Document not found! Please try again

Estimated Long-term (1981-2016) Concentrations of Ambient Fine

Apr 17, 2019 - We estimated historical PM2.5 concentrations over North America from 1981-2016 for the first time by combining chemical transport model...
0 downloads 0 Views 2MB Size
Subscriber access provided by UNIV OF LOUISIANA

Environmental Modeling

Estimated Long-term (1981-2016) Concentrations of Ambient Fine Particulate Matter across North America from Chemical Transport Modeling, Satellite Remote Sensing and Ground-based Measurements Jun Meng, Chi Li, Randall V Martin, Aaron van Donkelaar, Perry Hystad, and Michael Brauer Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.8b06875 • Publication Date (Web): 17 Apr 2019 Downloaded from http://pubs.acs.org on April 18, 2019

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 28

1 2 3

Environmental Science & Technology

Estimated Long-term (1981-2016) Concentrations of Ambient Fine Particulate Matter across North America from Chemical Transport Modeling, Satellite Remote Sensing and Ground-based Measurements

4 5

Jun Meng1*, Chi Li1, Randall V. Martin1,2, Aaron van Donkelaar1, Perry Hystad3, Michael Brauer4

6 7 8

Affiliations

9

1Department

of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada

10

2Smithsonian

Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA

11

3College

12

4School

13

Columbia, V6T 1Z3, Canada

of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA

of Population and Public Health, The University of British Columbia, 2206 East Mall, Vancouver, British

14 15 16

*Corresponding

author:

17

Address: 6310 Coburg road, Sir James Dunn bldg., Halifax, NS. Canada B3H 4J5

18

Phone: (902) 932-3886; E-mail: [email protected];

19 20 21 22 23 24

1

ACS Paragon Plus Environment

Environmental Science & Technology

25

Abstract Art

26 27

Abstract

28

Accurate data concerning historical fine particulate matter (PM2.5) concentrations are needed

29

to assess long-term changes in exposure and associated health risks. We estimated historical

30

PM2.5 concentrations over North America from 1981-2016 for the first time by combining

31

chemical transport modeling, satellite remote sensing and ground-based measurements. We

32

constrained and evaluated our estimates with direct ground-based PM2.5 measurements when

33

available and otherwise with historical estimates of PM2.5 from PM10 measurements or total

34

suspended particles (TSP) measurements. The estimated PM2.5 concentrations were generally

35

consistent with direct ground-based PM2.5 measurements over their duration from 1988

36

onward (R2 = 0.6-0.85) and to a lesser extent with PM2.5 inferred from PM10 measurements

37

from 1985 to 1998 (R2 =0.5-0.6). The collocated comparison of the trends of population-

38

weighted annual average PM2.5 from our estimates and ground-based measurements were

39

highly consistent (RMSD = 0.66 μg m-3). The population-weighted annual average PM2.5 over

40

North America decreased from 22  6.4 μg m-3 in 1981, to 12  3.2 μg m-3 in 1998, and to 7.9 

41

2.1 μg m-3 in 2016, with an overall trend of -0.33 μg m-3 yr-1 (95% CI: -0.35 -0.30).

2

ACS Paragon Plus Environment

Page 2 of 28

Page 3 of 28

42 43

Environmental Science & Technology

1 Introduction Ambient fine particulate matter with aerodynamic diameter less than 2.5 microns

44

(PM2.5) is recognized as the leading environmental risk factor for the global burden of disease

45

with an estimated 4.1 million [3.6 million to 4.6 million] attributable deaths in 20161. Long-term

46

exposure to high PM2.5 adversely affects human health2–8. Several epidemiological studies

47

reported adverse effects from long-term exposure at levels of PM2.5 concentrations9–12 below

48

the World Health Organization (WHO) guideline (10 μg m-3 annual average), the U.S. standard

49

(12 μg m-3 annual average) and the Canadian standard (10 μg m-3 annual average, to be

50

reduced to 8.8 μg m-3 in 2020). However, the shape of the concentration-response function at

51

these low PM2.5 concentrations remains uncertain. Information about historical PM2.5

52

concentrations across Canada and the United States is needed to understand long-term

53

changes in exposure and their implications for health effects research.

