14
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on September 10, 2015 | http://pubs.acs.org Publication Date: August 25, 1986 | doi: 10.1021/bk-1986-0317.ch014
Enzymic Formation of Volatile CompoundsinShiitake Mushroom (Lentinus edodes Sing.) Chu-Chin Chen1,2, Su-Er Liu1, Chung-May Wu1, and Chi-Tang Ho2
Food Industry Research and Development Institute (FIRDI), P.O. Box 246, Hsinchu, 30099, Taiwan, Republic of China 2 Department of Food Science, Rutgers University-The State University of New Jersey, New Brunswick, NJ 08903 1
Volatile compounds of Shiitake mushroom (Lentinus edodes Sing.) are composed of eight-carbon containing alcohols and sulfur compounds. 1-Octen-3-ol and 2octen-1-ol are the major C8-compounds comprising the "mushroom" character of Shiitake mushroom. The characteristic "sulfurous" note of Shiitake mushroom is composed of cyclic S-compounds, such as lenthionine (C2 H4 S5 , 1,2,3,5,6-pentathiepane), 1,2,4,5-tetrathiane (C2H4S4) and 1,2,4-trithiolane(C2 H 4 S 3 ). Formation of C8-compounds and S-compounds result from enzymic activities during rupture and/or drying of the tissue. C8-compounds are formed enzymically from linoleic acid. The formation of S -compounds involves two processes, enzymic reactions of lentinic acid as substrate and non-enzymic polymerization of methylene disulfide. Shiitake (Lentinus edodes Sing.) is an edible mushroom highly prized in the Orient, especially Japan and China. Traditionally, Shiitake mushrooms were grown on segmented rotten wood which was placed in a cool, humid place. Several months are required before harvest. This ancient technique is s t i l l used in some countries. In Taiwan, an accelerated technique has been developed which employs treated and compressed sawdust as the growth medium. This method significantly reduces the time to harvest. Due to the difficulties of postharvest storage, most of the mushrooms are preserved by heat drying. The drying process has to be conducted slowly in order to produce the characteristic sulfurous note of this mushroom. Sulfurous Compounds in Shiitake Mushroom Fresh Shiitake mushrooms exhibit only a slight odor, but upon drying and/or crushing, a characteristic sulfurous aroma gradually develops. Lenthionine ( 1, 2, 3, 5, 6-pentathiepane, C2H4S5), a cyclic S-compound known to possess the characteristic aroma of Shiitake 0097-6156/ 86/ 0317-0176$06.00/ 0 © 1986 American Chemical Society In Biogeneration of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on September 10, 2015 | http://pubs.acs.org Publication Date: August 25, 1986 | doi: 10.1021/bk-1986-0317.ch014
14.
CHEN ET AL.
Volatile Compounds in Shiitake Mushroom
111
mushroom, was f i r s t i d e n t i f i e d in the d r y p r o d u c t and s u b s e q u e n t l y synthesized by r e a c t i o n o f methylene c h l o r i d e and sodium sulfide ( J l ' 2l* à) · O t h e r c y c l i c S-compounds i d e n t i f i e d in d r y mushroom and subsequently synthesized include: 1,2,4-trithiolane (C2 H4 S3 ) , 1, 2 , 4 , 6 - t e t r a t h i e p a n e ( C 3 H 6 S 4 ) and 1, 2 , 3 , 4 , 5 , 6 - h e x a t h i e p a n e (CH2S5) (2). The above mentioned c y c l i c S-compounds, w i t h the e x c e p t i o n o f 1,2,3,4,5,6-hexathiepane, were a l s o i d e n t i f i e d in a s p e c i e s o f r e d a l g a e ( C h o n d r i a c a l i f o r n i c a ) (_4) . 