15
Environmental Effects on Intra- and Intermolecular Photophysical Processes in Cr Complexes 3+
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch015
LESLIE S. FORSTER University of Arizona, Tucson, Ariz. 85721
The effect of environment on the nonradiative processes T —--> A , T —--> E, and E—--> A is reviewed. The rate constants for E—--> A are insensitive to environment more often at low temperatures than at room temperature. The relatively few data on the T —--> A relaxation rates indicate a value of ≤ 10 sec for most complexes, but notable exceptions have been found. Some evidence indicates a variation in intersystem crossing ( T —--> E) efficiency with environment. Concentration quenching by energy transfer, where important, affects the E state rather than the T state. In general, the environmental variations in Φ occur mainly after the complexes have reached the E state. The need to collect photophysical and photochemical data under identical conditions is emphasized. 4
4
4
2
2
2
2
4
2
2
2
4
2
4
4
2
5
2
-1
4
2
2
2
4
2
2
p
V V T i t h the e x c e p t i o n o f m o l e c u l e s i n the gas p h a s e a t l o w pressures, the ™
p r o p e r t i e s o f a n y species are m e d i a t e d to some degree b y the e n v i
ronment.
I n p a r t i c u l a r , t h e p h o t o p h y s i c a l processes w i t h i n a t r a n s i t i o n
m e t a l i o n c o m p l e x are often m a r k e d l y d e p e n d e n t o n the s u r r o u n d i n g s i n w h i c h the c o m p l e x is e m b e d d e d .
Interest i n t r a n s i t i o n m e t a l i o n p h o t o -
p h y s i c s has b e e n h i g h n o t o n l y f o r the i n t r i n s i c i m p o r t a n c e (e.g., p h o s phors a n d lasers ) b u t also because p h o t o c h e m i s t r y a n d p h o t o p h y s i c s a r e i n t i m a t e l y i n t e r r e l a t e d . I t is this c o n n e c t i o n b e t w e e n p h o t o c h e m i s t r y a n d p h o t o p h y s i c s t h a t w i l l b e e m p h a s i z e d i n this discussion. T h e most s t r i k i n g contrast b e t w e e n solids, either glassy or c r y s t a l l i n e , a n d fluids is the i n h i b i t i o n o f d i f f u s i o n a l processes i n r i g i d m e d i a .
How
ever, p h o t o p h y s i c a l processes are sensitive to n o n d i f f u s i o n a l p e r t u r b a t i o n s as w e l l , a n d the effect o f e n v i r o n m e n t a l factors i n this latter category is 172 King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
15.
Environmental
FORSTER
173
Effects
the subject o f this r e v i e w . W i t h f e w exceptions, p h o t o c h e m i s t r y has b e e n s t u d i e d i n fluid m e d i a , w h i l e m o s t p h o t o p h y s i c a l m e a s u r e m e n t s b e e n m a d e w h e n t h e c o m p l e x is i n a s o l i d e n v i r o n m e n t . crystalline environments are discussed:
have
T h r e e types o f
( a ) u n d i l u t e d crystals, ( b ) t h e
guest species d i l u t e d i n a n i s o s t r u c t u r a l host, a n d ( c ) d o u b l e salts. T h e n o n c r y s t a l l i n e s o l i d hosts i n c l u d e a l c o h o l - w a t e r
glasses
a n d a plastic,
poly ( methyl methacrylate ). I t is u s e f u l to d i s t i n g u i s h i o n i c c o m p l e x e s (e.g., C r m o l e c u l a r c o m p l e x e s (e.g., C r ( N H ) 3
6
3 +
3 +
:A1 0 ) 2
3
from
) w h i c h persist i n fluids as w e l l as
i n solids. I n the m o l e c u l a r c o m p l e x e s , the l i g a n d s are c o u p l e d m u c h m o r e s t r o n g l y to t h e c e n t r a l m e t a l i o n t h a n to the s u r r o u n d i n g s , a n d i t is m e a n -
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch015
i n g f u l to treat t h e system as a m o l e c u l e w i t h the e n v i r o n m e n t a c t i n g as a p e r t u r b a n t o n i n t r a m o l e c u l a r processes. M o r e o v e r , i n crystals o f m o l e c u l a r c o m p l e x e s , the b u l k y l i g a n d s p r e v e n t t h e close a p p r o a c h o f m e t a l ions that is p o s s i b l e w i t h i o n i c complexes.
Consequently, intermolecular exci-
45
40
35
30
25
£
20
UJ 15
10
5
0
1
2 Dq(kK)
3
Figure 1. The variation in Cr * energy levels with ligand field (adapted from Ref. 49) 3
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
174
INORGANIC
COMPOUNDS WITH
UNUSUAL PROPERTIES
t a t i o n e n e r g y transfer m a y b e less efficient i n solids c o n t a i n i n g m o l e c u l a r complexes. B e c a u s e of the extensive l i t e r a t u r e o n the p h o t o c h e m i s t r y a n d p h o t o p h y s i c s of h e x a c o o r d i n a t e d C r
3 +
complexes
(1, 2, 3, 4, 5),
this g r o u p is
v e r y s u i t a b l e for i l l u s t r a t i n g the effect of e n v i r o n m e n t o n the rates of i n t r a a n d i n t e r m o l e c u l a r processes. T h e T 4
2
energy, r e l a t i v e to t h e g r o u n d A 4
2
state, is sensitive to Dq ( F i g u r e 1 ) , a n d c o n s e q u e n t l y t h e p o s i t i o n of the T
4
2
A ) a n d for p h o s p h o r e s c e n c e ( E 4
-»
2
2
4
fluorescence
A ). 2
I n the absence of t h e r m a l l y a c t i v a t e d E
> T 4
2
2
b a c k transfer, the
p e r t i n e n t equations a r e :
F
k + k* + k, + k
T
k + k + k + k
T
2
T
F
- i
φ
=
2
=
η
z
Φ 2E
Φρ/τ
1
ρ
}
(2)
R
h.
z
4
k k + k +
T
.
