19 The Nonanalytic Equation of State for Pure Fluids Applied to Propane
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch019
ROBERT D. GOODWIN Thermophysical Properties Division, Center for Mechanical Engineering Process Technology, National Bureau of Standards, Boulder, CO 80303
and
An isochoric equation is designed for computing thermo dynamic functions of fluids. It has its origin on the liquidvapor coexistence boundary, and it yields a maximum in isochoric specific heats at the critical point. Its basic structure is similar to that of the Beattie-Bridgeman equa tion. With only five least-squares coefficients, it describes a P(ρ,Τ) surface free of irregularities. A modified function in the equation is presented, for the problem of behavior in the limit of low densities, especially as required for integra tion of the thermodynamic equation of state, to obtain the change of internal energy along isotherms. Recently derived vapor pressures for propane at low temperatures also have been introduced. Constants are reported for all equations, as needed for computations on propane.
A
n i s o c h o r i c e q u a t i o n has b e e n d e v e l o p e d for c o m p u t i n g t h e r m o d y n a m i c ^ f u n c t i o n s of p u r e
fluids.
It has its o r i g i n o n a g i v e n l i q u i d - v a p o r
coexistence b o u n d a r y , a n d it is s t r u c t u r e d to be consistent w i t h the k n o w n b e h a v i o r of specific heats, e s p e c i a l l y a b o u t the c r i t i c a l p o i n t . T h e n u m b e r of
adjustable, least-squares coefficients
i r r e g u l a r i t i e s i n t h e c a l c u l a t e d F(p,T) perature-dependent
has b e e n m i n i m i z e d to
avoid
surface b y u s i n g selected, t e m
f u n c t i o n s w h i c h are q u a l i t a t i v e l y consistent
isochores a n d specific heats o v e r the entire surface.
with
Several nonlinear
p a r a m e t e r s a p p e a r i n these f u n c t i o n s . A p p r o x i m a t e l y f o u r t e e n a d d i t i o n a l constants a p p e a r i n a u x i l i a r y equations, n a m e l y the v a p o r - p r e s s u r e a n d orthobaric-densities P(p,T)
equations,
w h i c h provide
the
boundary
equation-of-state surface. This chapter not subject to U.S. copyright. Published 1979 American Chemical Society In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
for
the
346
EQUATIONS
OF
STATE
T h e r a n g e of v a l i d i t y of the present e q u a t i o n of state is f o r a l l
fluid
states at densities to the t r i p l e - p o i n t l i q u i d d e n s i t y , t e m p e r a t u r e s f r o m the t r i p l e - p o i n t to infinity, a n d pressures to at least 700 b a r . V a p o r pressures of the s o l i d at t e m p e r a t u r e s b e l o w the t r i p l e p o i n t are r e p l a c e d b y a n e x t r a p o l a t i o n of the v a p o r - p r e s s u r e c u r v e to absolute z e r o t e m p e r a t u r e , a n d a c o m p l e t e l y n e w t y p e of f o r m u l a t i o n is p r e s e n t e d for densities of saturated v a p o r f r o m absolute z e r o to the c r i t i c a l - p o i n t t e m p e r a t u r e . S o m e c o m m e n t s o n a c c u r a c y are a p p r o p r i a t e i n this i n t r o d u c t i o n . T h e single m o t i v a t i o n for the present w o r k is the fact t h a t e x p e r i m e n t a l d a t a almost i n v a r i a b l y are of m u c h l o w e r absolute a c c u r a c y t h a n
PpT Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch019
r e q u i r e d for d e r i v e d t h e r m o d y n a m i c p r o p e r t i e s , s u c h as specific heats. W i t h a n excessive n u m b e r of adjustable, least-squares coefficients, o b t a i n s a P(p,T)
one
surface w i t h i r r e g u l a r i t i e s i n the d e r i v a t i v e s . A t the
c r i t i c a l p o i n t , e.g., the d e r i v a t i v e s dp/dT a n d dp/dP b e c o m e infinite, s u c h t h a t t h e slightest inconsistencies i n t e m p e r a t u r e a n d / o r pressure scales b e t w e e n different l a b o r a t o r i e s m u s t y i e l d gross d e v i a t i o n s of densities f r o m a n y c a l c u l a t e d surface. F o r c o m p r e s s e d l i q u i d at l o w t e m p e r a t u r e s the d e r i v a t i v e dP/dp
becomes extremely large, such that very
small
i r r e g u l a r i t i e s i n the e x p e r i m e n t a l densities y i e l d d e v i a t i o n s of pressure g r e a t l y e x c e e d i n g the a c c u r a c y of pressure measurements. I n this d o m a i n , a n y e q u a t i o n of state s h o u l d b e u s e d o n l y to
find
p(P,T).
