Equations of State in Engineering and Research

(where V° is the close-packed volume) and η/k->0 when ρ* > 0.75 (solid state). ... By comparing Equations 1 and 3 for the pure components, one obta...
2 downloads 0 Views 963KB Size
11 Applications of the Augmented van der Waals Theory of Fluids: Tests of Some Combining Rules for Mixtures

Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011

ALEKSANDER KREGLEWSKI and STEPHEN S. CHEN Thermodynamics Research Center, Texas A&M University, College Station, TX 77843

An accurate equation of state of fluids is used to test the combining rules for the interaction energy ū of mixtures derived from the theories of London energy between small or large (chain) molecules. The tests are based mostly on comparisons with the thermodynamic excess functions of binary systems at Ρ = 0. For long chains the parameter η/k, determining the dependence of ū/k on the temperature, depends on the reduced density ρ* = V°/V of the system (where V° is the close-packed volume) and η/k->0 when ρ* > 0.75 (solid state). ij

H P h e t h e r m o d y n a m i c p r o p e r t i e s of m i x t u r e s are e x t r e m e l y sensitive to -•-the values of m i x e d - p a i r i n t e r a c t i o n energies Uu(r) r e l a t i v e to those a c t i n g b e t w e e n t h e m o l e c u l e s of t h e p u r e c o m p o n e n t s , Uu(r) a n d

Ujj(r),

a n d to t h e average c o l l i s i o n d i a m e t e r σ o f t h e m i x t u r e o b t a i n e d f r o m σ « , χ

a,» a n d σ ·. A r e l a t i v e l y s m a l l error i n ί;

obtained.

g r e a t l y affects t h e p h a s e d i a g r a m

I f t h e p r e d i c t e d v a l u e o f ι*# is too l o w b y 2 % , t h e p h a s e d i a ­

gram may, for example, exhibit a n azeotropic mixture or even a separation i n t o three phases, l i q u i d +

liquid +

gas, w h i l e t h e r e a l d i a g r a m shows

o n l y t w o phases a n d n o azeotrope. T h e p u r p o s e of this c h a p t e r is to test t h e c o m b i n i n g rules t h a t r e s u l t f r o m three a p p r o x i m a t i o n s f o r r a n d o m m i x t u r e s of fluids. T h e s q u a r e - w e l l (SW)

a p p r o x i m a t i o n y i e l d s v e r y g o o d results f o r systems of s m a l l m o l e ­

cules. T h e c o m p l e x i t y of t h e p r o b l e m f o r l a r g e m o l e c u l e s , a g g r a v a t e d b y t h e d e p e n d e n c e of u(r)

o n t h e r e d u c e d d e n s i t y of t h e system, is o u t l i n e d .

0-8412-0500-0/79/33-182-197$05.00/l © 1979 American Chemical Society

In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

198

EQUATIONS O F S T A T E

Systems

of

Small

Molecules

W e s h a l l l i m i t o u r c o n s i d e r a t i o n to systems w i t h L o n d o n energies o n l y .

F o r s u c h systems

London

(dispersion)

derived

(1,2)

the

famous

relation

Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011

i n w h i c h p» a n d p

;

are the p o l a r i z a b i l i t i e s of t h e t w o m o l e c u l e s , r is the

d i s t a n c e b e t w e e n t h e i r centers, a n d hv are c e r t a i n energies w h i c h p r o b ­ a b l y are r e l a t e d to the i o n i z a t i o n potentials I . E x c e p t for H e a n d H , hv 2

is not e q u a l or p r o p o r t i o n a l to 7. T h e s u p e r s c r i p t ' V i n

indicates that

the r e l a t i o n w a s d e r i v e d for s m a l l s p h e r i c a l m o l e c u l e s . T a k i n g i n t o a c c o u n t that a h a r d r e p u l s i o n exists at close distances r , we may write =

Uij(r)

oo

at r ^

σ

(2)

at r > σ

(3)

and Uij (r) = where « ûij =

- ïïy ( σ , / Λ )

6

is the m i n i m u m v a l u e of Uij(r).

y

Uij . 0

F o r small spherical molecules

B y c o m p a r i n g E q u a t i o n s 1 a n d 3 for the p u r e c o m p o n e n t s ,

one obtains 4 hvi = Upon

4

— u°

substitution into

u

u*u/v i a n d h 2

Equation

Vj

=

_ u°jj

aVP ; 2

1 the

unknown

quantities

+

fife) ]

hv

are

eliminated.