R
h
k + k + b
(3)
E
k
&
R
5
b
Tp-
4
k + k + k + k 2
=
K
R
E
k
6
R
=
k + kt + k
=
Φ &
b
E
(4)
R
2 Ε
(5)
5
W h e n b a c k transfer is significant, i t is necessary to d i s t i n g u i s h the p r o m p t fluorescence
described by Equations 1 and 2 from delayed
fluorescence
w h i c h w i l l e x h i b i t the same l i f e t i m e as p h o s p h o r e s c e n c e . T h e i n c l u s i o n of b a c k transfer leads to r a t h e r c o m p l i c a t e d
general
expressions, b u t t w o l i m i t i n g cases are i m p o r t a n t . T h e m o d i f i e d equations c o r r e s p o n d i n g to these l i m i t s (7,8) [4^-4
«
*6 + k
(fc.4 + fc +
Φ ρ
=
1
ΦΡΛΡ
2
T
= =
k
b
A
+
h
+
-
k )] T
R
:
2
( 3 , )
(h + h + fc-4 + k ) -kJc-
R
(1
for t h e steady state l i m i t
- h - h -
E
(k + kt + k + k ) 2
τρ-
are (a)
- k
E
R
5
R
Φ *)Α;-4 2
Φ 2 ^ 5
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
A
(40
(50
176
INORGANIC
COMPOUNDS WITH UNUSUAL
a n d ( b ) f o r t h e e q u i l i b r i u m l i m i t ( [ Γ ] / [ Ε ] = 3e~ 4
2
2
4
E
2
T
2
R
_
t
z
_
^
Γ
A £ /
* ) r
U n l e s s Δ Ε < 1000 c m " , i n t h e e q u i l i b r i u m l i m i t , Φ Λ 1
Ρ
~ fc at a m b i e n t 5
Ρ
Since the e q u i l i b r i u m limit can apply only w h e n Φ
— 1,
2Ε
2
;
(Κ>Λ
3e~
i.e. w h e n k + fc +
}
"
^
(1 +
K P
temperatures.
(3
Δ
2
Δ
Φ
kT
R
h + h + fe^ + (fc + fc» + Χ;**) ( 3 β - ^ η 1 + 3β- ^
=
K P
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch015
and E ) :
2
(h + h + k ) + (fc + k + k ) (3e-^ )
Φ ρ
P /
w h e r e Δ Ε is
,
AE/kT
the energy difference b e t w e e n the n o - p h o n o n levels o f T
PROPERTIES
« & 4 , at m o d e r a t e o r l a r g e Δ Ε E q u a t i o n 5 " w i l l
3
l e a d to essentially t h e same t e m p e r a t u r e d e p e n d e n c e as E q u a t i o n 5 ' i f Φ
2Ε
is constant.
I n p r i n c i p l e , d e t e r m i n a t i o n o f Φ / τ & as a f u n c t i o n o f t e m ρ
ρ
5
p e r a t u r e c a n b e u s e d to e v a l u a t e t h e r m a l l y i n d u c e d changes i n Φ , b u t 2Ε
k is not necessarily t e m p e r a t u r e - i n v a r i a n t . W h e n Φ τ is constant over a 5
ρ
ρ
w i d e r a n g e o f t e m p e r a t u r e , i t is l i k e l y t h a t b o t h Φ
and k
a r e also
5
2Ε
constant. I n t h e f o l l o w i n g d i s c u s s i o n , t h e effect o f e n v i r o n m e n t o n t h e i n t r a m o l e c u l a r r e l a x a t i o n rates fc , fc , a n d fc i n C r 3
6
4
3 +
c o m p l e x e s is r e v i e w e d .
I n a d d i t i o n , t h e v a r i a t i o n i n i n t e r m o l e c u l a r transfer efficiency w i t h e n v i r o n m e n t is also discussed. k
6
W i t h f e w exceptions (e.g., C r ( u r e a )
6
3 +
and C r ( H 0 ) 2
3 +
6
), τ
ρ
reaches
the l o w t e m p e r a t u r e - l i m i t i n g v a l u e ( τ ° ) at temperatures a b o v e 77 °K. ρ
I n T a b l e I a r e l i s t e d a representative selection o f l o w t e m p e r a t u r e l i f e times.
