o f the injected chemicals. T h e f o r m a t i o n a n d d i s p l a c e m e n t o f the o i l b a n k d e p e n d s u p o n t h e nature o f the phases f o r m e d i n t h e p o r o u s m e d i u m a n d t h e i r relative p e r m e a b i l i t i e s , w h i c h m a y also change as a result o f changes i n w e t t a b i l i t y . D e t a i l e d d i s c u s s i o n o f these factors is b e y o n d the scope o f this c h a p t e r ; C h a p t e r 6 a n d references 3 7 a n d 3 8 address this t o p i c .

Nonideal Behavior. T h e d i s c u s s i o n o f phase b e h a v i o r u p t o this p o i n t represents the i d e a l case. A n u m b e r o f factors cause d e v i a t i o n f r o m ideality. T h e phases present m a y i n c l u d e l i q u i d crystals, gels, o r s o l i d p r e c i p ­ itates i n a d d i t i o n t o the o i l , b r i n e , a n d m i c r o e m u l s i o n phases (39, 40). T h e h i g h viscosities o f these phases are d e t r i m e n t a l t o o i l recovery. T o c o n t r o l the f o r m a t i o n o f these phases, the p r a c t i c e has b e e n to a d d l o w - m o l e c u l a r w e i g h t alcohols to the m i c e l l a r s o l u t i o n ; these alcohols act as cosolvents o r i n some cases as cosurfactants. T h e a l c o h o l cosolvents o r cosurfactants m a y p a r t i t i o n b e t w e e n aqueous a n d o i l phases i n d i f f e r e n t p r o p o r t i o n s t h a n the p r i m a r y surfactant, a n d t h e r e f o r e , g r o u p i n g these c o m p o n e n t s i n the surfactant p s e u d o c o m p o n e n t is i n a p p r o p r i a t e . C h r o m a t o g r a p h i c separation o f the c o m p o n e n t s m a y o c c u r d u r i n g flow i n the reservoir, a n d u n w a n t e d phases m a y f o r m . I o n exchange b e t w e e n i n j e c t e d b r i n e a n d reservoir r o c k m a y result i n l o c a l l y h i g h concentrations o f d i v a l e n t ions that c a n p r e c i p i t a t e a n i o n i c

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

7.

TAYLOR AND HAWKINS

Emulsions in Enhanced Oil Recovery

279

surfactants. T o g e t h e r w i t h d i f f u s i o n a n d d i s p e r s i o n p h e n o m e n a i n the p o ­ rous m e d i u m , p r e c i p i t a t e d surfactants c a n result i n l o c a l i m m i s c i b i l i t i e s a n d phase t r a p p i n g .

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

I n c o m p a t i b i l i t y o f surfactant a n d p o l y m e r that is u s e d i n the m i c e l l a r slug or chase fluid can o c c u r because p o l y m e r m a y not be i n c o r p o r a t e d r e a d i l y i n t o m i c e l l e s . U s e o f alcohols mitigates this d i f f i c u l t y .

Field Application. T h e m i c e l l a r - p o l y m e r process f o r e n h a n c e d o i l recovery has b e e n u s e d i n m a n y field trials. P e t r o l e u m sulfonates are the most c o m m o n l y u s e d surfactant (41, 42). O t h e r surfactants have b e e n u s e d , s u c h as ethoxylated a l c o h o l sulfates (43) a n d n o n i o n i c surfactants m i x e d w i t h p e t r o l e u m sulfonates (44). T h e L o u d o n field i n I l l i n o i s , o p e r a t e d b y E x x o n , is an i n t e r e s t i n g exam­ p l e o f m i c e l l a r - p o l y m e r flooding design (45, 46). T h e reservoir is a m o d e r ­ ate p e r m e a b i l i t y sandstone w i t h excellent p r o p e r t i e s f o r m i c e l l a r - p o l y m e r flooding, except one: T h e salinity is v e r y h i g h , a p p r o x i m a t e l y 10.5 w t % total d i s s o l v e d solids a n d 4 0 0 0 p p m o f divalent ions. E x x o n has b e e n s t u d y i n g the m i c e l l a r - p o l y m e r process i n this field f o r m o r e than 10 years, a n d to date (mid-1991) has c o m p l e t e d t w o p i l o t projects a n d has t w o others i n progress. T h e s e q u e n c e o f the i n j e c t e d m i c r o e m u l s i o n a n d p o l y m e r d r i v e is o u t l i n e d i n F i g u r e 8. A m i c r o e m u l s i o n o f 0.3 p o r e v o l u m e s , c o n t a i n i n g a relatively l o w surfactant c o n c e n t r a t i o n , 2.3 w t % , was u s e d . T h e surfactant was a sulfate o f a p r o p o x y l a t e d ethoxylated t r i d e c y l a l c o h o l , o f the f o l l o w i n g structure: i-C

flow

1 3

H

2 7

0(C H 0) (C H 0) S03Na

Brine (100% salinity)

3

6

m

2

Polymer Drive

4

n

Microemulsion

Polymer Drive: 1.0 pore volume biopolymer, 38 cp @ 11 s" salinity 70% of resident brine 1

Microemulsion: 0.3 pore volume 2.3 wt% surfactant 2.65 wt% 250 white oil base biopolymer Flocon 4800,28 cp © 11 s" 500 -1500ppm formaldehyde (biocide) 90 ppm citric acid (iron control) 96% salinity Figure 8. Loudon micellar-polymer

flood.