W e h a v e a t t e m p t e d to d e p a r t f r o m the fruitless p r o c e d u r e of u s i n g m o r e least-squares coefficients to o b t a i n a best p o s s i b l e " f i t " of a mass of PpT d a t a , w h i c h do not h a v e t h e a c c u r a c y n e e d e d to define a n e q u a t i o n of state consistent w i t h the k n o w n b e h a v i o r of specific heats. T h e present t y p e of e q u a t i o n of state is m o r e h i g h l y c o n s t r a i n e d t h a n a n y p r e v i o u s l y k n o w n , a n d therefore serves as a r e l i a b l e s m o o t h i n g a n d i n t e r p o l a t i o n f u n c t i o n b y w h i c h means the i n a c c u r a c i e s a n d inconsistencies of v a r i o u s e x p e r i m e n t a l d a t a m a y be o b s e r v e d a n d i n t e r c o m p a r e d .
W e p r e f e r to
r e p l a c e the q u e s t i o n " H o w a c c u r a t e is the e q u a t i o n of state?" b y
the
q u e s t i o n " H o w a c c u r a t e a n d consistent are the e x p e r i m e n t a l d a t a u s e d h e r e ? " I n present w o r k , the a n s w e r is that, g e n e r a l l y , densities are w i t h i n a f e w tenths of one p e r c e n t o v e r the entire fluid d o m a i n ( e x c e p t for the c r i t i c a l r e g i o n w h e r e t h e y are m u c h l a r g e r , b u t are w i t h i n e x p e r i m e n t a l u n c e r t a i n t i e s ) (see
Tables II and I I I ) .
A n a d v a n t a g e of this e q u a t i o n is t h a t specific heat d a t a n e e d not b e i n c l u d e d i n the least-squares d e t e r m i n a t i o n of coefficients
i n order
to
o b t a i n a c c e p t a b l e agreement w i t h those d a t a . T h e present e q u a t i o n thus m a y b e u s e d to estimate specific heats f o r some d o m a i n s of t h e
P(p,T)
surface i n t h e absence of d a t a other t h a n those for i d e a l gas states. D i s a d v a n t a g e s of this e q u a t i o n i n c l u d e : ( a ) l e n g t h y t i m e of d e v e l o p ment
for
each
substance;
(b)
it cannot
be
integrated analytically
( n u m e r i c a l integrations are p e r f o r m e d for e a c h t h e r m o d y n a m i c v a l u e ) ; a n d ( c ) i t is not defined i n s i d e the l i q u i d - v a p o r coexistence envelope.
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch019
19.
GOODWIN
Nonanalytic
100
Equation
200
347
of State
300
400
TEMPERATURE,
500
Κ
National Bureau of Standards (U.S.), Interagency Report
Figure 1.
Density-temperature
diagram of propane (5)
I n this c h a p t e r , w e s h a l l at first g i v e a f u l l d e s c r i p t i o n of t h e l o g i c a l development
of t h e e q u a t i o n of state, necessarily r e p e a t i n g some p u b
l i s h e d m a t e r i a l (1,2,3,4,5).
P a r a m e t e r s a n d coefficients f o r p r o p a n e a r e
g i v e n i n t h e text, b u t t h e a u x i l i a r y equations ( v a p o r pressures a n d o r t h o b a r i c densities ) are p r e s e n t e d at t h e e n d o f this c h a p t e r . I n t h e second p a r t of this r e p o r t w e d e s c r i b e a l t e r n a t i v e f u n c t i o n s for use i n t h e e q u a t i o n of state, a n d c o m m e n t o n t h e i r m e r i t s . F i n a l l y , w e resolve t h e l o n g - s t a n d i n g p r o b l e m of b e h a v i o r of this e q u a t i o n of state i n t h e l i m i t of l o w densities, w h i c h arises i n the i n t e g r a t i o n of t h e t h e r m o d y n a m i c e q u a t i o n of state, to o b t a i n t h e c h a n g e of i n t e r n a l energy as a f u n c t i o n of d e n s i t y a l o n g isotherms. T h e d e n s i t y - t e m p e r a t u r e d i a g r a m f o r p r o p a n e is g i v e n b y F i g u r e 1. T h e u p p e r , l e f t - h a n d c o r n e r of F i g u r e 1 gives the f r e e z i n g l i q u i d l i n e . S y m b o l s a n d u n i t s are g i v e n i n A p p e n d i x A , a n d fixed-point values u s e d f o r p r o p a n e are i n T a b l e I. Table I.