S i n c e k is s e l d o m k n o w n a c c u r a t e l y , i t is necessary to estimate 5
this q u a n t i t y i n o r d e r to evaluate fc . F o r the s y m m e t r y - a l l o w e d E -> A 2
6
transition i n C r ~10"
3 +
:Al O , k 2
5
a
=
260 s e c
(19) and
1
sec ( T a b l e I ) . C o n s e q u e n t l y , k ° ~ 1 0 - 1 0
3
2
5
s y m m e t r i c complexes. centrosymmetric
T p
3
4
2
° i n C r ( o x ) " is 3
3
sec" i n n o n c e n t r o 1
I n contrast, f o r s y m m e t r y - f o r b i d d e n transitions i n
complexes
(e.g.,
Cr(CN)
6
3
" ) , fc ° ~ 10 sec" . 1
5
These
v a l u e s v a r y w i t h the extent o f v i b r o n i c c o u p l i n g b u t t h e fc ° q u a n t i t i e s i n 6
T a b l e I w e r e e v a l u a t e d b y a s s u m i n g fc ° = 1 0 a n d 10 sec" f o r n o n c e n t r o 3
5
s y m m e t r i c a n d c e n t r o s y m m e t r i c complexes,
1
respectively.
I n some c o m p l e x e s (viz., d i l u t e s o l i d solutions o f C r ( a c a c ) ) 3
quite
insensitive
Cr(D 0) 2
6
3 +
to e n v i r o n m e n t ,
and C r ( C N )
6
3
while
i n other
complexes
" ) the l a t t i c e is t h e d o m i n a n t influence
is (e.g., (Table
I ) . I n other c o m p l e x e s (e.g., C r ( o x ) " ) k ° m a y b e r e l a t i v e l y constant i n 3
3
Q
s e v e r a l hosts y e t increase m a r k e d l y i n others.
I t is significant t h a t w i t h
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
15.
Environmental
FORSTER
Table I. Complex
L o w T e m p e r a t u r e L i m i t i n g τ ρ ° a n d k$° k ° , seer
Ref.
475 115 17 400
2,000 8,600 58,700 2,400
9 9 10 9
460
2,100
11
910 960 900 100 180
1,000 1,000 1,000 9,900 5,500
12 IS 12
1,500 350 750 130
650 2,850 1,300 7,700
12 12 15 12
120,000 10 62 3 3,300
~o 100,000 16,000 330,000 300
12 16 16 16 17
[Cr(urea) ] I [Cr(urea) ] B r [Cr(urea) ]Cl [Cr(urea) ](C10 ) [Cr(urea)e](NO«),
160 130 240 100 240
6,200 7,600 4,100 10,000 4,100
18 18 18 18 18
[Cr(en) ](C10 ) [Cr(en) ]Cl [Cr(en) ]Br .4H 0 [Cr(en) ]I a l c o h o l - w a t e r glass
53 40 26 80 100
18,800 25,000 38,400 12,400 10,000
16 16 16 16 17
Host"
a
Cr(acac)
177
Effects
Al(acac) Cr(acac)
3
p°, μ sec
3 3
a l c o h o l - w a t e r glass poly (methyl methacrylate) plastic Cr(ox)
NaMgAl(ox) -9H 0 NaMgCr(ox) .9H 0 a l c o h o l - w a t e r glass Κ Α1(οχ) ·3Η 0 K Cr(ox) .3H 0
3
3
2
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch015
3
Cr(D 0) 2
6
3
3
2
3
3
2
C(NH ) A1(S0 ) -6D 0 A1C1 -6D 0 KA1(S0 ) -12D 0 a l c o h o l - w a t e r glass
3 +
2
3
4
3
6
3
"
2
2
3
6
6
3
6
3
6
3 +
6
6
6
3
6
3
6
3
6
Cr(en) + 3
3
4
3
4
3
3
3
3
3
3
a
2
K Co(CN) K Cr(CN) [Cr(en) ][Cr(CN) ] [Cr(NH ) ][Cr(CN) ] a l c o h o l - w a t e r glass 3
Cr(urea)
2
2
4
Cr(CN)
2
3
2
3
1
e
U 10
A c a c : acetylacetonate; en: ethylenediamine; ox: oxalate.
one e x c e p t i o n ( C r ( C N ) plexes.
6
3
~ in K C o ( C N ) ) k ° 3
A n y reduction in Φ
ρ
6
Q
»
h°
for molecular com
b e l o w one i n these systems results m a i n l y
f r o m n o n r a d i a t i v e r e a c t i v a t i o n of the E state. 2
A r a t h e r different t y p e of e n v i r o n m e n t a l effect w a s d e t e c t e d i n glassy solutions of C r ( C N )
6
3
" w h e r e e x c i t a t i o n o n t h e r e d e d g e of t h e Γ 4
a b s o r p t i o n b a n d leads to a m u l t i e x p o n e n t i a l d e c a y ( 2 0 ) .
0.8 (31a).
A
Cr :K Co(CN) , Φ /τ
1 at r o o m t e m p e r a " , is d i s s o l v e d i n
Since E
> T
2
4
E q u a t i o n 5 is v a l i d .
increases t w o - f o l d f r o m 7 7 ° - 3 0 0 ° K (12).