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

280

EMULSIONS IN THE PETROLEUM INDUSTRY

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

w h e r e m a n d η are e i t h e r 4 a n d 2 o r 3 a n d 4, respectively. I n p r a c t i c e , a m i x t u r e o f these t w o surfactants was u s e d , so that surfactant c o m p o s i t i o n c o u l d easily b e v a r i e d i n the field to c o r r e c t for any changes i n i n j e c t i o n b r i n e c o m p o s i t i o n . T h i s type o f surfactant is p a r t i c u l a r l y s u i t e d to h i g h salinities. I f the n u m b e r o f ethoxyl groups is i n c r e a s e d , o p t i m a l salinity increases, b u t i f the n u m b e r o f p r o p o x y l groups increases, the o p t i m a l s a l i n ­ ity decreases. T h e m i x t u r e u s e d h a d o p t i m a l salinity at the h i g h salinity a n d hardness levels associated w i t h this reservoir. T h e synthesis o f this surfactant a n d its use i n m i c e l l a r - p o l y m e r flooding has b e e n p a t e n t e d b y E x x o n (47). I n a d d i t i o n to the surfactant, a w h i t e o i l was a c o m p o n e n t o f the m i c r o e m u l s i o n . T h i s o i l was a d d e d i n the m i n i m u m a m o u n t r e q u i r e d to s o l u b i l i z e e n o u g h xanthan p o l y m e r to p r o d u c e the target viscosity. I n the absence o f the w h i t e o i l , the p o l y m e r c o u l d not be s o l u b i l i z e d . T h e xanthan p o l y m e r itself was r e q u i r e d f o r m o b i l i t y c o n t r o l . T o p r e v e n t biodégradation o f the p o l y m e r , f o r m a l d e h y d e was a d d e d . C i t r i c a c i d was also a c o m p o n e n t o f the m i c r o e m u l s i o n , a d d e d to p r e v e n t the o x i d a t i o n o f ferrous i o n present i n the b r i n e to f e r r i c i o n . T h e p r e s e n c e o f f e r r i c i o n w o u l d l e a d to p r e c i p i t a ­ t i o n o f i r o n c o m p o u n d s as w e l l as c r o s s - l i n k i n g o f the b i o p o l y m e r . A p a r t i c u l a r l y i n t e r e s t i n g part o f the p i l o t i n v o l v e d the t r e a t i n g o f p r o ­ d u c e d e m u l s i o n s . O v e r the life o f the p i l o t , 9 3 % o f the i n j e c t e d surfactant was p r o d u c e d at the p r o d u c t i o n w e l l s , a n d this situation l e d to serious e m u l s i o n p r o b l e m s . H e a t i n g the e m u l s i o n to a specific, b u t u n r e p o r t e d , t e m p e r a t u r e c a u s e d the surfactant to p a r t i t i o n c o m p l e t e l y i n t o the aqueous phase a n d leave the c r u d e o i l w i t h v e r y l o w levels o f surfactant a n d b r i n e . T h e r e s u l t i n g o i l was suitable for p i p e l i n e t r a n s p o r t a t i o n . T h e c r i t i c a l separa­ t i o n t e m p e r a t u r e h a d to be c o n t r o l l e d to w i t h i n 1 °C. A t h i g h e r t e m p e r a ­ tures, surfactant p a r t i t i o n e d i n t o the o i l , a n d at l o w e r t e m p e r a t u r e s , signifi­ cant quantities o f o i l r e m a i n e d s o l u b i l i z e d i n the b r i n e . R e c o v e r e d surfactant was e q u i v a l e n t to the i n j e c t e d surfactant i n terms o f phase b e h a v i o r , a n d h a d the p o t e n t i a l for reuse. T h e p i l o t area u s e d for this test was relatively s m a l l , 0.71 acres. H o w ­ ever, the test was a t e c h n i c a l success, r e c o v e r i n g 6 8 % o f the w a t e r - f l o o d r e s i d u a l o i l . T h e p i l o t began i n 1982 a n d e n d e d i n N o v e m b e r 1983. S i n c e that t i m e , E x x o n has i n i t i a t e d t w o other m i c e l l a r - p o l y m e r floods i n the L o u d o n field, one a 40-acre p i l o t a n d the o t h e r an 80-acre p i l o t .

Principles of Alkaline Flooding A l k a l i n e flooding is an o l d c o n c e p t , first p a t e n t e d b y A t k i n s o n (48) i n 1927. H y d r o x i d e i o n i n an alkaline s o l u t i o n reacts w i t h a c i d i c c o m p o n e n t s present i n some c r u d e oils to p r o d u c e p e t r o l e u m soaps, w h i c h are generally s o d i u m salts o f carboxylic acids. T h e s e p e t r o l e u m soaps are capable o f a d s o r b i n g at the o i l - w a t e r interface a n d l o w e r i n g i n t e r f a c i a l t e n s i o n . C r u d e oils suitable

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

7.

TAYLOR AND HAWKINS

281

Emulsions in Enhanced Oil Recovery

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

for alkaline flooding g e n e r a l l y have a total a c i d n u m b e r ( T A N ) o f 0.1 to 2 m g o f K O H p e r g r a m o f o i l . T h e i n j e c t i o n o f alkaline solutions i n t o a reservoir c a n i m p r o v e o i l r e c o v e r y b y several m e c h a n i s m s . E m u l s i f i c a t i o n a n d e n t r a i n m e n t , e m u l s i f i c a t i o n a n d e n t r a p m e n t , a n d w e t t a b i l i t y reversal have b e e n p r o p o s e d (49, 50). C l a s s i c a l alkaline flooding uses o n l y alkaline solutions a n d has several disadvantages. O n e o f t h e most serious is that t h e p e t r o l e u m soaps are v e r y sensitive to increases i n t h e i o n i c strength o f t h e aqueous phase. I n 1975, B u r d y n et a l . (51) b e g a n to address this p r o b l e m w i t h the a d d i t i o n o f s y n ­ thetic surfactants to t h e alkaline flooding process. I n this case, a synthetic a l k y l aryl sulfonate was a d d e d to s o d i u m h y d r o x i d e solutions to p r o v i d e l o w I F T b e h a v i o r over a b r o a d e r range o f salinity t h a n c o u l d b e o b t a i n e d w i t h alkali alone. B u r d y n also p a t e n t e d t h e use o f p o l y m e r w i t h alkali to increase the aqueous-phase viscosity. T h i s i n c r e a s e d viscosity h a d t h e effect o f i m ­ p r o v i n g t h e sweep o f t h e aqueous phase t h r o u g h t h e reservoir. E x c e s s i v e alkali c o n s u m p t i o n also p l a g u e d t h e classical alkaline flooding process. S o ­ d i u m h y d r o x i d e a n d s o d i u m silicate solutions react w i t h r e s e r v o i r r o c k o r p r e c i p i t a t e i n t h e presence o f d i v a l e n t cations. B u f f e r e d alkaline solutions s u c h as s o d i u m carbonate have i n c r e a s e d i n i m p o r t a n c e because o f l o w e r a l k a l i - r o c k interactions. C u r r e n t l y , the a l k a l i - s u r f a c t a n t - p o l y m e r process represents t h e state o f t h e art i n alkaline flooding. M a n y o f t h e basic concepts

of micellar-polymer

flooding

a p p l y to

alkaline flooding. H o w e v e r , a l k a l i n e flooding is f u n d a m e n t a l l y d i f f e r e n t b e ­ cause a surfactant is c r e a t e d i n the reservoir f r o m t h e r e a c t i o n o f h y d r o x i d e w i t h a c i d i c c o m p o n e n t s i n c r u d e o i l . T h i s r e a c t i o n means that t h e a m o u n t o f p e t r o l e u m soap w i l l v a r y l o c a l l y as t h e w a t e r - t o - o i l ratio varies. T h e a m o u n t o f p e t r o l e u m soap has a large effect o n phase b e h a v i o r i n c r u d e - o i l - a l k a l i surfactant systems.

Surfactant Mixing Rules. T h e p e t r o l e u m soaps p r o d u c e d i n alkaline flooding have an e x t r e m e l y l o w o p t i m a l salinity. F o r instance, most a c i d i c c r u d e oils w i l l have o p t i m a l phase b e h a v i o r at a s o d i u m h y d r o x i d e c o n c e n t r a t i o n o f a p p r o x i m a t e l y 0.05 w t % i n d i s t i l l e d water. A t that c o n ­ c e n t r a t i o n (about p H 12) essentially a l l o f t h e a c i d i c c o m p o n e n t s i n t h e o i l have r e a c t e d , a n d type I I I phase b e h a v i o r o c c u r s . A n increase i n s o d i u m h y d r o x i d e c o n c e n t r a t i o n increases t h e i o n i c strength a n d is e q u i v a l e n t to an increase i n s a l i n i t y because m o r e p e t r o l e u m soap is not p r o d u c e d . A s s a l i n i t y increases, t h e p e t r o l e u m soaps b e c o m e m u c h less s o l u b l e i n t h e aqueous phase t h a n i n t h e o i l phase, a n d a shift to o v e r - o p t i m u m o r type II(+) b e h a v i o r occurs. T h e w a t e r i n most o i l reservoirs contains significant q u a n t i ­ ties o f d i s s o l v e d solids, r e s u l t i n g i n i n c r e a s e d I F T . I n t e r f a c i a l t e n s i o n is also i n c r e a s e d because h i g h concentrations o f alkali are r e q u i r e d to c o u n t e r t h e effect o f losses d u e to a l k a l i - r o c k interactions. A s o l u t i o n to t h e p r o b l e m has b e e n to a d d a synthetic surfactant to

