11 Applications of the Augmented van der Waals Theory of Fluids: Tests of Some Combining Rules for Mixtures
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011
ALEKSANDER KREGLEWSKI and STEPHEN S. CHEN Thermodynamics Research Center, Texas A&M University, College Station, TX 77843
An accurate equation of state of fluids is used to test the combining rules for the interaction energy ū of mixtures derived from the theories of London energy between small or large (chain) molecules. The tests are based mostly on comparisons with the thermodynamic excess functions of binary systems at Ρ = 0. For long chains the parameter η/k, determining the dependence of ū/k on the temperature, depends on the reduced density ρ* = V°/V of the system (where V° is the close-packed volume) and η/k->0 when ρ* > 0.75 (solid state). ij
H P h e t h e r m o d y n a m i c p r o p e r t i e s of m i x t u r e s are e x t r e m e l y sensitive to -•-the values of m i x e d - p a i r i n t e r a c t i o n energies Uu(r) r e l a t i v e to those a c t i n g b e t w e e n t h e m o l e c u l e s of t h e p u r e c o m p o n e n t s , Uu(r) a n d
Ujj(r),
a n d to t h e average c o l l i s i o n d i a m e t e r σ o f t h e m i x t u r e o b t a i n e d f r o m σ « , χ
a,» a n d σ ·. A r e l a t i v e l y s m a l l error i n ί;
obtained.
g r e a t l y affects t h e p h a s e d i a g r a m
I f t h e p r e d i c t e d v a l u e o f ι*# is too l o w b y 2 % , t h e p h a s e d i a
gram may, for example, exhibit a n azeotropic mixture or even a separation i n t o three phases, l i q u i d +
liquid +
gas, w h i l e t h e r e a l d i a g r a m shows
o n l y t w o phases a n d n o azeotrope. T h e p u r p o s e of this c h a p t e r is to test t h e c o m b i n i n g rules t h a t r e s u l t f r o m three a p p r o x i m a t i o n s f o r r a n d o m m i x t u r e s of fluids. T h e s q u a r e - w e l l (SW)
a p p r o x i m a t i o n y i e l d s v e r y g o o d results f o r systems of s m a l l m o l e
cules. T h e c o m p l e x i t y of t h e p r o b l e m f o r l a r g e m o l e c u l e s , a g g r a v a t e d b y t h e d e p e n d e n c e of u(r)
o n t h e r e d u c e d d e n s i t y of t h e system, is o u t l i n e d .
0-8412-0500-0/79/33-182-197$05.00/l © 1979 American Chemical Society
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
198
EQUATIONS O F S T A T E
Systems
of
Small
Molecules
W e s h a l l l i m i t o u r c o n s i d e r a t i o n to systems w i t h L o n d o n energies o n l y .
F o r s u c h systems
London
(dispersion)
derived
(1,2)
the
famous
relation
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011
i n w h i c h p» a n d p
;
are the p o l a r i z a b i l i t i e s of t h e t w o m o l e c u l e s , r is the
d i s t a n c e b e t w e e n t h e i r centers, a n d hv are c e r t a i n energies w h i c h p r o b a b l y are r e l a t e d to the i o n i z a t i o n potentials I . E x c e p t for H e a n d H , hv 2
is not e q u a l or p r o p o r t i o n a l to 7. T h e s u p e r s c r i p t ' V i n
indicates that
the r e l a t i o n w a s d e r i v e d for s m a l l s p h e r i c a l m o l e c u l e s . T a k i n g i n t o a c c o u n t that a h a r d r e p u l s i o n exists at close distances r , we may write =
Uij(r)
oo
at r ^
σ
(2)
at r > σ
(3)
and Uij (r) = where « ûij =
- ïïy ( σ , / Λ )
6
is the m i n i m u m v a l u e of Uij(r).
y
Uij . 0
F o r small spherical molecules
B y c o m p a r i n g E q u a t i o n s 1 a n d 3 for the p u r e c o m p o n e n t s ,
one obtains 4 hvi = Upon
4
— u°
substitution into
u
u*u/v i a n d h 2
Equation
Vj
=
_ u°jj
aVP ; 2
1 the
unknown
quantities
+
fife) ]
hv
are
eliminated.
