Enzyme-catalyzed asymmetric synthesis. 8. Enantioselectivity of pig

Enzyme-catalyzed asymmetric synthesis. 8. Enantioselectivity of pig liver esterase catalyzed hydrolyses of 4-substituted meso cyclopentane 1,2-diester...
0 downloads 0 Views 1MB Size
J. Org. Chem.

1989,54, 5115-5122

5115

Enzyme-Catalyzed Asymmetric Synthesis. 8.' Enantioselectivity of Pig Liver Esterase Catalyzed Hydrolyses of 4-Substituted Meso Cyclopentane l,2-Diesters Hans-Joachim Gais,* Gerd Bulow,2Andrzej Zatorski,t Mathias Jentsch,2 Peter Maidonis, and Horst Hemmerle2 Institut fur Organische Chemie und Biochemie der Universitat, Albert-Strasse 21, 0-7800 Freiburg, Federal Republic of Germany

Received March 10. 1989 Hydrolyses of meso-l,2-cyclopentanedicarboxylicacid bis(methy1 esters) bearing in the 4-position an oxo, methylene, cis-hydroxy, trans-hydroxy, cis-acetoxy, trans-acetoxy, cis-methoxy, cis-tert-butoxy, ethylenedioxy, propylenedioxy, dimethyl propylenedioxy, and butylidenedioxy substituent, respectively (see 3-14), catalyzed by pig liver esterase (PLE), are enantioselective, giving acid-esters (see 18-29) with ee values ranging from 0 to 87%. There are substrate-induced enantioselectivity reversals depending on the configuration and nature of the substituent in the 4-position. Whereas, e.g., in the hydroxy diester 5 the R-center ester group is hydrolyzed preferentially it is the S-center ester group in the tert-butoxy diester 8. The meso cyclopentane diester derivatives 4-14 are all derived from meso keto diester 3, which in turn can be prepared from meso cyclohexene diester 1 on a preparative scale by routine procedures. PLE-catalyzed hydrolysis of the substituted cyclopentanoid and cyclohexanoid diesters 15 and 16, respectively, whose ester groups are separated by a CH2group from the stereogenic ring atoms proceeds with opposite selectivity as compared to diesters 3 and 1 to give acid-esters 30 and 31, respectively. On the other hand, hydrolysis of diesters 15 and 16 catalyzed by a-chymotrypsin (a-CT) yielded the enantiomeric acid-esters ent-30 and ent-31, respectively. Interpretation of the enantioselectivities within currently proposed selectivity models for PLE was not satisfactory. Some of the acid-esters obtained (see 18, 20,23,30, ent-30, and ent-31) are of potential or demonstrated value as chnal educts for the synthesis of biologically active cyclopentanoids.

Introduction a possible disadvantage for the general use of PLE in asymmetric synthesis, it can provide a synthetic opporThe ability of enzymes to differentiate enantiotopic groups in meso or other prochiral compounds provides excellent opportunities for asymmetric ~ y n t h e s i s . ~ , ~ (1) Part 7 Gais, H.-J.; Zeissler, A.; Maidonis, P. Tetrahedron Lett. Esterases and lipases are among the most attractive en1988,29, 5743. zymes in this regard because they do not need coenzymes (2) Part of the Master's Thesis of (a) M. Jentsch, Technische and lipases act on such substrates even in organic solvents Hochschule Darmstadt, 1986, (b) H. Hemmerle, Technische Hochschule Darmstadt, 1986, and (c) G. Biilow, UniversitAt Freiburg, 1988. of low water ont tent.^ Pig liver esterase (PLE),Galthough (3) (a) Applications of Biochemical Systems in Organic Chemistry; a complex mixture of trimeric isoenzymes which behave Jones, J. B., Sih, C. J., Perlman, D., EMS.; Wiley: New York, 1976. (b) more or less differently in regard to substrate specifity," Fischli, A. In Modern Synthetic Methods; Scheffold, R., Ed.; SalleSauerliinder, 1980; p 269. (c) Wong, C. H.; Whitesides, G. M. Angew. pH dependence,"J inhibition or activation by organic Chem., Int. Ed. Engl. 1985,24,617. (d) Enzymes in Organic Synthesis; solvents" or other compoundsFb and enantioselectivity? Ciba Foundation Symposium 111; Porter, R., Clark, S., Eds.; Pitman: is one of the most useful hydrolases for discrimination London, 1985. (e) Biocatalysts in Organic Synthesis; Tramper, J., van der Plas, H. C., Linko, P., Eds.; Elsevier: Amsterdam, 1985. (0 Enzymes between enantiotopic ester This has been amply as Catalysts in Organic Synthesis; Schneider, M., Ed.; Reidel: Dordemonstrated and is impressively exemplified by the drecht, 1986. (8) Jones, J. B. Tetrahedron 1986,42,3351. (h) BiocataPLE-catalyzed enantioselective hydrolysis of meso diester lysis in Organic Media; Laane, C., Tramper, J., Lilly, M. D., Eds.; Elsevier: Amsterdam, 1987. 1, which proceeds on a 100-mol scale,1° to give in high (4) For enantiotopic group differentiation without enzymes, see: (a) chemical and optical yield acid-ester 2.7g9h90 We have Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. Engl. 1971,10, demonstrated its usefulness as a chiral educt by synthes496. (b) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615. (c) izing" optically active brefeldins,lb*c prostaglandin preMukaiyama, T.; Yamashita, H.; Asami, M. Chem. Lett. 1983, 385. (d) Mukaiyama, T.; Tomioka, I.; Asami, M. Ibid. 1984, 49. (e) Nagao, Y.; cursors,12w carbacyclins,'- and isocarbacyclins,12hFrom Ikeda, T.; Inoue, T.; Yagi, M.; Shiro, M.; Fujita, E. J. Org. Chem. 1985, a synthetic point of view it seems worthy to recall that by 50,4072. (f) Fuji, K.; Node, M.; Terada, S.; Murata, M.; Nagasawa, H.; appropriate chemoselective transformations acid-esters Taga, T.; Machida, K. J. Am. Chem. SOC. 1985,107,6404. (g) Sakamoto, A.; Yamamoto, Y.; Oda, J. Ibid. 1987,109,7188. (h) Hiratake, J.; Inagaki, like 2 can give access to both enantiomers of target comM.; Yamamoto, Y.; Oda, J. J. Chem. SOC.,Perkin Trans. 1 1987, 1053. p0~ndg.7hJW~

