Equations of State in Engineering and Research - American Chemical

is given by Equation 14,. W l. 2£L(£). V l. e-L( Z )+S( 2 ). W2« — ,(1 -*?) 1 2 ". (22). Z. ^. 1 4 4 ( 2 .... (34) where u0(r) and w(r) are the p...
2 downloads 0 Views 2MB Size
1 Practical Calculations of the Equation of State of Fluids and Fluid Mixtures Using Downloaded by NORTH CAROLINA STATE UNIV on August 22, 2013 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch001

Perturbation Theory and Related Theories DOUGLAS HENDERSON IBM Research Laboratory, San Jose, CA 95193

The properties of a fluid are determined largely by shortrange repulsive forces. The long-range attractive forces can be considered to be perturbations. Using these concepts, a perturbation theory of fluids is developed. In addition, the relationship of empirical equations of state to the perturba­ tion theory is examined. The major weakness of most empirical equations is the use of the van der Waals freevolume term, (V-Nb) , to represent the contributions of the repulsive forces. Replacement of this term by more satisfac­ tory expressions results in better agreement with experiment. -1

n p h e r e q u i r e m e n t s o f a n e q u a t i o n of state f r o m a t h e o r e t i c a l c h e m i s t a n d a c h e m i c a l engineer a r e s o m e w h a t

different.

T h e theoretical

c h e m i s t desires to u n d e r s t a n d t h e o r i g i n of t h e p r o p e r t i e s of t h e fluid h e is s t u d y i n g a n d often is less i n t e r e s t e d i n o b t a i n i n g h i g h l y a c c u r a t e agreement w i t h experimental data.

O n t h e other h a n d , t h e c h e m i c a l

e n g i n e e r w a n t s a s i m p l e , e m p i r i c a l e q u a t i o n of state w h i c h is i n close agreement w i t h e x p e r i m e n t a l d a t a . T h e q u e s t i o n of w h e t h e r this e m p i r i c a l e q u a t i o n o f state has a n y t h e o r e t i c a l basis is less i n t e r e s t i n g . B e c a u s e of this a p p a r e n t d i v e r g e n c e o f interests a n d needs, t h e r e has b e e n little i n t e r a c t i o n b e t w e e n

t h e o r e t i c a l chemists a n d c h e m i c a l

engineers w o r k i n g o n t h e e q u a t i o n of state o f fluids. T h i s is u n f o r t u n a t e b e c a u s e t h e r e q u i r e m e n t s o f t h e t w o g r o u p s are c o m p a t i b l e .

N o theore-

t i c i a n w o u l d c l a i m to u n d e r s t a n d f u l l y some p h e n o m e n a i f h e c o u l d n o t o b t a i n reasonable q u a n t i t a t i v e a g r e e m e n t w i t h e x p e r i m e n t . O n t h e o t h e r h a n d , a n e m p i r i c a l e q u a t i o n of state w i t h a w e a k o r e v e n f a u l t y t h e o r e t i c a l 0-8412-0500-0/79/33-182-001$07.50/l © 1979 American Chemical Society

In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

2

EQUATIONS

O F

STATE

basis is no m o r e t h a n a n i n t e r p o l a t i o n s c h e m e a n d is q u i t e useless

for

e x t r a p o l a t i o n to t h e r m o d y n a m i c states for w h i c h e x p e r i m e n t a l d a t a are n o t a v a i l a b l e . P r e s u m a b l y c h e m i c a l engineers w o u l d p r e f e r to h a v e some p r e d i c t i v e c a p a b i l i t y a n d if the results of t h e t h e o r e t i c i a n c a n be expressed i n some u s e f u l f o r m w h i c h is c o n v e n i e n t for q u i c k c a l c u l a t i o n , c h e m i c a l engineers w o u l d b e i n t e r e s t e d . I assume that this gap b e t w e e n t h e o r e t i c a l chemists a n d c h e m i c a l engineers exists because, u n t i l v e r y r e c e n t l y , theoreticians h a d l i t t l e to Downloaded by NORTH CAROLINA STATE UNIV on August 22, 2013 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch001

offer c o n c e r n i n g the t h e o r y of

fluids.