F i x e d Points Used f o r Propane
Triple Point Temperature ( K ) Pressure (bar) Density (mol/L) vapor liquid
85.47 1.6609 · 1 0 " 2.3373 · 1 0 16.620
Boiling
9
1 0
Point
231.0679 1.01325 0.05479 13.1687
Critical
Point
369.80 42.3974 4.96 4.96
In Equations of State in Engineering and Chemical Research; Chao, K., et al.; American Advances in Chemistry; American Chemical Society: Snniptv \ \U Washington, DC, 1979.
348
EQUATIONS
Developing
the Equation
of
OF
State
E x p e r i m e n t a l specific heats, C (p,T), v
are k n o w n t o increase a p p a r
e n t l y w i t h o u t l i m i t o n t h e close a p p r o a c h t o t h e c r i t i c a l p o i n t . nonanalytic behavior
STATE
influences
a f a r greater p o r t i o n o f t h e
surface t h a n g e n e r a l l y is a p p r e c i a t e d .
This P(p,T)
T h e thermodynamic relation b e
t w e e n specific heats a n d the e q u a t i o n o f state a l o n g isotherms i s
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch019
(1)
F i g u r e 2 shows b e h a v i o r o f t h e c u r v a t u r e s o f isochores as i n d i c a t e d b y R o w l i n s o n (6) f o r consistency w i t h E q u a t i o n 1. F i g u r e 3 shows t h e zero slope a n d c u r v a t u r e o f the c r i t i c a l i s o t h e r m at t h e c r i t i c a l p o i n t , w h i c h a r e n e e d e d f o r t h e r m o d y n a m i c
consistency
w i t h the relations ( 6 ) ,
C ( ,T) P
P
=
+Τ •
C (P,T) V
W(P,T)
[c
=
p
•
(dP/dT)*/(dP/d )/p P
2
(dP/d )/c y P
v
2
(2) (3)
I n o u r e x p e r i e n c e , a necessary b u t insufficient c o n d i t i o n for a w e l l - b e h a v e d c r i t i c a l i s o t h e r m is that, at t h e c r i t i c a l p o i n t , t h e slope o f t h e c r i t i c a l i s o c h o r e f r o m t h e e q u a t i o n o f state b e e q u a l t o t h e slope o f t h e v a p o r pressure e q u a t i o n , dP/dT = dP /dT. a
T h i s c o n s t r a i n t a l w a y s is a p p l i e d i n
t h e f o l l o w i n g w o r k v i a t h e least-squares p r o g r a m ( 7 ) . T o o b t a i n isochores w h o s e c u r v a t u r e s b e c o m e v e r y l a r g e , a p p r o a c h i n g the c r i t i c a l d e n s i t y a l o n g t h e c r i t i c a l i s o t h e r m , as r e q u i r e d b y E q u a t i o n 1, w e h a v e d e s i g n e d a n infinite c u r v a t u r e f o r isochores a t a n o r i g i n , 0(p),
Journal of Research of the National Bureau of Standards
Figure 2.
The locus of isochore inflection points (I)
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
19.
GOODWIN
Nonanalytic
Equation
349
of State
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch019
Τ \ Journal of Research of the National Bureau of Standards
Figure 3.
Behavior of the critical isotherm (1)
i n s i d e t h e coexistence envelope, (see F i g u r e 4 ) . T h e f u n c t i o n g i v i n g this c u r v a t u r e s h a l l h a v e a d e n s i t y - d e p e n d e n t coefficient w i t h a root a t t h e c r i t i c a l d e n s i t y , s u c h that t h e v e r y l a r g e c u r v a t u r e s w i l l c h a n g e s i g n w h e n integrating E q u a t i o n 1 through the critical density, a n d the critical isochore w i l l b e c h a r a c t e r i z e d b y d^/dT
2
= 0 at t h e c r i t i c a l p o i n t .