° [Àf (S)
U {i= 2
T h i s c o m b i n i n g r u l e w a s d e r i v e d i n a different m a n n e r b y K o h l e r I t is n o w w e l l k n o w n (4)
(3).
that the so-called r a n d o m m i x i n g approxi-
m a t i o n , w h i c h is b a s e d o n the L e n n a r d - J o n e s p o t e n t i a l , g r e a t l y gerates t h e effect of size differences of the m o l e c u l e s o n « ·. ί;
m i x t u r e s are r a n d o m i n a l l the m o d e l s c o n s i d e r e d m o r e a p p r o p r i a t e to c a l l that i n w h i c h u(r)
exag-
Since the
i n this c h a p t e r , i t is
varies w i t h ( σ / r )
Lennard-Jones ( L J ) approximation.
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
6
the
11.
KREGLEwsKi A N D C H E N
The van der Waals
Theory
199
of Fluids
I n t h e S W a p p r o x i m a t i o n a n d at a constant w i d t h ( σ / r ) o f t h e w e l l for a l l substances w e have ^o( ) = c o n s t a n t l y
(r > σ) ;
r
(5)
a n d instead of E q u a t i o n 4 w e o b t a i n
ΰ°
υ
= 2 [\z^-— + ^
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011
A l s o , t h e average ù
m
(6)
( s m a l l molecules)
1
of t h e m i x t u r e b e c o m e s i n d e p e n d e n t of σ m — Σ Σ i j
u
where i7 =
- 1
u jj Pi J
[_w a Vj
ij
X
(7) \ f
ij
X
U
f o r s m a l l molecules.
i;
I n t h e theory of v a n d e r W a a l s ( V D W ) t h e p a r a m e t e r a is p r o p o r t i o n a l to ΰσ , w h e r e ù is t h e m i n i m u m v a l u e of a n u n k n o w n p o t e n t i a l 3
u(r).
L e l a n d et a l . (3) h a v e s h o w n that t h e V D W a p p r o x i m a t i o n is
much
better
combining where k
tj
than the L J approximation.
I n this a p p r o x i m a t i o n t h e
rules a l w a y s a r e a p p l i e d to a
ijf
u s u a l l y α# =
&ϋ(αϋα ·) ,
is a constant b e c a u s e n o t h i n g better m a y b e d e r i v e d
;;
1/2
when
is n o t k n o w n .
u(r)
Kac
et a l . (5) have s h o w n that t h e a t t r a c t i o n t e r m i n t h e V D W
e q u a t i o n of state, a/RTV,
is o b t a i n e d w h e n the i n t e r m o l e c u l a r forces a r e
infinitely w e a k , du(r)/dr
= 0. T h i s is also t h e c h a r a c t e r i s t i c feature of
the S W p o t e n t i a l w h i c h differs f r o m t h e K a c p o t e n t i a l i n that t h e attrac t i o n is c u t off at a c e r t a i n ( r / σ ) , u s u a l l y at 3/2. H e n c e , E q u a t i o n 6 i s the p r o p e r c o m b i n i n g r u l e f o r u j i n a . {
{j
O n t h e c o n t r a r y , i f w e insist o n c o u p l i n g ΰ · w i t h σ · a n d u s i n g t h e ί;
VDW
approximation for a
m>
ί;
t h e effect o n t h e c a l c u l a t e d properties of
m i x t u r e s is t h e same as i f W y ( r ) w e r e expressed b y a h y p o t h e t i c a l p o t e n t i a l ùij(aij/r) . z
T h i s leads to a c o m b i n i n g r u l e g i v e n b y E q u a t i o n 4 i n
w h i c h a l l of t h e σ ' a r e r e p l a c e d b y σ ' . T h i s is c a l l e d t h e r u l e f o r t h e 6
VDW
8
3
8
approximation.
T h e rules f o r t h e V D W a n d S W a p p r o x i m a t i o n s a r e c o m p a r e d w i t h the e x p e r i m e n t a l d a t a f o r m i x t u r e s o f n o b l e gases i n T a b l e I . T h e e x p e r i m e n t a l values of % are selected b y S m i t h et a l . (6) f r o m m o l e c u l a r b e a m scattering, s e c o n d v i r i a l coefficient, a n d viscosity d a t a . T h e values of ù/k of t h e p u r e c o m p o n e n t s a r e : H e , 10.5 K ; A r , 140 K ; K r , 196 K ; a n d X e , 265 K . T h e values of σ g i v e n b y C h e n et a l . (6) a r e : H e , 2.65 A ; N e , 2.75 A ; A r , 3.34 A ; K r , 3.64 A ; a n d X e , 3.81 A . T h e p o l a r i z a b i l i t i e s w e r e t a k e n f r o m t h e L a n d o l t - B o r n s t e i n T a b e l l e n (1960).