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

282

EMULSIONS IN THE PETROLEUM INDUSTRY

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

m o d i f y t h e p r o p e r t i e s o f the p e t r o l e u m soap that is p r o d u c e d f r o m r e a c t i o n w i t h h y d r o x i d e (51, 52). T h i s process has b e e n t e r m e d s u r f a c t a n t - e n h a n c e d alkaline flooding. T h e a d d e d synthetic surfactant is c h o s e n to have a v e r y h i g h o p t i m a l salinity, a n d the r e s u l t i n g p e t r o l e u m - s o a p - s y n t h e t i c - s u r f a c t a n t m i x t u r e p r o d u c e s o p t i m a l phase b e h a v i o r at i n t e r m e d i a t e salinities. T h e m i x i n g o f a synthetic surfactant a n d a p e t r o l e u m soap c a n b e ex­ p l a i n e d i n terms o f surfactant m i x i n g rules p r o p o s e d b y W a d e et a l . i n 1977 (53). T h e s e rules are b a s e d o n p r e v i o u s studies (54) o f the e q u i v a l e n t alkane c a r b o n n u m b e r ( E A C N ) c o n c e p t , w h i c h show that h y d r o c a r b o n b e ­ h a v i o r t o w a r d surfactants is a d d i t i v e a n d w e i g h t e d b y m o l e f r a c t i o n a c c o r d ­ i n g to t h e f o r m u l a : E A C N ^ I E A C N . X , i

(5)

where E A C N is t h e E A C N o f the m i x t u r e , E A C N ; is the E A C N o f c o m ­ p o n e n t i, a n d X is the m o l e f r a c t i o n o f c o m p o n e n t i. a v g

t

Cayias et a l . (55) a n d others (31, 56) f o u n d that this r e l a t i o n s h i p c o u l d be a p p l i e d to c r u d e oils. T h e y f o u n d that c r u d e oils i n g e n e r a l b e h a v e d e q u i v a l e n t l y to n-alkanes i n the range o f pentane to decane, e v e n w i t h greatly d i f f e r i n g o i l types (55). T h u s , the b e h a v i o r o f a c r u d e o i l t o w a r d a g i v e n surfactant c a n b e d e s c r i b e d as t h e s u m o f the b e h a v i o r o f each o f its h y d r o c a r b o n c o m p o n e n t s t o w a r d that surfactant. T h e b e h a v i o r o f m i x e d surfactant systems has b e e n d e s c r i b e d i n s i m i l a r terms (53): (H „)av = X ( ] V i mi

g

min

)X j

(6)

i

w h e r e (IV ) is the alkane c a r b o n n u m b e r o f the i n t e r f a c i a l tension m i n i ­ m u m o f surfactant i, ( N ) is the alkane c a r b o n n u m b e r m i n i m u m o f the I F T m i n i m u m o f the surfactant m i x t u r e , a n d X is t h e m o l e f r a c t i o n o f surfactant i. min

i

m i n

a v g

{

M o r e s i m p l y stated, the b e h a v i o r o f a surfactant m i x t u r e t o w a r d a g i v e n o i l c a n b e d e s c r i b e d as t h e s u m o f the b e h a v i o r o f e a c h o f its c o m p o n e n t s t o w a r d that o i l . T h i s hypothesis shows that the n a t u r a l surfactant that is p r o d u c e d i n a l k a l i n e flooding c a n b e m o d i f i e d b y an a d d e d synthetic surfac­ tant i n a p r e d i c t a b l e w a y .

Phase Behavior. T h e use o f p h a s e - b e h a v i o r diagrams i n surfactante n h a n c e d alkaline flooding is m o r e c o m p l i c a t e d t h a n i n m i c e l l a r - p o l y m e r flooding f o r several reasons. O n e reason is that phase b e h a v i o r is v e r y sensitive to t h e w a t e r - t o - o i l ratio e m p l o y e d . F r o m surfactant m i x i n g rules, v a r y i n g the a m o u n t o f o i l present w i l l vary the a m o u n t o f p e t r o l e u m soap

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

7.

TAYLOR AND HAWKINS

Emulsions in Enhanced Oil Recovery

283

present, a n d the nature o f the m i x e d surfactant w i l l change. A n o t h e r c o m ­ p l i c a t i o n is that stable e m u l s i o n s w i t h h i g h values o f i n t e r f a c i a l t e n s i o n are m u c h m o r e l i k e l y to o c c u r w i t h the heavier oils u s e d i n the process, a n d these s t a b i l i z e d emulsions c a n l e a d to i m p r o p e r c o n s t r u c t i o n o f phase-be­ h a v i o r diagrams. T h e t h i r d p r o b l e m is that total surfactant c o n c e n t r a t i o n is m u c h l o w e r t h a n is seen i n m i c e l l a r - p o l y m e r flooding. I n some cases, I F T m a y b e v e r y l o w , a n d phase b e h a v i o r can b e i n the type I I I e n v i r o n m e n t , b u t a m i d d l e phase m a y not be r e a d i l y apparent because o f the l o w surfactant concentration. F i g u r e s 9 a n d 10 show p h a s e - b e h a v i o r diagrams f o r D a v i d L l o y d m i n s t e r c r u d e o i l a n d the surfactant N e o d o l 25-3S i n the p r e s e n c e o f 1 w t % s o d i u m carbonate. P h a s e - b e h a v i o r measurements w e r e c a r r i e d out a c c o r d i n g to the m e t h o d o f N e l s o n et a l . (52). T h e D a v i d L l o y d m i n s t e r o i l field is near the A l b e r t a - S a s k a t c h e w a n b o r d e r d i r e c t l y east o f E d m o n t o n . T h e o i l has a density o f 0.922 g/mL a n d a viscosity o f 144 M P a - s at 23 °C. T h e r e g i o n o f o p t i m a l phase b e h a v i o r is s h o w n at a surfactant c o n c e n t r a t i o n o f 0.1 w t % i n F i g u r e 9. T h e r e g i o n o f o p t i m a l phase b e h a v i o r is s h a d e d . A b o v e this r e g i o n , type II{+) b e h a v i o r occurs, a n d type I I ( - ) b e h a v i o r occurs b e l o w the r e g i o n o f o p t i m a l phase b e h a v i o r . V o l u m e p e r c e n t o i l refers to the a m o u n t o f o i l present i n the p h a s e - b e h a v i o r tube u s e d . F o r a g i v e n o i l - t o - w a t e r ratio, a t r a n s i t i o n f r o m type I I ( - ) to type I I I to type II(+) occurs as salinity increases. As the a m o u n t o f o i l increases relative to the a m o u n t o f aqueous phase, the same t r e n d i n phase b e h a v i o r is seen. F i g u r e 10 shows the same system, b u t w i t h a l o w e r synthetic surfactant

Figure 9. Activity map with David Lloydminster crude oil, 0.1 wt% Neodol 253S, and 1 wt% sodium carbonate.

