Enantioselective Synthesis of Spirobarbiturate-Cyclohexenes through

Nickel(II)-Catalyzed [8 + 3]-Cycloaddition of 2-Aryl-N-tosylaziridines with Tropone. Honglei LiuHao JiaWangyu ShiChang WangCheng ZhangHongchao Guo...
0 downloads 0 Views 570KB Size
Letter pubs.acs.org/OrgLett

Enantioselective Synthesis of Spirobarbiturate-Cyclohexenes through Phosphine-Catalyzed Asymmetric [4 + 2] Annulation of Barbiturate-Derived Alkenes with Allenoates Honglei Liu,†,§ Yang Liu,†,§ Chunhao Yuan,† Guo-Peng Wang,‡ Shou-Fei Zhu,‡ Yang Wu,† Bo Wang,† Zhanhu Sun,† Yumei Xiao,† Qi-Lin Zhou,*,‡ and Hongchao Guo*,† †

Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China



S Supporting Information *

ABSTRACT: An enantioselective synthesis of pharmaceutically important spirobarbiturates has been achieved via spirocyclic chiral phosphine-catalyzed asymmetric [4 + 2] annulation of barbiturate-derived alkenes with allenoates. With the use of this tool, various spirobarbiturate-cyclohexenes are obtained in good to excellent yields with excellent diastereo- and enantioselectivities. A wide range of α-substituted allenoates and barbiturate-derived alkenes were tolerated.

B

catalyzed [4 + 2] annulation of activated alkenes with allenoates evolved very slowly and only very limited examples had been reported.8 Moreover, in those successful reactions, the allenoate scope was extremely narrow, generally being limited to very active and special α-(alkoxycarbonylmethyl)allenoates.8,11 Therefore, developing phosphine-catalyzed asymmetric [4 + 2] annulation of alkenes with allenoates represents a challenging task. The barbiturate-derived alkenes are ideal candidates for phosphine-catalyzed asymmetric [4 + 2] annulation, as they not only exhibit high activity but also provide a favorable moiety for stereoselective control. Their asymmetric [4 + 2] annulation with allenoates might overcome the narrow substrate scope, giving very diverse spirobarbituratecyclohexenes. Herein, we report an enantioselective synthesis of chiral spirobarbiturate-cyclohexenes through phosphine-catalyzed enantioselective [4 + 2] annulation of barbiturate-derived alkenes with allenoates (Scheme 1). In the initial screening studies, we found that, in the presence of achiral phosphine, [4 + 2] annulation proceeded smoothly at 60 °C to give the desired product 3aa as a major diastereomer

arbiturates, namely barbituric acid derivatives, are wellknown as an important class of central nervous system depressants, acting as sedatives, anesthetic, anxiolytic, and anticonvulsant agents.1 Their additional pharmacological potential has also been exploited as analeptics, immunomodulating, anti-AIDS, and anticancer agents.2 As a privileged medicinal scaffold, the barbituric acid scaffold has been incorporated in more than 5000 pharmacologically active compounds.3 Among these compounds, spirobarbiturates display various useful pharmacological and physiological activities and have attracted much attention.4 Many synthetic methods for spirobarbiturates have been developed;5 however, an enantioselective synthesis has never been reported and is highly desirable. Since functionalized cyclohexenes are key substructures in many natural products and bioactive molecules,6 it is very significant to synthesize chiral spirobarbiturate-cyclohexenes in which the cyclohexene moiety is fused at the 5-position of the barbituric nucleus. Generally, spirobarbiturates were constructed with the use of barbituric acid building block as the starting material, which is an easily accessible feedstock material. For construction of cyclohexene fused at the barbituric acid scaffold, a synthetic strategy based on the annulation reaction of barbiturate-derived alkenes is simple and feasible. Among various annulation reactions, phosphine-catalyzed asymmetric [4 + 2] annulation of activated alkenes with allenoates provides an alternative access to multisubstituted cyclohexenes, which are difficult to be prepared through a Diels−Alder reaction.7,8 Although nucleophilic phosphinecatalyzed asymmetric annulation reactions have been intensely studied in the past decade and have emerged as a very useful tool for generating chiral carbo- and heterocyclic compounds9 and the total synthesis of natural products,10 chiral phosphine© XXXX American Chemical Society