54

Understanding historical long-term exposure is complicated by the paucity of PM2.5

55

monitoring sites across North America before the late 1990s and by the spatial variation of

56

monitoring sites over time. Ground-based monitoring provides historical time series at specific

57

points for PM2.5, PM10, and total suspended particles (TSP). Several cohort studies have

58

attempted to infer historical PM estimates using monitoring data for urban areas in later

59

years4,13,14. A recent study by Kim et al.15 demonstrated that historical measurements of PM10

60

and TSP offer valuable information for prediction of historical PM2.5 concentrations across the

61

continental United States.

62 63

Additional sources of data are available to inform estimates of historical PM2.5 spatial and temporal variations to improve the overall representativeness. Chemical transport 3

ACS Paragon Plus Environment

Environmental Science & Technology

64

modeling offers additional valuable information about historical PM2.5 concentrations through

65

the representation of atmospheric processes with historical emission inventories16–18. Satellite

66

remote sensing offers a powerful additional constraint on PM2.5 spatial distributions19,20

67

especially after 2002 when both the Terra and Aqua satellites were in orbit. Some studies21,22

68

have developed prediction models to estimate historical PM2.5 by back-casting using the ratio

69

between PM2.5 and PM10 or TSP observations. Other studies19,23–25 use land-use regression,

70

which included predictor variables derived from geographic information systems, or combine

71

information from other PM measurements or satellite data. However, those studies either

72

focused on smaller regions21,25 or shorter durations19.

73

In this paper, we present historical estimates of PM2.5 across North America by

74

combining information from chemical transport modeling, satellite-derived PM2.5 estimates and

75

ground-based monitoring from 1981-2016. These estimates can be used to assess long-term

76

health impacts associated with low levels of PM2.5 throughout North America.

77 78 79

2 Materials and Methods Figure 1 provides an overview of our method to develop estimates of historical PM2.5

80

concentrations across North America by incorporating information from ground-based

81

monitoring, chemical transport modeling, and satellite-derived PM2.5. We started with a fine

82

resolution chemical transport model (GEOS-Chem) simulation across North America for 1989–

83

2016. We downscaled the simulation to 0.01 x 0.01 using a satellite-derived PM2.5 dataset20.

84

We applied geographically weighted regression (GWR) to the downscaled simulation to

85

incorporate information from ground-based measurements into the estimates. For the years 4

ACS Paragon Plus Environment

Page 4 of 28

Page 5 of 28

Environmental Science & Technology

86

1981-1988, we relied on information on interannual variation from ground-based

87

measurements to backcast the gridded PM2.5 concentrations. Each step is described further

88

below.

89

2.1 Historical Particulate Matter Monitoring Data

90

We collected ground-based measurements for 1981-2016 across Canada and the United

91

States. Canadian particulate matter (PM) data were obtained from the National Air Pollutant

92

Surveillance (NAPS) (http://maps-cartes.ec.gc.ca/rnspa-naps/data.aspx?lang=en). This database

93

includes continuous PM measurement data, dichotomous sampler (dichot, PM10 and PM2.5)

94

data and total suspended particulate (TSP) data. Instrument-specific calibrations were applied

95

as recommended by the Canadian Council of Ministers of the Environment (CCME)26. Daily PM

96

data for the United States were obtained from the US Air Quality System Data Mart for PM10

97

and PM2.5 (https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html). In addition,

98

data from the inhalable particle network (IPN) which consisted of PM2.5 measurements in the

99

early 1980’s were included. Table S1 in the supporting information summarizes available

100

monitoring data by measurement type in selected years (1981-2016). In Canada, dichot PM2.5

101

and PM10 sampling began in the mid 1980s, followed by continuous PM2.5 monitoring in the late