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

284

EMULSIONS IN THE PETROLEUM INDUSTRY

Figure 10. Activity map with David Lloydminster crude oil, 0.02 wt% Neodol 25-3S, and 1 wt% sodium carbonate. c o n c e n t r a t i o n (0.02 w t % ) . T h e type I I I p h a s e - b e h a v i o r r e g i o n is s h i f t e d to l o w e r salinities a n d l o w e r o i l - t o - w a t e r ratios. T h i s shift is a d i r e c t result o f changes i n the p e t r o l e u m - s o a p - s y n t h e t i c - s u r f a c t a n t ratio as w a t e r - t o - o i l r a ­ tio varies. N e l s o n et a l . (52) stated that these p h a s e - b e h a v i o r diagrams c a n be u s e d i n an e q u i v a l e n t fashion to the salinity r e q u i r e m e n t diagrams u s e d for m i c e l l a r - p o l y m e r flooding (32). H e c l a i m e d that a s u r f a c t a n t - e n h a n c e d alkaline flood s h o u l d be d e s i g n e d so that the flood begins at the o p t i m u m o v e r - o p t i m u m phase b o u n d a r y . T h e r e s i d u a l o i l saturation is u s e d to deter­ m i n e the w a t e r - t o - o i l ratio i n the d i a g r a m . T h i s d e t e r m i n a t i o n assumes that e q u i l i b r a t i o n is r a p i d a n d does not address the p o s s i b i l i t y o f p e t r o l e u m soaps b e i n g extracted a n d c o n c e n t r a t e d i n the flood front. A salinity gradient is a p p l i e d w h e n the alkaline agent is r e m o v e d f r o m the d r i v e fluid. N e l s o n ' s results have b e e n v e r y p r o m i s i n g i n p u b l i s h e d laboratory c o r e - f l o o d e x p e r i ­ ments.

Dynamic Interfacial Tension. C r u d e - o i l - a l k a l i systems are u n ­ usual i n that t h e y exhibit d y n a m i c i n t e r f a c i a l t e n s i o n ( F i g u r e 11). A s o l u t i o n o f 0.05 w t % s o d i u m h y d r o x i d e i n contact w i t h D a v i d L l o y d m i n s t e r c r u d e o i l i n i t i a l l y p r o d u c e s u l t r a l o w values o f I F T . A m i n i m u m value is r e a c h e d , after w h i c h I F T increases w i t h t i m e b y nearly 3 orders o f m a g n i t u d e , m e a s u r e d i n the s p i n n i n g d r o p tensiometer. T a y l o r et al. (57) s h o w e d that d y n a m i c i n t e r ­ facial t e n s i o n c a n also o c c u r i n c r u d e - o i l - a l k a l i - s u r f a c t a n t systems. F i g u r e 11 shows i n t e r f a c i a l t e n s i o n versus t i m e f o r a s o l u t i o n c o n t a i n i n g 1 w t % s o d i u m carbonate, a n d the same s o l u t i o n c o n t a i n i n g 0.02 w t % o f N e o d o l 25-

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

7.

TAYLOR AND HAWKINS

285

Emulsions in Enhanced Oil Recovery

Time (minutes) Figure 11. Interfacial tension versus time, David Lloydminster crude oil. Key: — 0.05 wt% NaOH; . . 0.02 wt% Neodol 25-3S and 1 wt% Na C0 ; and , J wt% Na C0 . 2

2

3

3

3S, an ethoxylated a l c o h o l sulfate. T h e a d d i t i o n o f t h e synthetic surfactant greatly reduces t h e m i n i m u m I F T value o b t a i n e d . D y n a m i c I F T arises f r o m t h e r e a c t i o n o f a c i d i c c o m p o n e n t s i n t h e c r u d e o i l to f o r m p e t r o l e u m soaps. R e a c t i o n o f a c i d i c surface-active materials i n the c r u d e o i l w i t h s o d i u m h y d r o x i d e i n t h e aqueous phase is a s s u m e d to o c c u r r a p i d l y at the interface, b u t d e s o r p t i o n o f these species is taken to b e slower. T h i s slower d e s o r p t i o n leads to a m a x i m u m i n t h e c o n c e n t r a t i o n o f surface-active species at the interface at some p o i n t i n t i m e a n d h e n c e a n i n t e r f a c i a l t e n s i o n m i n i m u m . S u b s e q u e n t l y , I F T increases as e q u i l i b r i u m is a p p r o a c h e d (58). I n t h e s p i n n i n g d r o p apparatus, t h e w a t e r - t o - o i l ratio is a p p r o x i m a t e l y 200 to 1. I n a reservoir, the w a t e r - t o - o i l ratio w o u l d b e m u c h l o w e r . C h a n g e s i n this w a t e r - t o - o i l ratio are e x p e c t e d to affect t h e relative rates o f d e s o r p ­ t i o n o f surfactants f r o m t h e o i l - w a t e r i n t e r f a c e . T h e significance o f t h e d y n a m i c I F T m i n i m u m f o r r e s e r v o i r situations has b e e n d i s c u s s e d b y R u b i n and R a d k e (58) a n d d e Z a b a l a a n d R a d k e (59). T h e y suggested that the I F T m i n i m u m f o r a c i d i c c r u d e oils is i n d i c a t i v e o f the lowest achievable reservoir e q u i l i b r i u m v a l u e . T a y l o r et a l . (57) s h o w e d a c o r r e l a t i o n b e t w e e n m i n i m u m I F T a n d c o r e - f l o o d r e c o v e r y e f f i c i e n c y i n s u r f a c t a n t - e n h a n c e d alkaline flooding. F i g u r e 12 shows a m o d i f i c a t i o n o f t h e c a p i l l a r y n u m b e r c u r v e i n t r o d u c e d i n F i g u r e 3 . C a p i l l a r y n u m b e r s f r o m c o r e - f l o o d data are p l o t t e d by u s i n g b o t h I F T m i n i m a a n d e q u i l i b r i u m values. C o r e floods w e r e c a r r i e d out i n l i n e a r B e r e a sandstone cores. A g r e e m e n t b e t w e e n p u b l i s h e d c a p i l l a r y n u m b e r correlations is v e r y p o o r w h e n u s i n g e q u i l i b r i u m I F T values, as

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

286

EMULSIONS IN THE PETROLEUM INDUSTRY

O)

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

c

£L

0 ' 10"

6

1 l i t mil 10'

>

• 10^

5

10"

3

Capillary Number

i i i t mil 10"

2

Figure 12. Capillary number correlation with dynamic interfacial tension. Key:. . ., Gupta and Trushenski (34); - - -, Taber (5); — , Chatzis and Morrow (6); •, minimum IFT; and O equilibrium IFT. f

m e a s u r e d w i t h the s p i n n i n g d r o p i n s t r u m e n t , b u t it is v e r y g o o d w h e n u s i n g m i n i m u m I F T values.