ρ
+
3
H o w e v e r , w h e n the same c o m p l e x , C r ( C N )
k.
back
Ρ
1 (Equation 3) and k
2
2
For
Since Φ
Ρ
is t e m p e r a t u r e - i n v a r i a n t a n d equals one i n this c r y s t a l , a l l of this increase m u s t be a s c r i b e d to the t h e r m a l e n h a n c e m e n t of fc . T h i s is q u i t e reason 5
a b l e since E - » A 4
2
ronment Φ /τ ρ
2
is s y m m e t r y - f o r b i d d e n i n this c e n t r o s y m m e t r i c e n v i
I n contrast, i n a l c o h o l - w a t e r
(32).
is constant ( ± 5 % )
ρ
2 2 5 ° K , a n d i t increases a b o u t 2 0 % 2 8 9 ° Κ (28).
solutions of
Cr(CN)
as the t e m p e r a t u r e is c h a n g e d f r o m 145°
6
3
", to
w h e n the t e m p e r a t u r e is r a i s e d to
T h e s e d a t a are consistent w i t h a d i m i n i s h e d Φ
in
2Ε
fluid
solutions at r o o m t e m p e r a t u r e , b u t , i n the absence of q u a n t i t a t i v e i n f o r m a t i o n a b o u t the t e m p e r a t u r e effect u p o n k , no definitive statement is 5
warranted. I n c i d e n t a l l y , the e v a l u a t i o n of Φ ^ f r o m E q u a t i o n 5 is f r a u g h t w i t h 2
uncertainty.
Although τ
ρ
is r e a d i l y m e a s u r e d a n d r e l i a b l e values of Φ
w e r e d e t e r m i n e d i n some cases, the e s t i m a t i o n of k» f r o m measurements is v e r y difficult (33).
C o m p u t a t i o n of k
that d e p e n d o n s u c h a c a l c u l a t i o n
2Κ
should be viewed with skepticism In alcohol-water
(4).
solutions of C r ( e n )
t e m p e r a t u r e f r o m 153° to 2 9 8 ° K (28). Cr(en)
3
is s y m m e t r y - a l l o w e d ,
3 +
dependent.
fc
5
I f one assumes t h a t k
5
8
·2Η 0)
e
2
Yet, i n aqueous solution, Φ
3
3 +
, Φ / τ „ is i n d e p e n d e n t ρ
S i n c e the E - > A 2
s h o u l d not
4
be
very
w i t h Zc . 4
However,
2
Φ
2Ε
at 2 5 ° C , Φ ^ ~ 1 for C r ( e n ) 2
4
4
3 +
is the
In a crystalline environment
data. S i n c e the p h o t o a q u a t i o n y i e l d for d i r e c t r e a c t i o n i n T i m p l y some Γ
temperature3
3 +
3
——» A 4
2
is 0.15, these
2
d e a c t i v a t i o n , i.e. fc competes f a v o r a b l y
the p h o t o c h e m i c a l
3
e v a l u a t i o n of
Φ ^ is 2
critically
d e p e n d e n t u p o n the m a g n i t u d e of the p h o t o a q u a t i o n y i e l d e x c i t e d direct E E. 2
2
m i u m β-diketonates e x h i b i t a s i n g u l a r b e h a v i o r .
R e p l a c e m e n t of m e t h y l
g r o u p s b y h y d r o g e n atoms m a r k e d l y reduces Φ / τ Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch015
Ρ
a l t h o u g h Φρ/τρ for C r ( a c a c )
ρ
(35).
is t e m p e r a t u r e - i n d e p e n d e n t
3
has
3
of fc i n c r y s t a l l i n e solids is
Furthermore, i n a crystalline
host, i t decreases w i t h t e m p e r a t u r e i n n o n c r y s t a l l i n e m e d i a , i n b o t h r i g i d p l a s t i c ( F i g u r e 4 ) a n d absolute e t h a n o l solutions (28).
U n d e r some c i r
cumstances ks a p p a r e n t l y competes w i t h fc i n C r ( a c a c ) . 4
Inter molecular Energy I f measurements
3
Transfer
of Φ
ρ
and/or τ
ρ
are to b e u s e d to evaluate i n t r a
m o l e c u l a r r e l a x a t i o n rates, the effect of i n t e r m o l e c u l a r processes o n these q u a n t i t i e s must b e
assessed.
I n a d d i t i o n , the efficiency
of
excitation
e n e r g y transfer is of i n t r i n s i c interest, e s p e c i a l l y i n c o n n e c t i o n w i t h s o l i d state p h o t o c h e m i c a l a n d p h o t o p h y s i c a l processes. If e x c i t a t i o n e n e r g y is t r a n s f e r r e d to a n i d e n t i c a l center, i.e. the same species i n p r e c i s e l y t h e same e n v i r o n m e n t , t h e n a l l of the r e l a x a t i o n rates k -k 2
a n d no c h a n g e i n measureable
Q
are
unaffected,
quantities ( e x c e p t p o l a r i z a t i o n )
is ex
p e c t e d . H o w e v e r , i f transfer occurs b e t w e e n n o n - i d e n t i c a l centers, t h e n o b s e r v a b l e changes w i l l o c c u r . T w o situations c a n be d i s t i n g u i s h e d
(36):
( a ) single step d o n o r - a c c e p t o r transfer a n d ( b ) m i g r a t i o n transfer. I n c a t e g o r y a are the d i f f u s i o n - c o n t r o l l e d processes t h a t p r e v a i l i n fluid
media
——>Cr(CN) i n solids Cr(CN)
6
[e.g., b e n z i l 6
3
~
[e.g., C o ( C N ) 3
>Cr(CN)
6
3
-
(37)
and C r ( N H ) ( N C S ) 3
2
4
a n d e n e r g y transfer b e t w e e n different
(38)]
6
3
"
> Cr(CN)
6
3
- (31)
and C r ( e n )
3
species 3 +
>
" ( 3 4 ) ] . T h i s t y p e of transfer is c h a r a c t e r i z e d b y t h e q u e n c h
i n g of d o n o r l u m i n e s c e n c e a c c e p t o r emission.