Scheme 1. Phosphine-Catalyzed [4 + 2] Annulation of Alkenes with Allenoates

Received: January 24, 2016

A

DOI: 10.1021/acs.orglett.6b00239 Org. Lett. XXXX, XXX, XXX−XXX

Letter

Organic Letters Table 2. Scope of Allenoate 2a

(Table 1, entries 1−2). Next, various chiral phosphines were screened to develop the asymmetric reaction. Kwon phosphine Table 1. Evaluation of the Reaction Conditionsa

entry

Px

1 2 3 4 5 6 7 8 9 10 11d 12e 13f

Ph3P EtPPh2 P1 P2 P3 P4 P5 P6 P3 P3 P3 P3 P3

additive − − − − − − − − 4Å 4Å 4Å 4Å 4Å

MS MS MS MS MS

t/°C

t/h

yield (%)b

ee (%)c

60 60 80 60 60 60 60 60 60 40 60 60 60

24 18 48 24 12 24 24 18 12 48 12 48 48

68 98 35 62 86 13 36 65 93 48 85 63 56

− − 6 83 96 11 10 25 98 99 94 95 96

entry

2

3

yield (%)b

ee (%)c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ph (2a) 2-MeC6H4 (2b) 3-MeC6H4 (2c) 4-MeC6H4 (2d) 3-OMeC6H4 (2e) 4-t-BuC6H4 (2f) 2-FC6H4 (2g) 3-FC6H4 (2h) 4-FC6H4 (2i) 3-ClC6H4 (2j) 4-ClC6H4 (2k) 2-BrC6H4 (2l) 3-BrC6H4 (2m) 4-BrC6H4 (2n) 3-CF3C6H4 (2o) 4-CF3C6H4 (2p) 2-naphthyl (2q) CO2Et (2r) H (2s)

3aa 3ab 3ac 3ad 3ae 3af 3ag 3ah 3ai 3aj 3ak 3al 3am 3an 3ao 3ap 3aq 3ar 3as

93 86 94 92 84 90 85 91 88 94 93 87 92 91 93 90 95 67 62

98 92 98 95 98 96 94 96 98 97 96 90 97 96 97 96 97 97 90

a

Unless indicated otherwise, reactions were carried out in 2 mL of toluene using 0.1 mmol of 1a, 0.12 mmol of 2, and 70 mg of 4 Å MS in the presence of 20 mol % of P3. bIsolated yield. cDetermined by chiral HPLC analysis. The dr is >20:1, determined by 1H NMR analysis of the crude product.

of α-substituted allenoates (2a−2p) bearing electron-rich, -neutral, and -deficient aromatic moieties underwent asymmetric [4 + 2] annulation reaction, giving the corresponding products (3aa−3ap) in high yields (84−94%) and with excellent enantioselectivities (90−98%) (entries 1−16). The naphthyl substituted allenoate 2q also reacted smoothly with the alkene 1a to afford the product 3aq in 95% yield and 97% ee (entry 17). The α-(ethoxycarbonylmethyl)allenoate 2r underwent the reaction to give the product 3ar in 67% yield and 97% ee (entry 18). It is notable that α-methyl-substituted allenoate (2s) is a compatible substrate, leading to the desired product 3as in 62% yield and 90% ee (entry 19). We next explored the scope of barbiturate-derived alkenes. As summarized in Table 3, a series of aromatic alkenes, irrespective of their electronic properties and substitution patterns, were reacted to give products 3 in high yields with excellent enantioselectivities (entries 1−19). The fused aromatic and heteroaromatic alkenes such as 2-naphthyl, 2furanyl, and 2-thienyl alkenes (1u−1w) were also tolerated and yielded products (3ua−3wa) in 83−91% yields with 92−98% ee (entries 20−22). Notably, a styryl alkene 1x worked efficiently to give the product 3xa in 92% yield and 93% ee (entry 23). Satisfactorily, the alkene scope could be further expanded to the alkyl substituted substrate 1y, which delivered product 3ya in 56% yield with 90% ee (entry 24). The absolute configuration of products 3 was assigned by single-crystal X-ray analysis of the product 3oa (see SI).14

a

Unless indicated otherwise, reactions were carried out in 2 mL of toluene using 0.1 mmol of 1a, 0.12 mmol of 2a, and 70 mg of 4 Å MS in the presence of 20 mol % of phosphine. bIsolated yield. c Determined by chiral HPLC analysis. The dr is >20:1, determined by 1H NMR analysis of the crude product. d10 mol % of P3. e5 mol % of P3. f1 mol % of P3.