Field Application. F i e l d trials o f classical alkaline flooding have b e e n d i s a p p o i n t i n g . M a y e r et a l . (60) i n d i c a t e d that o n l y 2 o f 12 projects h a d significant i n c r e m e n t a l o i l recovery: N o r t h W a r d E s t e s a n d W h i t t i e r w i t h 6 8 a n d 5 - 7 % p o r e v o l u m e , respectively. E s t i m a t e d r e c o v e r y f r o m the W i l ­ m i n g t o n field was 1 4 % w i t h a classical alkaline flooding m e t h o d (61). H o w ­ ever, post-project e v a l u a t i o n o f that field i n d i c a t e d n o i m p r o v e m e n t o v e r w a t e r - f l o o d i n g (62). A n u m b e r o f l a b o r a t o r y studies o f the a p p l i c a t i o n o f the a l k a l i - s u r f a c ­ t a n t - p o l y m e r flooding to various reservoir systems have b e e n r e p o r t e d (6367), b u t field a p p l i c a t i o n o f this t e c h n o l o g y has b e e n l i m i t e d . S e v e r a l field pilots are i n progress or have b e e n c o m p l e t e d , b u t o n l y one has b e e n e v a l u ­ ated to date i n the t e c h n i c a l l i t e r a t u r e (68). T h i s project is i n the W e s t K i e h l field i n W y o m i n g o p e r a t e d b y T e r r a R e s o u r c e s I n c . T h e W e s t K i e h l field is a m e d i u m p e r m e a b i l i t y ( 3 5 0 - m D ; m D is m i l l i d a r c i e s ) sandstone. T h e reservoir b r i n e contains 45,500 p p m o f total d i s s o l v e d solids, w i t h about 450 p p m o f d i v a l e n t ions. T h e 24° A P I c r u d e o i l has viscosity o f 19 mPa-s at a reservoir t e m p e r a t u r e o f 4 9 °C. ( A P I gravity is d e f i n e d i n the Glossary.) T h e c h e m i c a l s l u g u s e d i n the project was p r e p a r e d i n a fresh, r e l a t i v e l y soft b r i n e (800 p p m o f total d i s s o l v e d solids, 18 p p m hardness). O n the basis o f i n t e r f a c i a l t e n s i o n measurements (phase-behavior tests w e r e not re­ p o r t e d ) , a s o l u t i o n o f 0.8 w t % N a C 0 a n d 0.1 w t % Petrostep B 1 0 0 , a 2

3

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

7.

TAYLOR AND HAWKINS

Emulsions in Enhanced Oil Recovery

287

p e t r o l e u m sulfonate, was selected. T o this was a d d e d 0.1 w t % o f a p o l y a c r y l a m i d e p o l y m e r to p r o v i d e t h e necessary m o b i l i t y c o n t r o l . T h e project d e s i g n c a l l e d f o r i n j e c t i o n o f 0.25 p o r e v o l u m e o f t h e a l k a l i - s u r f a c t a n t - p o l y m e r s o l u t i o n f o l l o w e d b y a s i m i l a r v o l u m e o f p o l y m e r s o l u t i o n a c t i n g as a m o b i l i t y control buffer.

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

E a r l y results i n t h e W e s t K i e h l field are v e r y e n c o u r a g i n g . It is a n t i c i ­ p a t e d that the use o f the A S P process w i l l increase o i l r e c o v e r y b y an a d d i t i o n a l 1 5 % over w a t e r - f l o o d .

Other Applications Emulsion Injection for Recovery of Heavy Oil. O i l - i n - w a t e r e m u l s i o n s m a y b e u s e f u l as sweep i m p r o v e m e n t agents i n h e a v y - o i l reser­ voirs. T o i m p r o v e the m o b i l i t y ratio o c c u r r i n g w i t h h i g h - v i s c o s i t y oils, M c A u l i f f e (69) a n d S c h m i d t et a l . (70) p r o p o s e d t h e use o f stable o i l - i n w a t e r e m u l s i o n s . T h e s e authors c o n d u c t e d laboratory experiments w i t h e m u l s i o n s p r e p a r e d b y r e a c t i o n o f s o d i u m h y d r o x i d e w i t h a synthetic a c i d i c o i l . T h e t h e o r e t i c a l b a c k g r o u n d f o r e m u l s i o n b l o c k i n g has b e e n discussed i n C h a p t e r 6, a n d i t f o r m s the basis f o r o n e o f several m e c h a n i s m s o f caustic flooding (71). T h e s e e m u l s i o n s m a y f o r m spontaneously d u r i n g o i l r e c o v e r y processes (72), b u t c a n just as easily b e p r e p a r e d a n d i n j e c t e d as e n h a n c e d o i l r e c o v e r y fluids. F i o r i a n d F a r o u q A l i (73) p r o p o s e d t h e e m u l s i o n flooding o f h e a v y - o i l reservoirs as a secondary r e c o v e r y t e c h n i q u e . T h i s process is o f interest f o r Saskatchewan h e a v y - o i l reservoirs, w h e r e p r i m a r y r e c o v e r y is t y p i c a l l y 2 8%. W a t e r - f l o o d i n g i n these fields p r o d u c e s o n l y an a d d i t i o n a l 2 - 5 % o f t h e o r i g i n a l o i l i n p l a c e because o f t h e h i g h l y viscous nature o f the o i l . I n laboratory e x p e r i m e n t s , a w a t e r - i n - o i l e m u l s i o n o f the p r o d u c e d o i l is c r e ­ ated b y u s i n g a s o d i u m h y d r o x i d e s o l u t i o n . T h e viscous e m u l s i o n f o r m e d is i n j e c t e d i n t o t h e reservoir. Its h i g h viscosity p r o v i d e s a m o r e favorable m o b i l i t y ratio a n d results i n i m p r o v e d sweep o f the reservoir. I m p o r t a n t parameters i n c l u d e e m u l s i o n stability a n d c o n t r o l o f e m u l s i o n viscosity. D e c k e r a n d F l o c k (74) investigated t h e a p p l i c a t i o n o f e m u l s i o n injec­ t i o n f o r s t e a m - f l o o d i n g processes. I n laboratory m o d e l s , e m u l s i o n s c o n t a i n ­ i n g 5 v o l % c r u d e o i l w e r e effective i n b l o c k i n g channels c r e a t e d b y steam i n j e c t i o n d u r i n g subsequent steam-injection cycles. O i l d r o p l e t s i n t h e e m u l ­ sion w e r e p r e d o m i n a n t l y i n t h e 1 - 2 - μ π ι range, b u t d r o p l e t s as large as 10 μπι w e r e o b s e r v e d .

Matrix Acidization. E m u l s i o n t e c h n o l o g y has b e e n a p p l i e d to the a c i d treatment o f reservoir m a t e r i a l i n t h e r e g i o n near t h e w e l l b o r e . T h e p o r e structure o f the r e g i o n o f the reservoir near the w e l l b o r e m a y some­ times b e c o m e p l u g g e d e i t h e r b y particulates f r o m d r i l l i n g fluids o r b y p r e -

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

288

EMULSIONS IN THE PETROLEUM INDUSTRY

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

c i p i t a t i o n deposits caused b y pressure o r t e m p e r a t u r e changes d u r i n g p r o ­ d u c t i o n . T h e s e p o r e - p l u g g i n g materials r e d u c e p e r m e a b i l i t y i n the r e g i o n near the w e l l b o r e a n d h e n c e r e d u c e w e l l p r o d u c t i v i t y . A c i d s t i m u l a t i o n is u s e d r o u t i n e l y to increase w e l l p r o d u c t i v i t y b y r e m o v i n g these u n w a n t e d deposits. W e l l s i n f o r m a t i o n s w i t h n a t u r a l l y o c c u r r i n g l o w p e r m e a b i l i t y c a n also be s t i m u l a t e d b y u s i n g the same process, b u t a p p l i e d to the o r i g i n a l r o c k matrix. T h i s process is r e f e r r e d to as matrix s t i m u l a t i o n . T h i s matrix a c i d i z a t i o n process consists o f i n j e c t i n g h y d r o c h l o r i c a c i d (for limestones) or a h y d r o c h l o r i c a c i d - h y d r o f l u o r i c a c i d m i x t u r e (for sand­ stones) i n t o the f o r m a t i o n p o r e space. T h e a c i d reacts w i t h a n d dissolves p o r t i o n s o f the o r i g i n a l r o c k matrix a n d thus increases p e r m e a b i l i t y . T h e d e p t h that the a c i d penetrates i n t o the f o r m a t i o n is one o f the factors that d e t e r m i n e s the effectiveness o f the treatment. F o r carbonate reservoirs or carbonate c e m e n t s i n p a r t i c u l a r , a c i d c o n ­ s u m p t i o n occurs v e r y r a p i d l y at elevated f o r m a t i o n temperatures a c c o r d i n g to the e q u a t i o n : 2H + M C 0 +