B y comparing the
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
200
EQUATIONS OF STATE Table I.
Values of û°ij for Mixed Interactions between Noble Gases ( K )
Experimental
30.2 30.2 28.0
He + Ar He + K r He + Xe 1
6
Equation
VDW
a
Equation
33.0 35.2 33.8
38.6 45.6 54.3
29.0 28.8 25.3
Equation 4 with all σ 'β replaced by σ . The σ α 3
6
8
is calculated from Equation 10.
3
values of iïy g i v e n b y S m i t h et a l . w i t h those of C h e n et a l . ( w h i c h are Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011
lower)
w e estimate t h e i r u n c e r t a i n t y to be a b o u t
s h o w that E q u a t i o n 6 is the best a p p r o x i m a t i o n .
±10%.
These
data
T h e last c o l u m n i n
T a b l e I gives the g e o m e t r i c m e a n values (û«%)
%i—
(8)
1 / 2
T h e c o m p a r i s o n s w i t h other e x i s t i n g c o m b i n i n g rules w e r e m a d e
by
S m i t h et a l . a n d are not r e p e a t e d here. T h e t w o most c o m m o n l y
u s e d rules for σ»,, n a m e l y that o w i n g
to
Lorentz,
σ « — (σ« + σ „ ) / 2 ,
(9)
a n d to v a n d e r W a a l s
σ\}=
(σ * + σ , , ) / 2 3
(10)
3
are c o m p a r e d w i t h the e x p e r i m e n t a l d a t a g i v e n b y C h e n et a l . (7) T a b l e II.
E q u a t i o n 10 appears
to be m u c h better
a l t h o u g h it is o v e r s i m p l i f i e d i n that it neglects the effect of w average a
m
i;
o n σ ·. ί;
The
of the m i x t u r e , d e r i v e d f r o m E q u a t i o n 10, is
Table II.
Collision Diameters for Mixed between Noble Gases (in A ) Experimental
He He He He
in
than Equation 9
+ Ne + Ar + Kr + Xe
2.73 3.09 3.27 3.61
Equation
2.70 3.00 3.14 3.23
9
Interactions Equation
2.70 3.03 3.22 3.33
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
10
11.
KREGLEWSKI AND C H E N
The van der Waals
201
Theory of Fluids
I n a d d i t i o n to t h e a b o v e d i r e c t tests, t h e r u l e g i v e n b y E q u a t i o n 6 w a s tested b y c a l c u l a t i n g the t h e r m o d y n a m i c excess f u n c t i o n s of m i x t u r e s . T h e relations a r e g i v e n b y K r e g l e w s k i a n d C h e n ( 8 ) . T h e b a s i c o n e f o r the r e s i d u a l H e l m h o l t z energy of a m i x t u r e A
r
m
RT
-=
/ v
ο
" (a
m
z
m
ι \ -ι ;
V i
η Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011
t. \ ι
ζ.*
~f" 3 a ) £ (1 -
— 1) In (1 — im) + i
is
1
m
3a £
m
U
m
w
2
m
T h e first t w o terms w e r e d e r i v e d f r o m B o u b l i k ' s ( 9 ) r e l a t i o n f o r t h e c o m p r e s s i b i l i t y factor of h a r d c o n v e x bodies. H e r e α is a constant d e p e n d i n g o n t h e shape of t h e m o l e c u l e s (a = m i x t u r e s a s s u m e d to b e a =
]T i
m
T h e t e r m U = 0.74048 V °/V m
close-packed volume, N
0
1 for spherical molecules), for
Xi«t.
m
=
1/6 7rN a */V , 0
m
m
where V ° m
is t h e A v o g a d r o n u m b e r , a n d V
m
is t h e
is t h e m o l a r
v o l u m e of t h e system. V ° is a s i m p l e f u n c t i o n of t h e t e m p e r a t u r e ( T ) (10)
w i t h a c h a r a c t e r i s t i c v a l u e V ° ° at Τ = 0 K . T h e last t e r m i n E q u a
t i o n 12 w a s i n t r o d u c e d b y A l d e r et a l . (11).
D
nm
a r e 24 u n i v e r s a l c o n
stants c o m m o n f o r a l l substances w h o s e r a d i a l a n d h i g h e r d i s t r i b u t i o n f u n c t i o n s are t h e same f u n c t i o n s of û/kT a n d t h e r e d u c e d d e n s i t y p* V°/V.
