Environmental Reaction Engineering - ACS Symposium Series (ACS

Jul 23, 2009 - Chemical reaction engineering problems associated with environmental systems are numerous. Design of gas cleaning absorption processes,...
2 downloads 0 Views 3MB Size
5 Environmental Reaction Engineering

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

JOHN H. SEINFELD Department of Chemical Engineering, California Institute of Technology, Pasadena, CA 91125

Chemical reaction engineering problems associated with environmental systems are numerous. Design of gas cleaning absorption processes, waste water treatment f a c i l i t i e s , low-emission combustion processes, and catalytic mufflers are typical problems. A review of the state of environmental reaction engineering cannot be accomplished i n a chapter of modest length. Rather than attempt a comprehensive review of environmental reaction engineering, therefore, we have chosen to focus here somewhat more narrowly. Specifically, we will discuss several challenging problems i n what might be termed atmospheric reaction engineering. First, we survey the principal current problems i n the chemistry of the polluted atmosphere. In the atmosphere primary gaseous emissions such as oxides of nitrogen, hydrocarbons, and sulfur dioxide undergo a large number of chemical reactions that lead to formation of ozone and oxygenated organic species as well as to formation of submicron particles consisting of, among other constituents, sulfates, nitrates and oxygenated organics. In addition to homogeneous (gas-phase) reactions, heterogeneous (particulatephase) reactions may also take place i n the aerosols generated. Second we discuss the key problems associated with predicting the dynamics of aerosols i n the atmosphere. Whereas the physical processes that can affect the dynamics of gaseous pollutants are limited to those that alter concentrations i n a unit volume of air through atmospheric transport, those that influence particle behavior are much more diverse. Processes such as nucleation, condensation and coagulation must be considered. The object of research i n atmospheric reaction engineering i s to understand as fundamentally as possible the processes that determine the evolution of gaseous and particulate species i n the atmosphere, and, from such knowledge, to design source control strategies to meet air quality criteria. Chemistry of the Urban Atmosphere Virtually every reaction occurring i n the atmosphere is 0-8412-0432-2/78/47-072-162$07.75/0 © 1978 American Chemical Society In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

5.

SEINFELD

163

Environmental Reaction Engineering

s u b j e c t t o some d e g r e e o f u n c e r t a i n t y , w h e t h e r i n t h e r a t e c o n s t a n t o r i n t h e n a t u r e and q u a n t i t y o f t h e p r o d u c t s . In evaluating a mechanism t h a t d e s c r i b e s a t m o s p h e r i c c h e m i c a l d y n a m i c s t h e c u s t o m ­ a r y p r o c e d u r e i s t o compare t h e r e s u l t s o f l a b o r a t o r y e x p e r i m e n t s , u s u a l l y i n the form of concentration-time p r o f i l e s , w i t h s i m u l a ­ t i o n s o f t h e same e x p e r i m e n t u s i n g t h e p r o p o s e d m e c h a n i s m . A suf­ f i c i e n t number o f e x p e r i m e n t a l unknowns e x i s t s i n a l l s u c h m e c h a n ­ i s m s t h a t t h e p r e d i c t e d c o n c e n t r a t i o n p r o f i l e s c a n be v a r i e d some­ what b y c h a n g i n g r a t e c o n s t a n t s ( a n d p e r h a p s m e c h a n i s m s ) w i t h i n accepted bounds. The i n h e r e n t v a l i d i t y o f a mechanism c a n b e j u d g e d b y e v a l u a t i n g how r e a l i s t i c t h e p a r a m e t e r v a l u e s u s e d a r e and how w e l l t h e p r e d i c t i o n s m a t c h t h e d a t a . S i n c e t h e mechanism w i l l g e n e r a l l y n o t be a b l e t o r e p r o d u c e e v e r y s e t o f d a t a t o w h i c h i t i s a p p l i e d , t w o f a c t o r s must b e c o n s i d e r e d : (a) i d e n t i f i c a t i o n o f t h e m a j o r s o u r c e s o f u n c e r t a i n t y , s u c h a s i n a c c u r a t e l y known r a t e c o n s t a n t s o r mechanisms o f i n d i v i d u a l r e a c t i o n s , a n d (b) e v a l ­ u a t i o n o f s o - c a l l e d "chamber e f f e c t s , " phenomena p e c u l i a r t o t h e l a b o r a t o r y system i n w h i c h t h e d a t a have been g e n e r a t e d . We f o c u s here on t h e i d e n t i f i c a t i o n o f t h e major sources o f u n c e r t a i n t y i n urban atmospheric chemistry. C h e m i s t r y o f O x i d e s o f N i t r o g e n and H y d r o c a r b o n s . The c h e m i ­ s t r y o f t h e p o l l u t e d atmosphere i s e x c e e d i n g l y complex. Several h u n d r e d c h e m i c a l r e a c t i o n s a r e known t o o c c u r i n a m i x t u r e o f o n l y a s i n g l e hydrocarbon, oxides of n i t r o g e n , carbon monoxide, water v a p o r , and a i r . The p o l l u t e d a t m o s p h e r e c o n t a i n s h u n d r e d s o f d i f ­ f e r e n t h y d r o c a r b o n s , e a c h w i t h i t s own r e a c t i v i t y a n d r e a c t i o n products. The c l a s s e s o f m a j o r p r i m a r y p o l l u t a n t s i n t h e p o l l u t e d atmosphere are g i v e n i n T a b l e I . I n t h i s s e c t i o n we f o c u s o n t h e c h e m i s t r y o f t h e o x i d e s o f n i t r o g e n and h y d r o c a r b o n s . Table I .

Classes of Major Primary P o l l u t a n t s i n the P o l l u t e d Atmosphere

HYDROCARBONS Alkanes (e.g. η-butane, isopentane, isooctane) Cycloalkanes (e.g. cyclohexane, methylcyclopentane) O l e f i n s ( a l k e n e s ) ( e . g . ethylene, p r o p y l e n e , butene) Cycloolefins (e.g. cyclohexene) Alkynes (e.g. acetylene) Aromatics (e.g. toluene, xylene) ALDEHYDES, RCHO ( e . g . f o r m a l d e h y d e , a c e t a l d e h y d e ) KETONES, RCOR ( e . g . a c e t o n e , m e t h y l e t h y l k e t o n e ) N I T R I C O X I D E , N0 CARBON MONOXIDE, CO SULFUR DIOXIDE » SOp a

a

"N0 " i s o f t e n u s e d t o i n d i c a t e " o x i d e s o f n i t r o g e n . " I n p r a c t i c e Ν 0 u s u a l l y r e f e r s t o t h e sum, NO+NO2, a l t h o u g h i t may i n c l u d e s u c h o t h e r f o r m s a s NO3 a n d N2O5. N i t r o u s o x i d e , N 0 , i s r e l a t i v e l y i n e r t i n t h e l o w e r atmosphere and i s not i n c l u d e d i n Ν 0 . x

χ

2

χ

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

164

CHEMICAL REACTION ENGINEERING REVIEWS—HOUSTON

T a b l e I I p r e s e n t s a summary o f t h e p r i n c i p a l r e a c t i o n s t h a t o c c u r when a n a t m o s p h e r e c o n t a i n i n g o x i d e s o f n i t r o g e n i s i r r a d i ­ a t e d w i t h s u n l i g h t . Most o f the r a t e constants i n Table I I are well-established. The most i m p o r t a n t r e c e n t d e v e l o p m e n t s i n Ν 0 c h e m i s t r y a r e t h o s e i n v o l v i n g t h e r e a c t i o n s o f OH a n d H 0 w i t h NO a n d N 0 . New v a l u e s h a v e r e c e n t l y b e e n d e t e r m i n e d f o r e a c h o f t h e f o u r r a t e c o n s t a n t s i n t h i s s e t , and t h e mechanism o f t h e H 0 - N 0 r e a c t i o n has been e l u c i d a t e d . T h u s , a l t h o u g h t h e r e a r e t h e c u s ­ tomary l e v e l s of e x p e r i m e n t a l u n c e r t a i n t y a s s o c i a t e d w i t h each o f the r a t e constants i n Table I I , the r e a c t i o n s i n t h e Ν0 system do n o t r e p r e s e n t s e r i o u s g a p s i n o u r u n d e r s t a n d i n g o f a t m o s p h e r i c chemistry. A c a r e f u l r e v i e w o f t h e n e t r e s u l t s o f R e a c t i o n s 1 t h r o u g h 2k i n T a b l e I I r e v e a l s t h a t t h e s e r e a c t i o n s alone cannot e x p l a i n the r a p i d c o n v e r s i o n o f n i t r i c o x i d e t o n i t r o g e n d i o x i d e and ozone f o r m a t i o n observed i n the r e a l atmosphere. In f a c t , i f these reac­ t i o n s alone occurred, the o r i g i n a l supply of nitrogen d i o x i d e i n t h e a t m o s p h e r e w o u l d b e s l i g h t l y d e p l e t e d as i r r a d i a t i o n w i t h s u n ­ l i g h t o c c u r r e d , and a s m a l l and near c o n s t a n t l e v e l o f ozone would be c r e a t e d i n a few m i n u t e s . The k e y t o t h e o b s e r v e d n i t r i c o x i d e t o n i t r o g e n d i o x i d e c o n v e r s i o n l i e s i n a sequence o f r e a c t i o n s b e ­ tween f r e e r a d i c a l s t h a t have been g e n e r a t e d and o t h e r r e a c t i v e m o l e c u l e s such as c a r b o n monoxide, h y d r o c a r b o n s , and a l d e h y d e s present i n the p o l l u t e d atmosphere. A r a t i o n a l s e q u e n c e o f r e a c t i o n s t h a t c o n v e r t s NO t o N 0 i n ­ v o l v e s carbon monoxide. A r e a c t i o n c h a i n i n v o l v i n g the h y d r o x y l r a d i c a l and c a r b o n monoxide can i n p r i n c i p l e d r i v e n i t r i c o x i d e t o n i t r o g e n d i o x i d e i n the atmosphere: χ

2

2

2

2

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

χ

2

HO + CO + H + C 0 H + 0 H0

2

2

+ M + H0

+ NO

N0

2

2

+ M

2

+ HO

S e v e r a l m o l e c u l e s o t h e r t h a n CO p r e s e n t i n t h e p o l l u t e d a t m o ­ s p h e r e , s u c h a s a l d e h y d e s a n d h y d r o c a r b o n s , may p a r t i c i p a t e i n t h e sequence o f r e a c t i o n s r e f o r m i n g h y d r o p e r o x y l r a d i c a l s from h y d r o x y l radicals. The r e a c t i o n p a t h i n v o l v i n g f o r m a l d e h y d e i s , f o r example, HCHO + hv +

I\ ::H + \H \ Η

Λ

H

+



HCHO + OH + HCO + H 0 2

Η + 0

2

HCO + 0

+ M •+ H 0 2

+ H0

2

2

+ M

+ CO

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

5.