1, 2 , 4 - T r i t h i o l a n e was i d e n t i f i e d in the steam d i s t i l l a t e o f c r u s h e d S h i i t a k e mushrooms as the only c y c l i c S-compound (_5, 6) . T h i s compound has a l s o been r e p o r t e d in the v o l a t i l e compounds o f egg (7_) and as a r e a c t i o n p r o d u c t o f w i t h D - g l u c o s e (_8) . Iwami e t a l . (9^, H), 11 ) and Yasumoto e t a l . (12) p r o p o s e d that cyclic S-compounds in S h i i t a k e mushroom o r i g i n a t e d from a common p r e c u r s o r , lentinic acid, which is a d e r i v a t i v e of 7 glutamyl cysteine sulfoxide. There a r e two enzymes which are responsible for the c n v e r s i o n o f l e n t i n i c a c i d i n t o volatile Scompounds, If - g l u t a m y l t r a n s p e p t i d a s e and c y s t e i n e s u l f o x i d e l y a s e (C-S lyase). F i g u r e 1 shows the pathway o r i g i n a l l y proposed by Yasumoto e t a l . (12) f o r the f o r m a t i o n o f S-compounds in S h i i t a k e mushroom. E i g h t - C a r b o n Compounds in S h i i t a k e Mushroom l-0cten-3-ol o c c u r s in many mushroom s p e c i e s (J^, \A_, 15) and contributes s i g n i f i c a n t l y t o the "mushroom" c h a r a c t e r of species such as A g a r i c u s c a m p e s t r i s (16, 17) and A g a r i c u s b i s p o r u s (18, 19). Kameoka and H i g u c h i (5_) were the f i r s t t o r e p o r t the p r e s e n c e of C8-compounds in the steam d i s t i l l e d volatiles of crushed mushrooms and l-octen-3-ol was the most abundant C8-compound identified. O t h e r C8-compound i d e n t i f i e d were 3 - o c t a n o l , 1-octanol and 2-octen-l-ol. Enzymic F o r m a t i o n o f
E i g h t - C a r b o n Compounds
It has been e s t a b l i s h e d t h a t in many e d i b l e mushrooms such as Agaricus c a m p e s t r i s and A g a r i c u s b i s p o r u s , the C8-compounds are formed e n z y m i c a l l y d u r i n g the o x i d a t i o n o f l i n o l e i c a c i d (16-20). In the present study, the i d e n t i f i c a t i o n o f l - o c t e n - 3 - o l and 2octen-l-ol as major C8-compounds in macerated fresh Shiitake mushrooms s u g g e s t e d a s i m i l a r b i o s y n t h e t i c o r i g i n . The amount of C8-compounds (primarily l-octen-3-ol and 2-octen-l-ol) in the blanched (97°C, 8 min) o r the h o t - a i r d r i e d (commercial process) Shiitake mushrooms was only 1 - 4 % of t h a t of macerated fresh Shiitake mushrooms, c o n f i r m i n g a g a i n the enzymic o r i g i n o f these compounds. It is w e l l known t h a t the amount of volatile C8-compounds p r o d u c e d in e d i b l e mushrooms can be g r e a t l y enhanced by a d d i n g p u r e linoleic acid to the enzymic reaction mixture (±2_r 20) . Practically, the base h y d r o l y s a t e o f e d i b l e o i l s r i c h in linoleic a c i d is a l e s s e x p e n s i v e s u b s t i t u t e f o r p u r e l i n o l e i c a c i d . T a b l e I shows the v o l a t i l e compounds i d e n t i f i e d in the enzymic reaction mixture c o n t a i n i n g f r e s h S h i i t a k e musrooms and the base h y d r o l y s a t e of sunflower o i l . As compared t o the c o n t r o l sample, a
In Biogeneration of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
178
BIOGENERATION O F A R O M A S
Ο 1
CH S0 (c H 0 3
3
2
e
S )SCH CHNHC0CH CH CHC00H COOH NH
2
2
2
2
2
2
7-GLUTAMYL
TRANSPEPTIDASE
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on September 10, 2015 | http://pubs.acs.org Publication Date: August 25, 1986 | doi: 10.1021/bk-1986-0317.ch014
^ glutamic acid
+7-glutamylpeptide
Ο CH S0 ( C H 0 S ) S C H X H NH COOH
2
3
2
3
e
2
2
2
CYSTEINE SULFOXIDE LYASE
p y r u v i c a c i d + ammonia Ο 3
C H S 0 ( C H 0 S ) SH 3
2
3
6
2
2
^
spontaneously
\
spontaneously acetaldehyde
polymerizat ion
^ 5
6 S
• "
S
x
7 ,s-s
s_
x
s
c
y H
Figure
1.
Proposed
Shiitake
mushroom.
lentinic
acid;
disulfide;
(5)
(3)
(1) a
acid;
(7)
s
2
formation of
lentinic
thiosulfinate,
lenthionine;
x
X c
H
2
pathway o f
s
S-compounds
(2)
SE-3;
in
des-glutamyl (4)
methylene
1,2,3,4,5,6-hexathiepane.