P1 displayed moderate catalytic activity and poor enantioselectivity (entry 3). To our delight, spirocyclic chiral phosphines P2 and P3 demonstrated satisfactory catalytic capability (entries 4−5).12 Particularly, P3 catalyzed the reaction to give the product 3aa in 86% yield and 96% ee (entry 5). In comparison, three multifunctional phosphines P4−P6 could only deliver poor to moderate catalytic activities and poor enantioselectivities (entries 6−8).13 With P3 as the catalyst, further optimization of the reaction conditions was attempted. Using 4 Å molecular sieves as an additive, the yield of 3aa was markedly increased to 93% with an excellent 98% ee (entry 9). Decreasing the temperature to 40 °C slightly enhanced ee to 99%, but a long reaction time was required, simultaneously leading to a remarkably lower 48% yield (entry 10). When the catalyst loading was decreased to 10, 5, and even 1 mol %, respectively, the enantioselectivity still remained at a high level, although the yield could be impaired (entries 11−13). Under the optimized conditions, the substrate scope of αsubstituted allenoates (2) was investigated (Table 2). A variety B

DOI: 10.1021/acs.orglett.6b00239 Org. Lett. XXXX, XXX, XXX−XXX

Letter

Organic Letters Table 3. Scope of Barbiturate-Derived Alkene 1a

Scheme 3. Elaboration of Products

entry

1

t/h

3

yield (%)b

ee (%)c

1 2 3 4 5 6 7 8d 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

3-MeC6H4 (1b) 4-MeC6H4 (1c) 2-MeOC6H4 (1d) 3-MeOC6H4 (1e) 4-MeOC6H4 (1f) 4-EtC6H4 (1g) 4-PhC6H4 (1h) 2-FC6H4 (1i) 3-FC6H4 (1j) 4-FC6H4 (1k) 3-ClC6H4 (1l) 4-ClC6H4 (1m) 3-BrC6H4 (1n) 4-BrC6H4 (1o) 3-NO2C6H4 (1p) 4-NO2C6H4 (1q) 3-CF3C6H4 (1r) 4-CF3C6H4 (1s) 3-CNC6H4 (1t) 2-naphthyl (1u) 2-furanyl (1v) 2-thienyl (1w) styryl (1x) cyclohexyl (1y)

12 12 12 12 12 12 12 48 12 12 12 12 12 12 48 48 12 12 48 12 12 12 12 12

3ba 3ca 3da 3ea 3fa 3ga 3ha 3ia 3ja 3ka 3la 3ma 3na 3oa 3pa 3qa 3ra 3sa 3ta 3ua 3va 3wa 3xa 3ya

86 91 81 84 92 95 88 72 88 85 91 94 92 92 76 80 95 93 75 91 83 85 92 56

98 98 95 98 99 99 95 90 96 96 93 96 93 97 94 92 96 95 94 98 92 98 93 90

spirobarbiturate 3aa occurred in refluxing ethanol to give dinitro substituted product 9 in 78% yield with 94% ee. In summary, we have achieved an enantioselective synthesis of pharmaceutically important spirobarbiturate-cyclohexenes through spirocyclic chiral phosphine-catalyzed asymmetric [4 + 2] annulation of barbiturate-derived alkenes with allenoates. Using this tool, the biologically useful spirobarbiturate-cyclohexenes are obtained in good to excellent yields with excellent diastereo- and enantioselectivities. The reaction tolerated a broad scope of allenoates and barbiturate-derived alkenes bearing various substituents, providing an important alternative tool for the enantioselective synthesis of chiral cyclohexene derivatives. For the first time, the allenoate scope of the phosphine-catalyzed asymmetric allene−alkene [4 + 2] annulation was expanded to include diverse α-substituted allenoates. This reaction represents important progress in the chiral phosphine-catalyzed asymmetric [4 + 2] annulation of allenoates with alkenes.



a

Unless indicated otherwise, reactions were carried out in 2 mL of toluene using 0.1 mmol of 1, 0.12 mmol of 2a, and 70 mg of 4 Å MS in the presence of 20 mol % of P3. bIsolated yield. cDetermined by chiral HPLC analysis. The dr is >20:1, determined by 1H NMR analysis of the crude product. dThe reaction was performed at 100 °C.

ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b00239. Experimental procedure, characterization data, HPLC analysis dada, NMR spectra and X-ray crystallographic data (PDF)

As shown in Scheme 2, under the standard reaction conditions, an ethyl barbiturate derived alkene (4) reacted



Scheme 2. Scope of Activated Alkenes

AUTHOR INFORMATION

Corresponding Authors

*E-mail: [email protected]. *E-mail: [email protected]. Author Contributions §

H.L. and Y.L. contributed equally.