° [Àf (S)

U {i= 2

T h i s c o m b i n i n g r u l e w a s d e r i v e d i n a different m a n n e r b y K o h l e r I t is n o w w e l l k n o w n (4)

(3).

that the so-called r a n d o m m i x i n g approxi-

m a t i o n , w h i c h is b a s e d o n the L e n n a r d - J o n e s p o t e n t i a l , g r e a t l y gerates t h e effect of size differences of the m o l e c u l e s o n « ·. ί;

m i x t u r e s are r a n d o m i n a l l the m o d e l s c o n s i d e r e d m o r e a p p r o p r i a t e to c a l l that i n w h i c h u(r)

exag-

Since the

i n this c h a p t e r , i t is

varies w i t h ( σ / r )

Lennard-Jones ( L J ) approximation.

In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

6

the

11.

KREGLEwsKi A N D C H E N

The van der Waals

Theory

199

of Fluids

I n t h e S W a p p r o x i m a t i o n a n d at a constant w i d t h ( σ / r ) o f t h e w e l l for a l l substances w e have ^o( ) = c o n s t a n t l y

(r > σ) ;

r

(5)

a n d instead of E q u a t i o n 4 w e o b t a i n

ΰ°

υ

= 2 [\z^-— + ^

Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011

A l s o , t h e average ù

m

(6)

( s m a l l molecules)

1

of t h e m i x t u r e b e c o m e s i n d e p e n d e n t of σ m — Σ Σ i j

u

where i7 =

- 1

u jj Pi J

[_w a Vj

ij

X

(7) \ f

ij

X

U

f o r s m a l l molecules.

i;

I n t h e theory of v a n d e r W a a l s ( V D W ) t h e p a r a m e t e r a is p r o p o r ­ t i o n a l to ΰσ , w h e r e ù is t h e m i n i m u m v a l u e of a n u n k n o w n p o t e n t i a l 3

u(r).

L e l a n d et a l . (3) h a v e s h o w n that t h e V D W a p p r o x i m a t i o n is

much

better

combining where k

tj

than the L J approximation.

I n this a p p r o x i m a t i o n t h e

rules a l w a y s a r e a p p l i e d to a

ijf

u s u a l l y α# =

&ϋ(αϋα ·) ,

is a constant b e c a u s e n o t h i n g better m a y b e d e r i v e d

;;

1/2

when

is n o t k n o w n .

u(r)

Kac

et a l . (5) have s h o w n that t h e a t t r a c t i o n t e r m i n t h e V D W

e q u a t i o n of state, a/RTV,

is o b t a i n e d w h e n the i n t e r m o l e c u l a r forces a r e

infinitely w e a k , du(r)/dr

= 0. T h i s is also t h e c h a r a c t e r i s t i c feature of

the S W p o t e n t i a l w h i c h differs f r o m t h e K a c p o t e n t i a l i n that t h e attrac­ t i o n is c u t off at a c e r t a i n ( r / σ ) , u s u a l l y at 3/2. H e n c e , E q u a t i o n 6 i s the p r o p e r c o m b i n i n g r u l e f o r u j i n a . {

{j

O n t h e c o n t r a r y , i f w e insist o n c o u p l i n g ΰ · w i t h σ · a n d u s i n g t h e ί;

VDW

approximation for a

m>

ί;

t h e effect o n t h e c a l c u l a t e d properties of

m i x t u r e s is t h e same as i f W y ( r ) w e r e expressed b y a h y p o t h e t i c a l p o t e n ­ t i a l ùij(aij/r) . z

T h i s leads to a c o m b i n i n g r u l e g i v e n b y E q u a t i o n 4 i n

w h i c h a l l of t h e σ ' a r e r e p l a c e d b y σ ' . T h i s is c a l l e d t h e r u l e f o r t h e 6

VDW

8

3

8

approximation.

T h e rules f o r t h e V D W a n d S W a p p r o x i m a t i o n s a r e c o m p a r e d w i t h the e x p e r i m e n t a l d a t a f o r m i x t u r e s o f n o b l e gases i n T a b l e I . T h e e x p e r i ­ m e n t a l values of % are selected b y S m i t h et a l . (6) f r o m m o l e c u l a r b e a m scattering, s e c o n d v i r i a l coefficient, a n d viscosity d a t a . T h e values of ù/k of t h e p u r e c o m p o n e n t s a r e : H e , 10.5 K ; A r , 140 K ; K r , 196 K ; a n d X e , 265 K . T h e values of σ g i v e n b y C h e n et a l . (6) a r e : H e , 2.65 A ; N e , 2.75 A ; A r , 3.34 A ; K r , 3.64 A ; a n d X e , 3.81 A . T h e p o l a r i z a b i l i t i e s w e r e t a k e n f r o m t h e L a n d o l t - B o r n s t e i n T a b e l l e n (1960).