A s s h o w n b y C h e n a n d K r e g l e w s k i (10)
C h a o (12),
=
a n d Simnick, L i n , a n d
E q u a t i o n 12 is t h e most a c c u r a t e k n o w n e q u a t i o n w i t h f o u r
c h a r a c t e r i s t i c constants: a, V ° ° ( V ° at Τ =
0 K ) , û°/k, a n d η/k
(see
E q u a t i o n s 13 a n d 14). T h e y also h a v e s h o w n ( J O ) t h a t i n o r d e r t o o b t a i n a g r e e m e n t w i t h s e c o n d v i r i a l coefficient d a t a of t h e gas a n d t h e i n t e r n a l e n e r g y o r t h e e n t h a l p y of t h e l i q u i d , i t is necessary t o assume t h a t u(r) is a f u n c t i o n of Τ as r e q u i r e d b y t h e t h e o r y of n o n c e n t r a l forces b e t w e e n nonspherical molecules
(13)
^ - δ Μ Ι
+ Λ Α Γ )
(13)
w h e r e L i n d i c a t e s L o n d o n i n t e r a c t i o n s . F o r a p u r e fluid ( J O )
7? /fc « 0.60 ωΤ° L
w h e r e ω is the a c e n t r i c factor a n d T
c
(14)
is t h e c r i t i c a l t e m p e r a t u r e i n K .
T h e y also h a v e c o n c l u d e d t h a t η\ί~
(ιΛι + Λ > ) / 2
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(15)
202
EQUATIONS O F S T A T E
T h e values of the c h a r a c t e r i s t i c constants for A r , K r , N , a n d C H 2
are g i v e n i n R e f . 10.
4
F o r X e , 0 , a n d a l l t h e substances c o n s i d e r e d i n 2
T a b l e I V the constants w e r e e s t i m a t e d as f o l l o w s .
T h e effect of t h e v a l u e
of a o n t h e excess f u n c t i o n s is n e g l i g i b l e ; therefore, a w a s set e q u a l to u n i t y . T h e η/k w a s e s t i m a t e d f r o m E q u a t i o n 14 a n d V ° ° f r o m t h e l i q u i d m o l a r v o l u m e at t h e r e d u c e d t e m p e r a t u r e T/T T h e e n e r g y û°/k
^
o n l y if η/k
T
=
0.6.
=
c
c
0.
I n o t h e r cases i t is n o t
r e l a t e d so d i r e c t l y to a m a c r o s c o p i c p r o p e r t y b u t i t c a n b e e s t i m a t e d b y r e l y i n g o n the a c c u r a c y of E q u a t i o n 12.
W h e n a l l of t h e c h a r a c t e r i s t i c
constants are k n o w n , E q u a t i o n 12 y i e l d s a c c u r a t e m o l a r v o l u m e s of
the
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011
s a t u r a t e d l i q u i d a n d v a p o r phases o b t a i n e d b y a n i t e r a t i o n at constant Τ a n d Ρ f r o m the G i b b s e q u i l i b r i u m c o n d i t i o n . H e n c e , i f a, V ° ° , a n d η/k h a v e b e e n e s t i m a t e d a l r e a d y , ù°/k
is f o u n d b y v a r y i n g its v a l u e u n t i l t h e
l i q u i d v o l u m e c a l c u l a t e d f r o m E q u a t i o n 12 or f r o m the c o m p r e s s i b i l i t y f a c t o r Ζ agrees w i t h the o b s e r v e d v a l u e at a c e r t a i n T , say, T/T
c
=
0.6.
T h e values of η/k f o r t h e c o m p o n e n t s g i v e n i n T a b l e I I I are 1 Κ for C H , 2 Κ for 0 , 3 Κ for N , a n d zero for A r , K r , a n d X e . T h e v a l u e s of 4
u
i ;
L
2
2
i n E q u a t i o n 13 w e r e c a l c u l a t e d f r o m E q u a t i o n s 6 a n d 15. C o n s i d e r i n g
t h a t a s m a l l error i n the c o m b i n i n g rules leads to l a r g e errors i n G
and
E
the a g r e e m e n t w i t h t h e o b s e r v e d v a l u e s is v e r y satisfactory.