-

m C O z M e PLE

o@cozH

-COZMe

-C02Me

1

2

A two-faced aspect of PLE besides its beneficially low substrate specifity and frequently met high enantioselectivity is the substrate structure induced reversal of the latter which has been observed in both the monocycli ~ ~ ~ 9 g 9 ~and p ~ -acyclic ~ J ' s e r i e ~ ~ ~ * * of ~ *substrates. *~g*l While Present address: Polish Academy of Ebdi, Centre of Molecular and Macromolecular Studies, Boczna 5, 90-362 E W , Poland.

0022-3263/ 89/ 1954-5115$01.50/0

(i) Ohshima, M.; Mukaiyama, T. Chem. Lett. 1987,377. Q) Harada, T.; 1987, Hayashiya, T.; Wada, I.; Iwa-ake, N.; Oku, A. J.Am. Chem. SOC. 109,527. (k) Nagao, Y.; Hagiwara, Y.; Hasegawa, Y.; Ochiai, M.; Inoue, T.; Shiro, M.; Fujita, E. Chem. Lett. 1988, 381. (5) (a) Kirchner, G.; Scollar, M. P.; Klibanov, A. M. J.Am. Chem. SOC. 1985,107,7072. (b) Tombo, G. M. R.; Schiir, H.-P.; Busquets, F.; Ghisalba, 0. Tetrahedron Lett. 1986,27,5707. (c) Hemmerle, H.; Gais, H.J. Ibid. 1987, 28, 3471. (d) Wang, Y.-F.; Lalonde, J. J.; Momongan, M.; 1988, 110, 7200. Bergbreiter, D. E.; Wong, C.-H. J. Am. Chem. SOC. (6) (a) Levy, M.; Ocken, P. R. Arch. Biochem. Biophys. 1969,135,259. (b) Ocken, P.; Levy, M. Biochem. Biophys. Acta 1970, 212, 450. (c) Greenzaid, P.; Jencks, W. P. Biochemistry 1971,10,1210. (d) Heymann, E.; Junge, W. Eur. J. Biochem. 1979,95,509. (e) Heymann, E.; Junge, W. Ibid. 1979, 95, 519. (0 Farb, D.; Jencks, W. P. Arch. Biochem. Biophys. 1980,203,214. (g) Farb, D.; Jencks, W. P. Ibid. 1980,203,227. (h) Levine, L.; Baer, A.; Jencks, W. P. Ibid. 1980,203, 236. (i) Lam, L. K. P.; Brown, C. M.; De Jeso, B.; Lym, L.; Toone, E. J.; Jones, J. B. J. Am. Chem. SOC.1988, 110,4409.