3

^

M

2

+

+ C0

2

+ H 0 2

(7)

w h e r e M is c a l c i u m o r m a g n e s i u m . T h e rate o f d i s s o l u t i o n is l i m i t e d b y mass transfer, s u c h that it d e p e n d s o n the rate at w h i c h a c i d diffuses to the surface o f the m a t e r i a l b e i n g d i s s o l v e d . T h e rate o f mass transfer a c c o m p a n y i n g flow t h r o u g h the r o c k matrix is h i g h , so a c i d is c o n s u m e d v e r y q u i c k l y . T h u s d e e p p e n e t r a t i o n o f the a c i d is d i f f i c u l t to achieve, a n d significant p r o d u c t i v i t y i m p r o v e m e n t cannot always be attained. D i s s o l u t i o n o f the r o c k matrix does not o c c u r i n a u n i f o r m r a d i a l m a n ­ ner. B e c a u s e o f p e r m e a b i l i t y contrasts i n the reservoir, d o m i n a n t flow c h a n ­ nels c a l l e d w o r m holes c a n d e v e l o p a n d extend i n t o the f o r m a t i o n i n a r a n d o m f a s h i o n . T h e p r o d u c t i v i t y increase o f any w e l l is t h e n g o v e r n e d b y w o r m - h o l e d i r e c t i o n a n d distance. T h e l o n g e r the w o r m h o l e , the b e t t e r w i l l b e the result. L e a k - o f f o r loss o f a c i d t h r o u g h the walls o f w o r m holes o f t e n results i n w o r m holes b e i n g too short to p r o v i d e significant p r o d u c t i v i t y increase. T h e r e f o r e , effective s t i m u l a t i o n o f t e n r e q u i r e s r e t a r d a t i o n o f the m i n e r a l d i s s o l u t i o n rate. T h e use o f m i c r o e m u l s i o n s is one m e t h o d to a c c o m p l i s h this r e t a r d a t i o n . T h e h y d r o c h l o r i c a c i d is i n j e c t e d as an w a t e r - i n - o i l m i c r o e m u l s i o n . T h e d i f f u s i o n rate o f the d i s p e r s e d aqueous a c i d to the r o c k surface is slower t h a n m o l e c u l a r d i f f u s i o n o f a c i d f r o m a totally aqueous system. T h u s the rate o f l i m e s t o n e d i s s o l u t i o n is r e t a r d e d w i t h the m i c r o e m u l s i o n system. T h e degree o f r e t a r d a t i o n is d e p e n d e n t o n the m i c e l l a r structure o f the system. H o e f n e r a n d F o g l e r (75) d e s c r i b e d one s u c h m i c r o e m u l s i o n system c o n t a i n i n g c e t y l p y r i d i n i u m c h l o r i d e a n d b u t a n o l as the surfactantcosurfactant i n a 35:65 w e i g h t ratio. I n this system, d o d e c a n e was u s e d as the

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

7.

TAYLOR AND HAWKINS

Emulsions in Enhanced Oil Recovery

289

o i l phase, a n d h y d r o c h l o r i c a c i d as t h e aqueous phase. T o m a i n t a i n h y d r o ­ c h l o r i c a c i d as t h e d i s p e r s e d phase, i t was necessary to use a c o m p o s i t i o n that sits near t h e o i l apex o f t h e p s e u d o t e r n a r y d i a g r a m . T h e d i f f u s i v i t y o f the a c i d f r o m t h e m i c r o e m u l s i o n system was 2 orders o f m a g n i t u d e less t h a n f r o m the aqueous a c i d alone.

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

Summary C r u d e o i l b e c o m e s t r a p p e d i n p o r o u s m e d i a as a result o f c a p i l l a r y forces. T h e r e d u c t i o n o f these forces is r e q u i r e d f o r t h e r e c o v e r y o f r e s i d u a l o i l , a n d this is t h e basis o f e n h a n c e d o i l recovery. I n practice c a p i l l a r y forces are reduced primarily by lowering interfacial tension between o i l and water phases, a l t h o u g h i n c r e a s i n g t h e viscosity o f t h e w a t e r is also i m p o r t a n t . L o w e r i n g i n t e r f a c i a l t e n s i o n leads to t h e f o r m a t i o n o f e m u l s i o n s a n d m i c r o e m u l s i o n s , w h i c h are o f great i m p o r t a n c e i n e n h a n c e d o i l r e c o v e r y techniques. M i c e l l a r - p o l y m e r flooding a n d a l k a l i - s u r f a c t a n t - p o l y m e r flooding b o t h rely o n t h e i n j e c t i o n i n t o a c r u d e - o i l reservoir o f surfactants o r surfactantf o r m i n g materials. E m u l s i o n s may b e i n j e c t e d i n t o t h e reservoir, o r they m a y be f o r m e d i n t h e reservoir, b u t t h e i r p r o p e r t i e s w i l l change as they t r a v e l t h r o u g h t h e reservoir to eventually flow f r o m a p r o d u c i n g w e l l after weeks o r months. M i c e l l a r - p o l y m e r flooding is a t e c h n i c a l l y w e l l - d e v e l o p e d process. Phase c o m p o s i t i o n a l aspects o f m i c r o e m u l s i o n d e s i g n are relatively w e l l u n d e r s t o o d , a n d several t e c h n i c a l l y successful field trials have b e e n c a r r i e d out. M i c e l l a r - p o l y m e r floods c a n b e d e s i g n e d a n d c a r r i e d o u t w i t h a g o o d c h a n c e o f success. H o w e v e r , t h e process is too expensive. T h i s h i g h cost is d u e p r i m a r i l y to t h e h i g h concentrations o f synthetic surfactants r e q u i r e d . T h e p r o b l e m is f u r t h e r c o m p o u n d e d because these synthetic surfactants are m a d e f r o m p e t r o c h e m i c a l s , a fact that ties t h e i r p r i c e to t h e p r i c e o f c r u d e oil. A l k a l i - s u r f a c t a n t - p o l y m e r ( A S P ) flooding shows p r o m i s e to b e c o m e e c o n o m i c a l l y m o r e attractive t h a n m i c e l l a r - p o l y m e r flooding. T h e process is i n h e r e n t l y less expensive because t h e c o n c e n t r a t i o n o f synthetic surfactant is significantly l o w e r . H o w e v e r , t h e A S P process is m o r e c o m p l e x a n d t e c h ­ n i c a l l y less d e v e l o p e d than m i c e l l a r - p o l y m e r flooding. I n a d d i t i o n , t h e dis­ a p p o i n t i n g history o f field trials o f classical alkaline flooding has left m a n y researchers s k e p t i c a l o f the process i n g e n e r a l . B u t w i t h t h e use o f h i g h o p t i m a l salinity surfactants to l o w e r i n t e r f a c i a l t e n s i o n at realistic reservoir salinities, t h e use o f b u f f e r e d alkali to r e d u c e a l k a l i - r o c k interactions, a n d the a d d i t i o n o f p o l y m e r s to the system to increase d i s p l a c i n g phase viscosity, m a n y o f t h e p r o b l e m s associated w i t h classical alkaline flooding have b e e n addressed. A r e a s that r e q u i r e f u r t h e r investigation i n c l u d e t h e effect o f

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

290

EMULSIONS IN THE PETROLEUM INDUSTRY

d y n a m i c i n t e r f a c i a l t e n s i o n i n t h e reservoir, c o n c i l i a t i o n o f i n t e r f a c i a l t e n ­ sion a n d phase-behavior measurements, ASP

a n d computer simulation o f the

process.