102

1990s. In the United States, most PM10 sampling began in the late 1980s, followed by

103

widespread PM2.5 monitoring in 1999. Limited PM2.5 measurements were available prior to

104

1999. Separate predictive models based on uniform method were created for Canada and US

105

monitoring data since the larger number of monitoring stations in the US would overwhelm the

106

Canadian dataset. Detailed information about the predictive models of inferring monthly PM2.5

5

ACS Paragon Plus Environment

Environmental Science & Technology

107

concentrations from the historical PM10 and TSP measurements is provided in the supporting

108

information SI.1

109

2.2 Estimated Historical Gridded PM2.5 Data

110

GEOS-Chem Chemical Transport Model

111

We use the GEOS-Chem chemical transport model (version 11-01, http://www.geos-

112

chem.org), with updated historical emissions inventories and meteorological data to

113

consistently simulate PM2.5 concentrations across North America for 1989-2016. GEOS-Chem

114

includes detailed aerosol-oxidant chemistry27,28. The simulation of concentrations of PM2.5

115

components includes the sulfate-nitrate-ammonium (SNA) aerosol system28,29, mineral dust30,

116

sea salt31, and carbonaceous aerosol32 with updates to black carbon33, and SOA34,35 including an

117

aqueous-phase mechanism for SOA from isoprene35.Our simulation used a relative humidity

118

dependent and composition dependent fixed size distribution following Martin et al.36 with

119

updates to organics37and mineral dust38. We drove the simulation using MERRA-2

120

meteorological data from NASA’s Global Modeling and Assimilation Office (GMAO) with a

121

nested resolution at 0.5˚ × 0.625˚ over North America for 1989-2016 for which updated

122

historical emissions were available. Anthropogenic emissions over North America were from

123

the 2011 National Emissions Inventory (NEI2011, http://ww.epa.gov/air-emissions-inventories)

124

for the US and the Criteria Air Contaminants (CAC, http://www.ec.gc.ca/inrp-npri/) for Canada

125

with historical scale factors applied to each simulating year. Black carbon (BC) and organic

126

carbon (OC) emissions were calculated by applying sector-specific OC and BC to PM2.5 emission

127

ratios18,39,40. Open fire emissions were from GFED441 for years 1997-2016 and from the RETRO

128

fire emission inventory42 for earlier years.

6

ACS Paragon Plus Environment

Page 6 of 28

Page 7 of 28

129

Environmental Science & Technology

Creation of Historical Gridded PM2.5 Dataset

130

Given our objective of a consistent dataset over the entire 1989-2016 period, and the

131

lack of satellite aerosol optical depth (AOD) for the entire period, we used the 5-year average

132

from near the middle of the period (2004-2008) of geophysical satellite-based PM2.5 estimates

133

(referred to as PMsat)20, derived from both the Terra and Aqua satellites, to downscale GEOS-

134

Chem model simulation (1989-2016) to a resolution relevant for exposure at 0.01˚ × 0.01˚

135

following C. Li et al.18 We calculated the ratio between PMsat and the 5-yr average (2004-2008)

136

of GEOS-Chem simulations. Then, we used this ratio to downscale simulations in all the years

137

from 1989 to 2016. The downscaling process does not change the simulated relative temporal

138

variation of PM2.5, since the same scale factor was applied to all years. This downscaled

139

estimate (referred to as PMscl) contained fine-scale spatial information from satellite-derived

140

PM2.5 estimates (PMsat) and long-term temporal information from the GEOS-Chem simulation.

141

We evaluate the approach by excluding the satellite-based estimates.

142

Ground-based monitoring offers reliable information on PM2.5 when and where

143

available. We used this information to constrain our estimates. We included monitor

144

information across both the US and Canada to produce a continuous surface for North America.