a n d i n some cases b y t h e s e n s i t i z a t i o n
of
M i g r a t i o n transfer ( c a t e g o r y b ) c a n b e v i s u a l i z e d as
a r a n d o m w a l k process that is t e r m i n a t e d either b y d e - e x c i t a t i o n of the e x c i t e d species or b y transfer to a sink. I n C r , m i g r a t i o n energy transfer 3 +
m a y t a k e p l a c e i n either T 4
4
!F
2
2
*
or E : 2
4
!T
2
4
T
2
sink •» s i n k
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
182
INORGANIC
COMPOUNDS
WITH
UNUSUAL PROPERTIES
T h e s i n k c a n b e at l a t t i c e defect or a n o t h e r species s u c h as a p a i r center. T h e n u m b e r of C r
sites t r a v e r s e d d e p e n d s o n t h e i n t e r a c t i o n e n e r g y a n d
3 +
t h e l i f e t i m e of the e x c i t e d state. T w o m e c h a n i s m s h a v e b e e n suggested for energy t r a n s f e r — m u l t i p o l e a n d exchange ( 3 9 ) .
M u l t i p o l e transfer i n the d i p o l e a p p r o x i m a t i o n , often
c a l l e d F o r s t e r or resonance transfer, c a n t a k e p l a c e over l a r g e distances ( 2 0 - 5 0 A ) . E x c h a n g e transfer r e q u i r e s o r b i t a l o v e r l a p b e t w e e n the i n t e r a c t i n g centers a n d is short range. T h e s i n g l e step d o n o r - a c c e p t o r
transfers
are short r a n g e as e x p e c t e d for a n exchange m e c h a n i s m , a n d t h e y a p p e a r to constitute a n i m p o r t a n t process w h e n e v e r e n e r g e t i c a l l y possible i f the species are i n close p r o x i m i t y . W h e n a c o m p a r i s o n is m a d e of
energy
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch015
transfer i n c r y s t a l l i n e a n d glassy e n v i r o n m e n t s , i t s h o u l d b e n o t e d that i n Cr
systems d o p i n g at the 0.1 m o l e %
3 +
l e v e l corresponds r o u g h l y to a
0 . 0 1 M s o l u t i o n . M i g r a t i o n energy transfer i n i o n i c solids, e.g. r u b y , occurs in
2
E b y a n exchange m e c h a n i s m (40).
energy transfer i n r u b y is
E
2
detectable i n 0 . 1 % crystals, y e t n e i t h e r τ n o r Φ of C r ( o x ) " i n N a M g ρ
Al(ox)
3
ρ
· 9 H 0 crystals is m u c h affected b y C r
3
2
0.1-100%
r a n g e (41).
3
c o n c e n t r a t i o n i n the
3 +
T h e n e a r constancy of τ a n d Φ does not neces ρ
ρ
s a r i l y r u l e out E m i g r a t i o n transfer since energy m i g r a t i o n does not l e a d 2
to q u e n c h i n g i f the sink c o n c e n t r a t i o n is s m a l l .
I n fact, t w o - f o l d v a r i a
tions i n T are o b s e r v e d i n 5 0 % crystals a n d p o w d e r s f r o m one s a m p l e to p
another.
T h e sinks i n r u b y are p a i r centers, a n d these increase r a p i d l y
w i t h concentration.
T h e 2 n d - 4 t h nearest n e i g h b o r s distances i n A 1 0 2
3
are less t h a n 3.5 A , a n d superexchange interactions via O " are v e r y i m p o r 2
tant i n this lattice. O n the other h a n d , i n oxalates the closest
Cr
3 +
-Cr
3 +
a p p r o a c h is greater t h a n 7 A , a n d superexchange is not v e r y i m p o r t a n t i n Cr
3 +
:NaMgAl(ox)
3
* 9 H 0 (41).
C o n s e q u e n t l y , the rate of m i g r a t i o n is
2
s l o w e r i n m o l e c u l a r crystals t h a n the 1 0 data
5
sec'
estimated from the r u b y
1
(40). C o n c e n t r a t i o n q u e n c h i n g of E is e v i d e n t i n C r : A l ( a c a c ) 3 +
2
especially i n C r Cr
3 +
:K Co(CN) 3
G
3 +
:K Co(CN) 3
(42).
G
T h e relatively long E
favors c o n c e n t r a t i o n q u e n c h i n g .
defects b e c o m e m o r e i m p o r t a n t w i t h i n c r e a s i n g C r P e r h a p s b u l k defects also increase.
3
(9)
and
lifetime i n
2
I n a d d i t i o n , surface 3 +
concentration
(31).