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

List of Symbols and Abbreviations ASP

alkali-surfactant-polymer

ΕAC Ν

e q u i v a l e n t alkane c a r b o n n u m b e r

EACN

a v g

Ε A C Ν o f a mixture o f components

EACN

4

E A C N of component i

IFT

interfacial tension capillary number

N

c

(N

m i n

)

a v g

alkane c a r b o n n u m b e r o f t h e I F T m i n i m u m o f a surfactant m i x ­ ture

(N )i

alkane c a r b o n n u m b e r o f t h e I F T m i n i m u m o f surfactant i

%OOIP

percent o f original o i l i n place

min

P

c

capillary pressure

P

Q

p r e s s u r e i n o i l phase

P

w

p r e s s u r e i n w a t e r phase

r

radius o f c u r v a t u r e o f the i n t e r f a c e

R

half of drop width

S

solubilization parameter

TAN

total a c i d n u m b e r o f a c r u d e o i l ( m g K O H p e r g r a m o f o i l )

ν

D a r c y flow v e l o c i t y

V

Q

o i l v o l u m e i n m i c r o e m u l s i o n phase

V

s

surfactant v o l u m e i n m i c r o e m u l s i o n phase

V

w

w a t e r v o l u m e i n m i c r o e m u l s i o n phase

Xi

mole fraction o f component i

Greek θ

contact angle

μ

viscosity

ρ

density

σ

interfacial tension

σ

Γ η ο

i n t e r f a c i a l t e n s i o n b e t w e e n t h e m i c r o e m u l s i o n a n d o i l phases

a

m w

i n t e r f a c i a l t e n s i o n b e t w e e n t h e m i c r o e m u l s i o n a n d w a t e r phases

ω

angular v e l o c i t y

References 1. Moore, T . F . ; Slobod, R. L . Prod. Mon. 1956, 20, 20-30. 2. Chatzis, I.; Dullien, F . A . L. J. Colloid Interface Sci. 1983, 91(1), 199-222.

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

7.

TAYLOR AND HAWKINS

Emulsions in Enhanced Oil Recovery

291

3. Lake, L . W . In Enhanced Oil Recovery; Prentice Hall: Englewood Cliffs, N J , 1989; p 65. 4. Chatzis, I.; Morrow, N. R.; L i m , H. T. Soc. Pet. Eng. J. 1983, 23(2), 311-326. 5. Taber, J. J. In Surface Phenomena in Enhanced Oil Recovery; Shah, D . O . , Ed.; Plenum: New York, 1981; pp 13-52. 6. Chatzis, I.; Morrow, N. R. Soc. Pet. Eng. J. 1984, 24(5), 555-562. 7. Aveyard, R.; Vincent, B . Prog. Surf. Sci. 1977, 8(2-A), 59-102. 8. Cayias, J. L.; Schechter, R. S.; Wade, W . H. In Adsorption at Interfaces; Mittal, K. L . , E d . ; A C S Symposium Series 8; American Chemical Society: Washington, D C , 1975; pp 234-247. 9. Dorshow, R. B.; Swofford, R. L . Colloids Surf. 1990, 43, 133-149. 10. Vonnegut, B . Rev. Sci. Instrum. 1942, 13, 6-9. 11. Shah, D . O . ; Chan, K . S.; Bansal, V . K . Proceedings of AIChE 83rd National Meeting; American Institute of Chemical Engineers: Houston, T X , 1977; p 98. 12. Wasan, D . T.; Gupta, L . ; Vora, M . K . AIChE J. 1971, 17(6), 1287-95. 13. Flumerfelt, R. W . ; Oppenheim, J. P.; Son, J. R. Interfacial Phenomena in En­ hanced Oil Recovery; Wasan, D . ; Payatakes, Α., Eds.; A I C h E Symposium Series 212; American Institute of Chemical Engineers: N e w York, 1982; V o l . 78, pp 113-126. 14. Goodrich, F . C.; Allen, L. H.; Poskanzer, A. J. Colloid Interface Sci. 1975, 52(2), 201-212. 15. Wasan, D . T.; Shah, S. M.; Aderangi, N.; Chan, M . S.; McNamara, J. J. Soc. Pet. Eng. J. 1978, 18(6), 409-17. 16. Blair, C . M . Chem. Ind. 1960, (5), 538-544. 17. Reisberg, J.; Doscher, T. M . Prod. Mon. 1956, 11, 43-50. 18. Chiang, M . Y.; Chan, K . S.; Shah, D . O. J. Can. Pet. Technol. 1978, 17(4), 6 1 68. 19. Bansal, V . K.; Chan, K . S.; McCallough, R . Shah, D. O. J. Can. Pet. Tech. 1978, 17(1), 69-72. 20. Morrow, N. R; L i m , H. T.; Ward, J. S. SPE Form. Eval. 1986(2), 89-103. 21. Morrow, N . R. J. Pet. Technol. 1990, 42(12), 1476-84. 22. Shinoda, K . ; Lindman, B. Langmuir 1987, 3(2), 134-149. 23. Nelson, R. C . Chem. Eng. Prog. 1989, 3, 50-57. 24. Nelson, R. C.; Pope, G . A . Soc. Pet Eng. J. 1978, 18(5), 325-38. 25. Nelson, R. C . In Surface Phenomena in Enhanced Oil Recovery; Shah, D . O . , E d . ; Plenum: N e w York, 1981; pp 73-104. 26. Healy, R. N.; Reed, R. L.; Stenmark, D . G . Soc. Pet. Eng. J. 1976, 16(3), 147160. 27. Winsor, P. A . Solvent Properties of Amphiphilic Compounds; Butterworth: L o n ­ don, 1954. 28. Graciaa, Α.; Fortney, L . N.; Schechter, R. S.; Wade, W . H.; Yiv, S. Presented at the Second Joint S P E / D O E Symposium on Enhanced O i l Recovery, Tulsa, O K , 1981; paper S P E 9815. 29. Healy, R. N.; Reed, R. L . Soc. Pet. Eng. J. 1974, 14(5), 491-501. 30. H u h , C. J. Colloid Interface Sci. 1979, 71(2), 408-426. 31. Glinsmann, G . R. Presented at the 54th Annual F a l l Technical Conference and Exhibition of the Society of Petroleum Engineers and the American Institute of Mining, Metallurgical, and Petroleum Engineers, Las Vegas, N V , September 2 3 26, 1979; paper S P E 8326. 32. Nelson, R. C . Soc. Pet. Eng. J. 1982, 22(2), 259-270. 33. Healy, R. N.; Reed, R. L . Soc. Pet. Eng. J. 1977, 17(2), 129-139. 34. Gupta, S. P.; Trushenski, S. P . Soc. Pet. Eng. J. 1979, 19(2), 116-128. 35. H o l m , L . W . In Improved Oil Recovery by Surfactant and Polymer Flooding; ;

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

292

36. 37. 38. 39.

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

40. 41.

42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56.

57. 58. 59. 60. 61. 62.