145

Following van Donkelaar et al.20, we applied geographically weighted regression (GWR) to PMscl

146

over 1989-2016 using available PM2.5 observations, and PM2.5 concentrations inferred from

147

PM10 observations. Geographically weighted regression (GWR)43 is a multiple regression, an

148

extension of least-squares regression, to allow predictor coefficients to vary by choosing

149

different spatial weighting function at several geographic locations according to their inverse-

150

squared distance from individual observation sites. We used GWR to regress the spatial

7

ACS Paragon Plus Environment

Environmental Science & Technology

Page 8 of 28

151

relationship between multiple predictors and the bias between PM2.5 estimates and PM2.5

152

measurements. Our predictors in GWR include urban land cover, sub-grid elevation difference,

153

and aerosol chemical composition from GEOS-Chem simulation. We fit the GWR model at the

154

same resolution (1o x 1o) as the downscaled PM2.5 estimates, which was scaled by satellite-

155

driven PM2.5, following the equation (1) below:

156

(Measured PM2.5 – Estimated PM2.5) = 1ULC + 2SED + 3SUL + 4NIT + 5PrC + 6SOA + 7DST + 

157

(1)

158

where 1 to 7 represented the spatial weighted predictor coefficients for each

159

predictor, and  is the error. ULC was the percent of urban land cover from the 500-m spatial

160

resolution MODIS land cover type product44. SED was the sub-grid elevation difference, which is

161

the difference between the site elevation, which is from the ETOPO1 Global Relief Model of the

162

National Geophysical Data Center45, and the annual mean elevation of the GEOS-Chem grid cell.

163

SUL, NIT, PrC, SOA and DST are sulfate, nitrate, primary carbon, secondary carbon and dust

164

respectively as simulated with GEOS-Chem. We conducted sensitivity tests by changing the

165

weight of PM10 observations in the GWR regression and found that a reduction by 75% of the

166

weight of PM10 best represented its uncertainty compared to direct PM2.5 measurements from

167

ground-based measurements, GEOS-Chem transport model simulations and satellite remote

168

sensing.

169

For years 1981-1988, reliable emission inventories were not available for GEOS-Chem

170

simulation. Instead we used the information on inter-annual variation from ground-based

171

measurements to back-cast the gridded PM2.5 concentrations following previous studies21,22.

172

Ground-based measurements include TSP measurements, PM10 measurements and PM2.5

8

ACS Paragon Plus Environment

Page 9 of 28

Environmental Science & Technology

173

measurements. Ground-based PM2.5 concentrations inferred from TSP measurements were

174

included for this time period since fewer than 200 PM10 sites existed before 1986 and even

175

fewer PM2.5 monitoring sites existed. For each year (e.g. 1988), we calculated the ratio between

176

the annual mean PM2.5 of this year and the following 3-year mean PM2.5 (e.g. 1989-1991) for

177

each ground-based monitoring site. We used the ratios from TSP sites as the basis, which were

178

overwritten by the ratios from PM10 sites, and then by the ratios from PM2.5 sites. This ratio

179

field from ground-based measurements was then interpolated to other grids using distance

180

weighted interpolation. Finally, we applied this gridded ratio field to the following 3-year mean

181

PM2.5 estimates to get the estimated PM2.5 for each year. The process is described by equation

182

(2) below:

183 184 185

Y(t)=  [Y(t+1) + Y(t+2) + Y(t+3)]/3

(2)

where Y(t) represents the PM2.5 estimates in year t, and  is the gridded ratio field. We evaluated the backcasting method by repeating the procedure for the years 2001-

186

2008 using measurements for the years 2001-2011, for comparison with our estimates for

187

2001-2008 (SI Table S5).

188 189

We calculated the overall root mean square difference (RMSD) between the estimates and measurements for each year over 1981-2016 as a measure of uncertainty.