0 1989 American Chemical Society

5116 J . Org. Chem., Vol. 54, No. 21, 1989

Gais et al.

tunity for obtaining both enantiomers with one enzyme13 by a "synthetically reversible" substrate modifications8and

Scheme I" ' F o Z M e

(7)(a) Huang, F.-C.; Lee, L. F. H.; Mittal, R. S. D.; Ravikumar, P. R.; Chan, J. A.; Sih, C. J.; Caspi, E.; Eck, C. R. J. Am. Chem. SOC.1975,97, 4144. (b) Ohno, M.; Kobayashi, S.; Iimori, T. Ibid. 1981,103,2405. (c) Chen, C.-S.; Fujimoto, Y.; Sih, C. J. Ibid. 1981,103,3580. (d) Ito, Y.; Shibata, T.; Arita, M.; Sawai, H.; Ohno, M. Ibid. 1981,103,6739.Arita, M.; Adachi, K.; Ito, Y.; Sawai, H.; Ohno, M. Ibid. 1983,105,4049.Ohno, M.; Ito, Y.; Arita, M.; Shibata, T.; Adachi, K.; Sawai, H. Tetrahedron 1984,40,145. (e) Iriuchijima, S.;Hasegawa, K.; Tsuchihashi, G. Agric. Biol. Chem. 1982,46,1907.(f) Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J . Am. Chem. SOC.1982,104,7294. (8) Mohr, P.; WaespeSarcevic, N.; Tamm, C.; Gawronska, K.; Gawronski, J. K. Helu. Chim. Acta 1983,66,2501.(h) Gais, H.-J.; Lukas, K. L. Angew. Chem., Int. Ed. Engl. 1984,23, 142. Gais, H.-J.; Lukas, K. L.; Ball, W. A.; Braun, S.; Lindner, H. J. Justus Liebigs Ann. Chem. 1986,687. Gais, H.-J. Habilitation Thesis, Technische Hochschule Darmstadt, 1981. (i) Schneider, M.; Engel, N.; Boenmann, H. Angew. Chem., Int. Ed. Engl. 1984,23,52. (j) Schneider, M.; Engel, N.; Boenmann, H. Ibid. 1984,23, 54. (k) Schneider, M.; Engel, N.; Honicke, P.; Heinemann, G.; Gorisch, H. Ibid. 1984,23,55. (1) Sabbioni, G.; Shea, M. L.; Jones, J. B. J . Chem. Soc., Chem. Commun. 1984,236. Sabbioni, G.; Jones, J. B. J.Org. Chem. 1987, 52,4565.(m) Francis, C. J.;Jones, J. B. J. Chem. SOC.,Chem. Commun. 1984,579. (n) Wang, Y.-F.; Chen, C.-S.; Girdaukas, G.; Sih, C. J. J.Am. Chem. SOC.1984,106,3695.(0)Kobayashi, S.;Kamiyama, K.; Iimori, T.; Ohno, M. Tetrahedron Lett. 1984,25,2557.(p) Jones, J. B.; Hinks, R. S.; Hultin, P. G.Can. J. Chem. 1985,63,452. (4)Wang, Y.-F.; Sih, C. J. Tetrahedron Lett. 1984,25,4999.(r) Laumen, K.; Schneider, M. Ibid. 1984,25,5875.Laumen, K.; Reimerdes, E. H.; Schneider, M. Ibid. 1985, 26,407. (s) Bjorkling, F.; Boutelje, J.; Gatenbeck, S.; Hult, K.; Norin, T.; Szmulik, P. Tetrahedron 1985,41, 1347. Bjorkling, F.; Boutelje, J.; Gatenbeck, S.; Hult, K.; Norin, T. Appl. Microbiol. Biotechnol. 1985,21, 16. (t) Laumen, K.; Schneider, M. Tetrahedron Lett. 1985,26,2073.(u) Bloch, R.; Guib6-Jampel, E.; Girard, C. Ibid. 1985,26,4087.(v) Bjorkling, F.; Boutelje, J.; Gatenbeck, S.; Hult, K.; Norin, T. Ibid. 1985,26,4957. (w) Kurihara, M.;Kamiyama, K.; Kobayashi, S.; Ohno, M. Ibid. 1985,26, 5831. (x) Kitazume, T.; Sato, T.; Kobayashi, T.; Lin, J. T. J. Org. Chem. 1986,51, 1003. (y) Bjorkling, F.; Boutelje, J.; Gatenbeck, S.; Hult, K.; Norin, T.; Szmulik, P. Bioorg. Chem. 1986,14,176. (z) Lam, L. K. P.; Hui, R. A. H. F.; Jones, J. B. J . Org. Chem. 1986,51,2047. (8) (a) Adachi, K.; Kobayashi, S.; Ohno, M. Chimia 1986,40,311.