In Biogeneration of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
14.
CHEN ET AL.
179
Volatile CompoundsinShiitake Mushroom
5.5 f o l d i n c r e m e n t o f v o l a t i l e compounds was o b s e r v e d in sample t o which sunflower o i l h y d r o l y s a t e was added. This is the first report o f enzymic c o n v e r s i o n o f l i n o l e i c a c i d i n t o C8-compounds in S h i i t a k e mushroom. The major v o l a t i l e C8-compounds i d e n t i f i e d in t h i s m i x t u r e were l - o c t e n - 3 - o l (79.83%) and 2 - o c t e n - l - o l (5.86%).
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on September 10, 2015 | http://pubs.acs.org Publication Date: August 25, 1986 | doi: 10.1021/bk-1986-0317.ch014
Table I. Composition of v o l a t i l e components of Shiitake mushroom blended with base hydrolysate of sunflower o i l .
No.
Compound
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.
dimethyl d i s u l f i d e hexanal 2-alkanone 3-octanone l-octen-3-one dimethyl t r i s u l f i d e 3-octanol l-octen-3-ol 2-octenal 2-decanone 1-octanol 2-octen-l-ol 1-methylthio-dimethy1 disulfide 1,2,4-trithiolane
14.
1
I CW-20M
Identif ication
1044 1056 1146 1224 1267 1325 1382 1427 1448 1470 1522 1577
GC, GC, MS. GC, GC, GC, GC, GC, MS. GC, GC, GC,
1587 1660
MS. GC,
%
MS. MS. MS.
0.69 0.05 trace 2.70 0.56 3.72 0.19 79.83 0.09 0.16 1.08 5.86
MS.
0.22 0.19
MS MS. MS. MS. MS. MS. MS.
1.linear retention indices on f u s e d silica capillary column (Carbowax 20M), u s i n g η - p a r a f f i n s (C8 - C22) as r e f e r e n c e s .
T r e s s l et a l . (16, 17) had shown t h a t l i n o l e n i c a c i d (C 18:3) could also be enzymically converted to volatile C8-compounds. However, 1 , 5 - o c t a d i e n - 3 - o l and 2 , 5 - o c t a d i e n - l - o l would be two major C8-compounds formed. No s i g n i f i c a n t amount o f 1,5-octadien-3-ol and 2 , 5 - o c t a d i e n - l - o l c o u l d be d e t e c t e d in the v o l a t i l e components of S h i i t a k e mushrooms b l e n d e d w i t h s u n f l o w e r o i l h y d r o l y s a t e ( T a b l e I). I n s t e a d , s i g n i f i c a n t amount o f 1 , 5 - o c t a d i e n - 3 - o l o r 2 , 5 - o c t a dien-l-ol was observed in the sample to which soybean oil hydrolysate was added (20). T h i s is in good agreement with the linolenic acid c o n t e n t in s u n f l o w e r o i l ( t r a c e ) and soybean oil ( c a . 7%). T r e s s l et a l . (16) p r o p o s e d a enzymic pathway o f C8-compounds from linoleic acid. Enzymes i n v o l v e d in the pathway are : lipoxygenase, h y d r o p e r o x i d e l y a s e and o x i d o r e d u c t a s e . The 13- and 9-hydroperoxides o f l i n o l e i c a c i d were p r o p o s e d as t h e p r o d u c t s o f lipoxygenase a c t i o n and the p r e c u r s o r s o f C8-compounds. Enzymic r e d u c t i o n o f l - o c t e n - 3 - o n e t o l - o c t e n - 3 - o l in A g a r i c u s b i s p o r u s has been demonstrated (21), which is s i m i l a r to the reaction of o x i d o r e d u c t a s e mentioned by T r e s s l e t a l . (16). Wurzenberger and
In Biogeneration of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
180
BIOGENERATION OF AROMAS
Grosch (2^2, 23) proposed a n o t h e r pathway which also involved l i p o x y g e n a s e and h y d r o p e r o x i d e l y a s e . However, in t h e i r proposed mechanism, 10-hydroperoxide o f l i n o l e i c a c i d was s u g g e s t e d as t h e intermediate of l - o c t e n - 3 - o l .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on September 10, 2015 | http://pubs.acs.org Publication Date: August 25, 1986 | doi: 10.1021/bk-1986-0317.ch014
Enzymic F o r m a t i o n
of Sulfurous
Compounds