B y comparing the

In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

200

EQUATIONS OF STATE Table I.

Values of û°ij for Mixed Interactions between Noble Gases ( K )

Experimental

30.2 30.2 28.0

He + Ar He + K r He + Xe 1

6

Equation

VDW

a

Equation

33.0 35.2 33.8

38.6 45.6 54.3

29.0 28.8 25.3

Equation 4 with all σ 'β replaced by σ . The σ α 3

6

8

is calculated from Equation 10.

3

values of iïy g i v e n b y S m i t h et a l . w i t h those of C h e n et a l . ( w h i c h are Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011

lower)

w e estimate t h e i r u n c e r t a i n t y to be a b o u t

s h o w that E q u a t i o n 6 is the best a p p r o x i m a t i o n .

±10%.

These

data

T h e last c o l u m n i n

T a b l e I gives the g e o m e t r i c m e a n values (û«%)

%i—

(8)

1 / 2

T h e c o m p a r i s o n s w i t h other e x i s t i n g c o m b i n i n g rules w e r e m a d e

by

S m i t h et a l . a n d are not r e p e a t e d here. T h e t w o most c o m m o n l y

u s e d rules for σ»,, n a m e l y that o w i n g

to

Lorentz,

σ « — (σ« + σ „ ) / 2 ,

(9)

a n d to v a n d e r W a a l s

σ\}=

(σ * + σ , , ) / 2 3

(10)

3

are c o m p a r e d w i t h the e x p e r i m e n t a l d a t a g i v e n b y C h e n et a l . (7) T a b l e II.

E q u a t i o n 10 appears

to be m u c h better

a l t h o u g h it is o v e r s i m p l i f i e d i n that it neglects the effect of w average a

m

i;

o n σ ·. ί;

The

of the m i x t u r e , d e r i v e d f r o m E q u a t i o n 10, is

Table II.

Collision Diameters for Mixed between Noble Gases (in A ) Experimental

He He He He

in

than Equation 9

+ Ne + Ar + Kr + Xe

2.73 3.09 3.27 3.61

Equation

2.70 3.00 3.14 3.23

9

Interactions Equation

2.70 3.03 3.22 3.33

In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

10

11.

KREGLEWSKI AND C H E N

The van der Waals

201

Theory of Fluids

I n a d d i t i o n to t h e a b o v e d i r e c t tests, t h e r u l e g i v e n b y E q u a t i o n 6 w a s tested b y c a l c u l a t i n g the t h e r m o d y n a m i c excess f u n c t i o n s of m i x t u r e s . T h e relations a r e g i v e n b y K r e g l e w s k i a n d C h e n ( 8 ) . T h e b a s i c o n e f o r the r e s i d u a l H e l m h o l t z energy of a m i x t u r e A

r

m

RT

-=

/ v

ο

" (a

m

z

m

ι \ -ι ;

V i

η Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011

t. \ ι

ζ.*

~f" 3 a ) £ (1 -

— 1) In (1 — im) + i

is

1

m

3a £

m

U

m

w

2

m

T h e first t w o terms w e r e d e r i v e d f r o m B o u b l i k ' s ( 9 ) r e l a t i o n f o r t h e c o m p r e s s i b i l i t y factor of h a r d c o n v e x bodies. H e r e α is a constant d e p e n d ­ i n g o n t h e shape of t h e m o l e c u l e s (a = m i x t u r e s a s s u m e d to b e a =

]T i

m

T h e t e r m U = 0.74048 V °/V m

close-packed volume, N

0

1 for spherical molecules), for

Xi«t.

m

=

1/6 7rN a */V , 0

m

m

where V ° m

is t h e A v o g a d r o n u m b e r , a n d V

m

is t h e

is t h e m o l a r

v o l u m e of t h e system. V ° is a s i m p l e f u n c t i o n of t h e t e m p e r a t u r e ( T ) (10)

w i t h a c h a r a c t e r i s t i c v a l u e V ° ° at Τ = 0 K . T h e last t e r m i n E q u a ­

t i o n 12 w a s i n t r o d u c e d b y A l d e r et a l . (11).

D

nm

a r e 24 u n i v e r s a l c o n ­

stants c o m m o n f o r a l l substances w h o s e r a d i a l a n d h i g h e r d i s t r i b u t i o n f u n c t i o n s are t h e same f u n c t i o n s of û/kT a n d t h e r e d u c e d d e n s i t y p* V°/V.