Notes

The authors declare no competing financial interest.

■ ■

with allenoate 2a to give spirobarbiturate-cyclohexene 6 in 88% yield and 97% ee. In particular, a thio-barbiturate-derived alkene (5) provided the product 7 in 82% yield and 95% ee. Further elaboration of products was briefly explored (Scheme 3). By treatment of 3aa with mCPBA in 1,2-dichloroethane at 60 °C for 48 h, epoxidation of carbon−carbon double bond was achieved to give a tricyclic heterocycle in 87% yield with 94% ee (its absolute configuration had not been determined), which could be a valuable precursor for the synthesis of novel optically active compounds. With the use of HNO3/H2SO4, nitration of

ACKNOWLEDGMENTS This work is supported by the NSFC (21372256 and 21572264). REFERENCES

(1) (a) Smith, M. C.; Riskin, B. J. Drugs 1991, 42, 365. (b) Sudha, S.; Lakshmana, M. K.; Pradhan, N. Pharmacol., Biochem. Behav. 1996, 54, 633. (c) Brunner, H.; Ittner, K. P.; Lunz, D.; Schmatloch, S.; Schmidt, T.; Zabel, M. Eur. J. Org. Chem. 2003, 2003, 855. (d) Brunton, L. L.;

C

DOI: 10.1021/acs.orglett.6b00239 Org. Lett. XXXX, XXX, XXX−XXX

Letter

Organic Letters Lazo, J. S.; Keith, L. P. Goodman & Gilman’s the Pharmacological Basis of Therapeutics, 11th ed.; McGraw-Hill, Inc.: New York, 2006. (e) Lyons, K. E.; Pahwa, R. CNS Drugs 2008, 22, 1037. (f) Abraham, D. J.; Rotella, D. P. Burger’s Medicinal Chemistry, Drug Discovery and Development; Wiley: Hoboken, NJ, 2010. (2) (a) Grams, F.; Brandstetter, H.; D’Alo, S.; Gepperd, D.; Krel, H. W.; Leinert, H.; Livi, V.; Menta, E.; Oliva, A.; Zimmermann, G. Biol. Chem. 2001, 382, 1277. (b) Maquoi, E.; Sounni, N. E.; Devy, L.; Oliver, F.; Frankenne, F.; Krell, H. W.; Grams, F.; Foidart, J. M.; Noel, A. Clin. Cancer Res. 2004, 10, 4038. (c) Uhlmann, C.; Froscher, W. CNS Neurosci. Ther. 2009, 15, 24. (d) Wang, J.; Medina, C.; Radomski, M. W.; Gilmer, J. F. Bioorg. Med. Chem. 2011, 19, 4985. (3) Szostak, M.; Sautier, B.; Spain, M.; Behlendorf, M.; Procter, D. J. Angew. Chem., Int. Ed. 2013, 52, 12559. (4) For bioactivities of spirobarbiturate derivatives, see: (a) Fraser, W.; Suckling, C. J.; Wood, H. C. S. J. Chem. Soc., Perkin Trans. 1 1990, 3137. (b) King, S. B.; Stratford, E.; Craig, C.; Fifer, E. K. Pharm. Res. 1995, 12, 1240. (c) Galati, E. M.; Monforte, M. T.; Miceli, N.; Raneri, E. Farmaco 2001, 56, 459. (d) Renard, A.; Lhomme, J.; Kotera, M. J. Org. Chem. 2002, 67, 1302. (e) Kim, S.