E M U L S I O N S I N T H E P E T R O L E U M INDUSTRY

Shah, D . O . ; Schechter, R. S., Eds.; Academic Press: New York, 1977; pp 4 5 3 485. H o l m , L. W. J. Pet. Technol 1971, 23(12), 1475-483. Larson, R. G.; Davis, H. T.; Scriven, L. E. J. Pet. Technol. 1982(2), 243-258. Pope, G . A . Soc. Pet. Eng. J. 1980, (6), 191. Miller, C . Α.; Mukherjee, S.; Benton, W . J.; Natoli, J.; Qutubuddin, S.; Fort, T., Jr. In Interfacial Phenomena in Enhanced Oil Recovery; Wasan, D . ; Payatakes, Α., Eds.; A I C h E Symposium Series 212; American Institute of Chemical E n g i ­ neers: N e w York, 1982; V o l . 78, pp 28-41. Reed, R.; Healy, R. I n Improved Oil Recovery by Surfactant and Polymer Flooding; Shah, D . O.; Schechter, R. S., Eds.; Academic Press: New York, 1977; pp 383-437. Lorenz, P. B.; Trantham, J. C . ; Zornes, D . R.; D o d d , C . G . Presented at the SPE/ D O E Fourth Symposium on Enhanced O i l Recovery, Tulsa, O K , A p r i l 15-18, 1984; paper S P E / D O E 12695. Whiteley, R.C.;Ware, J. W. J. Pet. Technol. 1977(8), 925-932. Fanchi, J. R. Carroll, Η. B . SPE Reservoir Eng. 1988, 3(2), 609-616. Raterman, Κ. T. SPE Reservoir Eng. 1990, 5(4), 459-466. Maerker, J. M.; Gale, W . W . Presented at the Joint S P E / D O E 7th Symposium on Enhanced O i l Recovery, Tulsa, O K , A p r i l 22-25, 1990; paper S P E / D O E 20218. Reppert, T. R.; Bragg, J. R.; Wilkinson, J. R.; Snow, T. M.; Maer, Ν. K . , Jr.; Gale, W. W . Presented at the Joint S P E / D O E 7th Symposium on Enhanced O i l Recov­ ery, Tulsa, O K , A p r i l 22-25, 1990; paper S P E / D O E 20219. Gale, W . W.; Puerto, M . C . ; Ashcraft, T. L . ; Saunders, R. K . ; Reed, R. L . U . S . Patent 4,293,428, 1981. Atkinson, H . U . S . Patent 1,651,311, 1927. Johnson, C . E., Jr. J. Pet. Technol. 1976(1), 85-92. Castor, T. P.; Somerton, R. S.; Kelly, J. F . In Surface Phenomena in Enhanced Oil Recovery; Shah, D . O . , E d . ; Plenum: New York, 1981. Burdyn, R. F.; Chang, H . L.; Cook, E . L . U . S . Patent 4,004,638, 1977. Nelson, R. C . ; Lawson, J. B.; Thigpen, D . R.; Stegemeier, G . L . Presented at the Joint S P E / D O E 4th Symposium on Enhanced O i l Recovery, Tulsa, O K , April 15-18, 1984; paper S P E 12672. Wade, W. H.; Morgan, J. C . ; Jacobson, J. K . ; Schechter, R. S. Soc. Pet. Eng. J. 1977, 17(2), 122-128. Cash, L . ; Cayias, J. L . ; Fournier, G . ; MacAllister, D . ; Schares, T.; Schechter, R. S.; Wade, W . H . J. Colloid Interface Sci. 1977, 59(1), 39-44. Cayias, J. L.; Schechter, R. S.; Wade, W . H . Soc. Pet. Eng. J. 1976, 16(6), 3 5 1 357. Pushpala, S. M.; Michnik, M . J. Presented at the International Symposium on Oilfield and Geothermal Chemistry, Denver, C O , June 1-3, 1983; paper S P E 11774. Taylor, K . C . ; Hawkins, B . F.; Islam, M . R. J. Can. Pet. Technol. 1990, 29(1), 50-55. Rubin, E . ; Radke, C . J. Chem. Eng. Sci. 1980, 35, 1129-38. deZabala, E . F.; Radke, C . J. SPE Reservoir Eng. 1986, 1(1), 29-43. Mayer, Ε . H.; Berg, R. L . ; Carmichael, J. D . ; Weinbrandt, R. M. J. Pet. Technol. 1983, 35(2), 209-221. Kuuskraa, V . A . Presented at the S P E / D O E 5th Symposium on Enhanced O i l Recovery, Tulsa, O K , A p r i l 20-23, 1986; paper S P E / D O E 14951. Dauben, D . L . ; Easterly, R. Α.; Western, M . M .“AnEvaluation of the Alkaline Waterflooding Demonstration Project, Ranger Zone, Wilminginton Field, Cali-

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.

7.

63.

Downloaded by NORTH CAROLINA STATE UNIV on December 7, 2012 | http://pubs.acs.org Publication Date: May 5, 1992 | doi: 10.1021/ba-1992-0231.ch007

64.

65. 66. 67.

68.

69. 70. 71. 72.

73.

74. 75.

TAYLOR AND HAWKINS

Emulsions in Enhanced Oil Recovery

293

fornia”; U . S . Department of Energy; National Technical Information Service: Springfield, V A , 1987; DOE/BC-10830-5. Krumrine, P. H.; Falcone, J. S., Jr. Presented at the International Symposium on Oilfield and Geothermal Chemistry, Denver, C O , June 1-3, 1983; paper S P E 11778. Martin, F . D.; Oxley, J. C . ; L i m , H . Presented at the 60th Annual Technology Conference and Exhibition of the Society of Petroleum Engineers, Las Vegas, N V , September 22-25, 1985; paper S P E 14293. Saleem, S. M.; Faber, M . J. Rev. Tec. INTEVEP 1986, 6, 133-142. Saleem, S. M.; Hernandez, A . J. Surf. Sci. Technol. 1987, 3, 1-10. Hawkins, B.; Taylor, K . ; N a s r - E l - D i n , H . Presented at the C I M / A O S T R A Tech­ nical conference, Banff, Alberta, Canada, A p r i l 21-24, 1991; paper C I M / A O S T R A 91-28. Clark, S. R.; Pitts, M . J.; Smith, S. M . Presented at the Society of Petroleum Engineers Rocky Mountain Regional Meeting, Casper, W Y , May 11-13, 1988; paper S P E 17538. McAuliffe, C . D. J. Pet. Technol. 1973, 25, 727-733. Schmidt, D . P.; Soo, H.; Radke, C . J. Soc. Pet. Eng. J. 1984, 24, 351-360. Castor, T. P.; Somerton, W . H.; Kelly, J. F . In Surface Phenomena in Enhanced Oil Recovery; Shah, D . O., E d . ; Plenum: N e w York, 1981; pp 249-291. Cash, R. L., Jr.; Cayias, J. L.; Hayes, M.; MacAllister, D . J . ; Schares, T.; Schechter, R. S.; Wade, W . H . Presented at the S P E 50th Annual Technical Conference and Exhibition, Dallas, T X , Sept. 28-Oct. 1, 1975; paper S P E 5562. Fiori, M ; Farouq Ali, S. M . Presented at the 40th Annual Technical Meeting of the Petroleum Society of CIM, Banff, Alberta, Canada, May 28-31, 1989; paper 89-40-43. Decker, R. M.; Flock, D . L. J. Can. Pet. Technol. 1988, 27(4), 69-78. Hoefner, M . L.; Fogler, H . S. Chem. Eng. Prog. 1985, 81(5), 40-44.

R E C E I V E D for review December 18, 1990. A C C E P T E D revised manuscript M a y 6, 1991.

In Emulsions; Schramm, L.; Advances in Chemistry; American Chemical Society: Washington, DC, 1992.