A s s h o w n b y C h e n a n d K r e g l e w s k i (10)

C h a o (12),

=

a n d Simnick, L i n , a n d

E q u a t i o n 12 is t h e most a c c u r a t e k n o w n e q u a t i o n w i t h f o u r

c h a r a c t e r i s t i c constants: a, V ° ° ( V ° at Τ =

0 K ) , û°/k, a n d η/k

(see

E q u a t i o n s 13 a n d 14). T h e y also h a v e s h o w n ( J O ) t h a t i n o r d e r t o o b t a i n a g r e e m e n t w i t h s e c o n d v i r i a l coefficient d a t a of t h e gas a n d t h e i n t e r n a l e n e r g y o r t h e e n t h a l p y of t h e l i q u i d , i t is necessary t o assume t h a t u(r) is a f u n c t i o n of Τ as r e q u i r e d b y t h e t h e o r y of n o n c e n t r a l forces b e t w e e n nonspherical molecules

(13)

^ - δ Μ Ι

+ Λ Α Γ )

(13)

w h e r e L i n d i c a t e s L o n d o n i n t e r a c t i o n s . F o r a p u r e fluid ( J O )

7? /fc « 0.60 ωΤ° L

w h e r e ω is the a c e n t r i c factor a n d T

c

(14)

is t h e c r i t i c a l t e m p e r a t u r e i n K .

T h e y also h a v e c o n c l u d e d t h a t η\ί~

(ιΛι + Λ > ) / 2

In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

(15)

202

EQUATIONS O F S T A T E

T h e values of the c h a r a c t e r i s t i c constants for A r , K r , N , a n d C H 2

are g i v e n i n R e f . 10.

4

F o r X e , 0 , a n d a l l t h e substances c o n s i d e r e d i n 2

T a b l e I V the constants w e r e e s t i m a t e d as f o l l o w s .

T h e effect of t h e v a l u e

of a o n t h e excess f u n c t i o n s is n e g l i g i b l e ; therefore, a w a s set e q u a l to u n i t y . T h e η/k w a s e s t i m a t e d f r o m E q u a t i o n 14 a n d V ° ° f r o m t h e l i q u i d m o l a r v o l u m e at t h e r e d u c e d t e m p e r a t u r e T/T T h e e n e r g y û°/k

^

o n l y if η/k

T

=

0.6.

=

c

c

0.

I n o t h e r cases i t is n o t

r e l a t e d so d i r e c t l y to a m a c r o s c o p i c p r o p e r t y b u t i t c a n b e e s t i m a t e d b y r e l y i n g o n the a c c u r a c y of E q u a t i o n 12.

W h e n a l l of t h e c h a r a c t e r i s t i c

constants are k n o w n , E q u a t i o n 12 y i e l d s a c c u r a t e m o l a r v o l u m e s of

the

Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011

s a t u r a t e d l i q u i d a n d v a p o r phases o b t a i n e d b y a n i t e r a t i o n at constant Τ a n d Ρ f r o m the G i b b s e q u i l i b r i u m c o n d i t i o n . H e n c e , i f a, V ° ° , a n d η/k h a v e b e e n e s t i m a t e d a l r e a d y , ù°/k

is f o u n d b y v a r y i n g its v a l u e u n t i l t h e

l i q u i d v o l u m e c a l c u l a t e d f r o m E q u a t i o n 12 or f r o m the c o m p r e s s i b i l i t y f a c t o r Ζ agrees w i t h the o b s e r v e d v a l u e at a c e r t a i n T , say, T/T

c

=

0.6.

T h e values of η/k f o r t h e c o m p o n e n t s g i v e n i n T a b l e I I I are 1 Κ for C H , 2 Κ for 0 , 3 Κ for N , a n d zero for A r , K r , a n d X e . T h e v a l u e s of 4

u

i ;

L

2

2

i n E q u a t i o n 13 w e r e c a l c u l a t e d f r o m E q u a t i o n s 6 a n d 15. C o n s i d e r i n g

t h a t a s m a l l error i n the c o m b i n i n g rules leads to l a r g e errors i n G

and

E

the a g r e e m e n t w i t h t h e o b s e r v e d v a l u e s is v e r y satisfactory.