A c o m p a r i s o n of τ ° i n glasses a n d ρ
u n d i l u t e d crystals suggests, at most, a m i n o r c o n c e n t r a t i o n q u e n c h i n g of Cr(en)
3
3 +
E in [Cr(en) ]I ,
2
3
3
b u t a s o m e w h a t l a r g e r effect i n other l a t
tices. T h e n e a r constancy of τ ° for C r ( u r e a ) ρ
6
3 +
i n s e v e r a l crystals
(10)
a g a i n indicates the r e l a t i v e u n i m p o r t a n c e of E c o n c e n t r a t i o n q u e n c h i n g . 2
T h e n e p h e l a u x e t i c shift of E 2
7Γ d e r e a l i z a t i o n of the C r spectra of C r ( a c a c )
3
3 +
4
A in Cr(acac) 2
3
a n d C r ( C N ) " indicates 6
3
e x c i t a t i o n onto the l i g a n d s , a n d the E 2
4
A
2
c l e a r l y s h o w t h e splittings associated w i t h i n t e r -
m o l e c u l a r interactions (43,44).
I n the absence of ττ b o n d i n g , t h e l i g a n d s
serve as insulators a n d i n h i b i t energy transfer. A l t h o u g h E 2
concentration
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
15.
Environmental
FORSTER
q u e n c h i n g reduces τ
ρ
and Φ , Φ /τ ρ
t i o n , w h i c h is t r u e f o r C r Al(ox)
· 3 H 0 (14).
3
3 +
183
Effects
ρ
ρ
s h o u l d b e i n d e p e n d e n t of c o n c e n t r a
:NaMgAl(ox) · 9 H 0 3
(41)
2
and C r
O n t h e o t h e r h a n d , q u e n c h i n g of Γ 4
2
3 +
Φ w i t h o u t c h a n g i n g τ . T h e r e is some e v i d e n c e f o r a r e d u c t i o n i n ρ
ρ
w i t h increasing C r
3 +
in C r
3 +
:K Co(CN) 3
6
4
ρ
Φ /τ ρ
m i g r a t i o n energy transfer
2
b y a m u l t i p o l e m e c h a n i s m is l i k e l y to b e greater t h a n t h e rate of transfer b y a n e x c h a n g e m e c h a n i s m , b u t t h e 10" sec a n d Γ 9
4
ρ
b u t the d e c a y b e c o m e s
(42),
n o n - e x p o n e n t i a l as τ decreases. T h e rate of T
:NaCa-
w i l l reduce
2
4
T
2
E
2
l i f e t i m e is less t h a n
m i g r a t i o n p r o b a b l y c a n n o t c o m p e t e effectively w i t h fc .
2
4
C o n s e q u e n t l y , processes o r i g i n a t i n g i n the
4
Γ
2
state are u n a f f e c t e d
by
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch015
intermolecular interactions. Thexi
States
I n a c r y s t a l l i n e host, the p o t e n t i a l curves
as d r a w n i n F i g u r e 5
d e s c r i b e the t o t a l energy, c o m p l e x a n d e n v i r o n m e n t . I f v i b r a t i o n a l r e l a x a t i o n w i t h i n a n e l e c t r o n i c state is faster t h a n other c o m p e t i n g steps, t h e n photophysical and photochemical
processes o c c u r i n t h e r m a l l y e q u i l i
b r a t e d p o p u l a t i o n s . F i g u r e 5 is also a p p l i c a b l e f o r a r i g i d , n o n c r y s t a l l i n e m e d i u m , b u t as t h e solvent melts a n d solvent r e l a x a t i o n takes p l a c e d u r i n g the excited-state l i f e t i m e , a m o r e c o m p l e x r e p r e s e n t a t i o n is r e q u i r e d .
Ε
Figure 5.
Potential curves for C r
3 +
Q
I n C r , the A 3 +
4
2
a n d E states a r e b o t h d e r i v e d f r o m the f 2
t i o n , a n d t h e y h a v e n e a r l y t h e same e q u i l i b r i u m geometries.
2
3
configura
Consequently
the e q u i l i b r i u m solvent orientations are l i t t l e c h a n g e d i n t h e t w o states. Since T 4
2
is d e r i v e d f r o m the t e c o n f i g u r a t i o n , t h e e q u i l i b r i u m p o s i t i o n 2
2
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch015
184
INORGANIC
COMPOUNDS
WITH
UNUSUAL PROPERTIES
is different, a n d the p o t e n t i a l curves b e f o r e a n d after solvent r e l a x a t i o n are different. I n F i g u r e 6, the s o l i d curves c o r r e s p o n d to the solvent d i s t r i b u t i o n a p p r o p r i a t e to the g r o u n d state, w h i l e the d o t t e d curves refer t o t h e solvent o r i e n t a t i o n that p r e v a i l s i n the r e l a x e d Γ 4
state. T h e r m a l l y
2
e q u i l i b r a t e d states h a v e b e e n t e r m e d t h e x i states ( I ), a n d i t has b e e n s u g gested t h a t t h e x i states are v e r y m u c h m o r e d i s t o r t e d i n fluid t h a n i n r i g i d m e d i a . P o s s i b l e consequences of this d i s t o r t i o n i n c l u d e ( a ) i n c r e a s e d T d u e to a r e d u c e d fc , ( b ) 4
s m a l l e r e n e r g y for E — • 2
a n d ( c ) a l t e r a t i o n of the d e l a y e d
fluorescence
4
T
F
b a c k transfer,
2
spectrum.