H, B
t i o n a l l y , for the N
+
2
C H
4
system E q u a t i o n 15 y i e l d s ? / i
v a l u e s of the excess f u n c t i o n s
t h a t are too
(8)
small.
q u a d r u p o l a r m o l e c u l e a n d t h i s effect varies w i t h (kT)' If the v a l u e of ηη/k
actions, 7 7 n A , w e h a v e N : /k Q
— V22 /k =
(T7I
2
L
+
2
1,77
L
vi2 )/k Q
22
Q
/fc =
V11
=
0.5 Κ i n s t e a d of
=
Q
~ /k
V12
=
2 K
and to
is a s c r i b e d to q u a d r u p o l e i n t e r
r;n /fc =
0. S i n c e η^
L
N i t r o g e n is a analogously
1
the L o n d o n energy.
2
Excep
(*?u
=
Q
η^
3, ηη^/k V22 ) > Q
=
Table IV.
1/2
=
0; C H : r? /fc 4
22
w e o b t a i n η^/k
=
2 Κ f o r the t o t a l .
Excess F u n c t i o n s
of
Components (1) n-C n-C cy-C cy-C
6
e
5
5
+ + + +
(2)
Ύ/Κ
n-Ci2
293 293 293 293 298 298 298 298
n-C
1 6
cy-C
8
OMCTS
218' 0 305" 0 101* 0 194' 28
Binary systems at χ = 0.5. * T h e values kept constant are η/k = 88 of η-Ce, TJ//C = u°/k and V° of all the components. Weighing of interactions : mole fractions.
t 1.33
1 0.91
f 1.275 1.11 0.834
0
59 Κ of c y c l o - C and
0
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
5
11.
KREGLEWSKI A N D C H E N
Table III.
The
van
der
Waals
Theory
of
203
Fluids
Excess Functions of L i q u i d Systems of Small Molecules 0
Observed System
T / K
A r + Kr
103.94 115.77 115.77 161.36 161.36 83.82 91 115.77 115.77 90.7 91.5 105.0
Kr +
Xe
Ar + 0 Ar + C H
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011
2
4
Kr + C H N + C H 2
4 4
G
Predicted Equation
Values'
E
82.5 83.9 82.4 103 114 37 72 76 29 169.6
JJE
V
60 103
-0.53 -0.464 -0.459 -0.695 +0.14 +0.18
— 55 — 138
— —
E
-0.025
— — -1.16
101
QE
H
87 93 93 135 135 35 79 79 22 166" 166" 169"
47 26 26 64 64 50 100 69 22 190" 186" 86"
Values, 6 V
E
E
-0.19 -0.51 -0.51 -0.51 -0.51 +0.12 +0.15 -0.12 -0.02 -0.71" -0.75" -1.95"
° Binary systems at χ = 0.5. G Ε and H are in joules mole" and V is in cubic centimeters mole" . ° The references to the observed values are given in Refs. 8 and 17. Also, some of the calculated values were taken from Ref. 8. Values calculated with the assumption that η/k of nitrogen is caused by the quadrupole moment (see the text). b
1
E
1
E
d
Systems
of Large
Molecules
W h e n one or m o r e c o m p o n e n t s are l a r g e m o l e c u l e s , E q u a t i o n b e g i n s to f a i l .
D e p a r t u r e s a l r e a d y are n o t e d for ethane (η/k =
6
19 K ) .
T h e r e a s o n m a y be that o n l y a p a r t of t h e l a r g e m o l e c u l e is i n v o l v e d i n the m i x e d interaction ù . i}
A c c o r d i n g l y , t h e c o n c e p t of i n t e r a c t i o n s b e -
t w e e n segments of m o l e c u l e s is p o p u l a r . S i n c e for m o l e c u l e s w i t h L o n d o n
L i q u i d Systems of Large Molecules
0
Calculated '
Observed
b 0
G
H
E
E
d
V
E
— — -0.20
—65
+129
-0.48
+2
-40
-0.28
+2.36 +0.06
-208
+212
+0.05
-50
+95
-0.46
+1 -209 -215
-34 +516 +334
e 1
E
-0.31
-0.31
d
H
+46
+31
—
E
—25 -20
—
G
The references to the experimental data are given in Ref. 17. From Equation 14. Wrong results for any value of 112.