The enzymic activities i n v o l v e d in f o r m i n g S-compounds can be clearly shown by comparing t h e S-compounds formed at pH 9.0 (fresh mushrooms b l e n d e d in pH 9.0 b u f f e r e d s o l u t i o n ) and in t h e c o n t r o l (fresh mushrooms b l e n d e d in c h l o r o f o r m ) , as shown in T a b l e I I . Since t h e enzymes were t o t a l l y i n a c t i v a t e d by c h l o r o f o r m , only trace amounts o f S-compounds were d e t e c t e d in t h e c o n t r o l sample. A n a l y s e s o f S-compounds in commercial d r y S h i i t a k e mushrooms p r o v e d similar r e s u l t s (6). On t h e o t h e r hand, enzymic activities in forming S-compounds were a f f e c t e d by t h e pH d u r i n g b l e n d i n g (6^. The maximal pH d u r i n g enzymic f o r m a t i o n o f S-compounds is around 9.0. The methods used in t h i s study w i l l be p u b l i s h e d in d e t a i l (Chen and Ho, 1986). There a r e 19 S-compounds which have been identified in S h i i t a k e mushrooms ( T a b l e I I ) , and F i g u r e 2 shows t h e s t r u c t u r e s o f t h e s e compounds. These S-compounds can be c l a s s i f i e d i n t o 4 major groups, c o n t a i n i n g 1, 2, 3 and 6 c a r b o n s . F o u r t e e n o u t o f t h e 19 S-compounds reported in t h i s s t u d y a r e new t o t h e v o l a t i l e s of S h i i t a k e mushroom (compounds w i t h a * in T a b l e I I ) . Carbon disulfide, dimethyl trisulfide, 1,2,4-trithiolane, 1,2,4,5-tetrathiane, 1,2,3,5-tetrathiane and l e n t h i o n i n e were t h e dominant S-compounds d e t e c t e d when t h e mushrooms were b l e n d e d in pH 9.0 b u f f e r e d s o l u t i o n . I t is i n t e r e s t i n g t o note t h a t t h e i s o m e r s , 1 , 2 , 4 , 5 - t e t r a t h i a n e and 1 , 2 , 3 , 5 - t e t r a t h i a n e , have been t e n t a t i v e l y i d e n t i f i e d in r e d a l g a e ( C h o n d r i a c a l i f o r n i c a ) (_4) . Together with 1,2,4-trithiolane, 1 , 2 , 4 , 6 - t e t r a t h i e p a n e and l e n t h i o n i n e , S h i i t a k e mushroom and r e d a l g a e have in common f i v e S-compounds. I t is quite p o s s i b l e t h a t t h e s e two s p e c i e s s h a r e t h e same mechanism which l e a d s t o t h e f o r m a t i o n o f above mentioned S-compounds. With the exception o f carbon d i s u l f i d e ( C S 2 ) / a l l t h e Scompound l i s t e d in F i g u r e 2 have e i t h e r t h e -CH -S- o r -S-CH -Sgrouping in their structures. The -S-CH -S- f u n c t i o n a l g r o u p i n g is s i m i l a r t o methylene d i s u l f i d e , a proposed b u i l d i n g block f o r the p o l y m e r i z a t i o n o f S-compounds (_2) . I t is worth n o t i n g t h a t a l l t h e S-compounds i d e n t i f i e d in t h e enzymic r e a c t i o n m i x t u r e c o u l d a l s o be d e t e c t e d in t h e p r o d u c t s o f synthetic reaction of lenthionine or 1 , 2 , 4 - t r i t h i o l a n e . Therefore, J. is reasonable t o assume t h a t c h e m i c a l r e a c t i o n s may be t h e dominant f o r c e s in t h e f i n a l s t a g e s o f S-compounds f o r m a t i o n . The report of I t o e t a l . {24) s u p p o r t s t h e above assumption. They found t h a t t h e f o r m a t i o n o f l e n t h i o n i n e in d r y S h i i t a k e mushrooms was a f f e c t e d by pH and t e m p e r a t u r e d u r i n g r e h y d r a t i o n . Since dry mushrooms s h o u l d be v o i d o f enzymic a c t i v i t i e s , t h e f i n d i n g s o f I t o e t a l . (24) might a c t u a l l y r e s u l t from non-enzymic r e a c t i o n o f an i n t e r m e d i a t e (such as methylene d i s u l f i d e ) . Figure 3 shows t h e e f f e c t o f pH on t h e f o r m a t i o n o f 4 major cyclic S-compounds (1,2,4,5-tetrathiane, lenthionine, 1,2,4trithiolane and 1,2,3,5-tetrathiane). The results show that p r o d u c t f o r m a t i o n is f a v o r e d around pH 9 . 0 . Consistent with these findings, p r e v i o u s r e p o r t s by Iwami e t a l . (9, Η ) , Π_) showed t h a t 2
2
In Biogeneration of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
2
14.