190 191 192

3 Results and Discussion We first evaluated the approach in the years when only PM2.5 stations were used for

193

GWR adjustment to statistically incorporate information from ground-based observations into

194

the downscaled model results. Figure 2 shows scatter plots of 2004-2008 mean PM2.5 from the 9

ACS Paragon Plus Environment

Environmental Science & Technology

195

downscaled simulation (PMscl) before and after GWR adjustment, versus in situ PM2.5. As found

196

by van Donkelaar et al.20, the GWR model significantly reduces the mean bias (MB) and root

197

mean square difference (RMSD) over both Canada and the US. Out-of-sample cross validation

198

using 50% of randomly selected sites to train the GWR model exhibits significantly improved

199

performance (R2 = 0.69; RMSD = 2.3 μg m-3) (bottom left panel) compared with the base case

200

(R2 = 0.52; RMSD = 3.1 μg m-3). In such a holdback analysis, GWR parameter coefficients are

201

trained using only 50% of available ground-based monitors. The withheld sites provide an

202

independent dataset with which to evaluate the quality of fused PM2.5 estimates in areas

203

without ground-based observation. The improvement at these independent sites suggests

204

improvement in the GWR adjusted surface even at locations away from ground-based

205

observation. The bottom right panel of Figure 2 shows the 2004-2008 mean performance of

206

GWR-adjusted values made using only the PM2.5 sites that were also available before 1998 (< 70

207

sites in total), consisting mostly of remote and rural U.S.-based sites. Limiting the GWR-based

208

adjustment to only these earlier-available PM2.5 sites provided no improvement in agreement

209

compared to the initial estimates without GWR. The negative MB in PMscl (-1.00 μg m-3) (top

210

left panel) is not corrected in the adjusted estimates (-0.83 μg m-3) (bottom right panel), due to

211

a lack of representative urban and eastern sites which generally have higher PM2.5 levels.

212

Complementary information from PM10 sites that are representative of urban environments is

213

necessary for early years.

214

Figure 3 shows scatter plots for the 1992-1996 time period to evaluate the performance

215

of PM2.5 inferred from PM10. The top panels show that the performance of the scaled

216

geophysical estimate is promising with an R2 versus PM2.5 monitors of 0.69 that increases to

10

ACS Paragon Plus Environment

Page 10 of 28

Page 11 of 28

Environmental Science & Technology

217

0.86 after GWR adjustment. The RMSD decreases from 2.7 to 1.5 μg m-3 over ~100 PM2.5 sites in

218

the adjusted estimates. For ~2000 PM10 sites, significantly improved agreement is also found

219

after GWR adjustment. Cross validation with 50% out-of-sample sites (bottom left) further

220

confirms the overall robustness of the approach. As found in the 2004-2008 period, using only

221

PM2.5 sites for GWR modeling does not improve the overall representation of the estimates,

222

especially for PM10 sites in urban areas.

223

Figure 4 shows the R2 and RMSD for each year (1981-2016) of the estimates versus

224

ground-based measurements to provide an overall assessment of uncertainty. Only PM2.5 data

225

are used over 1999-2016 since sufficient PM2.5 measurements are available after 1999. Since

226

the number of PM10 sites reduces significantly prior to 1989 (~1000 in 1989, ~600 in 1988, ~400

227

sites in 1986 and < 50 sites in 1984), the back-casting from 1985 to 1981 is based primarily on

228

the trend information from TSP-based estimates, and expected to be more uncertain. The R2

229

increases with the increase of PM10 sites for years 1985-1990. The R2 is around 0.8 for years

230

1989-2005 compared to PM2.5 sites. The relative RMSD at only PM2.5 sites drops from 30% in

231

the early 1990s to below 20% prior to 1999 when the PM2.5 measurements became more

232

widespread. The decrease in R2 after 2008 reflects weaker spatial PM2.5 gradients in recent

233

years as PM2.5 levels decline across North America. Higher RMSD errors are expected before

234

1999 due to more uncertainties in emission inventories as well as larger uncertainties in the

235

monitor data used in GWR adjustments. Overall, the GWR-adjusted PM2.5 estimates yield an

236

estimated error of less than 20% since 1999 and, less than 30% from 1981-1998.