Table I I .

P r i n c i p a l Inorganic Atmospheric Reactions Oxides o f Nitrogen

1.

N0 +hV + N0+0( P)

2.

0( P)+0 +M ·* 0 +M

2.0xl0"

3.

0 +N0 •* N0 +0

25.2

variable

3

2

3

2

3

3

2

k. N0 +0( P)

2

N0+0

3

2

5.

N0 +0( P) ·* N0

6.

N0+0( P) ·*· N0

7.

N0 +0 + N0 +0



N0 +N0 ·* 2N0

9.

N0 +N0 + N 0

2

3

3

2

3

3

2

2

2

3

3.Uxl0 °

3

3.6χΠΓ

3 3

2

3

1.3x10 3 c

5

3 3

5xl0"

2

3

b

3

3

Reference 1^2.

8 .

5

1.3^x10

2

3

2

Involving

R a t e c o n s t a n t 625°C ppm-min u n i t s

Reaction

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

165

Environmental Reaction Engineering

SEINFELD

5.6x1ο"

3

22

3

10. N 0_ + N0 +N0 2 5 2 3 11. 2°5 2° 2 12. N0+N0 +H 0 ·* 2H0N0 2 2 13. Η0Ν0+Η0Ν0 + N0+N0 +H 0

i.teuf°

k

Ik. 0 +hV + 0 +0( D)

variable

8 .

3

15. 0 +hV + 0 +0( P)

variable

8 ,

16. 0( D)+M -> 0 ( P ) + M

8.5x10

o

o

N

o

+H

2 H 0 N 0

o

o

2

x

3

2

3

3

2

1

3

17. 0( D)+H 0 + 20H x

18. H0 +N0 -> H0N0+0 2

2

19. H0 +N0 + H 0 N 0 2

2

2

20. H 0 N 0 + H0 +N0 2

2

2

21. H0 +N0 + N0 +0H 2

2

22. 0Η+Ν0 ·* Η0Ν0

D

3

2.2xl0~

9

b

2

2 2

5

< 1.2

5 ο3

2

k

3_

5.1xl0

2

2

2

-6 5x10

1.2X10"

5

5.1 1.2x101, Il η 1.6x10

6

c

7 2

23. 0H+N0 + H0N0

i.6xio

2k. H0N0+hV + 0Η+Ν0

variable*

9

25. C0+0H -> C 0 + H

U.ltxlO

10-12

2

2

2

a

U

c

2

T h e p h o t o l y s i s r a t e c o n s t a n t s c a n b e c a l c u l a t e d b y (13)

where Footnotes continued on bottom o f next page.

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

8

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

166

C H E M I C A L REACTION ENGINEERING REVIEWS—HOUSTON

Hydrocarbon o x i d a t i o n p l a y s a c e n t r a l r o l e i n t h e chemistry o f t h e lower atmosphere. Whereas p r i m a r y r e a c t i o n r a t e c o n s t a n t s f o r o l e f i n , a l k a n e , a n d a r o m a t i c r e a c t i o n s w i t h O H , O3, a n d 0 a r e , b y a n d l a r g e , w e l l - e s t a b l i s h e d , c e r t a i n r e a c t i o n mechanisms a r e s t i l l u n c e r t a i n , most n o t a b l y f o r o l e f i n - O ^ , a r o m a t i c - O H , a n d aromatic-Oo r e a c t i o n s . Extensive investigations of the liquid-phase reaction of o z o n e w i t h o l e f i n s h a v e i d e n t i f i e d many o f t h e r e a c t i o n i n t e r m e d i ­ a t e s and have e s t a b l i s h e d t h e C r i e g e e z w i t t e r i o n mechanism as a major r e a c t i o n pathway. U n t i l r e c e n t l y , t h e C r i e g e e mechanism h a s a l s o b e e n w i d e l y assumed t o a p p l y t o t h e g a s - p h a s e o z o n e - o l e f i n reaction. A l t h o u g h s e v e r a l measurements o f g a s - p h a s e p r o d u c t s a r e c o n s i s t e n t w i t h t h e C r i e g e e m e c h a n i s m (lh), t h e m e c h a n i s m f a i l s t o explain the formation of free r a d i c a l intermediates i n low pres­ sure 2 t o r r ) o z o n e - o l e f i n r e a c t i o n s and o f unusual o z o n o l y s i s p r o d u c t s b o t h a t l o w a n d h i g h t o t a l p r e s s u r e s (15). Recently, evidence on t h e nature o f c e r t a i n e x c i t e d i n t e r m e d i a t e s i n g a s p h a s e o z o n e - o l e f i n r e a c t i o n s h a s a p p e a r e d (l6). C o n c u r r e n t l y , on the b a s i s o f thermochemical-kinetic c a l c u l a t i o n s , O'Neal and B l u m s t e i n (17) p r o p o s e d a l t e r n a t i v e s t o t h e g a s - p h a s e C r i e g e e m e ­ chanism, i n v o l v i n g i n t e r n a l hydrogen a b s t r a c t i o n s o f t h e i n i t i a l molozonide i n a d d i t i o n t o i t s decomposition t o t h e Criegee f r a g ­ ments. T h e i r m e c h a n i s m r a t i o n a l i z e s most o f t h e u n u s u a l p r o d u c t s observed i n previous s t u d i e s . The e x t e n t t o w h i c h a c e r t a i n o z o n e o l e f i n r e a c t i o n w i l l proceed by the Criegee or O'Neal-Blumstein mechanism i s s t i l l u n c e r t a i n . The m e c h a n i s m o f p h o t o o x i d a t i o n o f a r o m a t i c s p e c i e s i n t h e atmosphere i s perhaps t h e a r e a o f g r e a t e s t u n c e r t a i n t y i n atmo­ spheric hydrocarbon chemistry. The p r i n c i p a l r e a c t i o n o f aromat i c s i s w i t h t h e h y d r o x y l r a d i c a l . A b s o l u t e r a t e c o n s t a n t s have r e c e n t l y b e e n d e t e r m i n e d a t room t e m p e r a t u r e f o r t h e r e a c t i o n o f OH r a d i c a l s w i t h b e n z e n e a n d t o l u e n e ( l 8 , l £ ) a n d w i t h a s e r i e s o f a r o m a t i c h y d r o c a r b o n s ( 1£.). Recently, absolute r a t e constants f o r t h e r e a c t i o n o f OH r a d i c a l s w i t h a s e r i e s o f a r o m a t i c h y d r o ­ carbons have been determined over t h e temperature range (20). F o r aromatic-OH r e a c t i o n s , t h e i n i t i a l step can be e i t h e r a b s t r a c t i o n or a d d i t i o n t o t h e aromatic r i n g . For toluene, f o r example,

296-^73K

Footnotes

f r o m p r e v i o u s page

σ^(λ)

= absorption cross

section of species

j

j(^) = quantum y i e l d o f t h e p h o t o l y s i s o f s p e c i e s I(λ) b

= actinic

U n i t s of r a t e constant

irradiance of the l i g h t .

—2

—1

a r e ppm~" m i n " .

Pseudo s e c o n d - o r d e r r a t e c o n s t a n t

f o r 1 atm. of a i r .

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

j

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

5.

SEINFELD

Environmental Reaction Engineering

167

A b s t r a c t i o n occurs m a i n l y from the s u b s t i t u e n t R-groups r a t h e r from the r i n g . A d d i t i o n i s shown f o r t h e o r t h o p o s i t i o n , a l t h o u g h a d d i t i o n may o c c u r a t a n y o f t h e c a r b o n atoms o f t h e a r o m a t i c r i n g . The e n e r g y - r i c h O H - a d d u c t may decompose o r h e s t a b i l i z e d a s shown above. The amount o f r e a c t i o n a t room t e m p e r a t u r e p r o c e e d i n g b y a b s t r a c t i o n i s o f t h e o r d e r o f 2-20$ d e p e n d i n g o n t h e i n d i v i d u a l h y d r o c a r b o n ( 2 0 ) . The O H - a r o m a t i c a d d u c t p r e s u m a b l y r e a c t s w i t h o t h e r a t m o s p h e r i c s p e c i e s s u c h a s 0 , N O , o r ΝΟ2· A p o s s i b l e mechanism f o r t h e O2 r e a c t i o n o f t h e t o l u e n e a d d u c t , f o r e x a m p l e , leads to formation of a c r e s o l , 2

The e l u c i d a t i o n o f a r o m a t i c - O H r e a c t i o n mechanisms i s a k e y p r o b l e m i n atmospheric chemistry. F r e e r a d i c a l c h e m i s t r y forms the b a s i s f o r t h e c o n v e r s i o n o f NO t o NO2 a n d t h e f o r m a t i o n o f o z o n e a n d o r g a n i c p r o d u c t s . The c l a s s e s of f r e e r a d i c a l s important i n atmospheric chemistry a r e , a s i d e f r o m OH a n d ΗΟ2» a l k o x y l r a d i c a l s (R0), p e r o x y a l k y l r a d i c a l s (R0 )» a n d p e r o x y a c y l r a d i c a l s (RC(0)02)*. T a b l e I I I s u m m a r i z e s t h e r e a c t i o n s o f t h e s e t h r e e r a d i c a l c l a s s e s , i n c l u d i n g OH and H O ^ , w i t h NO a n d NO2. The s e t o f r e a c t i o n s i n T a b l e I I I a r e i n s t r u m e n ­ t a l i n d e t e r m i n i n g t h e r a t e o f c o n v e r s i o n o f NO a n d NO2 and t h e f o r m a t i o n o f o r g a n i c n i t r i t e s and n i t r a t e s . There e x i s t s c o n s i d ­ e r a b l e u n c e r t a i n t y i n t h e r a t e c o n s t a n t s f o r r e a c t i o n s o f RO a n d RO2 w i t h NO a n d NO2. 2

A d d i t i o n t o Op c a n b e c o n s i d e r e d a s t h e s o l e f a t e o f a l k y l (R) a n d a c y l (RCO) r a d i c a l s , l e a d i n g t o p e r o x y a l k y l and p e r o x y a c y l radicals, respectively. The a c y l a t e r a d i c a l (RC(O)O) r a p i d l y d i s s o c i a t e s y i e l d i n g a n a l k y l r a d i c a l a n d CO2. H y d r o x y - p e r o x y a l k y l r a d i c a l s are formed i n o l e f i n - O H r e a c t i o n s . We do n o t discuss the reactions of hydroxy-peroxyalkyl r a d i c a l s here.