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
204
EQUATIONS O F
energies ( o n l y ) p< is a n a p p r o x i m a t e l y l i n e a r f u n c t i o n of σ «
STATE
(expressed
3
b y t h e c r i t i c a l v o l u m e V / or t h e c l o s e - p a c k e d v o l u m e V»° ), t h e c o m b i n i n g r u l e for i n t e r a c t i o n s € ° b e t w e e n segments of e q u a l size a n d , i m p l i c i t l y , {
e q u a l p o l a r i z a b i l i t i e s is
c°«-2[(l/e°
4 l
) +
(ΙΑ ;;)]" 0
(16)
1
S i m u l t a n e o u s l y , the w e i g h i n g of i n t e r a c t i o n s b y means of t h e m o l e f r a c tions i n E q u a t i o n 7 m u s t b e r e p l a c e d b y a m o r e p r o p e r m e a s u r e of the Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011
p r o b a b i l i t i e s of en, c#, a n d b y F l o r y (14),
i n t e r a c t i o n s . T h e site f r a c t i o n s , as defined
are u s e d f o r systems of c h a i n m o l e c u l e s b u t t h e y c o n t a i n
the p a r a m e t e r Si/sj t h a t has to b e fitted to a g i v e n system. K r e g l e w s k i and K a y (25)
o b t a i n e d v e r y g o o d results for t h e c r i t i c a l constants
m i x t u r e s b y u s i n g E q u a t i o n 16 a n d c r u d e l y d e f i n e d surface
of
fractions.
T h e agreement w i t h o b s e r v e d d a t a is so g o o d that t h e c o n c e p t s h o u l d n o t be a b a n d o n e d o n l y b e c a u s e the surface fractions h a v e a p o o r t h e o r e t i c a l f o u n d a t i o n . T h e r e m u s t exist a b r i d g e b e t w e e n t h e m o l e fractions (appropriate for small spherical molecules)
a n d t h e site fractions
for
l o n g chains. T h e c o n c e p t of segment interactions has not b e e n u s e d i n o u r present w o r k . O u r considerations are l i m i t e d to the exact t r e a t m e n t b a s e d o n t o t a l i n t e r a c t i o n s tt# a n d m o l e fractions. A c c o r d i n g to S a l e m (16)
the L o n d o n
e n e r g y b e t w e e n t w o l o n g straight or c i r c u l a r c h a i n s at close distances is p r o p o r t i o n a l to m u°(r)
w h e r e u°(r)
is g i v e n b y E q u a t i o n 1 a n d m is
t h e n u m b e r of c h a i n units. T h e same t r a n s f o r m a t i o n t h a t l e d to E q u a t i o n 6 yields
2 [ ( Ι / υ * ) (l/q,) +
û°n =
0
w h e r e ty =
Vi il'(p^n*).
values of G
m
E
system
are
HjY
1
(large molecules)
T h e values of ^ r e q u i r e d to fit t h e
of t h e n-hexane +
cyclopentane +
(1/ΰ°„)
n - d o d e c a n e or n - h e x a d e c a n e
cyclooctane or octamethyl-cyclotetrasiloxane
close to u n i t y a n d so
they
differ v e r y
(17)
observed and the
(OMCTS)
much from
the
theoretical values. T h e r e is a m o r e serious p r o b l e m t h a n the necessity of u s i n g e m p i r i c a l v a l u e s of m. T h e values of û°/k,
η/k, a n d V ° of t h e c o m p o n e n t s
e s t i m a t e d f r o m t h e p r o p e r t i e s of the l i q u i d state.
T h e values of
e s t i m a t e d b y means of E q u a t i o n 14, r a n g e f r o m 59 Κ f o r to 305 Κ f o r h e x a d e c a n e .
were η/k,
cyclopentane
T h e v a l u e f o r η^ w a s e i t h e r c a l c u l a t e d f r o m
E q u a t i o n 15 or d e l i b e r a t e l y v a r i e d w i t h i n reasonable l i m i t s . A l s o HJ w a s v a r i e d . W e h a v e e s t a b l i s h e d t h a t n o n e of t h e c o m b i n a t i o n s of ηα a n d HJ
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
11.
KREGLEWSKI AND C H E N
The van der Waals
y i e l d s i m u l t a n e o u s l y g o o d values of G ,
H
E
E
205
Theory of Fluids
, and V .
T h e results are not
E
i m p r o v e d w h e n m o l e fractions i n E q u a t i o n 7 are r e p l a c e d b y surface or site fractions. T h e results m a d e it clear that the values of η/k of the p u r e ponents m u s t b e c h a n g e d .
com
T h i s c o n c l u s i o n is s t r o n g l y e n d o r s e d b y the
f o l l o w i n g results o b t a i n e d r e c e n t l y b y one
of the authors.