237 238

We tested how the satellite-derived PM2.5 data used for downscaling affected the performance of the estimated dataset. Supporting information SI.3 describes sensitivity

11

ACS Paragon Plus Environment

Environmental Science & Technology

239

estimates of PM2.5 data without satellite remote sensing. The R2 of these sensitivity estimates

240

are between 0.1 - 0.2 lower than our base estimate across all years, with larger differences in

241

years preceding 1999 when fewer PM2.5 measurements were available. The relative RMSD of

242

the sensitivity estimates at direct observed PM2.5 sites are higher than the base estimates by

243

10% - 20%. This analysis indicates the significance of the constraints on PM2.5 spatial

244

distributions offered by satellite remote sensing.

245

Figure 5 shows the distribution of PM2.5 estimates and ground-based measurements for

246

1985, 1995, 2005 and 2015 from this study. Enhancements in both the GWR adjusted estimates

247

and ground-based measurements are apparent across eastern US and California. The estimated

248

PM2.5 is generally consistent with ground-based measurements (Figure 4), especially with the

249

direct PM2.5 measurements. PM2.5 concentrations decrease dramatically during the last three

250

decades, especially in eastern United States.

251

Figure 6 shows the time series of population-weighted annual average PM2.5

252

concentrations across North America. We used gridded population estimates from the

253

Socioeconomic Data and Applications Center46,47 for calculating population-weighted average

254

(SI.3). The population-weighted annual average PM2.5 over North America decreased from 22 

255

6.4 μg m-3 in the year 1981 to 7.9  2.1 μg m-3 in the year 2016. The linear tendency over this

256

period is -0.33 μg m-3 yr-1  0.2 μg m-3 yr-1. Both time series of the in-situ measurements and

257

estimates of population-weighted annual mean PM2.5 exhibit minor peaks in 2005 and 2007.

258

The collocated comparison of the trends of population-weighted annual average PM2.5 from our

259

estimates and ground-based measurements are highly consistent (RMSD=0.66 μg m-3) over

260

1985-1995. Population-weighted annual average PM2.5 calculated from direct PM2.5 sites is 20%

12

ACS Paragon Plus Environment

Page 12 of 28

Page 13 of 28

Environmental Science & Technology

261

lower than that calculated from all in-situ sites, illustrating the effects of changes in monitor

262

placement over time when assessing long-term changes in ambient PM2.5, and the value of

263

spatiotemporally continuous PM2.5 estimates from this work. Larger errorbars prior to 1990

264

reflect greater uncertainty in the TSP dataset.

265

Figure S5 in the supporting information shows regional time series of population-

266

weighted annual average PM2.5. Figure S6 in the supporting information shows regional time

267

series of relative percentage change of population-weighted annual average PM2.5

268

concentrations using 2016 as the reference year. Northwestern North America has the most

269

dramatical decline for population-weighted average PM2.5 concentrations with a factor of 2.7

270

decrease over 1981-2016, followed by southeastern and northeastern North America with a

271

factor of 2.4 decrease over 1981-2016. The relative changes in northcentral, southcentral and

272

southwestern North America are similar with a factor of 1.6–2.0 decrease in population-

273

weighted PM2.5 over 1981-2016. Overall the spatially resolved historical PM2.5 dataset across

274

North America reveals a factor of 1.7 decrease in population-weighted PM2.5 over 1981-2016.

275

Comparison with previous estimates of historical PM2.5 concentrations is instructive. Our

276

estimated historical PM2.5 concentrations during 1982-1991 in the southeastern US indicate a

277

decrease of 3.9 μg m-3, similar to the reported decline of 3-5 μg m-3 found by Parhurst et al.21

278

We find similar large-scale reductions in historical PM2.5 concentrations during 1981-2000 as

279

Lall et al.22, albeit with smoother temporal trends in the present study that are more consistent

280

with Kim et al.15 The primary difference with our prior historical PM2.5 estimates48–50 is that our

281

current study spans a time period (1981-2016) about twice as long as our prior work by

282

including more trend information from our GEOS-Chem simulation, and includes historical

13

ACS Paragon Plus Environment

Environmental Science & Technology

283

ground-based measurements prior to 1999. Nonetheless the population-weighted trends from

284

our current dataset remain within 0.03 μg m-3 yr-1 of our prior work, indicating overall

285

consistency as further discussed in the supporting information (SI.4).