H o w e v e r , d u r i n g the past d e c a d e

r a p i d progress has b e e n m a d e i n this area a n d a n a t t e m p t to b r i d g e t h i s g a p n o w seems a p p r o p r i a t e .

T h i s is a n a m b i t i o u s task a n d g i v e n the

d e a d l i n e s w h i c h are a n u n a v o i d a b l e p a r t of a n y conference,

i t is not a

task that I w o u l d c l a i m to a c c o m p l i s h f u l l y here. H o w e v e r , I h o p e that this c h a p t e r w i l l c o n t r i b u t e to the b r i d g i n g of this g a p . I s h a l l a t t e m p t to s u r v e y recent progress fluids.

i n t h e t h e o r y of

I w i l l p r o v i d e references to a l l of the m a j o r t e c h n i q u e s .

dense

However,

I w i l l e m p h a s i z e p e r t u r b a t i o n t h e o r y b e c a u s e I f e e l t h a t this is the t e c h n i q u e w h i c h is most i n t e r e s t i n g to c h e m i c a l engineers.

Further, I

w i l l s h o w that the p e r t u r b a t i b n t h e o r y c a n b e u s e d i n p a r t to justify c o m m o n e m p i r i c a l equations of state. M a n y of these equations are w e l l f o u n d e d i n theory.

H o w e v e r , w e s h a l l see t h a t there is one t e r m w h i c h

seems to a p p e a r i n a l l e m p i r i c a l e q u a t i o n s

of

state.

This term

has

a b s o l u t e l y no t h e o r e t i c a l basis a n d i t s h o u l d be d i s c a r d e d a n d r e p l a c e d b y a m o r e satisfactory expression. Some General

Considerations

T h e basic r e s u l t i n s t a t i s t i c a l m e c h a n i c s is t h a t the p r o b a b i l i t y of a system b e i n g i n a state specified b y a n e n e r g y E{ is p r o p o r t i o n a l to t h e B o l t z m a n n f a c t o r exp{ —

where p =

d y n a m i c p r o p e r t i e s m a y be specified.

1/kT.

W i t h this result, t h e r m o -

F o r example, the thermodynamic

e n e r g y is

i

U

d In Zjv

(1)

where 'N

exp{-/M} £

exp {—

pEJ

In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

(2)

1.

Fluids

H E N D E R S O N

and Fluid

3

Mixtures

is c a l l e d t h e p a r t i t i o n f u n c t i o n a n d A is the H e l m h o l t z free e n e r g y A =

U — TS).

(i.e.,

W i t h e x c e p t i o n of a f e w fluids, s u c h as h e l i u m a n d

h y d r o g e n , the e n e r g y levels Ei f o r m a c o n t i n u u m a n d the s u m i n E q u a t i o n 2 c a n be r e p l a c e d b y a n i n t e g r a l . T h u s , for a system of N m o l e c u l e s

Z n

=

Tfiflf

e

x

t-i ^/) *

p

V*

dp

8

d

( 3 )

Downloaded by NORTH CAROLINA STATE UNIV on August 22, 2013 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch001

w h e r e the ps a n d q's are t h e g e n e r a l i z e d m o m e n t a a n d coordinates, s is the n u m b e r of degrees of f r e e d o m , a n d system.

T h e factor h

8

is the H a m i l t o n i a n of

the

arises f r o m the v o l u m e associated w i t h q u a n t u m

states i n phase space a n d the factor N\ appears because the molecules i n a fluid are i n d i s t i n g u i s h a b l e . G e n e r a l l y the m o l e c u l e s of the fluid w i l l h a v e i n t e r n a l degrees of freedom.

If these i n t e r n a l degrees of f r e e d o m

are i n d e p e n d e n t of t h e

d e n s i t y of the fluid (as is often t h e case) t h e y m a k e no c o n t r i b u t i o n to t h e e q u a t i o n of state a n d c a n b e i g n o r e d .