H, B

t i o n a l l y , for the N

+

2

C H

4

system E q u a t i o n 15 y i e l d s ? / i

v a l u e s of the excess f u n c t i o n s

t h a t are too

(8)

small.

q u a d r u p o l a r m o l e c u l e a n d t h i s effect varies w i t h (kT)' If the v a l u e of ηη/k

actions, 7 7 n A , w e h a v e N : /k Q

— V22 /k =

(T7I

2

L

+

2

1,77

L

vi2 )/k Q

22

Q

/fc =

V11

=

0.5 Κ i n s t e a d of

=

Q

~ /k

V12

=

2 K

and to

is a s c r i b e d to q u a d r u p o l e i n t e r ­

r;n /fc =

0. S i n c e η^

L

N i t r o g e n is a analogously

1

the L o n d o n energy.

2

Excep­

(*?u

=

Q

η^

3, ηη^/k V22 ) > Q

=

Table IV.

1/2

=

0; C H : r? /fc 4

22

w e o b t a i n η^/k

=

2 Κ f o r the t o t a l .

Excess F u n c t i o n s

of

Components (1) n-C n-C cy-C cy-C

6

e

5

5

+ + + +

(2)

Ύ/Κ

n-Ci2

293 293 293 293 298 298 298 298

n-C

1 6

cy-C

8

OMCTS

218' 0 305" 0 101* 0 194' 28

Binary systems at χ = 0.5. * T h e values kept constant are η/k = 88 of η-Ce, TJ//C = u°/k and V° of all the components. Weighing of interactions : mole fractions.

t 1.33

1 0.91

f 1.275 1.11 0.834

0

59 Κ of c y c l o - C and

0

In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

5

11.

KREGLEWSKI A N D C H E N

Table III.

The

van

der

Waals

Theory

of

203

Fluids

Excess Functions of L i q u i d Systems of Small Molecules 0

Observed System

T / K

A r + Kr

103.94 115.77 115.77 161.36 161.36 83.82 91 115.77 115.77 90.7 91.5 105.0

Kr +

Xe

Ar + 0 Ar + C H

Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011

2

4

Kr + C H N + C H 2

4 4

G

Predicted Equation

Values'

E

82.5 83.9 82.4 103 114 37 72 76 29 169.6

JJE

V

60 103

-0.53 -0.464 -0.459 -0.695 +0.14 +0.18

— 55 — 138

— —

E

-0.025

— — -1.16

101

QE

H

87 93 93 135 135 35 79 79 22 166" 166" 169"

47 26 26 64 64 50 100 69 22 190" 186" 86"

Values, 6 V

E

E

-0.19 -0.51 -0.51 -0.51 -0.51 +0.12 +0.15 -0.12 -0.02 -0.71" -0.75" -1.95"

° Binary systems at χ = 0.5. G Ε and H are in joules mole" and V is in cubic centimeters mole" . ° The references to the observed values are given in Refs. 8 and 17. Also, some of the calculated values were taken from Ref. 8. Values calculated with the assumption that η/k of nitrogen is caused by the quadrupole moment (see the text). b

1

E

1

E

d

Systems

of Large

Molecules

W h e n one or m o r e c o m p o n e n t s are l a r g e m o l e c u l e s , E q u a t i o n b e g i n s to f a i l .

D e p a r t u r e s a l r e a d y are n o t e d for ethane (η/k =

6

19 K ) .

T h e r e a s o n m a y be that o n l y a p a r t of t h e l a r g e m o l e c u l e is i n v o l v e d i n the m i x e d interaction ù . i}

A c c o r d i n g l y , t h e c o n c e p t of i n t e r a c t i o n s b e -

t w e e n segments of m o l e c u l e s is p o p u l a r . S i n c e for m o l e c u l e s w i t h L o n d o n

L i q u i d Systems of Large Molecules

0

Calculated '

Observed

b 0

G

H

E

E

d

V

E

— — -0.20

—65

+129

-0.48

+2

-40

-0.28

+2.36 +0.06

-208

+212

+0.05

-50

+95

-0.46

+1 -209 -215

-34 +516 +334

e 1

E

-0.31

-0.31

d

H

+46

+31



E

—25 -20



G

The references to the experimental data are given in Ref. 17. From Equation 14. Wrong results for any value of 112.