D i r e c t e v i d e n c e for h i g h l y d i s t o r t e d t h e x i states is difficult to o b t a i n . I n t e r s y s t e m c r o s s i n g m i g h t p r e c e d e solvent r e o r i e n t a t i o n a n d Φ
2Ε
then
reflects o n l y b e f o r e - r e l a x a t i o n i n t e r s y s t e m crossing. H o w e v e r , i f a s i g n i f i cant f r a c t i o n of the e x c i t e d m o l e c u l e s r e l a x i n T 4
t h e t h e x i state, t h e n a r e d u c t i o n i n Φ / τ ρ
of the r i g i d glass solvent.
ρ
2
and if Φ
is s m a l l e r i n
2Ε
w o u l d a c c o m p a n y the m e l t i n g
W i t h i n the p r e c i s i o n of o u r
( 5 % ), n o s u c h c h a n g e w a s o b s e r v e d f o r either C r ( C N )
6
measurements 3
" or C r ( e n )
3
3 +
(28). A d e f i n i t i v e test for a n i n c r e a s e d l i f e t i m e i n the r e l a x e d state is to m o n i t o r the excited-state a b s o r p t i o n , w i t h p u l s e d e x c i t a t i o n , as a f u n c t i o n of m e d i u m r i g i d i t y . Cr
3 +
T h i s e x p e r i m e n t has not yet b e e n r e p o r t e d for a
complex. T h e Stokes shift for d e l a y e d
fluorescence
is another m e a s u r e
of
excited-state d i s t o r t i o n . E v e n i n c r y s t a l l i n e e n v i r o n m e n t s , t h e Stokes shift c a n v a r y w i t h t h e host as m u c h as 1500 c m " , e.g. C r ( u r e a ) 1
T h e r e are f e w d i r e c t d a t a o n the d e p e n d e n c e of the d e l a y e d
6
3 +
(30).
fluorescence
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
15.
Environmental
FORSTER
185
Effects
s p e c t r u m o n solvent r i g i d i t y , b u t i n o n e i n s t a n c e , viz. C r ( u r e a )
e
in
3 +
m e t h a n o l - D M F , n o m a r k e d s p e c t r a l c h a n g e is o b s e r v e d a t t h e glass point
(45).
Conclusions A l t h o u g h n o n r a d i a t i v e r e l a x a t i o n of t h e Γ 4
e n v i r o n m e n t , t h e m a j o r v a r i a t i o n s of Φ t h e E state.
ρ
state m a y b e sensitive t o
2
w i t h environment originate i n
T h i s w o u l d result i n the lack of correlation between a n y
2
p h o t o c h e m i s t r y t h a t occurs i n t h e Γ 4
2
state a n d E - » A 4
2
F r o m t h e p h o t o p h y s i c a l d a t a amassed f o r C r
3 +
2
luminescence.
c o m p l e x e s as a f u n c
t i o n o f e n v i r o n m e n t a n d t e m p e r a t u r e , one salient p o i n t emerges. I f p h o t o -
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch015
p h y s i c a l d a t a are to b e u s e d to i n f e r p h o t o c h e m i c a l
mechanisms, the
p h o t o p h y s i c a l d e t e r m i n a t i o n s m u s t i n c l u d e , b u t n o t b e l i m i t e d to, m e a s u r e m e n t s m a d e u n d e r p r e c i s e l y t h e same c o n d i t i o n s as t h e p h o t o c h e m i c a l d e t e r m i n a t i o n s . T h i s r e q u i r e m e n t has b e e n f u l f i l l e d i n a f e w i n s t a n c e s — e.g. C r ( C N )
6
3
- i n D M F (46),
Cr(en)
3
in H
3 +
( N C S ) ~ i n a H 0 - a l c o h o l m i x t u r e (47)—but 4
2
2
0 (8),
and C r ( N H ) 3
2
the widespread availability
of p u l s e d e x c i t a t i o n i n t h e n a n o s e c o n d d o m a i n n o w m a k e s i t p o s s i b l e to r e c o r d t h e faster d e c a y s t h a t p r e v a i l u n d e r p h o t o c h e m i c a l l y
meaningful
c o n d i t i o n s , e.g. E - » A e m i s s i o n i n a q u e o u s solutions at r o o m t e m p e r a 2
t u r e (48).