For
both
s p h e r i c a l a n d c h a i n m o l e c u l e s u p to n-pentane or c y c l o p e n t a n e the same values of η/k, o b t a i n e d f r o m E q u a t i o n 14, y i e l d a c c u r a t e values of t h e second
v i r i a l coefficients
β
r e s i d u a l i n t e r n a l energies U
r
(Τ)
(reduced
density ρ*
of the l i q u i d ( a t p* >
=
0)
and
the
0.52). T h e acentric
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011
factors are d e t e r m i n e d at ρ * ^ 0.52. F o r l a r g e r m o l e c u l e s , b e g i n n i n g w i t h b e n z e n e or n - C , η/k values r e q u i r e d to fit β (Τ)
data become larger than
6
E q u a t i o n 14 suggests w h e r e a s t h a t fitting U d a t a of t h e l i q u i d b e c o m e s r
s l i g h t l y s m a l l e r ( a t constant ù°/k
a n d V ° ). T h a t is, η/k b e g i n s to d e p e n d
o n p*. T h e v a l u e of η/k varies w i t h p* m o r e r a p i d l y for n-alkanes ( n - C , 7
etc.)
t h a n for c y c l o a l k a n e s
( c y - C , etc.). 7
The phenomenon
is r e l a t e d
c l e a r l y to r e s t r i c t e d r o t a t i o n at h i g h densities. W h e n t h e c h a i n is suffi c i e n t l y l o n g a n d p* >
0.75 ( s o l i d state) w e c a n expect η/k -> 0 ( c o m
p l e t e l y r e s t r i c t e d rotations ). A c c o r d i n g l y , w e have r e t a i n e d the values of η/k of n - C
and c y - C
6
3
c a l c u l a t e d f r o m E q u a t i o n 14, b u t the values for n - C i , n - C i , c y - C , a n d 2
6
8
O M C T S w e r e decreased to a n a p p r o p r i a t e l e v e l . S i m u l t a n e o u s l y , η
=
(vu +
V
ι}
Vn)
/2
a n d Hj w e r e v a r i e d u n t i l the three p r o p e r t i e s G ,
H
E
E
, and
E
a g r e e d w i t h i n ± 20 J m o l " a n d ± 0 . 0 5 c m m o l ' w i t h the o b s e r v e d v a l u e s . 1
3
1
T h e results are c o m p a r e d i n T a b l e I V . T h e first r o w for e a c h system shows the errors i n H
E
when L
and V
E
12
is fitted to G
and η
E
22
is t h a t
c a l c u l a t e d f r o m E q u a t i o n 14. T h e second r o w shows the i m p r o v e m e n t of the results w h e n η
22
η
22
=
is p r o p e r l y d i m i n i s h e d . F o r three of t h e
0 is r e q u i r e d . I n the f o u r t h system, a decrease of η /k
would improve H 112 appears
E
; however, V
E
w o u l d b e c o m e negative.
to v a r y i n a n u n p r e d i c t a b l e m a n n e r .
fractions are u s e d ( w i t h the same values of η )
systems
b e l o w 28 Κ
22
T h e v a l u e of
When
the
surface
t h e n a l w a y s 112 >
22
q u a l i t a t i v e agreement w i t h the t h e o r y of S a l e m . H o w e v e r , L
12
1 in
cannot
be
p r e d i c t e d w h e n the systems are t r e a t e d as r a n d o m m i x t u r e s . I t is s h o w n elsewhere
(18)
t h a t the p r o p e r t i e s of m i x t u r e s of l a r g e m o l e c u l e s
can
b e p r e d i c t e d w i t h n e a r l y the same a c c u r a c y as those of s m a l l m o l e c u l e s b y i n t r o d u c i n g a n a p p r o x i m a t e c o r r e c t i o n to A
r
m
o w i n g to
nonrandom
mixing. I n a l l theories of p o l y m e r solutions u^ or c a l w a y s are a s s u m e d to b e i;
i n d e p e n d e n t of the t e m p e r a t u r e , a p p a r e n t l y c o n t r a d i c t i n g the t h e o r y of n o n c e n t r a l forces.
O u r results s h o w that there is n o c o n t r a d i c t i o n a n d
that this a s s u m p t i o n is a l l o w e d f o r l o n g straight or c i r c u l a r c h a i n s at h i g h densities ( l i q u i d s b e l o w t h e i r n o r m a l b o i l i n g t e m p e r a t u r e s ).