In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

204

EQUATIONS O F

energies ( o n l y ) p< is a n a p p r o x i m a t e l y l i n e a r f u n c t i o n of σ «

STATE

(expressed

3

b y t h e c r i t i c a l v o l u m e V / or t h e c l o s e - p a c k e d v o l u m e V»° ), t h e c o m b i n i n g r u l e for i n t e r a c t i o n s € ° b e t w e e n segments of e q u a l size a n d , i m p l i c i t l y , {

e q u a l p o l a r i z a b i l i t i e s is

c°«-2[(l/e°

4 l

) +

(ΙΑ ;;)]" 0

(16)

1

S i m u l t a n e o u s l y , the w e i g h i n g of i n t e r a c t i o n s b y means of t h e m o l e f r a c ­ tions i n E q u a t i o n 7 m u s t b e r e p l a c e d b y a m o r e p r o p e r m e a s u r e of the Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011

p r o b a b i l i t i e s of en, c#, a n d b y F l o r y (14),

i n t e r a c t i o n s . T h e site f r a c t i o n s , as defined

are u s e d f o r systems of c h a i n m o l e c u l e s b u t t h e y c o n t a i n

the p a r a m e t e r Si/sj t h a t has to b e fitted to a g i v e n system. K r e g l e w s k i and K a y (25)

o b t a i n e d v e r y g o o d results for t h e c r i t i c a l constants

m i x t u r e s b y u s i n g E q u a t i o n 16 a n d c r u d e l y d e f i n e d surface

of

fractions.

T h e agreement w i t h o b s e r v e d d a t a is so g o o d that t h e c o n c e p t s h o u l d n o t be a b a n d o n e d o n l y b e c a u s e the surface fractions h a v e a p o o r t h e o ­ r e t i c a l f o u n d a t i o n . T h e r e m u s t exist a b r i d g e b e t w e e n t h e m o l e fractions (appropriate for small spherical molecules)

a n d t h e site fractions

for

l o n g chains. T h e c o n c e p t of segment interactions has not b e e n u s e d i n o u r present w o r k . O u r considerations are l i m i t e d to the exact t r e a t m e n t b a s e d o n t o t a l i n t e r a c t i o n s tt# a n d m o l e fractions. A c c o r d i n g to S a l e m (16)

the L o n d o n

e n e r g y b e t w e e n t w o l o n g straight or c i r c u l a r c h a i n s at close distances is p r o p o r t i o n a l to m u°(r)

w h e r e u°(r)

is g i v e n b y E q u a t i o n 1 a n d m is

t h e n u m b e r of c h a i n units. T h e same t r a n s f o r m a t i o n t h a t l e d to E q u a t i o n 6 yields

2 [ ( Ι / υ * ) (l/q,) +

û°n =

0

w h e r e ty =

Vi il'(p^n*).

values of G

m

E

system

are

HjY

1

(large molecules)

T h e values of ^ r e q u i r e d to fit t h e

of t h e n-hexane +

cyclopentane +

(1/ΰ°„)

n - d o d e c a n e or n - h e x a d e c a n e

cyclooctane or octamethyl-cyclotetrasiloxane

close to u n i t y a n d so

they

differ v e r y

(17)

observed and the

(OMCTS)

much from

the

theoretical values. T h e r e is a m o r e serious p r o b l e m t h a n the necessity of u s i n g e m p i r i c a l v a l u e s of m. T h e values of û°/k,

η/k, a n d V ° of t h e c o m p o n e n t s

e s t i m a t e d f r o m t h e p r o p e r t i e s of the l i q u i d state.

T h e values of

e s t i m a t e d b y means of E q u a t i o n 14, r a n g e f r o m 59 Κ f o r to 305 Κ f o r h e x a d e c a n e .

were η/k,

cyclopentane

T h e v a l u e f o r η^ w a s e i t h e r c a l c u l a t e d f r o m

E q u a t i o n 15 or d e l i b e r a t e l y v a r i e d w i t h i n reasonable l i m i t s . A l s o HJ w a s v a r i e d . W e h a v e e s t a b l i s h e d t h a t n o n e of t h e c o m b i n a t i o n s of ηα a n d HJ

In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

11.

KREGLEWSKI AND C H E N

The van der Waals

y i e l d s i m u l t a n e o u s l y g o o d values of G ,

H

E

E

205

Theory of Fluids

, and V .

T h e results are not

E

i m p r o v e d w h e n m o l e fractions i n E q u a t i o n 7 are r e p l a c e d b y surface or site fractions. T h e results m a d e it clear that the values of η/k of the p u r e ponents m u s t b e c h a n g e d .

com­

T h i s c o n c l u s i o n is s t r o n g l y e n d o r s e d b y the

f o l l o w i n g results o b t a i n e d r e c e n t l y b y one

of the authors.