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

RCO.

RO,.

2

R0+N0

3

2

RONO.

2

RC0 +N0 + N0 +RC0

2

R0 +N0 + N0 +R0

(RONO+hV + RO+NO)

R0N0

UxlO

3 e

U.9xl0

1.2x10

RO

2

H0 +N0

HO^

N0 +0H

OH+NO + HONO

OH

2

1.6x10

Reaction

NO

2

2

2

* H0 N0 2

2

* H0N0+0

2

2

2

2

2

2

3

2

3

2

3

2

(RC0 N0 * RC0 +N0 )

3

2

RC0 +N0 * RC0 N0

2

2

(R0 N0 «• R0 +N0 )

2

RCH0+H0N0

2

R0 +N0 -> R0 N0

2

2

R0+N0 ·* R0N0

2

(H0 N0 * H0 +N0 )

H0 +N0 2

3

3

0.0372

d

3 e

2.07x10

5.5xl0

1.55x10

3 b

h b 1.55x10

5.1

1.2xl0

t h e f r a c t i o n o f r e a c t i o n s p r o c e e d i n g b y a b s t r a c t i o n have been e s t i m a t e d f r o m 0.08 t o 0.23 (23,2*0. R a t e c o n s t a n t s f o r RO-NO2 have been i n f e r r e d f r o m measured v a l u e s o f t h e r a t i o o f t h e r a t e c o n s t a n t s o f R0-N0 t o R0-N0 r e a c t i o n s . F o r methoxy r a d i c a l s , t h i s r a t i o h a s b e e n e s t i m a t e d f r o m 1.2 t o 2.7. (23,25) T h u s , t h e u n c e r t a i n t y i n t h e R0-N0 r a t e c o n s t a n t i s compounded b y t h e u n c e r t a i n t y i n t h e R0-N0 t o RO-NO2 r a t i o . U n c e r t a i n t i e s i n R0NO2 r a t e c o n s t a n t s a r e p r o b a b l y a t l e a s t a f a c t o r o f f o u r . 2

C o n v e r s i o n o f NO t o NO2 i n t h e u r b a n a t m o s p h e r e o c c u r s p r i m a r i l y b y r e a c t i o n s o f t h e f o r m R0 +N0 N0 +R0. A s i d e f r o m t h e HO2-NO r e a c t i o n , r a t e c o n s t a n t s h a v e n o t b e e n m e a s u r e d f o r RO2-NO r e a c ­ tions. I t h a s b e e n p o s t u l a t e d t h a t l o n g e r c h a i n RO2 r a d i c a l s ( n >^ k) d e r i v e d f r o m a l k a n e s u n d e r g o a d d i t i o n t o NO. (26) 2

2

^ P e r o x y n i t r a t e s a r e f o r m e d i n t h e RO2-NO2 r e a c t i o n * By analogy t o t h e HO2-NO2 r e a c t i o n , a s m a l l f r a c t i o n o f t h e s e r e a c t i o n s may proceed by a b s t r a c t i o n . T h e p e r o x y n i t r a t e may t h e r m a l l y decom­ pose. R a t e c o n s t a n t s f o r RO2-NO2 r e a c t i o n s a n d RO2NO2 decompo­ s i t i o n are not a v a i l a b l e . Q

The v a l u e s shown a r e f r o m r e f e r e n c e

27.

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

170

CHEMICAL REACTION ENGINEERING REVIEWS—HOUSTON

Chemistry of S u l f u r Dioxide. S u l f u r o x i d e s i n t h e atmosphere c a n most c o n v e n i e n t l y h e c o n s i d e r e d a s o c c u r r i n g i n t h r e e f o r m s : s u l f u r d i o x i d e (SO2), s u l f u r i c a c i d (^SOl^), and i n o r g a n i c s u l fates. S u l f u r d i o x i d e i s t h e a n h y d r o u s f o r m o f t h e weak a c i d , s u l f u r o u s a c i d (H2SO3). The s a l t s o f t h i s a c i d a r e s u l f i t e s and bisulfites. S u l f u r i c a c i d i s the hydrated form of s u l f u r t r i oxide (SOj), which i s d e r i v e d from the o x i d a t i o n of s u l f u r d i o x i d e . S u l f u r t r i o x i d e i s i n t e n s e l y h y g r o s c o p i c , and i s i m m e d i a t e l y c o n v e r t e d i n t o s u l f u r i c a c i d i n the atmosphere. Inorganic sulfates are presumably d e r i v e d from e i t h e r the r e a c t i o n of s u l f u r i c a c i d w i t h cations or the o x i d a t i o n of s u l f i t e s . There i s l i t t l e i n f o r m a t i o n a v a i l a b l e c o n c e r n i n g t h e f o r m a t i o n and o c c u r r e n c e o f o r ganic s u l f a t e s i n the atmosphere. The o x i d a t i o n o f SO2 t o s u l f a t e i s a n i m p o r t a n t a t m o s p h e r i c phenomenon. I t i s now r e c o g n i z e d t h a t b o t h homogeneous ( g a s - p h a s e ) a n d h e t e r o g e n e o u s ( p a r t i c u l a t e - p h a s e ) p r o c e s s e s c o n t r i b u t e t o SO^ o x i d a t i o n i n the atmosphere. P o s s i b l e r o u t e s t h a t have been i d e n t i f i e d are: 1. Homogeneous O x i d a t i o n o f SO2 t o ^ S O ^ b y f r e e r a d i c a l s p r e s e n t i n t h e p o l l u t e d urban atmosphere ( p a r t i c u l a r l y photochemical) 2. Het erogeneous a. L i q u i d - p h a s e o x i d a t i o n o f SO2 b y 0^ b. L i q u i d - p h a s e o x i d a t i o n o f SO2 b y 0~ c. M e t a l - i o n c a t a l y z e d , l i q u i d - p h a s e o x i d a t i o n o f SO^ d. C a t a l y t i c o x i d a t i o n o f SO2 o n p a r t i c l e s u r f a c e s . S u l f u r d i o x i d e o x i d a t i o n r a t e s measured i n t h e l a b o r a t o r y o r i n f e r r e d from atmospheric data d i s p l a y a remarkable v a r i a b i l i t y . The c h a r a c t e r i s t i c t i m e s o f SO2 o x i d a t i o n v a r y f r o m a f e w m i n u t e s to several days. S u l f u r d i o x i d e i n pure a i r i s very s l o w l y o x i d i z e d i n the presence of sunlight t o s u l f u r i c a c i d at a r a t e of about 0.1^/hr. (28). Whereas t h e r e i s p r e s e n t l y i n a d e q u a t e i n formation t o c h a r a c t e r i z e f u l l y the chemical processes by which SO2 i s o x i d i z e d i n p o l l u t e d u r b a n a i r , t h e c o n v e r s i o n i s much more r a p i d t h a n i n p u r e a i r . T h i s a c c e l e r a t e d c o n v e r s i o n i s due t o the presence of other a i r contaminants t h a t g e n e r a l l y f a c i l i t a t e t h e o x i d a t i o n o f SO2. A s n o t e d a b o v e , two p r o c e s s e s a p p e a r t o be i n v o l v e d : homogeneous o x i d a t i o n b y components ( e . g . f r e e r a d i c a l s ) p r e s e n t i n p h o t o c h e m i c a l smog a n d h e t e r o g e n e o u s o x i d a t i o n predominantly by c e r t a i n types of a e r o s o l s . Homogeneous ( p h o t o c h e m i c a l ) o x i d a t i o n o f SO2 i s f e l t t o r e s u l t f r o m r e a c t i o n o f SO2 w i t h a v a r i e t y o f f r e e r a d i c a l s p r e s e n t i n p h o t o c h e m i c a l a i r p o l l u t i o n . R a t e s o f o x i d a t i o n o f SO2 i n L o s A n g e l e s have been e s t i m a t e d t o r a n g e as h i g h as 13#/hr., a l t h o u g h t h e s e r a t e s c a n n o t n e c e s s a r i l y be a t t r i b u t e d e x c l u s i v e l y t o p h o t o chemical o x i d a t i o n . H e t e r o g e n e o u s o x i d a t i o n o f SO2 o c c u r s i n a e r o s o l s i n w h i c h SO2 h a s b e e n a b s o r b e d . The o x i d a t i o n may o c c u r t h r o u g h t h e a c t i o n o f d i s s o l v e d o x y g e n o r o z o n e o r may t a k e p l a c e c a t a l y t i c a l l y i n

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

5.