S i n c e I a m interested o n l y i n

p r e s e n t i n g g e n e r a l p r i n c i p l e s , I w i l l i g n o r e the c o n t r i b u t i o n of i n t e r n a l degrees of f r e e d o m a n d assume t h a t

i-l w h e r e $ is the p o t e n t i a l energy of the m o l e c u l e s a n d d e p e n d s o n l y u p o n the positions of the center of mass. T h e t h e o r y of fluids i n w h i c h i n t e r n a l degrees of f r e e d o m development.

Z N

where A =

c o n t r i b u t e to the e q u a t i o n of state is s t i l l

under

U s i n g E q u a t i o n 4 , the p a r t i t i o n f u n c t i o n b e c o m e s

=

~NY I

e

x

p

(""^)

d r i

•••

W

d r N

h/(2irmkT) . 1/2

T o m a k e f u r t h e r progress the f o r m of m u s t b e specified. G e n e r a l l y the p o t e n t i a l e n e r g y w i l l c o n t a i n terms i n v o l v i n g the coordinates o f p a i r s , t r i p l e t s , q u a d r u p l e t s , etc., of m o l e c u l e s .

A f e w c a l c u l a t i o n s of the e q u a -

t i o n of state of a fluid w i t h s u c h a g e n e r a l f o r m for h a v e b e e n

made.

H o w e v e r , the c o m m o n p r a c t i c e is to assume p a i r - w i s e a d d i t i v i t y : *(ri,

I n this case, u(r)

. . . , r) N

— 1 3 u(r ) i?)

V 2

^ 1728(11/2 - 8 e - + 3 e * )

(23)

1 9 c

^

_ ,

)

i

M

.

( 2 4 )

and 1 1 ^

°

3

3 5

e

"

[-

W 2 4 )

+ 2z + 4 ( l + * K * ]

E q u a t i o n 21 gives the exact r e s u l t for t>i i n t h e M S A . T h e for v , 2

v

Sy

a n d t;

are p a r a m e t r i z a t i o n s .

4

(25)

2

4

expressions

E q u a t i o n 21 is a n a l y t i c a l a n d

q u i t e easy to use. F o r most cases, v , t ; , a n d tf are s m a l l w h e n 2

3

4

compared

w i t h Vx so that i t is best to use E q u a t i o n 21 for Vx r a t h e r t h a n some approximation.

H o w e v e r , i f one wishes, s i m p l i f i c a t i o n s c a n b e

f r o m a n e x p a n s i o n of E q u a t i o n 21 i n p o w e r s of p a n d z.

obtained

One possibility

is

"

1

"

2

4

^ - ? - L

1

+ 1 0 ( l + , ) ( 7 + 2,)

(26)

\]

E x c e p t for z —> oo, most of t h e c o n t r i b u t i o n to Vi comes f r o m t h e term.

The limit z - »

oo is m a i n l y of m a t h e m a t i c a l interest.

first

I n most

situations of p h y s i c a l interest z is s m a l l . W e refer to t h e l i t e r a t u r e ( I ) the v a r i o u s i n t e g r a l equations

for a d i s c u s s i o n of t h e d e r i v a t i o n of

a n d f o r details r e g a r d i n g t h e i r s o l u t i o n

( u s u a l l y n u m e r i c a l ) for other cases.

Perturbation

Theory

P e r t u r b a t i o n t h e o r y is t h e oldest of t h e three m e t h o d s . W e w i l l see t h a t i t dates b a c k to v a n d e r W a a l s . H o w e v e r , its u t i l i t y w a s n o t a p p r e c i a t e d b y theorists u n t i l t h e last d e c a d e . I n p e r t u r b a t i o n t h e o r y w e assume t h a t w e h a v e f u l l k n o w l e d g e of s o m e reference system ( o r u n p e r t u r b e d s y s t e m ) w h o s e p r o p e r t i e s w e w i l l d e n o t e b y a s u b s c r i p t 0. W e m a y h a v e o b t a i n e d this k n o w l e d g e b y means

In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

1.