For

both

s p h e r i c a l a n d c h a i n m o l e c u l e s u p to n-pentane or c y c l o p e n t a n e the same values of η/k, o b t a i n e d f r o m E q u a t i o n 14, y i e l d a c c u r a t e values of t h e second

v i r i a l coefficients

β

r e s i d u a l i n t e r n a l energies U

r

(Τ)

(reduced

density ρ*

of the l i q u i d ( a t p* >

=

0)

and

the

0.52). T h e acentric

Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011

factors are d e t e r m i n e d at ρ * ^ 0.52. F o r l a r g e r m o l e c u l e s , b e g i n n i n g w i t h b e n z e n e or n - C , η/k values r e q u i r e d to fit β (Τ)

data become larger than

6

E q u a t i o n 14 suggests w h e r e a s t h a t fitting U d a t a of t h e l i q u i d b e c o m e s r

s l i g h t l y s m a l l e r ( a t constant ù°/k

a n d V ° ). T h a t is, η/k b e g i n s to d e p e n d

o n p*. T h e v a l u e of η/k varies w i t h p* m o r e r a p i d l y for n-alkanes ( n - C , 7

etc.)

t h a n for c y c l o a l k a n e s

( c y - C , etc.). 7

The phenomenon

is r e l a t e d

c l e a r l y to r e s t r i c t e d r o t a t i o n at h i g h densities. W h e n t h e c h a i n is suffi­ c i e n t l y l o n g a n d p* >

0.75 ( s o l i d state) w e c a n expect η/k -> 0 ( c o m ­

p l e t e l y r e s t r i c t e d rotations ). A c c o r d i n g l y , w e have r e t a i n e d the values of η/k of n - C

and c y - C

6

3

c a l c u l a t e d f r o m E q u a t i o n 14, b u t the values for n - C i , n - C i , c y - C , a n d 2

6

8

O M C T S w e r e decreased to a n a p p r o p r i a t e l e v e l . S i m u l t a n e o u s l y , η

=

(vu +

V

ι}

Vn)

/2

a n d Hj w e r e v a r i e d u n t i l the three p r o p e r t i e s G ,

H

E

E

, and

E

a g r e e d w i t h i n ± 20 J m o l " a n d ± 0 . 0 5 c m m o l ' w i t h the o b s e r v e d v a l u e s . 1

3

1

T h e results are c o m p a r e d i n T a b l e I V . T h e first r o w for e a c h system shows the errors i n H

E

when L

and V

E

12

is fitted to G

and η

E

22

is t h a t

c a l c u l a t e d f r o m E q u a t i o n 14. T h e second r o w shows the i m p r o v e m e n t of the results w h e n η

22

η

22

=

is p r o p e r l y d i m i n i s h e d . F o r three of t h e

0 is r e q u i r e d . I n the f o u r t h system, a decrease of η /k

would improve H 112 appears

E

; however, V

E

w o u l d b e c o m e negative.

to v a r y i n a n u n p r e d i c t a b l e m a n n e r .

fractions are u s e d ( w i t h the same values of η )

systems

b e l o w 28 Κ

22

T h e v a l u e of

When

the

surface

t h e n a l w a y s 112 >

22

q u a l i t a t i v e agreement w i t h the t h e o r y of S a l e m . H o w e v e r , L

12

1 in

cannot

be

p r e d i c t e d w h e n the systems are t r e a t e d as r a n d o m m i x t u r e s . I t is s h o w n elsewhere

(18)

t h a t the p r o p e r t i e s of m i x t u r e s of l a r g e m o l e c u l e s

can

b e p r e d i c t e d w i t h n e a r l y the same a c c u r a c y as those of s m a l l m o l e c u l e s b y i n t r o d u c i n g a n a p p r o x i m a t e c o r r e c t i o n to A

r

m

o w i n g to

nonrandom

mixing. I n a l l theories of p o l y m e r solutions u^ or c a l w a y s are a s s u m e d to b e i;

i n d e p e n d e n t of the t e m p e r a t u r e , a p p a r e n t l y c o n t r a d i c t i n g the t h e o r y of n o n c e n t r a l forces.

O u r results s h o w that there is n o c o n t r a d i c t i o n a n d

that this a s s u m p t i o n is a l l o w e d f o r l o n g straight or c i r c u l a r c h a i n s at h i g h densities ( l i q u i d s b e l o w t h e i r n o r m a l b o i l i n g t e m p e r a t u r e s ).