Β
\\ \\ C
D
j
A
TEMPERATURE Journal of Research of the National Bureau of Standards
Figure 4.
Behavior of the locus, Θ(ρ) (1)
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
350
EQUATIONS
OF
STATE
W i t h t h e a b o v e objectives i n m i n d , w e c o n s t r a i n t h e e q u a t i o n t o t h e l i q u i d - v a p o r coexistence t e m p e r a t u r e , Τ (ρ),
F o r a n y d e n s i t y , t h e coexistence
is o b t a i n e d b y i t e r a t i o n f r o m equations f o r t h e o r t h o -
σ
b a r i c densities.
boundary.
T h u s t h e v a p o r pressure, Ρ [Τ (ρ)], σ
is a f u n c t i o n o f
σ
density. B y s u b t r a c t i o n Ρ _
Ρ
Σ
(
Ρ
)
=
R*
P
. [Τ -
Τ (ρ)] σ
+
P R*T 2
Q
· f(p,T)
O n l y t w o temperature-dependent functions ( i n addition to
(4) pR*T)
are n e e d e d to d e s c r i b e t h e s i g m o i d shape of isochores a t p < ρ < 2 · p c
c
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch019
(see F i g u r e 2 ) · Φ(ρ,Τ)
f(p,T)=B(p)
(5)
+ C(p) · *(p,T)
w h e r e B(p) a n d C(p) a r e p o l y n o m i a l coefficients t o b e d e v e l o p e d
from
PpT d a t a b y least squares. The function Φ(ρ,Τ)
EEEX"
2
· l n [Τ/Τ ( )]
(6)
σ Ρ
(see F i g u r e 5 ) has t h e v a l u a b l e p r o p e r t y that θ Φ / θ Γ 2
o n t h e coexistence b o u n d a r y at Τ = Τ (ρ). σ
2
= 0 everywhere
Its w e a k , n e g a t i v e c u r v a t u r e
at v e r y h i g h t e m p e r a t u r e s corresponds to t h e d e c l i n e o f v i r i a l coefficients t o w a r d zero at these t e m p e r a t u r e s .
Journal of Research of the National Bureau of Standards
Figure 5.
Behavior of the function,
Φ(ρ,Τ) (1)
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch019
19.
GOODWIN
Nonanalytic
Equation
of State
351
i Journal of Research of the National Bureau of Standards
Figure 6.
Behavior of the function,
T h e f u n c t i o n Ψ(ρ,Τ)
Φ(ρ,Τ) (I)
(see F i g u r e 6 ) y i e l d s a m a x i m u m i n
C (p,T) v
at t h e c r i t i c a l p o i n t v i a E q u a t i o n s 1 a n d 4. Its o r i g i n is ·βχρ[-α·
θ(ρ)=Τ (ρ) σ
f(p)] (7)
f (P) — |p — i | V ( p t — D » w h e r e p is the r e d u c e d d e n s i t y at t h e l i q u i d t r i p l e p o i n t .
T h e function
t
== ( 1 — θ (ρ) /Τ) is a n a r g u m e n t f o r E q u a t i o n 9 b e l o w .