171

Environmental Reaction Engineering

SEINFELD

t h e p r e s e n c e o f m e t a l l i c compounds, s u c h a s manganese, i r o n , v a n a ­ d i u m , aluminum, l e a d and c o p p e r . P r e d i c t i o n o f t h e r a t e o f SO2 o x i d a t i o n i n a p a r t i c l e h a s p r o v e d t o h e q u i t e d i f f i c u l t , a s one must a c c o u n t f o r d i f f u s i o n o f g a s e o u s SO2 t o t h e p a r t i c l e , t r a n s ­ f e r o f S 0 a c r o s s t h e g a s - p a r t i c l e i n t e r f a c e , and d i f f u s i o n and r e a c t i o n o f SO2 w i t h i n t h e p a r t i c l e . Relative humidity i s a s i g ­ n i f i c a n t f a c t o r i n t h e h e t e r o g e n e o u s SO2 o x i d a t i o n p r o c e s s s i n c e the process takes p l a c e , i n g e n e r a l , i n water d r o p l e t s . In addi­ t i o n , s i n c e a n a c i d i c pH g e n e r a l l y d e c r e a s e s t h e r a t e o f SO2 o x i ­ d a t i o n , t h e f o r m a t i o n o f s u l f u r i c a c i d i n an a e r o s o l would t e n d t o be s e l f - l i m i t i n g u n l e s s t h e a c i d i t y i s d i l u t e d by a d d i t i o n a l water vapor. I n t h i s r e s p e c t , a l k a l i n e m e t a l compounds, s u c h as i r o n o x i d e , a n d ammonia a l s o enhance t h e o x i d a t i o n r a t e b y d e ­ creasing droplet a c i d i t y through t h e i r b u f f e r i n g capacity. Ex­ t r a p o l a t e d r a t e s o f o x i d a t i o n by heterogeneous processes i n urban a i r r a n g e upwards o f 20%/nr. M e t e o r o l o g y has a s u b s t a n t i a l e f f e c t on t h e a t m o s p h e r i c o x i ­ d a t i o n o f S02« Increased h u m i d i t y a c c e l e r a t e s the heterogeneous o x i d a t i o n o f S0 > w h e r e a s c l o u d c o v e r m i g h t be e x p e c t e d t o l o w e r t h e r a t e o f p h o t o c h e m i c a l p r o c e s s e s , and r a i n w i l l wash out s u l ­ f u r o x i d e s from t h e atmosphere. Temperature a f f e c t s r e a c t i o n r a t e s and t h e s o l u b i l i t y o f g a s e s . T a b l e I V s u m m a r i z e s a number o f SO2 o x i d a t i o n r a t e s m e a s u r e d i n t h e l a b o r a t o r y and the atmosphere. The r a t e s v a r y f r o m a l o w o f 0.1%/hr f o r p h o t o o x i d a t i o n o f SO2 i n c l e a n a i r t o o v e r 2%/m±n measured i n water d r o p l e t s . S t u d i e s r e f l e c t i n g b o t h homogeneous and h e t e r o g e n e o u s p r o c e s s e s a r e p r e s e n t e d i n T a b l e I V . In the n e x t s u b s e c t i o n s we c o n s i d e r t h e e l e m e n t s o f b o t h homogeneous a n d heterogeneous processes i n an attempt t o estimate the c o n t r i b u t i o n o f e a c h t o t h e a t m o s p h e r i c o x i d a t i o n o f SO2. 1. Homogeneous O x i d a t i o n o f SO2. T h e r e a r e a number o f homogeneous ( g a s - p h a s e ) r e a c t i o n s f o r t h e atmospheric o x i d a t i o n o f S0 . A t h o r o u g h r e v i e w o f t h e s e r e a c t i o n s h a s b e e n c a r r i e d o u t b y C a l v e r t e t a l . (k6). Table V s u m m a r i z e s t h e r a t e c o n s t a n t v a l u e s f o r t h e most i m p o r t a n t o f these reactions. S u l f u r d i o x i d e i s c o n v e r t e d t o SO3 b y t h e r e a c t i o n ( r e a c t i o n numbering i s s e p a r a t e from t h a t i n T a b l e I )

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

2

2

2

S0

+ 0( P)(+M) + S0 3

2

3

(+M)

C a l v e r t e t a l . (k6) recommended t h e a p p a r e n t s e c o n d - o r d e j j r a t e c o n s t a n t at_J a t m . i n ^ i r a £ 2 5 ° 0 ^ ε k i = ( 5 . 7 ± 0 . 5 ) x l O ~ cnr molec" sec" (8.3x10 ppm" m i n " ) . The s o u r c e o f o x y g e n atoms f o r r e a c t i o n 1 i s l a r g e l y f r o m t h e p h o t o l y s i s o f N0 > 2

2

N0

2

+ hV + NO +

0( P) 3

The p r i m a r y c o m p e t i t i o n f o r t h e o x y g e n atoms i s t h e 0( P) 3

+ 0

2

+ M+ 0

3

reaction

+ M

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

conditions

S u n l i g h t ; 200-2000 yg/m impurities.

2

X

3 2

S 0 ; trace

3

1-355/hr.

A s s u m i n g 3 0 0 y g / m SO2; b r i g h t 0.65^/hr. (high r a t e s u n l i g h t f o r 1 0 h r . w o u l d p r o - may b e d u e t o t r a c e duce 3 0 yg/m o f s u l f a t e . impurities).

U V - i r r a d i a t e d g a s m i x t u r e s ; N 0 , h y d r o - Noon s u n . carbons, S 0 ; high l e v e l s . 3

2.5^/min i n d r o p l e t s

2

3

3

100 y g / m SO2; 10 y g / m NH3; c l o u d d r o p l e t r a d i u s o f 10 ym

(NHlJaSO^ f o r m a t i o n i n w a t e r e x p o s e d t o NH^ a n d S 0 .

droplets

O . l i / m i n a t 70% RH 0.555/min a t 100% RH

0.0155/min a t 71% RH

2.1JÎ/min a t 9555 RH

F o u n d m o i s t u r e l e v e l i n plume important.

2

Plume o f c o a l - b u r n i n g power p l a n t .

3

( L e v e l s i n smog chamber) 0 . 6 mg/m S 0 ; 2 mg/n^MnSO^

2

V

A r t i f i c i a l f o g i n smog c h a m b e r ; v e r y h i g h l e v e l s ; S 0 and m e t a l s u l f a t e s .

3

l%/m±n

SO2; s u n l i g h t ; c l e a r a i r ( r e a c ­ 0 . 1 - 0 . 2 J { / h r t i o n unaffected by humidity).

0.035!Î/min

SO^ o x i d a t i o n rate

N a t u r a l f o g c o n t a i n i n g 1 urn c r y s t a l s o f MnSOi^ i n d r o p l e t s ; 26ΟΟ y g / m S O .

con­

3

150-U200 y g / m S O .

Presumed a t m o s p h e r i c conditions

Observed S u l f u r D i o x i d e O x i d a t i o n Rates

C a t a l y s t d r o p l e t exposed t o h i g h c o n ­ c e n t r a t i o n s o f SOg i n h u m i d a i r .

2

smelt­

Sunlamp i n smog c h a m b e r ; h i g h S 0 c e n t r a t i o n s i n pure a i r .

Atmospheric study o f Canadian ing area.

Experimental

Table I V .

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005



3U

33

32

31

30

28

22

Refer­ ence

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

2

X

Χ

l i g h t ; S0 , Ν0 ,olefins 3

3

3

2

S 0 Oxidation rate

(Continued)

SO2, 260 y g / m ; o z o n e , 100yg/m 3%/hr f o r p e n t e n e ; o l e f i n , 33 y g / m , b r i g h t s u n O . W h r f o r propene light.

Presumed a t m o s p h e r i c conditions

Observed S u l f u r D i o x i d e O x i d a t i o n Rates

2

3

3

900-1200 m. a l t i t u d e 20-25°C; RH=l+0-6o#

pseudo-second order mechanism; r a t e c o n ­ s t a n t s ^ ppnf"Tir""

Catalytic oxidation

Smelter plume; airborne

sampling.

^1%/hr.

P l u m e s o f f o u r c o a l - f i r e d power p l a n t s ; RH=32-85$; 10-25°C; D i s t a n c e airborne sampling 3) c o n c l u d e t h a t , o w i n g t o t h e r e l a t i v e l y s m a l l amount o f l i q u i d w a t e r i n v o l v e d , n e i t h e r t h e 0 n o r t h e O3 o x i d a t i o n i s f a s t enough t o p r o d u c e s i g n i f i c a n t q u a n t i t i e s o f s u l f a t e i n the l i q u i d phase at h u m i d i t i e s l e s s t h a n s a t u r a t i o n . These r e a c t i o n s c o u l d o n l y o c c u r a t a s i g n i f i c a n t r a t e under s a t ­ u r a t e d c o n d i t i o n s , i . e . i n f o g s o r c l o u d s where t h e l i q u i d w a t e r c o n t e n t may e x c e e d 0 . 1 g / m . F o r c l o u d c o n d i t i o n s o f [O3] = 0 . 0 5 ppm, [H 0] = 0 . 6 g / m , [ S 0 ] = [NH3] = 0 . 0 1 ppm, t h e r a t e f o r S 0 o x i d a t i o n b y O3 i s i n t h e r a n g e o f 1 - W h r . The m e t a l - i o n c a t a l y z e d , l i q u i d - p h a s e o x i d a t i o n o f SO2 h a s r e c e i v e d c o n s i d e r a b l e a t t e n t i o n a s a mechanism f o r SO2 c o n v e r s i o n i n plumes and c o n t a m i n a t e d d r o p l e t s . I n g e n e r a l , t h e mechanisms proposed a r e l e n g t h y , and t h e d e r i v e d r a t e e x p r e s s i o n s a r e l a r g e l y empirical. T a b l e V I summarizes a v a r i e t y o f s t u d i e s on t h i s p r o c ­ ess. Observed r a t e s v a r y s u b s t a n t i a l l y depending on t h e p a r t i c u ­ l a r c a t a l y s t , r e l a t i v e h u m i d i t y , and o t h e r c o n d i t i o n s . N o v a k o v e t a l . (5^0 h a v e s u g g e s t e d t h a t t h e s u r f a c e o f s o o t p a r t i c l e s s e r v e s a s a c a t a l y s t f o r t h e o x i d a t i o n o f S02« Such a p r o c e s s m i g h t be o f i m p o r t a n c e i n a plume c o n t a i n i n g s i g n i f i c a n t 2

3

2

3

2

2

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

5.

177

Environmental Reaction Engineering

SEINFELD

q u a n t i t i e s o f carbonaceous p a r t i c l e s o r i n an atmosphere where motor v e h i c l e soot a e r o s o l i s p r e s e n t . Very l i t t l e i s presently known a b o u t t h e r a t e s o r mechanisms o f t h i s p r o c e s s . A e r o s o l C h e m i s t r y . The g e n e r a l r e l a t i o n s h i p b e t w e e n g a s e o u s and p a r t i c u l a t e p o l l u t a n t s i n t h e u r b a n atmosphere i s d e p i c t e d i n Figure 1. A e r o s o l s may b e e m i t t e d d i r e c t l y f r o m s o u r c e s o r b e formed i n t h e atmosphere as t h e r e s u l t o f c o n d e n s a t i o n o f s e c o n d ­ a r y vapors formed i n gas-phase r e a c t i o n s . The e s s e n t i a l e l e m e n t s o f u r b a n a e r o s o l c h e m i s t r y a r e shown i n F i g u r e 2 , i n w h i c h we h a v e r e p r e s e n t e d t h e c h e m i s t r y i n t e r m s o f t h e c o n v e r s i o n o f SC>2> N 0 a n d h y d r o c a r b o n s t o p a r t i c u l a t e s u l f a t e , n i t r a t e , and o r g a n i c s , r e s p e c t i v e l y . T a b l e V I I summar­ i z e s t h e k e y unknown a s p e c t s o f t h e p r o c e s s e s d e p i c t e d i n F i g ­ ure 2. T h e r e a r e many f e a t u r e s o f a t m o s p h e r i c a e r o s o l c h e m i s t r y t h a t must b e e l u c i d a t e d b e f o r e we u n d e r s t a n d f u l l y t h e f o r m a t i o n and g r o w t h o f a t m o s p h e r i c p a r t i c l e s .