4
2
H o w e v e r , t h e a m b i g u i t i e s associated w i t h b a c k transfer r e q u i r e
t h a t p h o t o p h y s i c a l d a t a b e r e c o r d e d over a r a n g e of t e m p e r a t u r e s . T h e d e t e r m i n a t i o n of i n t e r s y s t e m c r o s s i n g efficiencies, e.g. Φ , 2Ε
will
c o n t i n u e to b e difficult, b u t a c o m p a r i s o n of results f r o m d i r e c t a n d s e n s i t i z e d photolyses a n d m e a s u r e m e n t s of Φ Λ w i l l b e v e r y u s e f u l . Ρ
Ρ
Literature Cited 1. Fleischauer, P. D., Adamson, A. W., Sartori, G., in "Inorganic Reaction Mechanisms," J. O. Edwards, Ed., Part II, p. 1, Interscience, New York, 1972. 2. Schlafer, H. L., Z. Chem. (1970) 10, 9. 3. Balzani, V., Carassiti, V., "Photochemistry of Coordination Compounds," Academic, London, 1970. 4. Forster, L. S., Transition Met. Chem. (1969) 5, 1. 5. Kirk, A. D., Mol. Photochem. (1973) 5, 127. 6. Tanabe, Y., Sugano, S.,J.Phys. Soc. Jpn. (1954) 9, 753. 7. Porter, G. B., in "Concepts in Inorganic Photochemistry," A. Adamson and P. Fleischauer, Eds., chap. 2, Wiley, New York, 1975. 8. Ballardini, R., Varani, G., Wasgestian, H. F., Moggi, L., Balzani, V., J. Phys. Chem. (1973) 77, 2947. 9. Targos, W., Forster, L. S.,J.Chem. Phys. (1966) 44, 4342. 10. Otto, H., Yersin, H., Gliemann, G., Z. Phys. Chem. (NF) (1974) 92, 193. 11. Camassei, F. D., Saldinger, J., unpublished data. 12. Camassei, F. D., Forster, L. S.,J.Chem. Phys. (1969) 50, 2603. 13. Coleman, W. F., Forster, L. S.,J.Lumin. (1971) 4, 429. 14. Coleman, W. F.,J.Lumin. (1975) 10, 72.
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
Downloaded by UNIV OF BATH on July 3, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch015
186
INORGANIC COMPOUNDS WITH UNUSUAL PROPERTIES
15. Goldsmith, G. J., Shallcross, F. V., McClure, D. S.,J.Mol.Spectrosc. (1965) 16, 296. 16. Zander, H. U., Dissertation, Frankfurt/Main, 1969. 17. Chatterjee, K. K., Forster, L. S., Spectrochim. Acta (1965) 20, 1603. 18. Yersin, H., Otto, H., Gliemann, G., Theor. Chim. Acta (1974) 33, 63. 19. Nelson, D. F., Sturge, M. D., Phys. Rev. A (1965) 137, 1117. 20. Castelli, F., Forster, L. S.,J.Am. Chem. Soc. (1973) 95, 7223. 21. Reich, S., Raziel, S., Michaeli, I.,J.Phys. Chem. (1973) 77, 1378. 22. Schläfer, H., Gausmann, H., Witzke, H., J. Chem. Phys. (1967) 46, 1423. 23. Everett, P. N., J. Appl. Phys. (1971) 42, 2106. 24. Castelli, F., Forster, L. S., Phys. Rev. Β (1975) 11, 920. 25. Glass, A. M., J. Chem. Phys. (1969) 50, 1501. 26. Reynolds, M. L., Hagston, W. E., Garlick, G. F. J., Phys. Status Solidi (1968) 30, 113. 27. Castelli, F., Forster, L. S.,J.Am. Chem.Soc.,in press. 28. Castelli, F., unpublished data. 29. Englman, R., Jortner, J., Mol. Phys. (1970) 18, 145. 30. Laver, J. L., Smith, P. W., Aust. J. Chem. (1971) 24, 1807. 31. Castelli, F., Forster, L.S.,J.Phys. Chem. (1974) 78, 2122. 31a. Sabbatini, N., Scandola, Μ. Α., Carassiti, V., J. Phys. Chem. (1973) 77, 1307. 32. Condrate, R., Forster, L. S.,J.Chem. Phys. (1968) 48, 1514. 33. Forster, L. S., in "Concepts in Inorganic Photochemistry," A. Adamson and P. Fleischauer, Eds., chap. 1, Wiley, New York, 1975. 34. Castelli, F., Forster, L. S., Chem. Phys. Lett. (1975) 30, 465. 35. DeArmond, M. K., Forster, L. S., Spectrochim. Acta (1963) 19, 1687. 36. Ganrud, W.B.,Moos, H. W.,J.Chem. Phys. (1968) 49, 2170. 37. Binet, D. J., Goldberg, E. L., Forster, L. S., J. Phys. Chem. (1968) 72, 3017. 38. Chen, S., Porter, G.B.,J.Am. Chem. Soc. (1970) 92, 3196. 39. Dexter, D. L., J. Chem. Phys. (1953) 21, 836. 40. Birgenau, R. J.,J.Chem. Phys. (1969) 50, 4282. 41. Castelli, F., Forster, L. S.,J.Lumin. (1974) 8, 252. 42. Kirk, A. D., Ludi, Α., Schläfer, H. L., Ber. Bunsenges. Phys. Chem. (1969) 73, 669. 43. Armendarez, P. X., Forster, L. S.,J.Chem. Phys. (1964) 40, 273. 44. Courtois, M., Forster, L. S., J. Mol Spectrosc. (1965) 18, 396. 45. Klassen, D. M., Schläfer, H. L., Ber. Bunsenges. Phys. Chem. (1968) 72, 663. 46. Wasgestian, H. F.,J.Phys. Chem. (1972) 76, 1947. 47. Adamson, Α.,J.Phys. Chem. (1967) 71, 798. 48. Kane-Maguire, N. A. P., Langford, C. H., Chem. Commun. (1971) 895. 49. Liehr, A. D.,J.Phys. Chem. (1963) 67, 1314. 50. Porter, G. B., Schläfer, H. L., Z. Phys. Chem. (NF) (1963) 37, 109. RECEIVED February 6, 1975. Work supported by the National Science Founda tion.
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.