CHEN ET AL.
181
Volatile Compounds in Shiitake Mushroom
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on September 10, 2015 | http://pubs.acs.org Publication Date: August 25, 1986 | doi: 10.1021/bk-1986-0317.ch014
T a b l e I I . V o l a t i l e s u l f u r o u s compounds i d e n t i f i e d in S h i i t a k e mushroom
No
1
l2
Compound
1. 2. 3. 4. 5. 6. 7. 8.
9.0
9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.
* methane t h i o l carbon d i s u l f i d e methyl hydrodjLSulfide dithiomethane dimethyl d i s u l f i d e 1,3-dithietane dimethyl t r i s u l f i d e methylthiometh^lhydrodisulfide 1,2,4-trithiolane dimethyl t e t r a s u l f i d e * 1,3,5-trithiane * 1,2,4,5-tetrathiane * 2,3,5,6-tetrathioheptane * 1,2,3,5-tetrathiane * 1,2,4,6-tetrathiepane lenthionine 1,2,4,7,9,10hexathiododecane * 1,2,4,5,7-pentathiocane * 1,2,3,5,6,8-hexathionane * +
+
ID
%
M.W.
OV-1
613 625 686 692 745 786 949
48 76 80 80 94 92 126
0.62 4.92 0.17 0.16 + + 2.72
1011 1065 1194 1259 1310 1327 1338 1477 1590
122 124 158 138 156 172 156 170 188
1.04 14.04 + + 42.34 + 2.18 + 39.70
1701 1749 1901
278 202 234
+ + +
contl
_ +
-
+ + 1.09
0.93
+
0.63
-
-
MS. GC, MS. MS. MS. GC, MS. MS. GC, MS. MS. GC, MS. GC, MS. MS. MS. MS. MS. MS. GC, MS. MS. MS. MS.
1. numbers r e f e r t o t h e s t r u c t u r e s in F i g u r e 2 . 2. l i n e a r r e t e n t i o n i n d i c e s on OV-1 f u s e d s i l i c a c a p i l l a r y column, u s i n g η-paraffins (C8 - C22) as r e f e r e n c e s . * f i r s t r e p o r t e d in S h i i t a k e mushroom v o l a t i l e s .
In Biogeneration of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
182
BIOGENERATION OF AROMAS
1C:
1 CH SH
2 CS
2C:
5 CH3SSCH3
7 CH3SSSCH3
3
2C:
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on September 10, 2015 | http://pubs.acs.org Publication Date: August 25, 1986 | doi: 10.1021/bk-1986-0317.ch014
(Cy C
s
y
1 1 C)
6 CH
N 2
CH
16 CH CH "SSS' 2
2
3C:
11 CH
(Cyc
2
1 ic)
H 6C:
CH
2
S
~'
15 CH
—
2
CH
2
12 CH
2
x
CH S-S'
2
10 CH SSSSCH 3
14 CH X
CH SSS' 2
17 C H S S C H S C H C H S C H S S C H
3
2
2
2
2
18 CH
CH
2
.sss 2
19 C H
H
H,
Figure 2. Structures of S-compounds identified in the enzymic r e a c t i o n m i x t u r e o f S h i i t a k e mushrooms. Numbers r e f e r t o t h o s e l i s t e d in T a b l e I I .