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

X

dynamics o f Urban A e r o s o l s T a b l e V I I I summarizes t h e p h y s i c a l p r o c e s s e s t h a t a f f e c t t h e e v o l u t i o n o f a e r o s o l i n a u n i t volume o f atmosphere. To d e v e l o p the g e n e r a l d y n a m i c . e q u a t i o n g o v e r n i n g a e r o s o l b e h a v i o r l e t us assume t h a t t h e a e r o s o l i s composed o f l i q u i d d r o p l e t s o f M c h e m i ­ c a l species. We l e t c^ d e n o t e t h e c o n c e n t r a t i o n o f s p e c i e s i i n a d r o p l e t , i = 1 , 2 , . . . , M , and D denote t h e d i a m e t e r o f t h e p a r ­ ticle. We t h e n d e f i n e n ( D , c ^ , . . . , c , r , t ) a s t h e s i z e - c o m p o s i ­ t i o n d i s t r i b u t i o n f u n c t i o n , such t h a t η d D d c ^ . . . dc^ i s the number o f p a r t i c l e s p e r u n i t v o l u m e o f a t m o s p h e r e a t l o c a t i o n r a t t i m e t o f d i a m e t e r Dp t o Dp + dDp a n d o f c o m p o s i t i o n c^ t o C i + d c i ( m o l e s l " ) o f s p e c i e s i , i = 1 , 2 , . . . , M . * The t o t a l p a r ­ t i c l e number d e n s i t y ( c m " ) a t l o c a t i o n r a t t i m e t i s p

p

M

p

1

ΓΟΟ

ΓΟΟ

N(r,t) = J · · · J 0 0

n(B ,c ,..., p

1

c ,r,t) M

dD

p

d ^

The d i s t r i b u t i o n o f p a r t i c l e s b y p a r t i c l e d i a m e t e r d e f i n e d b y n ( D , r , t ) and g i v e n by υ ρ ~

...

dc^

(l)

-1 -3 (urn cm )

is

A

n

0

(

D

p ^

,

t

)

=

Γ*** p^p'V---* V ï ' ^

d

C

l ·*·

d C

M*

(

2

)

The g e n e r a l e q u a t i o n g o v e r n i n g t h e s i z e c o m p o s i t i o n d i s t r i b u t i o n f u n c t i o n was d e r i v e d b y Chu a n d S e i n f e l d (6£). The e q u a t i o n ^ T h r o u g h o u t we g i v e r e p r e s e n t a t i v e u n i t s f o r v a r i o u s q u a n t i t i e s . Numerical conversion f a c t o r s a s s o c i a t e d w i t h these u n i t s are not e x p l i c i t l y i n d i c a t e d i n the equations.

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

(^8)

Matteson, S t o b e r , and Luther

Foster

Junge and Ryan (%)

Basset and P a r k e r (56)

salts

Λ

2

+0

2

2

Ο Λ

2

2

2

2

1|

2

+

+

2

HS0^+H JH S0

2+

2+

U

Mn*S0 +H 0jMn +HS0^+H

j2Mn*S0

2

^[(Mn*S0? ) *0 ]

2Mn*S0

w

2

+

SO2 o x i d a t i o n c a t a l y z e d b y metal s a l t s ; 2+ _ 2+ Mn +S0^Mn*S0

2

Metal salts 2S0 +2H 0+0 +2H S0

3

2+ Fe c a t a l y s t w i t h and without NH

Metal

2+ Cu catalyst; inhibitor

F u l l e r and C r i s t ($2)

mannitol

T y p e o f mechanism

2

1

7o mm

C o n v e r s i o n r a t e = 1.8x10

F o r m a t i o n o f complexes such a s [02 Mn(S03)2l and r a p i d oxidation.

25°C

Comments

°2 dt

] g

=2Λχ10

d [ S

5

1

M" s"

r

1

0

. .. 2+,2 k^Mn ]

N e g l i g i b l e SOI* f o r m a t i o n f o r RH

(62)

Freiberg

(61)

(60)

SO Fe

2

with

oxidation catalyzed by

2

SO2 o x i d a t i o n b y 0 t r a c e Fe c a t a l y s t

2

c

Brimblecombe and Spedding

2 +

2S0 2H 0 0

Sulfite oxidation catalyzed by cobalt i o n s ; f r e e r a d i ­ c a l mechanism; C O ( i l l ) reduced.

(38)

SO2 o x i d a t i o n c a t a l y z e d b y NH~;

Type o f m e c h a n i s m Comments

(Continued)

[

3 +

2

=

WW

V

s t

I

3

2

2

x

s

3

+

3

[Fe ]/|H ] K = 1 dissociation constant of H S0

dt

d[S0^]

- b

d

3/2

2

= k[Co(H 0)j? r,d

i0

Could not determine value for k.

specific

Rate increases r a p i d l y w i t h RH a n d d e c r e a s e s b y a b o u t one o r d e r o f m a g n i t u d e w i t h 5 C increase i n temperature.

^ ^ =k[Fe(lIl)][S(lV)] P o s s i b i l i t y of F e ( l l l ) 1 - ΐ Λ Λ »*-1 -1 ™ contamination discussed, k = 100 M s ; S0 conver­ s i o n r a t e ^3.2%/day i n f o g a s s u m i n g 28 y g / m S 0 a n d 10 M F e ( l l l )

3=

x[so ]

d [ S O j] ^ dt

+

2

SO2 c o n v e r s i o n r a t e ^.03%/ O x i d a t i o n r a t e e s t i m a t e d b y min w i t h M h ^ l e v e l s t y p i e x t r a p o l a t i o n t o atmospheric c a l of urban i n d u s t r i a l conditions. atmosphere; ^ ^ ^ / m i n w i t h l e v e l s t y p i c a l o f plume from c o a l powered p l a n t .

Rate c o e f f i c i e n t and/ or expression

Metal-Ion Catalyzed, Liquid-Phase Oxidation of S0

Chen a n d Barron

liger

Cheng, C o r n , and F r o h -

Author

Table V I .

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

SO2 o x i d a t i o n c a t a l y z e d by Fe

Mn a n d F e c a t a l y s t s .

Freiberg

B a r r i e and Georgii

(6k)

(63)

Type o f mechanism

dt

d[SO^]

e

k[SO 1 2 g

Same a s a b o v e , e x c e p t Κ complex f u n c t i o n o f [F 3+]

Rate c o e f f i c i e n t and/ or expression a

Metal-Ion Catalyzed, Liquid-Phase Oxidation of S 0

Author

Table V I . 2

a

s

2

3

2

2

+

2

>

Q

+

3 +

8°C a n d 2 5 ° C ; , j 2 . 1 m i n j j i a m . d r o p l e t s ; 10*" t o Ι Ο " M f o r Mn a n d F e ; S 0 c o n c e n t r a t i o n s 0 . 0 1 - 1 . 0 ppm. I n pH r a n g e 2-1+.5 t h e c a t a l y t i c f | f e c t i v e n e s s was Mn F e >Fe £ Increase i n Τ from 8 t o £ 5 C c a u s e d a n i n c r e a s e i n Mn catalyzed oxidation rate of 5 - 1 0 i n pH r a n g e 2-U.5.

+

R a t e dependence changes from [S0 ] / [ H ] t o [S0 ]/[H ] pH o r [ S 0 ] i n c r e a s e s .

Comments

(Continued)

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

5.

Environmental Reaction Engineering

SEINFELD

SOURCES

ATMOSPHERIC TRANSPORT REMOVAL PROCESSES '(DEPOSITION, WASHOUT, RAINOUT)

GASEOUS POLLUTANTS N0 , S0 , HC, NH X

2

181

3

GAS PHASE CHEMISTRY TO SECONDARY VAPORS

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

DIFFUSION AND ABSORPTION

DIFFUSION AND CONDENSATION

HOMOGENEOUS NUCLEATION

r

SOURCES

^ COAGULATION (

LIQUID-PHASE> ^| \COAGULATION C H E

T R Y

STABLE NUCLEI

PRIMARY PARTICLES ATMOSPHERIC AEROSOL ATMOSPHERIC TRANSPORT^ REMOVAL PROCESSES

Î

Figure 1.

Relationships among primarv and secondary gaseous and particulate air pollutants SULFUR

CHEMISTRY S 0

2

\ O H , H 0 , R 0 1 HOMOGENEOUS \ f OXIDATION 2

DIRECT ABSORPTION

NITROGEN

CHEMISTRY

Ο

.

2

2

Λ

H S0

J

4

LAYER OF CONDENSED SECONDARY MATERIAL

NO Ί DIRECT ABSORPTION N 0

2

£

CORE OF PRIMARY MATERIAL (C Pb, NaCI, etc.) f

*RN0

HETEROGENEOUS OXIDATION

3

Q n

CARBON

~ jr~ c =

0

=

CATA1—

CHEMISTRY

\ J

0 H , 0 N

°x

Figure 2.

3

.

LOW VAPOR PRESSURE ORGANICS

Elements of urban aerosol chemistry

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Q n

=

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

N i t r a t e (6£)

χ

Conversion of Ν 0 t o

Oxidation o f SOp t o s u l fate

Process gas-phase

2

a.

Mechanisms o f o x i d a t i o n a r e g e n e r a l l y unknown. Although many e m p i r i c a l r a t e e x p r e s s i o n s a r e a v a i l a b l e ( s e e T a b l e V I ) substantial uncertainty exists i nprediction o f rates. Processes can be important i n plumes.

3

0Η+Ν0.

3

3

HN0 +NH + NHjN0

HN0„

m

a

y r e a c

0H-N0p r a t e c o n s t a n t w e l l e s t a b l i s h e d b u t certain. HNO3 v a p o r p r e s s u r e t o o h i g h f o s a t i o n , b u t HNO3 " k w i t h NH3. Rate HNO3-NH3 r e a c t i o n u n k n o w n . T h i s r e a c t i o n s t a n t i a l s o u r c e o f NH^NO^ i n a e r o s o l s .