286 287

Data availability. The annual mean estimated PM2.5 for 1981-2016 across North America

288

dataset has been deposited in the Zenodo Digital Repository (DOI: 10.5281/zenodo.2616769)51.

289 290

Supplemental Information. Detailed description of prediction of monitoring historical PM2.5

291

from measured PM10 and TSP, sensitivity test of estimated PM2.5 dataset without satellite

292

remote sensing information, population data and further discussion of population-weighted

293

PM2.5 trends. Supporting figures for section 3 are provided.

294 295

Acknowledgements. This research was supported by research agreement 4952-RFA14-3/16-3

296

with the Health Effects Institute (HEI), an organization jointly funded by the United States

297

Environmental Protection Agency (EPA) (Assistance Award No. R-82811201) and certain motor

298

vehicle and engine manufacturers. The contents of this article do not necessarily reflect the

299

views of HEI, or its sponsors, nor do they necessarily reflect the views and policies of the EPA or

300

motor vehicle and engine manufacturers. We are grateful to the Atlantic Computational

301

Excellence Network and Compute Canada for computing resources.

14

ACS Paragon Plus Environment

Page 14 of 28

Page 15 of 28

302

303 304 305 306 307 308 309

Environmental Science & Technology

5. Figures and tables

Figure 1. Overview of estimation method.

15

ACS Paragon Plus Environment

Environmental Science & Technology

310 311 312 313 314 315 316

Figure 2. Comparison over 2004-2008 of mean PM2.5 estimates with in situ measurements before (top left) and after GWR adjustment using all sites (top right), using cross validation sites using 50% random holdout (bottom left), and using PM2.5 sites present over 1989-1997 (bottom right). Open circles are Canadian sites and crosses are US sites. Number of sites are shown in brackets. Statistics shown are mean bias (MB, in μg m-3), coefficient of determination (R2) and root mean square difference (RMSD, in μg m-3).

16

ACS Paragon Plus Environment

Page 16 of 28

Page 17 of 28

317 318 319 320 321 322 323

Environmental Science & Technology

Figure 3 Comparison over 1992-1996 of mean PM2.5 estimates with in situ measurements before (top left) and after GWR adjustment using all sites (top right), using cross validation using 50% random holdout (bottom left), and using only PM2.5 sites (bottom right). Open circles are Canadian sites and crosses are US sites. No. of sites are shown in brackets. Comparison for PM2.5 (black) and PM10 (red) sites are shown separately. Statistics shown are mean bias (MB, in μg m-3), coefficient of determination (R2) and root mean square difference (RMSD, in μg m-3).

324

17

ACS Paragon Plus Environment

Environmental Science & Technology

325 326 327 328 329 330 331 332 333 334

Figure 4. Statistics (R2 and RMSD) of estimated PM2.5 against ground-based measurements from year 1981 to 2016. Solid lines indicate performance of base estimates. Dashed lines indicate performance of sensitivity estimates that exclude satellite remote sensing information (no blue dashed line). Numbers at the top of each figure indicate the number of monitors of direct PM2.5 (black), PM2.5 inferred from PM10 (green) and PM2.5 inferred from TSP (blue).

18

ACS Paragon Plus Environment

Page 18 of 28

Page 19 of 28

Environmental Science & Technology

335 336 337 338 339

Figure 5. Estimated fine particulate matter annual means in 1985, 1995, 2005 and 2015 over North America. Left panels are estimated PM2.5. Inset values in the left panel are the population-weighted average PM2.5 mass. Right panels indicate PM2.5 derived from ground-based measurements of PM2.5, PM10 and TSP.