ω(ρ,Τ)
As *
m u s t b e zero at coexistence, i t is defined as the difference Ψ ( ρ , Τ ) = φ{ρ,Τ) w h e r e ψσ(ρ) is o b t a i n e d f r o m ψ( ;Τ) Ρ
φ(ρ,Τ)
= δ · exp [c · (1 -
-ψσ(ρ)
(8)
merely b y replacing Τ w i t h χ)] +
[1 -
ω + ω · 1η ( ω ) ]
Τ (ρ), σ
(9)
T h e p a r a m e t e r , 0 < δ < 1, i n E q u a t i o n 9 is f o r r e l a t i v e w e i g h t i n g of t h e a n a l y t i c a n d n o n a n a l y t i c parts. T a b l e I I s u m m a r i z e s t h e PpT d a t a u s e d here, as d e t a i l e d i n R e f . 5. E a r l i e r c o m p i l a t i o n s o n p r o p a n e are f o u n d i n Refs. 8 a n d 9. P a r a m e t e r s a n d coefficients f o r E q u a t i o n 1, d e v e l o p e d as d e s c r i b e d i n R e f s . 3 a n d 5 are B(p) C(p)
s
^ Β + B ί
d
α = 1,
· (
2
P
-
·ρ+ B
1) · (P -
y = 0.07,
s
·p + B 2
(10)
3
4
δ=2/3,
0.2555 5013 087
B =
B
=
0.8275 9684 245
d —
Β
= -0.2818
Ά
·p
2) • exp ( - γ · p )
Β, = 2
4
4
e=2 0.0961 8894 561 -0.3681
8676 338
2856 341
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(11)
352
EQUATIONS
OF
STATE
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch019
PROPANE
ο
ο
-1 0
1
2
3
P/R
c
National Bureau of Standards (U.S.), Interagency Report
Figure 7.
Behavior of coefficients B(p), C(p) for propane (5)
T h e b e h a v i o r of B(p)
a n d C(p)
f o r p r o p a n e is s h o w n i n F i g u r e 7. T h e
n u m b e r of PpT d a t a u s e d h e r e for a d j u s t i n g t h e e q u a t i o n of state is 843, w i t h different least-squares w e i g h t i n g s t h a n i n R e f s . 3 a n d 5.
Overall
d e v i a t i o n s , w i t h e q u a l w e i g h t i n g f o r a l l p o i n t s , are 2.07 b a r f o r t h e m e a n of absolute pressure d e v i a t i o n s a n d 0 . 3 4 % f o r t h e r m s of r e l a t i v e density deviations. W e a l w a y s e x a m i n e the b e h a v i o r of t h e c a l c u l a t e d c r i t i c a l i s o t h e r m i n m i n u t e d e t a i l near t h e c r i t i c a l d e n s i t y ( ± 1 0 % ) . S m a l l adjustments i n values of p a r a m e t e r s ( i n c l u d i n g t h e c r i t i c a l d e n s i t y ) m a y b e m a d e to e l i m i n a t e a n y n e g a t i v e slopes (dP/dp) , Tc
as d e s c r i b e d i n Ref. 3.
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
19.
GOODWIN
Nonanalytic
Equation
353
of State
T a b l e I I . S u m m a r y o f PpT D a t a f o r P r o p a n e Deviations
a
Range of the
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch019
Authors
à(mc >l/L)
G o o d w i n (5) B e a t t i e (12) C h e r n e y (18) D a w s o n (14) D e s c h n e r (15) D i t t m a r (16) E l y (17) R e a m e r (18) T o m l i n s o n (19)
0.30 1.0 --10.0 0.04- - 2.6 0.02- - 0.07 0.03- - 9.5 7.3 --13.4 11.5 --14.8 0.02- -13.0 10.3 --12.0
Δά/d (rms
Data
Τ (Κ)
Ρ (bar)
NP
290--700 370--548 323--398 243--348 303--609 273-413 166-322 311--511 277--327
6 - 17 23 - 310 11 - 50 1.8 0.91.Ο 142 ΙΟ - 1035 2 . 5 - 428 1.0- 690 20 - 137
42 110 25 18 236 336 222 306 40
%)
Mean ΔΡ (bar)
0.04 1.39 0.37 0.14 1.93 0.41 0.06 0.42 0.07
0.004 1.00 0.038 0.002 1.04 3.02 2.54 1.42 0.94
* Using Equations 7 and 8 for B(p), C(/>).
6
—
PROPANE Τ = T c
1
ι
COΟ
r-
Û. CM
1—
• CM
H
J
0.5
1.5
1.0
P'Pr. National Bureau of Standards (U.S.), Interagency Report
Figure 8.
Behavior of d P / d T on the critical isotherm (5) 2
2
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch019
W
CO
Ο
CO
δ
Η
W
£t
CO Ol
19.