H E N D E R S O N

Fluids

of some c o m p u t e r equation. fluid,

and Fluid

9

Mixtures

s i m u l a t i o n s or f r o m the s o l u t i o n of

some i n t e g r a l

U s u a l l y , this reference system is t a k e n to b e the h a r d - s p h e r e

where r d

/ oo,

=

u (r)=)°:> 0

lO,

(27)

W e assume that, to some a p p r o x i m a t i o n , the p a i r p o t e n t i a l is u (r)

and a

0

Downloaded by NORTH CAROLINA STATE UNIV on August 22, 2013 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch001

s m a l l p e r t u r b a t i o n . T h e simplest case is u(r)

=

+

u (r) 0

(28)

€w(r)

If the free energy is e x p a n d e d i n p o w e r s of c, w e h a v e

Az_^5. _ NkT

£

(j8c) AJNkT

(29)

n

£i

where Ai/NkT-^p and go(r)

jw(r)g (r)

is the R D F of the reference

(30)

dr

0

system.

T h e higher-order

A

n

i n v o l v e s integrals o v e r h i g h e r - o r d e r d i s t r i b u t i o n f u n c t i o n s . I f the reference system is the h a r d - s p h e r e system, A l a t e d f r o m E q u a t i o n 14.

Carnahan and Starling (8)

0

m a y be calcu-

have proposed

slight m o d i f i c a t i o n of E q u a t i o n 14 w h i c h is s l i g h t l y m o r e accurate. the C a r n a h a n a n d S t a r l i n g expression is c e r t a i n l y r e c o m m e n d e d ;

a

Using

however,

I w i s h to g i v e t h e f o l l o w i n g w a r n i n g . T h e a n a l o g u e of the C a r n a h a n a n d S t a r l i n g e q u a t i o n of state becomes v e r y i n a c c u r a t e for a m i x t u r e of h a r d spheres w h e n one of the components i n the m i x t u r e is v e r y l a r g e w h e r e a s the a n a l o g u e of E q u a t i o n 14 r e m a i n s accurate. I n as m u c h as t h e C a r n a h a n a n d S t a r l i n g - t y p e expression is i n better agreement w i t h

computer

s i m u l a t i o n s for h a r d - s p h e r e m i x t u r e s for d i a m e t e r ratios at least as l a r g e as 3 : 1 , i t is p r o b a b l e that this d e f i c i e n c y p r o b a b l y is i r r e l e v a n t to a n y p r a c t i c a l c a l c u l a t i o n . H o w e v e r , one s h o u l d be w a r y n o t o n l y to a v o i d a p p l i c a t i o n of the C a r n a h a n a n d S t a r l i n g - t y p e expression for

extremely

large d i a m e t e r ratios b u t to e x a m i n e c a r e f u l l y a n y p r e d i c t i o n s b a s e d o n the use of this expression i n situations i n w h i c h i t has n o t b e e n s t u d i e d i n d e t a i l . F o r a h a r d - s p h e r e reference

fluid,

go(0

a n d thus A i , c a n b e

o b t a i n e d either f r o m the P Y h a r d - s p h e r e results ( 5 ) simulations ( 9 , 1 0 ) .

or from

computer

F o r most cases, A i m u s t be o b t a i n e d b y n u m e r i c a l

integration. H o w e v e r , if w(r)

=

—c exp {—z(x



l)}/x

In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

(31)

10

EQUATIONS

where x = yield

r/a- a n d the P Y g o ( r )

>

A

N

k

T

O F

S T A T E

are u s e d , E q u a t i o n 16 m a y b e u s e d to

- - e W % z )

( 3 2 )

T h e s i m i l a r i t y to E q u a t i o n 21 is not a c c i d e n t a l . I f a h a r d - s p h e r e reference

fluid

is u s e d , the s e c o n d - o r d e r

t e r m has

Downloaded by NORTH CAROLINA STATE UNIV on August 22, 2013 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch001

the f o r m A /NkT 2

=

r*[w(rd)

] g (r)dr

w(rid)w(r d)

F (r r )

-TrptP J°°

+ff

2

2

0

0

l9

(33)

dr dr

2

x

2

B a r k e r a n d H e n d e r s o n ( J O ) h a v e g i v e n a c o n v e n i e n t p a r a m e t r i z a t i o n of Fo(r

for the h a r d - s p h e r e reference

r)

u

2

fluid.