OH l e v e l s a r e u n ­ r d i r e c t conden­ constant f o r could be a sub­

C a t a l y t i c o x i d a t i o n o f V i r t u a l l y n o t h i n g known a b o u t r a t e s o r m e c h a n i s m s . Probably S 0 on p a r t i c l e surn o t t o o i m p o r t a n t i n atmosphere a s a whole b u t p o s s i b l y subfaces, s t a n t i a l i n plumes.

Homogeneous

c.

Metal ion catalyzed SO2 o x i d a t i o n i n aqueous s o l u t i o n (Fe,Mn).

M e c h a n i s m s o f O2 a n d 0- o x i d a t i o n o f SO2 i n s o l u t i o n s t i l l unknown. E m p i r i c a l r a t e equations a r e a v a i l a b l e . Both p r o c e s s e s a r e r a t h e r s l o w compared t o c a t a l y t i c p r o c e s s e s , b u t may b e i m p o r t a n t i n f o g s o r c l o u d s .

Free r a d i c a l reactions (seeTable V ) . Rate constants f o r SO2-OH a n d SO2-HO2 m e a s u r e d b u t s t i l l somewhat u n c e r t a i n . R a t e c o n s t a n t s f o r SO2-RO a n d SO2-RO2 r e a c t i o n s u n k n o w n . M e c h a n i s m f o r t h e SO2-OH r e a c t i o n u n k n o w n ; p r o d u c t HOSO2 assumed t o b e h y d r a t e d t o H^SO^.

Discussion

Problems i n A t m o s p h e r i c A e r o s o l Chemistry-

Heterogeneous a . SO2 o x i d a t i o n i n aqueous s o l u t i o n b y 0 2 a n d 0^

Homogeneous, reactions.

Chemistry

Table V I I .

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Conversion of Hydrocarbons t o Particulate Organics (66)

Process

2

2

2

established, Subsequent

P r o c e s s i n v o l v e s a b s o r p t i o n o f NO a n d NO2 i n p r e s e n c e o f NH3. N i t r a t e c o n c e n t r a t i o n s i n s o l u t i o n f r o m t h i s p r o c e s s can be s u b s t a n t i a l . Extent o f importance o f t h i s process i n t h e atmosphere i s unknown, as i s t h e e x i s t e n c e o f any l i q u i d - p h a s e c a t a l y t i c mechanisms.

2

R a t e c o n s t a n t s f o r RO-NO2 r e a c t i o n s n o t w e l l a n d t h o s e f o r RO2-NO2 r e a c t i o n s a r e u n k n o w n . c h e m i s t r y o f RON0 a n d RO N 0 u n c e r t a i n .

R a t e c o n s t a n t s f o r r e a c t i o n o f h y d r o c a r b o n s w i t h OH a n d O3 a r e r e a s o n a b l y w e l l k n o w n . Mechanisms o f f o r m a t i o n o f t h e l o w vapor pressure organic species a r e s t i l l speculat i v e , p a r t i c u l a r l y f o r aromatics, although hydrocarbons t h a t l e a d t o a e r o s o l p r e c u r s o r s have been i d e n t i f i e d , e . g . c y c l i c and d i - o l e f i n s .

C a t a l y t i c o x i d a t i o n o f V i r t u a l l y n o t h i n g known a b o u t r a t e s o r m e c h a n i s m s . NO o n p a r t i c l e s u r faces.

2

Homogeneous o x i d a t i o n o f h y d r o c a r b o n s b y OH a n d O3 t o l o w v a p o r p r e s s u r e organic species.

b.

2

R0 N0

Heterogeneous a. Liquid-phase

2

R0 +N0

2

for-

(Continued)

Discussion

Problems i n Atmospheric A e r o s o l Chemistry

Organic n i t r a t e mation R0+N0 + R0N0

Chemistry

Table V I I .

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Since i t i s a second-order process ( i . e . , its r a t e i s p r o p o r t i o n a l t o the square o f the l o c a l number d e n s i t y ) , h i g h c o n c e n t r a t i o n s are r e q u i r e d f o r a p p r e c i a b l e r a t e s . Because l a r g e p a r t i c l e s ( o v e r 1 um i n d i a m e t e r ) g e n e r a l l y do n o t e x i s t i n c o n c e n t r a t i o n s h i g h enough t o p r o d u c e a p p r e c i a b l e r a t e s , c o a g u l a t i o n i s most i m p o r t a n t f o r s m a l l p a r t i c l e s . D i f f e r e n t mechanisms c a n b r i n g t w o p a r t i c l e s t o g e t h e r ; t h e e f f i c i e n c i e s o f t h e s e mechani s m s d e p e n d on t h e s i z e s o f t h e t w o particles.

The p r o c e s s o f c o l l i s i o n o f two p a r t i c l e s t o f o r m a single particle.

Coagulation

The d r i v i n g f o r c e f o r g r o w t h i s t h e d i f f e r ence between t h e ambient p a r t i a l p r e s s u r e a n d t h e v a p o r p r e s s u r e j u s t above t h e s u r face of the p a r t i c l e . The v a p o r p r e s s u r e above t h e s u r f a c e o f a p a r t i c l e depends o n the s i z e of the p a r t i c l e (the K e l v i n e f f e c t ) and t h e c o m p o s i t i o n o f t h e p a r t i c l e .

Growth o f p a r t i c l e s by d i f f u s i o n o f gaseous s p e c i e s t o t h e particle surface f o l l o w e d by absorption or adsorption.

conden-

Heterogeneous sation.

Features

P a r t i c l e s f o r m e d i n t h i s way a r e v e r y s m a l l , H i g h c o n c e n t r a t i o n s and l o w v a p o r p r e s s u r e s a r e r e q u i r e d t o i n i t i a t e homogeneous nucleation.

Important

Agglomeration of molecules to form a s t a b l e p a r t i c l e .

Definition

P h y s i c a l P r o c e s s e s A f f e c t i n g t h e E v o l u t i o n o f A e r o s o l Number D e n s i t y D i s t r i b u t i o n s

Homogeneous n u c l e a t i o n o f a gaseous s p e c i e s

Process

Table V I I I .

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Settling of particles gravity.

Gravitational

Scavenging of p a r t i c l e s f a l l i n g raindrops.

Washout u n d e r

by

Loss of p a r t i c l e s through t h e i r r o l e as c o n d e n s a t i o n nuclei i n clouds.

Rainout i n clouds

clouds

L o s s o c c u r i n g when p a r t i c l e s c r o s s s t r e a m l i n e s and d e p o s i t on s u r f a c e s , such as g r a s s .

due t o

Deposition

settling

Motion of p a r t i c l e s with turbulent airflow.

Turbulent d i f f u s i o n

the

D i f f u s i o n o f p a r t i c l e s as a result of c o l l i s i o n s with gas m o l e c u l e s .

Definition Features

Deposition i s p r i m a r i l y important f o r t i c l e s l a r g e r t h a n 1 Urn i n d i a m e t e r .

par-

This i s important only f o r large p a r t i c l e s ( o v e r 10 urn i n d i a m e t e r ) ; i t i s t h e m e c h a n ism p r i m a r i l y responsible f o r the c u t o f f of t h e a e r o s o l s i z e s p e c t r u m a t t h e u p p e r end of the p a r t i c l e s i z e range.

T u r b u l e n t d i f f u s i o n o f a e r o s o l s can be t r e a t e d a n a l o g o u s l y t o t h a t o f gaseous species.

B r o w n i a n d i f f u s i v i t y depends o n p a r t i c l e s i z e ; i t i s most i m p o r t a n t f o r s m a l l particles.

Important

P h y s i c a l P r o c e s s e s A f f e c t i n g t h e E v o l u t i o n o f A e r o s o l Number D e n s i t y D i s t r i b u t i o n s (Continued)

Brownian d i f f u s i o n

Process

Table V I I I .

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

186

CHEMICAL REACTION ENGINEERING REVIEWS—HOUSTON

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

includes the effects o f coagulation, heteromolecular nucleation, heterogeneous c o n d e n s a t i o n , and a e r o s o l phase c h e m i c a l r e a c t i o n s , i n a d d i t i o n t o a d v e c t i o n a n d t u r b u l e n t d i f f u s i o n . The f u l l g e n ­ e r a l d y n a m i c e q u a t i o n g o v e r n i n g t h e mean s i z e - c o m p o s i t i o n d i s t r i ­ b u t i o n f u n c t i o n n(D ,c c ,r,t) is

+ S (D , c , O p l

c , t ) + S (D , c , M l p l

c ,r,t) M ~

,

where F

(3)

= dD / d t , F . = d c . / d t , u i s t h e s i z e - d e p e n d e n t s e d i m e n ρ ι i s t a t i o n v i l o c i t y , S i s the rate of formation of p a r t i c l e s by het­ eromolecular n u c l e a t i o n , and i s the rate of introduction of p a r t i c l e s from sources. I n t h e l a s t s e v e r a l y e a r s a g r e a t d e a l has been l e a r n e d about a i r p o l l u t i o n a e r o s o l s (68-71)» A l t h o u g h o u r k n o w l e d g e i s s t i l l f a r f r o m c o m p l e t e , t h e r e i s g e n e r a l agreement o n t h e n a t u r e o f u r b a n a e r o s o l s i z e d i s t r i b u t i o n s a n d t h e i r i n t e r p r e t a t i o n (70). I t h a s been e s t a b l i s h e d t h a t t h e p r i n c i p a l g r o w t h mechanism f o r u r b a n a t m o s p h e r i c a e r o s o l s i n t h e 0.1-1.0 ym d i a m e t e r s i z e r a n g e ( t h e s o - c a l l e d A c c u m u l a t i o n Mode) i s g a s - t o - p a r t i c l e c o n v e r s i o n (68,71). The m a j o r s e c o n d a r y components i n a t m o s p h e r i c a e r o s o l s have been i d e n t i f i e d as s u l f a t e s , n i t r a t e s and p a r t i c u l a t e o r g a n i c s p e c i e s (68*71,72,73). The q u a l i t a t i v e p i c t u r e o f p o l l u t e d 1/

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

5.