-H.; Pudzianowski, A. T.; Leavitt, K. J.; Barbosa, J.; McDonnell, P. A.; Metzler, W. J.; Rankin, B. M.; Liu, R.; Vaccaro, W.; Pitts, W. Bioorg. Med. Chem. Lett. 2005, 15, 1101. (f) Ramachary, D. B.; Kishor, M.; Reddy, Y. V. Eur. J. Org. Chem. 2008, 2008, 975. (g) Lomlim, L.; Einsiedel, J.; Heinemann, F. W.; Meyer, K.; Gmeiner, P. J. Org. Chem. 2008, 73, 3608. (5) For recent examples, see: (a) Jalilzadeh, M.; Noroozi Pesyan, N.; Rezaee, F.; Rastgar, S.; Hosseini, Y.; Şahin, E. Mol. Diversity 2011, 15, 721. (b) Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 2424. (c) Dieskau, A. P.; Holzwarth, M. S.; Plietker, B. J. Am. Chem. Soc. 2012, 134, 5048. (d) Dorofeeva, E. O.; Elinson, M. N.; Vereshchagin, A. N.; Stepanov, N. O.; Bushmarinov, I. S.; Belyakov, P. A.; Sokolova, O. O.; Nikishin, G. I. RSC Adv. 2012, 2, 4444. (e) Borah, P.; Bhuyan, P. J. Tetrahedron Lett. 2013, 54, 6949. (f) Soleimani, E.; Yazdani, H.; Saei, P. Tetrahedron Lett. 2015, 56, 1635. (g) Zhao, H.-W.; Tian, T.; Li, B.; Yang, Z.; Pang, H.-L.; Meng, W.; Song, X.-Q.; Chen, X.-Q. J. Org. Chem. 2015, 80, 10380. (h) De Crescentini, L.; Attanasi, O. A.; Campisi, L. A.; Favi, G.; Lillini, S.; Ursini, F.; Mantellini, F. Tetrahedron 2015, 71, 7282. (i) Palasz, A.; Ciez, D.; Musielak, B.; Kalinowska-Tluscik, J. Tetrahedron 2015, 71, 8911. (j) Han, B.; Huang, W.; Ren, W.; He, G.; Wang, J. H.; Peng, C. Adv. Synth. Catal. 2015, 357, 561. (6) (a) Ho, T. L. Carbocycle Construction in Terpene Synthesis; WileyVCH: Weinheim, Germany, 1988. (b) Saxton, J. E. Nat. Prod. Rep. 1992, 9, 393. (c) Studies in Natural Products Chemistry, Vol. 35; Rahman, A., Ed.; Elsevier: 2008. (7) (a) Tran, Y. S.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 12632. (b) Tran, Y. S.; Martin, T. J.; Kwon, O. Chem. - Asian J. 2011, 6, 2101. (8) (a) Zhong, F.; Han, X.; Wang, Y.; Lu, Y. Chem. Sci. 2012, 3, 1231. (b) Xiao, H.; Chai, Z.; Cao, D.; Wang, H.; Chen, J.; Zhao, G. Org. Biomol. Chem. 2012, 10, 3195. (c) Yang, W.; Zhang, Y.; Qiu, S.; Zhao, C.; Zhang, L.; Liu, H.; Zhou, L.; Xiao, Y.; Guo, H. RSC Adv. 2015, 5, 62343. (9) For selected reviews, see: (a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535. (b) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035. (c) Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140. (d) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev. 2009, 38, 3102. (e) Marinetti, A.; Voituriez, A. Synlett 2010, 174. (f) Wang, S.X.; Han, X. Y.; Zhong, F. R.; Wang, Y. Q.; Lu, Y. X. Synlett 2011, 2011, 2766. (g) Zhao, Q.-Y.; Lian, Z.; Wei, Y.; Shi, M. Chem. Commun. 2012, 48, 1724. (h) Fan, Y. C.; Kwon, O. Chem. Commun. 2013, 49, 11588. (i) Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927. (j) Xiao, Y.; Sun, Z.; Guo, H.; Kwon, O. Beilstein J. Org. Chem. 2014, 10, 2089. (k) Xie, P.; Huang, Y. Org. Biomol. Chem. 2015, 13, 8578. (l) Xiao, Y.; Guo, H.; Kwon, O. Aldrichimica Acta 2016, 49, 3. (10) (a) Wang, J. C.; Krische, M. J. Angew. Chem., Int. Ed. 2003, 42, 5855. (b) Agapiou, K.; Krische, M. J. Org. Lett. 2003, 5, 1737. (c) Tran, Y. S.; Kwon, O. Org. Lett. 2005, 7, 4289. (d) Koech, P. K.; Krische, M. J. Tetrahedron 2006, 62, 10594. (e) Webber, P.; Krische, M. J. J. Org. Chem. 2008, 73, 9379. (f) Jones, R. A.; Krische, M. J. Org.