So f a r a l l w e h a v e is f o r m a l i s m . O n e c o u l d a r g u e t h a t t h e r e is n o reason to b e l i e v e that E q u a t i o n 29 is u s e f u l e x c e p t at h i g h t e m p e r a t u r e s , w h e r e /?c is s m a l l . T h e u t i l i t y of p e r t u r b a t i o n t h e o r y e v e n at t e m p e r a t u r e s as l o w as t h e t r i p l e p o i n t , w a s first p o i n t e d o u t a d e c a d e ago b y B a r k e r a n d H e n d e r s o n (11)

w h o a r g u e d t h a t the r e l e v a n t p a r a m e t e r i n deter-

m i n i n g the c o n v e r g e n c e of E q u a t i o n 29 w a s not t h e smallness of /Jc b u t the smallness of the effect of t h e p e r t u r b a t i o n o n t h e s t r u c t u r e of fluid.

T h e y noted that A

x

gives t h e effect of w(r)

p r o p e r t i e s i n the absence of a n y changes i n s t r u c t u r e a n d t h a t A

2

t h e effect of changes

the

on the thermodynamic gives

i n structure. A t h i g h densities s u c h changes

in

structure are suppressed because the m o l e c u l e s are p a c k e d t i g h t l y . T h e r e fore, A

is s m a l l c o m p a r e d w i t h A i (as is o b s e r v e d b y d i r e c t c a l c u l a t i o n

2

of A i a n d A ) . T h e h i g h e r - o r d e r A

n

2

are e v e n s m a l l e r a n d , as B a r k e r a n d

H e n d e r s o n suggested, c a n be n e g l e c t e d i n most c a l c u l a t i o n s . A t l o w e r densities, p a r t i c u l a r l y n e a r the c r i t i c a l p o i n t , changes

in

structure are easier a n d the c o n v e r g e n c e of the p e r t u r b a t i o n e x p a n s i o n is slower.

B u t e v e n there, second-order

p e r t u r b a t i o n t h e o r y gives

quite

r e a s o n a b l e results. A l l of this makes sense as l o n g as u(r) p l u s ew(r).

is the h a r d - s p h e r e p o t e n t i a l

Unfortunately, the potentials w h i c h occur i n real applications

are not of this f o r m . N e v e r t h e l e s s , f o l l o w i n g B a r k e r a n d H e n d e r s o n

(12),

we can write u(r)

=

Uo(r)

+

(34)

w(r)



w h e r e u (r) a n d w(r) are the p o s i t i v e a n d n e g a t i v e parts of u(r). Thus, w e c a n use E q u a t i o n s 29 a n d 30. H o w e v e r , w e n o w h a v e a n u n f a m i l i a r reference fluid. F o r t u n a t e l y , for most a p p l i c a t i o n s u (r) is v e r y steep 0

0

In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

1.

H E N D E R S O N

Fluids

11

and Fluid Mixtures

a n d c a n b e r e p l a c e d b y t h e h a r d - s p h e r e p o t e n t i a l i f t h e d i a m e t e r d is chosen j u d i c i o u s l y . B y means of a f o r m a l e x p a n s i o n i n p o w e r o f a n i n v e r s e steepness p a r a m e t e r , B a r k e r a n d H e n d e r s o n s h o w e d t h a t

d — f

a

[1 -

exp {-pu«(z)}]dz

(35)

J o

w h e r e o- is the p o i n t at w h i c h u(r) changes s i g n . W i t h t h e a b o v e c h o i c e

Downloaded by NORTH CAROLINA STATE UNIV on August 22, 2013 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch001

of d, a u s e f u l s e c o n d - o r d e r p e r t u r b a t i o n t h e o r y is o b t a i n e d f r o m E q u a tions 14, 29, 30, a n d 32. T h e results of this second-order p e r t u r b a t i o n t h e o r y f o r a fluid w h o s e p a i r p o t e n t i a l is the L e n n a r d - J o n e s 6:12 p o t e n t i a l ,

w(r)

=