SEINFELD

Environmental

Reaction

187

Engineering

t r o p o s p h e r i c a e r o s o l s t h a t has e v o l v e d i s t h a t p r i m a r y a e r o s o l p r o v i d e s t h e s u r f a c e u p o n w h i c h s e c o n d a r y s p e c i e s c o n d e n s e , so t h a t e v e n t u a l l y t h e volume o f secondary a e r o s o l s u b s t a n t i a l l y e x ­ ceeds t h a t o f t h e o r i g i n a l p r i m a r y a e r o s o l . Assessment o f t h e e f f e c t o f gaseous and p a r t i c u l a t e p r i m a r y e m i s s i o n c o n t r o l s on atmospheric p a r t i c u l a t e c o n c e n t r a t i o n s and p r o p e r t i e s n e c e s s i t a t e s t h e development o f a m a t h e m a t i c a l model c a p a b l e o f r e l a t i n g p r i m a r y e m i s s i o n s o f gaseous and p a r t i c u l a t e p o l l u t a n t s t o t h e s i z e and c h e m i c a l c o m p o s i t i o n d i s t r i b u t i o n o f atmospheric a e r o s o l s . We have d e v e l o p e d t h e f o l l o w i n g a s p e c t s o f a g e n e r a l a e r o s o l model: c o a g u l a t i o n and heterogeneous c o n d e n s a t i o n f l u x e x p r e s ­ s i o n s , a n u m e r i c a l method f o r s o l u t i o n o f t h e g e n e r a l d y n a m i c e q u a ­ t i o n , SO2 homogeneous c h e m i s t r y , and Ν 0 homogeneous a n d h e t e r o ­ geneous c h e m i s t r y . A l s o , we h a v e o b t a i n e d s o l u t i o n s t o s p e c i a l c a s e s o f e q u a t i o n (3) i n o r d e r t o e l u c i d a t e t h e f e a t u r e s o f s i z e d i s t r i b u t i o n dynamics w i t h s i m u l t a n e o u s c o a g u l a t i o n and conden­ sation. F o r t h e u r b a n - s c a l e a e r o s o l m o d e l we d e v e l o p e d a l i n e a r g a s - p a r t i c l e m a t e r i a l balance model capable o f p r e d i c t i n g s t e a d y s t a t e l e v e l s o f gaseous p r e c u r s o r s and secondary a e r o s o l c o n s t i ­ t u e n t s (7*0· We t h e n s t u d i e d t h e g a s - t o - p a r t i c l e c o n v e r s i o n p r o c ­ ess t h r o u g h t h e dynamics o f t h e s i z e d i s t r i b u t i o n o f p h o t o c h e m i c a l χ

a e r o s o l s (75.).

The a r e a o f g r e a t e s t u n c e r t a i n t y c o n c e r n s t h e c h e m i c a l n a t u r e o f t h e a e r o s o l and t h e i n f l u e n c e o f homogeneous a n d h e t e r o g e n e o u s c h e m i s t r y o n t h e s i z e and c o m p o s i t i o n d i s t r i b u t i o n o f t h e a e r o s o l . T h u s , i t i s now n e c e s s a r y t o s y n t h e s i z e o u r k n o w l e d g e o f b o t h t h e homogeneous a n d h e t e r o g e n e o u s c h e m i s t r y o f SO2, N0 , a n d o r g a n i c s p e c i e s t o d e s c r i b e t h e s i z e and c o m p o s i t i o n dynamics o f t h e a e r o ­ sol. The b a s i c m a t h e m a t i c a l a s p e c t s o f t h i s t a s k h a v e b e e n c o m ­ p l e t e d ; t h e k e y i s s u e now i s t h e a e r o s o l c h e m i s t r y . F u t u r e work w i l l concern t h e e l u c i d a t i o n and s y n t h e s i s o f c u r r e n t knowledge on a e r o s o l c h e m i s t r y w i t h t h e o b j e c t o f d e v e l o p i n g a m a t h e m a t i c a l model f o r the g e n e r a l urban a e r o s o l . X

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

188

CHEMICAL REACTION ENGINEERING REVIEWS—HOUSTON

LITERATURE CITED 1.

Bass, Α. Μ., Ledford, Α. Ε., Jr., Laufer, Α. Η., "Extinction Coefficients of NO and N O ," Jour. of Research Natl. Bureau of Standards - A. Physics and Chemistry (1976) 80A,143 2. Hall, T. C . , Jr., Blacet, F. Ε . , "Separation of the Absorp­ tion of Spectra of NO and N O i n the Range 2400-5000Å," J . Chem. Phys. (1952) 20, 1745. 3. Hampson, R. F., Jr., Garvin, D., "Chemical Kinetic and Photochemical Data for Modeling Atmospheric Chemistry," NBS Technical Note 866 (1975). 4. Chan, W. Η., Nordstrom, R. J., Calvert, J. G., Shaw, J. Η., "Kinetic Study ofHONOFormation and Decay Reactions i n Gaseous Mixtures of HONO, NO, NO , H O, and N ," Environ. Sci. Technol. (1976) 10, 674. 5. Howard, C. J., "Kinetics of the Reaction of HO with NO ," J. Chem. Phys. (1978) i n press. 6. Graham, R. Α., Winer, Α. Μ., P i t t s , J. Ν., Jr., "Temperature Dependence of the Uni-molecular Decomposition of Pernitric Acid and Its Atmospheric Implications," Chem. Phys. Lett. (1978) i n press. 7. Howard, C. J., Evenson, Κ. Μ., "Kinetics of the Reaction of HO with NO," Geophys. Res.Lett. (1977) 4, 437. 8. Tsang, W., Garvin, D., Brown, R. L., "NBS Chemical Kinetics Data Survey - The Formation of Nitric Acid from Hydroxyl and Nitrogen Dioxide," Natl. Bureau of Standards (1977). 9. Cox, R. Α., Derwent, R. G., "The Ultraviolet Absorption Spectrum of Gaseous Nitrous Acid," J. Photochem. (1977) 6, 23. 10. Sie, Β. K. T., Simonaitis, R., Heicklen, J., "The Reaction of OH with CO," Int. J. Chem. Kinetics (1976) 8, 85. 11. Chan, W. H. Uselman, W. Ν., Calvert, J. G., Shaw, J. Η., "The Pressure Dependence of the Rate Constant for the Reac­ tion: HO + CO-->H + CO ," Chem. Phys. Lett. (1977) 45, 240. 12. Cox, R. Α., Derwent, R. G., Holt, P. Μ., "Relative Rate Constants for the Reactions of OH Radicals withH ,CH ,CO, NO, andΗOΝOat Atmospheric Pressure at 296°K," J. Chem. Soc. Faraday Trans. I (1976) 72, 2031. 13. Schere, K. L., Demerjian, K. L., "Calculation of Selected Photolytic Rate Constants Over a Diurnal Range," Environ­ mental Protection Agency Report ΕΡΑ-600/4-77-015 (1977). 14. Walter, Τ. Α., Bufalini, J. J., Gay, B. W., Jr., "Mechanism for Olefin-Ozone Reactions," Environ. Sci. Technol. (1977) 11, 382. 15. Atkinson, R., Finlayson, Β. J., Pitts, J. Ν., Jr., "Photoionization Mass Spectrometer Studies of Gas Phase Ozone­ -Olefin Reactions," J. Amer. Chem. Soc. (1973) 95, 7592. 16. Pitts, J. N., Jr., Kummer, W. Α., Steer, R. P., Finlayson, B. J., "The Chemiluminescent Reactions of Ozone with Olefins and Organic Sulfides," Adv. Chem. (1972) 113, 246. 2

2

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

2

4

2

4

2

2

2

2

2

2

2

2

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

4

5. SEINFELD 17. 18.

19.

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

20.

21.

22.

23.

2k.

Environmental Reaction Engineering

189

O'Neal, Η. Ε., Blumstein, C., "A New Mechanism for Gas Phase Ozone-Olefin Reactions," Int. J . Chem. Kinetics (1973) 5, 397. Davis, D. D., Bollinger, W., Fischer, S., "A Kinetics Study of the Reaction of the OH Free Radical with Aromatic Com­ pounds. I . Absolute Rate Constants for Reaction with Ben­ zene and Toluene at 300°K," J. Phys. Chem. (1975) 79, 293. Hansen, D. Α., Atkinson, R., P i t t s , J . Ν., Jr., "Rate Con­ stants for the Reaction of OH Radicals with a Series of Aromatic Hydrocarbons," J . Phys. Chem. (1975) 79, 1763. Perry, R. Α., Atkinson, R., P i t t s , J . Ν., Jr., "Kinetics and Mechanism of the Gas Phase Reaction of OH Radicals with Aromatic Hydrocarbons Over the Temperature Range 296-473K," J . Phys. Chem. (1977) 81, 296. Batt, L., McCulloch, R. D., Milne, R. T., "Thermochemical and Kinetic Studies of Alkyl Nitrites (RONO) - D(RO-NO), The Reactions between RO and NO, and the Decomposition of RO," Int. J . Chem. Kinetics Symposium (1975) 1, 441. Mendenhall, G., Golden, D. Μ., Benson, S. W., "The Very-Low­ -Pressure Pyrolysis (VLPP) of n-Propyl Nitrate, ter-Butyl Nitrite, and Methyl Nitrite, Rate Constants for Some Alkoxy Radical Reactions," Int. J . Chem. Kinetics (1975) 7, 725. Weibe, Η. Α., Villa, Α., Hellman, Τ. Μ., Heicklen, J., "Photolysis of Methyl Nitrite in the Presence of Nitric Oxide, Nitrogen Dioxide, and Oxygen," J. Amer. Chem. Soc. (1973) 95, 7. Barker, J . R., Benson, S. W., Golden, D. Μ., "Re Decomposi­ tion of Dimethyl Peroxide and the Rate Constant for CHO + O -->CH O+ HO ," Int. J . Chem. Kinetics (1977) 9, 31. Baker, G., Shaw, R., "Reactions of Methye, Ethoxye, and t­ -Butoxye with Nitric Oxide and with Nitrogen Dioxide," J . Chem. Soc., (London) (1965) 6965. Darnall, K. R., Carter, W. P. L., Winer, Α. Μ., Lloyd, A. C., Pitts, J . N . , Jr. "Importance of RO + NO in Alkyl Nitrate Formation from C -C Alkane Photooxidations under Simulated Atmospheric Conditions," J. Phys. Chem. (1976) 80, 1948. Cox, R. Α., Roffey, M. J., "Thermal Decomposition of Peroxyacetylnitrate in the Presence of Nitric Oxide," Environ. Sci. Technol. (1977) 11, 900. Gerhard, E. R., Johnstone, H. F . , "Photochemical Oxidation of Sulfur Dioxide in A i r , " Ind. Eng. Chem. (1955) 47, 972. Katz, Μ., "Photoelectric Determination of Atmospheric SO Employing Dilute Starch-Iodine Solutions," Anal. Chem. (1950) 22, 1040. Johnstone, H. F . , Coughanowr, D. R., "Absorption of Sulfur Dioxide from A i r : Oxidation in Drops Containing Dissolved Catalysts," Ind. Eng. Chem. (1958) 50, 1169. Johnstone, H. F . , Moll, A. J., "Formation of Sulfuric Acid in Fogs," Ind. Eng. Chem. (1960) 52, 861 3

2

25. 26.