Lett. 2009, 11, 1849. (g) Sampath, M.; Lee, P.-Y. B.; Loh, T. P. Chem. Sci. 2011, 2, 1988. (h) Andrews, I. P.; Kwon, O. Chem. Sci. 2012, 3, 2510. (i) Villa, R. A.; Xu, Q. H.; Kwon, O. Org. Lett. 2012, 14, 4634. (j) Barcan, G. A.; Patel, A.; Houk, K. N.; Kwon, O. Org. Lett. 2012, 14, 5388. (k) Cai, L.; Zhang, K.; Kwon, O. J. Am. Chem. Soc. 2016, 138, DOI: 10.1021/jacs.6b00567. (11) In ref 8a, when the isatin-derived alkene was used as the substrate, two allenoates bearing electron-poor aromatic rings at the β′-position also worked, however, the reaction was not applicable to an electron-neutral phenyl ring at the β′-position. (12) For synthesis of spirocyclic chiral phosphines, see: (a) Zhu, S.F.; Yang, Y.; Wang, L.-X.; Liu, B.; Zhou, Q.-L. Org. Lett. 2005, 7, 2333. (b) Liu, B.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L. Tetrahedron: Asymmetry 2006, 17, 634. (c) Zhang, W.; Zhu, S.-F.; Qiao, X.-C.; Zhou, Q.-L. Chem. - Asian J. 2008, 3, 2105. For the reviews on the development of chiral spiro ligands and catalysts, see: (d) Xie, J.-H.; Zhou, Q.-L. Acc. Chem. Res. 2008, 41, 581. (e) Zhu, S.-F.; Zhou, Q.-L. In Privileged Chiral Ligands and Catalysts; Zhou, Q.-L., Ed.; WileyVCH: Weinheim, 2011; Chapter 4, pp 137−170. For extensive application of spirocyclic chiral phosphines in phosphine catalysis, see ref 9j and 9l (13) For synthesis and application of multifunctional chiral phosphines, see: (a) Cowen, B. J.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 10988. (b) Fang, Y. Q.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 5660. (c) Xiao, H.; Chai, Z.; Zheng, C. W.; Yang, Y. Q.; Liu, W.; Zhang, J. K.; Zhao, G. Angew. Chem., Int. Ed. 2010, 49, 4467. (d) Zhong, F.; Han, X.; Wang, Y.; Lu, Y. Angew. Chem., Int. Ed. 2011, 50, 7837. (e) Han, X.; Wang, Y.; Zhong, F.; Lu, Y. J. Am. Chem. Soc. 2011, 133, 1726. (f) Han, X.; Wang, S.-X.; Zhong, F.; Lu, Y. Synthesis 2011, 2011, 1859. (g) Xiao, H.; Chai, Z.; Wang, H. F.; Wang, X. W.; Cao, D. D.; Liu, W.; Lu, Y. P.; Yang, Y. Q.; Zhao, G. Chem. - Eur. J. 2011, 17, 10562. (h) Zhao, Q.; Han, X.; Wei, Y.; Shi, M.; Lu, Y. Chem. Commun. 2012, 48, 970. (i) Zhong, F.; Chen, G. Y.; Han, X.; Yao, W.; Lu, Y. Org. Lett. 2012, 14, 3764. (j) Jin, Z.; Yang, R.; Du, Y.; Tiwari, B.; Ganguly, R.; Chi, Y. R. Org. Lett. 2012, 14, 3226. (k) Han, X.; Zhong, F.; Wang, Y.; Lu, Y. Angew. Chem., Int. Ed. 2012, 51, 767. (l) Zhang, X.-N.; Shi, M. ACS Catal. 2013, 3, 507. (m) Zhong, F.; Dou, X.; Han, X.; Yao, W.; Zhu, Q.; Meng, Y.; Lu, Y. Angew. Chem., Int. Ed. 2013, 52, 943. (n) Yu, H.; Zhang, L.; Yang, Z. L.; Li, Z.; Zhao, Y.; Xiao, Y. M.; Guo, H. C. J. Org. Chem. 2013, 78, 8427. (o) Yu, H.; Zhang, L.; Li, Z.; Liu, H. L.; Wang, B.; Xiao, Y. M.; Guo, H. C. Tetrahedron 2014, 70, 340. (p) Wang, D.; Lei, Y.; Wei, Y.; Shi, M. Chem. - Eur. J. 2014, 20, 15325. (q) Han, X.; Yao, W.; Wang, T.; Tan, Y. R.; Yan, Z.; Kwiatkowski, J.; Lu, Y. Angew. Chem., Int. Ed. 2014, 53, 5643. (r) Yao, W. J.; Dou, X. W.; Lu, Y. X. J. Am. Chem. Soc. 2015, 137, 54. (14) Crystallographic data for 3oa have been deposited with the Cambridge Crystallographic Data Centre as deposition number CCDC 1431960.

D

DOI: 10.1021/acs.orglett.6b00239 Org. Lett. XXXX, XXX, XXX−XXX