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
206
EQUATIONS OF
Glossary
of
STATE
Symbols
Τ = temperature i n Κ Ρ = pressure i n b a r V = v o l u m e of the system V ° = close-packed volume
( V ° = V
o
o
a t r = 0 )
A = H e l m h o l t z free energy, A ( T , V ) U = i n t e r n a l energy, U( Τ, V) G = G i b b s free energy, G ( T , P) Ή = enthalpy,
H(T,P)
I = ionization potential Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011
k = B o l t z m a n n constant ( R =
N k is the gas c o n s t a n t ) 0
r = intermolecular distance = pair interaction energy
u(r)
û, ύ° = m i n i m u m v a l u e of u(r)
(ù/k i n K )
η/Jc = p a r a m e t e r of n o n c e n t r a l energy ( i n K ) σ
= c o l l i s i o n d i a m e t e r of a m o l e c u l e
ρ = ω
=
m e a n p o l a r i z a b i l i t y of a m o l e c u l e a c e n t r i c factor
x = mole fraction p* = r e d u c e d d e n s i t y ,
V°/V
Superscripts r = r e s i d u a l p r o p e r t y ( r e a l fluid m i n u s p e r f e c t gas at the same Γ a n d Ρ or Γ a n d V ) Ε = excess p r o p e r t y ( r e a l m i x t u r e m i n u s i d e a l m i x t u r e at the same Τ, P , a n d * ) c = g a s - l i q u i d c r i t i c a l constants Subscripts i, j = i n t e r a c t i n g species ( i =
1 , 2 , . . . m; j =
i or /
%)
m = m o l a r p r o p e r t y of a fluid or p e r m o l e of a m - c o m p o n e n t m i x t u r e , e
-g-> V / c m m
3
m o l " ; also a n average v a l u e of a m o l e c u l a r p r o p e r t y 1
of a m i x t u r e , e.g., ù
m
or
E x c e s s p r o p e r t i e s , e.g., G , E
a. m
are also m o l a r b u t the s u b s c r i p t is
deleted. Acknowledgments D r . C h e n p a r t i c i p a t e d i n a n e a r l y stage of this w o r k . H e d i e d i n S e p t e m b e r , 1977. T h a n k s to B . J . Z w o l i n s k i , f o r m e r D i r e c t o r of t h e T h e r m o d y n a m i c s R e s e a r c h C e n t e r , f o r e n c o u r a g i n g this r e s e a r c h a n d t o C . C h e n f o r h e r
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
11.
KREGLEWSKI AND C H E N
The van der Waals Theory
of Fluids
207
h e l p i n c o m p u t e r p r o g r a m m i n g . P a r t i a l s u p p o r t of t h e T e x a s E n g i n e e r i n g E x p e r i m e n t S t a t i o n is g r a t e f u l l y a c k n o w l e d g e d .
Literature Cited 1. 2. 3. 4. 5.
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch011
6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
London, F. Z. Phys. 1930, 63, 245. London, F. Z. Phys. Chem., Abt. Β 1930, 11, 222. Kohler, F. Monatsh. Chem. 1957, 88, 857. Leland, T. W., Jr.; Rowlinson, J. S.; Sather, G. A. Trans. Faraday Soc. 1968, 64, 1447. Kac, M.; Uhlenbeck, G. E.; Hemmer, P. C. J. Math. Phys. 1963, 4, 216, 229. Smith, K. M.; Rulis, A. M . ; Scoles, G.; Aziz, R. A. J. Chem. Phys. 1977, 67, 155. Chen, C. H.; Siska, P. E.; Lee, Y. T. J. Chem. Phys. 1973, 59, 601. Kreglewski, Α.; Chen, S. S. J. Chim. Phys. 1978, 75, 347. Boublik, T. J. Chem. Phys. 1975, 63, 4084. Chen, S. S.; Kreglewski, A. Ber. Bunsenges. Phys. Chem. 1977, 81, 1048. Alder, B. J.; Young, D. A.; Mark, M. A. J. Chem. Phys. 1972, 56, 3013. Simnick, J. J.; Lin, H. L.; Chao, K. C.; Chapter 12 in this book. Rowlinson, J. S. "Liquids and Liquid Mixtures"; Butterworths: London, 1969. Flory, P. J. J. Am. Chem. Soc. 1965, 87, 1833. Kreglewski, Α.; Kay, W. B. J. Phys. Chem. 1969, 73, 3359. Salem, L. J. Chem. Phys. 1962, 37, 2100. Kreglewski, Α.; Wilholt, R. C.; Zwolinski, B. J. J. Phys. Chem. 1973, 77, 2212. Kreglewski, A. J. Chim. Phys. 1979, 76 (in press).
RECEIVED
August 8, 1978.
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.