2

2

2

4

27. 28. 29. 30. 31.

6

2

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

190 32. 33.

CHEMICAL REACTION ENGINEERING REVIEWS—HOUSTON Gartrell, F. Ε., Thomas, F. W., Carpenter, S. Β . , "Atmospheric Oxidation of SO i n Coal-Burning Power Plant Plumes," Am. Ind. Hyg. J. (1963) 24, 113. Van Den Heuvel, A. P . , Mason, B. J., "The Formation of Ammonium Sulfate i n Water Droplets Exposed to Gaseous SO and NH ," Q.J.R. Met. Soc. (1963) 89, 271. Urone, P . , Lutsep, H . , Noyes, C. Μ., Parcher, J . F., "Static Studies of Sulfur Dioxide Reactions i n Air," Environ. Sci. Technol. (1968) 2, 611. Cox, R. Α., Penkett, S. Α., "The Photooxidation of Sulphur Dioxide i n Sunlight," Atmospheric Environment (1970) 4, 425 Cox, R. Α., Penkett, S. A. "Photooxidation of Atmospheric SO ," Nature (1971) 229, 486. Cox, R. Α., Penkett, S. Α., "Oxidation of Atmospheric SO by Products of the Ozone-Olefin Reaction," Nature (1971) 230, 321. Cheng, R. T., Corn, M . , Frohliger, J. I., "Contribution to the Reaction Kinetics of Water Soluble Aerosols andSO i n Air at ppm Concentrations," Atmospheric Environment (1971) 5. 987. Cox, R. Α., Penkett, S. Α., "Aerosol Formation from Sulphur Dioxide i n the Presence of Ozone and Olefinic Hydrocarbons," J . Chem. Soc. (1972) 68, 1735. Benarie, Μ., Nonat, Α., Menard, T . , "Etude de la Transforma­ tion de l'anhydride Sulfureux en Acide Sulfurique en Rela­ tion avec les Donnees Climatologiques, dans un Ensembly Urbain i n a Caractere Industriel, Rouen," Atmospheric En­ vironment (1973) 7, 403. Roberts, P. T., Friedlander, S. Κ., "Conversion ofSO to Sulfur Particulate i n the Los Angeles Atmosphere," Env. Health Perspectives (1975) 10, 103. Newman, L., Forrest, J., Manowitz, B. "The Application of an Isotopic Ratio Technique to a Study of the Atmospheric Oxi­ dation of Sulfur Dioxide i n the Plume from an Oil-Fired Power Plant," Atmospheric Environment (1975) 9, 959. Alkezweeny, A. J., Powell, D. C . , "Estimation of Transfor­ mation Rate of SO to SO from Atmospheric Concentration Data," Atmospheric Environment (1977) 11, 179. Forrest, J., Newman, L., "Further Studies on the Oxidation of Sulfur Dioxide i n Coal-Fired Power Plant Plumes," Atmospheric Environment (1977) 11, 465. Forrest, J., Newman, L. "Oxidation of Sulfur Dioxide i n the Sudbury Smelter Plume," Atmospheric Environment (1977) 11, 517. Calvert, J. G., Su, F., Bottenheim, J. W., Strausz, O. P . , "Mechanism of the Homogeneous Oxidation of Sulfur Dioxide in the Troposphere," Atmos. Environ. (1978) i n press. Payne, W. Α., Stief, L. J., Davis, D. D., "A Kinetics Study of the Reaction ofHO with SO and NO," J. Amer. Chem. Soc. (1973) 95, 7614. 2

3

34. 35.

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

36.

2

37. 38.

2

2

39. 40.

41. 42.

43.

2

2

44. 45. 46. 47.

4

2

2

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

5. SEINFELD

Environmental Reaction Engineering

48. Atkinson, R., Perry, R. Α., Pitts, J . Ν., Jr., "Rate Con­ stants for Reactions of the OH Radical withNO (M=Ar and N ) andSO (M=Ar)," J. Chem. Phys. (1976) 65, 306. 49. Cox, R. A., "The Photolysis of Gaseous Nitrous Acid - A Technique for Obtaining Kinetic Data i n Atmospheric Photooxidation Reactions," Int. J. Chem. Kinetics Symp. (1975) 1, 379. 50. Castleman, A. W., Jr., Tang, I . Ν., "Kinetics of the Associ­ ation Reaction ofSO with the Hydroxyl Radical," J. Photochem. (1976/77) 6, 349. 51. Sander, S. P . , Seinfeld, J. Η., "Chemical Kinetics of Homo­ geneous Atmospheric Oxidation of Sulfur Dioxide," Environ. Sci. Technol. (1976) 10, 1114. 52. Wang, C. C., Davis, L. I., Jr., Wu, C. Η., Japar, S., Niki,H., Weinstock, Β., "Hydroxyl Radical Concentrations Measured i n Ambient Air," Science (1975) 189, 797. 53. Larson, T. V . , Horike, N. R., Harrison, H . , "Oxidation of Sulfur Dioxide by Oxygen and Ozone i n Aqueous Solution: A Kinetic Study with Significance to Atmospheric Rate Proces­ ses," Atmospheric Environment (1978) i n press. 54. Novakov, T . , Chang, S. G., Harker, Α. Β . , "Sulfates i n Pollu­ tion Particulates: Catalytic Oxidation ofSO on Carbon Particles," Science (1974) 186, 259. 55. Fuller, E. C . , Crist, R. Η., "The Rate of Oxidation of Sul­ fite Ions by Oxygen," J. Am. Chem. Soc. (1941) 63, 1644. 56. Bassett, Η., Parker, W. G., "The Oxidation of Sulfurous Acid," J. Chem. Soc. Pt. 2. (1951) 1540 57. Junge, C. Ε., Ryan, T. G., "Study of theSO Oxidation i n Solution and its Role i n Atmospheric Chemistry," Q.J.R. Met. Soc., (1958) 84, 46. 58. Foster, P. Μ., "The Oxidation of SO i n Power Station Plumes," Atmospheric Environment (1969) 3, 157. 59. Matteson, J . J., Stober, W., Luther, Η., "Kinetics of the Oxidation ofSO by Aerosols of Manganese Sulfate," Ind. Eng. Chem. Fund. (1969) 8, 677. 60. Chen, T., Barron, C. Η., "Some Aspects of the Homogeneous Kinetics of Sulfite Oxidation," Ind. Eng. Chem. Fund., (1972) 11, 446. 61. Brimblecomb, P . , Spedding, D. J., "The Catalytic Oxidation of Micromolar Aqueous SO -- I. Oxidation i n Dilute Solu­ tions Containing Iron (III). Atmospheric Environment, (1974) 8, 937. 62. Freiberg, J., "Effects of Relative Humidity and Temperature on Iron-Catalyzed Oxidation of SO i n Atmospheric Aerosols," Env. Sci. Tech. (1974) 8, 731. 63. Freiberg, J., "The Mechanism of Iron Catalyzed Oxidation of SO i n Oxygenated Solutions," Atmos. Env. (1975) 9, 661 2

2

2

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

2

2

2

2

2

2

2

2

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

191

Downloaded by UNIV OF CINCINNATI on November 12, 2014 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch005

192

CHEMICAL REACTION ENGINEERING REVIEWS—HOUSTON

64. Barrie, L., Georgii, H. W., "An Experimental Investigation of the Absorption of Sulfur Dioxide by Water Drops Contain­ ing Heavy Metal Ions," Atmospheric Environment (1976) 10, 743. 65. Orel, Α. Ε., Seinfeld, J. Η., "Nitrate Formation i n Atmo­ spheric Aerosols," Environ. S c i . Technol. (1977) 11, 1000. 66. "Aerosols," Chapt. 3 i n Ozone and Other Photochemical Oxi­ dants, National Academy of Sciences (1977). 67. Chu, Κ. J., Seinfeld, J. Η., "Formulation and Initial Appli­ cation of a Dynamic Model for Urban Aerosols," Atmospheric Environment (1975) 9, 375. 68. Hidy, G.M., "Summary of the California Aerosol Characteriza­ tion Experiment," J. Air P o l l . Control Ass. (1975) 25, 1106. 69. Willeke, Κ., Whitby, K. T., Clark, W. E., Marple, V. Α., "Size Distributions of Denver Aerosols - A Comparison of Two Sites," Atmospheric Environment ( 1974) 8, 609. 70. Willeke, Κ., Whitby, K. T., "Atmospheric Aerosols: Size Distribution Interpretation," J. Air P o l l . Control Ass. (1975) 25, 529. 71. Whitby, K. T., L i u , B. Y. H . , Kittleson, D. Β., Progress Report on Sulfur Aerosol Research of the Particle Technology Laboratory of the U. of Minnesota (1977). 72. Grosjean, D., Friedlander, S. Κ., "Gas-Particle Distribution Factors for Organic and Other Pollutants i n the Los Angeles Atmosphere," J. Air P o l l . Control Ass. (1975) 25, 1038. 73. National Academy of Sciences, "Aerosols," Chpt. 3 of Ozone and Other Photochemical Oxidants (1977). 74. Peterson, T. W., Seinfeld, J. Η., "Mathematical Model for Transport, Interconversion and Removal of Gaseous and Par­ ticulate Air Pollutants - Application to the Urban Plume," Atmospheric Environment (1978) 12, xxx 75. Jerskey, Τ. Ν., Seinfeld, J. Η., "Aerosol Formation and Growth i n the Urban Atmosphere," AIChE J., submitted for publication (1978). RECEIVED

February 17, 1978

In Chemical Reaction Engineering Reviews—Houston; Luss, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.