GOODWIN
Nonanalytic
Equation
355
of State
T h e n o n a n a l y t i c c h a r a c t e r of E q u a t i o n 1 is seen c l e a r l y i n F i g u r e 8, w h i c h is a l o g a r i t h m i c p l o t of absolute v a l u e s of 2
isochore
a l o n g the c r i t i c a l i s o t h e r m . T h e v a l u e s of d P/dT
\d P/dT \ 2
2
at ρ
2, a n d i n some cases to isochores h a v i n g d e r i v a t i v e s d P / d T 3
w h i c h are
3
i r r e g u l a r . S t a r t i n g a n y n e w w o r k w i t h E q u a t i o n 13, therefore, c o u l d b e advantageous. Table I I I .
Deviations with Alternate Equations Equations
Authors G o o d w i n (5) B e a t t i e (12) C h e r n e y (13) D a w s o n (14) D e s c h n e r (15) D i t t m a r (16) E l y (17) R e a m e r (18) T o m l i n s o n (19)
7 and 9
Coefficients
forB(p),
C(p)
Equations
10 and 9
Ad/d (rms %)
Mean Δ Ρ (bar)
Ad/d (rms %)
Mean Δ Ρ (bar)
0.05 1.07 0.27 0.17 1.70 0.40 0.06 0.54 0.07
0.003 1.13 0.03 0.002 0.82 3.03 2.60 1.76 1.04
0.19 1.14 0.55 0.22 1.80 0.35 0.06 0.43 0.07
0.017 0.94 0.075 0.002 0.92 2.86 2.26 1.60 1.00
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
19.
GOODWIN
Behavior
Nonanalytic
at Very
Low
Equation
357
of State
Densities
P l a c i n g E q u a t i o n 4 i n the t h e r m o d y n a m i c e q u a t i o n of state y i e l d s a l e a d i n g t e r m as f o l l o w s
ΔΕ =
-1)
[(Ζ ( ) σ Ρ
-RT*(p)/
w h e r e ρ is the r e d u c e d density. A t ρ < 1, Ζ
σ
(15)
+ . · ·] 'dp
P
is the c o m p r e s s i b i l i t y f a c t o r
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch019
for s a t u r a t e d v a p o r , Ζ ( )=Ρ (ρ)/[ρ·ΙΡ σ Ρ
·Τ (ρ)]
σ
σ
A n i n i t i a l p r o b l e m w i t h E q u a t i o n 15 is loss of significant figures as —> 1. T h e m o r e serious p r o b l e m is that i f i n d e p e n d e n t equations are
Ζ
σ
u s e d for the v a p o r pressures, Ρ [Τ (ρ)], σ
densities, ρσ(Τ), Ζ
σ
a n d for t h e s a t u r a t e d v a p o r
σ
w e find that i n the l i m i t ρ - » 0 ( a n d h e n c e Τ
σ
-»
0),
m a y a p p r o a c h values f r o m z e r o to infinity, d e p e n d i n g o n the f o r m u l a
tions f o r Ρ
and ρ.
σ
σ
T h i s difficulty arises o n l y at e x t r e m e l y l o w densities, because u n d e r these c o n d i t i o n s the t e m p e r a t u r e d i m i n i s h e s m e r e l y as a l o g a r i t h m i c f u n c t i o n of d e n s i t y , 1/T ~
ln(l/p).
O u r n u m e r i c a l integrations for t h e r m o
d y n a m i c p r o p e r t i e s w e r e p e r f o r m e d s u c h t h a t t h e e q u a t i o n of state w a s not c a l l e d at these e x t r e m e l y l o w densities ( 4 , 5 ) . A s o l u t i o n for the p r o b l e m s m e n t i o n e d a b o v e is to r e p l a c e
conven
t i o n a l f o r m u l a t i o n s of the saturated v a p o r densities b y a f o r m u l a t i o n of the c o m p r e s s i b i l i t y factor, Ζ ( Τ ) , for s a t u r a t e d v a p o r σ
(see
Saturated
V a p o r D e n s i t i e s ). B y u s i n g this n e w f o r m u l a t i o n for substitutions, E q u a t i o n 15 c a n be t r a n s f o r m e d to
AE =
where Z Ζ
σ
=
[(Z
-
c
1) · (Z /Z ) a
c
- RT
C
· ί(χ ) σ
+ . . . ] ·
(16)
dp
is the v a l u e of the c o m p r e s s i b i l i t y f a c t o r at the c r i t i c a l p o i n t ,
Ζ [ Τ ( ρ ) ] is the c o m p r e s s i b i l i t y factor for saturated v a p o r , χ σ
Ta/T , c
Ρ