-O 12,4,5 -tet rat h iane _
40 J
x
lenthionine
_ i 24-tr i thiolane #
_ & 1,2,3,5-tet rat h i ane
20 J
pH Figure 5.0 t o
3. 10.0
2
s
CH
2
"sscs' 2
2
2
2
2
3
H
3
3
2
13 C H 3 S S C H S S C H
> >s _
8 CH SCH SSH
X
3C:
—
2
3
9 CH CH S-S'
2
4 HS-CH -SH
3 CH SSH
2
F o r m a t i o n o f 4 major c y c l i c at 1.0 u n i t p e r i n t e r v a l .
S-compounds
from
In Biogeneration of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
pH
2
2
3
14. CHEN ET AL.
Volatile CompoundsinShiitake Mushroom
183
the optimal pH for 7-glutamyl transpeptidase was around 7.6 and the optimal pH for C-S lyase was around 9.0 or higher. Acknowledgment
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on September 10, 2015 | http://pubs.acs.org Publication Date: August 25, 1986 | doi: 10.1021/bk-1986-0317.ch014
Great thanks are extended to Tsen-Chien Lee for supplying the fresh Shiitake mushroom and Timothy J. Pelura for reviewing the manuscript. Chu-Chin Chen is supported by the Council of Agriculture, Republic of China. New Jersey Agricultural Experiment Station, Publication No. D-10205-1-86 supported by State Funds and Hatch Regional Fund NE-116 Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13 14. 15. 16.
17. 18. 19. 20 21 22. 23. 24.
Morita, K.; Kobayashi, S. Tetrahedron Lett. 1966, 6, 573. Morita, K.; Kobayashi, S. Chem. Pharm. Bull. 1967, 15, 988. Wada, S.; Nakatani, H.; Morita, K. J. Food Sci. 1967, 32, 559. Wratten, S. J.; Faulkener, D. J. J. Org. Chem. 1976, 41, 2456. Kameoka, H.; Higuchi, M. Nippon Nogei Kagaku Kaishi 1976, 50, 185. Chen, C.-C.; Chen, S.-D.; Chen, J.-J.; Wu, C.-M. J. Agric. Food Chem. 1984, 32, 999. Gil, V.; MacLeod, A. J. J. Agric. Food Chem. 1981, 29, 484. Sakaguchi, M.; Shibamoto, T. J. Agric. Food Chem. 1978, 26, 1260. Iwami, K.; Yasumoto, K.; Nakamura, K.; Mitsuda, H. Agric. Biol. Chem. 1975, 39, 1933. Iwami, K.; Yasumoto, K.; Nakamura, K.; Mitsuda, H. Agric. Biol. Chem. 1975, 39, 1941. Iwami, K.; Yasumoto, K.; Nakamura, K.; Mitsuda, H. Agric. Biol. Chem. 1975, 39, 1947. Yasumoto, K.; Iwami, K.; Mitsuda, H. Mushroom Sci. 1976, 9, 371. Picardi, S. M.; Issenberg, P. J. Agric. Food Chem. 1973, 21, 959. Pyysalo, H. Acta Chem. Scand., Ser. Β 1976, B30, 235. Maga, J. A. J. Agric. Food Chem. 1981, 29, 1. Tressl, R.; Bahri, D.; Engel, K.-H. In "Lipid Oxidation in Fruits and Vegetables"; Teranishi, R.; Barrera-Benitez, H. Eds.; ACS SYMPOSIUM SERIES No. 170, American Chemical Society: Washington, D.C., 1980; pp. 213-232. Tressl, R.; Bahri, D.; Engel, K.-H. J. Agric. Food Chem. 1982, 30, 89. Wurzenberger, M.; Grosch, W. Z. Lenbensm.-Unters.-Forsch. 1982, 175, 186. Wurzenberger, M.; Grosch, W. Ζ.-Lenbensm.-Unters.-Forsch. 1983, 176, 16. Chen, C.-C.; Wu, C.-M. Chinese Patent, 1983, No. 19234. Chen, C.-C.; Wu, C.-M. J. Agric. Food Chem. 1984, 32, 1342. Wurzenberger, M.; Grosch, W. Biochim. Biophy. Acta 1984a, 794, 18. Wurzenberger, M.; Grosch, W. Biochim. Biophy. Acta 1984b, 794, 25. Ito, Y.; Toyada, M.; Suzuki, H.; Iwaida, M. 1978, J. Food Sci. 43, 1287.
RECEIVED February 3, 1986 In Biogeneration of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.