(b) Seebach, D.; Eberle, M. Ibid. 1986,40,315.Eberle, M.; Egli, M.; Seebach, D. Helu. Chim. Acta 1988,71,1. (c) Guanti, G.; Banfi, L.; Narisano, E.; Riva, R.; Thea, S. Tetrahedron Lett. 1986,27, 4639. (d) Mohr, P.; Rosslein, L.; Tamm, C. Helu. Chim. Acta 1987,70,142. ( e )Bjorkling, F.; Boutelje, J.; Hjalmarsson, M.; Hult, K.; Norin, T. J. Chem. Soc., Chem. Commun. 1987,1041. (f) Morimoto, Y.;Achiwa, K. Chem. Pharm. Bull. 1987,35, 3845. (g) Luyten, M.; Miiller, S.; Herzog, B.; Keese, R. Helu. Chim. Acta 1987,70,1250. (h) Roy, R.; Rey, A. W. Tetrahedron Lett. 1987,28,4935.(i) Suemune, H.; Okano, K.; Akita, H.; Sakai, K. Chem. Pharm. Bull. 1987,35, 1741. (j) Suemune, H.; Harabe, T.; Xie, Y.-F.; Sakai, K. Chem. Pharm. Bull. 1988,36,4337. (k) Zemlicka, J.; Craine, L. E.; Heeg, M.-J.; Oliver, J. P. J. Org. Chem. 1988,53,937.(1) Santaniello, E.; Chiari, M.; Ferraboschi, P.; Trave, S. Ibid. 1988,53,1567.(m) Baader, E.;Bartmann, W.; Beck, G.; Bergmann, A.; Fehlhaber, H.-W.; Jendralla, H.; Kessler, K.; Saric, R.; Schiissler, H.; Teetz, V.; Weber, M.; Wess, G. Tetrahedron Lett. 1988,29,2563.(n) Nakada, M.; Kobayashi, S.; Ohno, M. Ibid. 1988,29,3951. (0)Klunder, A. J. H.; van Gastel, F. J. C.; Zwanenburg, B. Ibid. 1988,29,2697. (p) Baudin, G.; Gliinzer, B. I.; Swaminathan, K. S.; Vasella, A. Helu. Chim. Acta 1988,71,1367.(4) Lam, L. K. P.; Jones, J. B. J . Org. Chem. 1988,53,2637. (r) Lam, L. K.-P.; Jones, J. B. Can. J . Chem. 1988,66, 1422. (s) Cotterill, I. C.; Roberts, S. M.; Williams, J. 0. J. Chem. Soc., Chem. Commun. 1988, 1628. (t) Kuhn, T.; Ta", C.; Riesen, A,; Zehnder, M. Tetrahedron Lett. 1989,30,693. (9)For enantiomer differentiation with PLE, see: (a) Dakin, H. D. Proc. Chem. Soc. 1903,29, 161. (b) Willstatter, R.; Memmen, F. Hoppe-Seyler's Z . Physiol. Chem. 1924,138,216.(c) Baumann, E.; Ullmann, E.; Schuegraf, A.; Boahart, R. Biochem. 2.1954,325,170.(d) Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.;Sih, C. J. J.Am. Chem. SOC.1982,104,7294. ( e ) Wilson, W. K.; Baca, S. B.; Barber, Y. J.; Scallen, T. J.; Morrow, C. J. J . Org. Chem. 1983,48,3960. (f) Whitesell, J. K.; Lawrence, R. M. Chimia 1986,40,318.(g) Crout, D. H. G.; Gaudet, V. S. B.; Laumen, K.; Chem. Commun. 1986,808. (h) RaSchneider, M. P. J. Chem. SOC., maswamy, S.; Hui, R. A. H. F.; Jones, J. B. J. Chem. Soc., Chem. Commun. 1986,1545. (i) Klunder, A. J. H.; Huizinga, W. B.; Hulshof, A. J. M.; Zwanenburg, B. Tetrahedron Lett. 1986,27,2543.(j) Sicsic, S.;Leroy, J.; Wakselman, C. Synthesis 1987,155. (k) Sicsic, S.;Ikbal, M.; Goffic, F. L. Tetrahedron Lett. 1987,28,1887. (1) Toone, E. J.; Jones, J. B. Can. J. Chem. 1987,65,2722.(m) Morimoto, Y.; Terao, Y.; Achiwa, K. Chem. Pharm. Bull. 1987,35,2266.(n) Naemura, K.; Mataumura, T.; Komatsu, M.; Hirose, Y.; Chikamatsu, H. J.Chem. Soc., Chem. Commun. 1988,239. (0)Suemune, H.; Tanaka, M.; Obaishi, H.; Sakai, K. Chem. Pharm. Bull. 1988,36,15. (p) Bianchi, D.;Cabri, W.; Cesti, P.; Francalanci, F.; Ricci, M. J . Org. Chem. 1988,53, 104. (9) Guib6-Jampel, E.; Rousseau, G.; Blanco, L. Tetrahedron Lett. 1989, 30,67.

C0,Me COzH

~

0