In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

206

EQUATIONS OF

Glossary

of

STATE

Symbols

Τ = temperature i n Κ Ρ = pressure i n b a r V = v o l u m e of the system V ° = close-packed volume

( V ° = V

o

o

a t r = 0 )

A = H e l m h o l t z free energy, A ( T , V ) U = i n t e r n a l energy, U( Τ, V) G = G i b b s free energy, G ( T , P) Ή = enthalpy,

H(T,P)

I = ionization potential Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011

k = B o l t z m a n n constant ( R =

N k is the gas c o n s t a n t ) 0

r = intermolecular distance = pair interaction energy

u(r)

û, ύ° = m i n i m u m v a l u e of u(r)

(ù/k i n K )

η/Jc = p a r a m e t e r of n o n c e n t r a l energy ( i n K ) σ

= c o l l i s i o n d i a m e t e r of a m o l e c u l e

ρ = ω

=

m e a n p o l a r i z a b i l i t y of a m o l e c u l e a c e n t r i c factor

x = mole fraction p* = r e d u c e d d e n s i t y ,

V°/V

Superscripts r = r e s i d u a l p r o p e r t y ( r e a l fluid m i n u s p e r f e c t gas at the same Γ a n d Ρ or Γ a n d V ) Ε = excess p r o p e r t y ( r e a l m i x t u r e m i n u s i d e a l m i x t u r e at the same Τ, P , a n d * ) c = g a s - l i q u i d c r i t i c a l constants Subscripts i, j = i n t e r a c t i n g species ( i =

1 , 2 , . . . m; j =

i or /

%)

m = m o l a r p r o p e r t y of a fluid or p e r m o l e of a m - c o m p o n e n t m i x t u r e , e

-g-> V / c m m

3

m o l " ; also a n average v a l u e of a m o l e c u l a r p r o p e r t y 1

of a m i x t u r e , e.g., ù

m

or

E x c e s s p r o p e r t i e s , e.g., G , E

a. m

are also m o l a r b u t the s u b s c r i p t is

deleted. Acknowledgments D r . C h e n p a r t i c i p a t e d i n a n e a r l y stage of this w o r k . H e d i e d i n S e p t e m b e r , 1977. T h a n k s to B . J . Z w o l i n s k i , f o r m e r D i r e c t o r of t h e T h e r m o d y n a m i c s R e s e a r c h C e n t e r , f o r e n c o u r a g i n g this r e s e a r c h a n d t o C . C h e n f o r h e r

In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

11.

KREGLEWSKI AND C H E N

The van der Waals Theory

of Fluids

207

h e l p i n c o m p u t e r p r o g r a m m i n g . P a r t i a l s u p p o r t of t h e T e x a s E n g i n e e r i n g E x p e r i m e n t S t a t i o n is g r a t e f u l l y a c k n o w l e d g e d .

Literature Cited 1. 2. 3. 4. 5.

Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011

6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.

London, F. Z. Phys. 1930, 63, 245. London, F. Z. Phys. Chem., Abt. Β 1930, 11, 222. Kohler, F. Monatsh. Chem. 1957, 88, 857. Leland, T. W., Jr.; Rowlinson, J. S.; Sather, G. A. Trans. Faraday Soc. 1968, 64, 1447. Kac, M.; Uhlenbeck, G. E.; Hemmer, P. C. J. Math. Phys. 1963, 4, 216, 229. Smith, K. M.; Rulis, A. M . ; Scoles, G.; Aziz, R. A. J. Chem. Phys. 1977, 67, 155. Chen, C. H.; Siska, P. E.; Lee, Y. T. J. Chem. Phys. 1973, 59, 601. Kreglewski, Α.; Chen, S. S. J. Chim. Phys. 1978, 75, 347. Boublik, T. J. Chem. Phys. 1975, 63, 4084. Chen, S. S.; Kreglewski, A. Ber. Bunsenges. Phys. Chem. 1977, 81, 1048. Alder, B. J.; Young, D. A.; Mark, M. A. J. Chem. Phys. 1972, 56, 3013. Simnick, J. J.; Lin, H. L.; Chao, K. C.; Chapter 12 in this book. Rowlinson, J. S. "Liquids and Liquid Mixtures"; Butterworths: London, 1969. Flory, P. J. J. Am. Chem. Soc. 1965, 87, 1833. Kreglewski, Α.; Kay, W. B. J. Phys. Chem. 1969, 73, 3359. Salem, L. J. Chem. Phys. 1962, 37, 2100. Kreglewski, Α.; Wilholt, R. C.; Zwolinski, B. J. J. Phys. Chem. 1973, 77, 2212. Kreglewski, A. J. Chim. Phys. 1979, 76 (in press).

RECEIVED

August 8, 1978.

In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.