19

ACS Paragon Plus Environment

Environmental Science & Technology

340

341 342 343 344

Figure 6. Time series of population-weighted average annual PM2.5 concentrations across North America. Error bars are included for population-weighted annual mean estimated PM2.5 concentrations.

345 346 347 348 349 350 351 352 353 354 355 356 357 358 20

ACS Paragon Plus Environment

Page 20 of 28

Page 21 of 28

Environmental Science & Technology

359

Reference

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

(1) Gakidou, E.; Afshin, A.; Abajobir, A. A.; Abate, K. H.; Abbafati, C.; Abbas, K. M.; Abd-Allah, F.; Abdulle, A. M.; Abera, S. F.; Aboyans, V.; Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., Abyu, G. Y., Adedeji, I. A., Adetokunboh, O., Afarideh, M., Agrawal, A., Agrawal, S., Ahmadieh, H., Ahmed, M. B., Aichour, M. T. E., Aichour, A. N., Aichour, I., Akinyemi, R. O., Akseer, N., Alahdab, F., Al-Aly, Z., Alam, K., Alam, N., Alam, T., Alasfoor, D., Alene, K. A., Ali, K., Alizadeh-Navaei, R., Alkerwi, A., Alla, F., Allebeck, P., Al-Raddadi, R., Alsharif, U., Altirkawi, K.A., Alvis-Guzman, N., Amare, A. T., Amini, E., Ammar, W., Amoako, Y. A., Ansari, H., Antó, J. M., Antonio, C. A. T., Anwari, P., Arian, N., Ärnlöv, J., Artaman, A., Aryal, K. K., Asayesh, H., Asgedom, S. W., Atey, T. M., Avila-Burgos, L., Avokpaho, E. F. G. A., Awasthi, A., Azzopardi, P., Bacha, U., Badawi, A., Balakrishnan, K., Ballew, S. H., Barac, A., Barber, R. M., Barker-Collo, S. L., Bärnighausen, T., Barquera, S., Barregard, L., Barrero, L. H., Batis, C., Battle, K. E., Baumgarner, B. R., Baune, B. T., Beardsley, J., Bedi, N., Beghi, E., Bell, M. L., Bennett, D. A., Bennett, J. R., Bensenor, I. M., Berhane, A., Berhe, D. F., Bernabé, E., Betsu, B. D., Beuran, M., Beyene, A. S., Bhansali, A., Bhutta, Z. A., Bicer, B. K., Bikbov, B., Birungi, C., Biryukov, S., Blosser, C. D., Boneya, D. J., Bou-Orm, I. R., Brauer, M., Breitborde, N. J. K., Brenner, H., Brugha, T. S., Bulto, L. N. B., Butt, Z. A., Cahuana-Hurtado, L., Cárdenas, R., Carrero, J. J., Castañeda-Orjuela, C. A., Catalá-López, F., Cercy, K., Chang, H.-Y., Charlson, F. J., Chimed-Ochir, O., Chisumpa, V. H., Chitheer, A. A., Christensen, H., Christopher, D. J., Cirillo, M., Cohen, A. J., Comfort, H., Cooper, C., Coresh, J., Cornaby, L., Cortesi, P. A., Criqui, M. H., Crump, J. A., Dandona, L., Dandona, R., Neves, J. das, Davey, G., Davitoiu, D.V., Davletov, K., Courten, B. de, Defo, B. K., Degenhardt, L., Deiparine, S., Dellavalle, R. P., Deribe, K., Deshpande, A., Dharmaratne, S. D., Ding, E. L., Djalalinia, S., Do, H. P., Dokova, K., Doku, D. T., Donkelaar, A. van, Dorsey, E. R., Driscoll, T. R., Dubey, M., Duncan, B. B., Duncan, S., Ebrahimi, H., El-Khatib, Z. Z., Enayati, A., Endries, A. Y., Ermakov, S. P., Erskine, H. E., Eshrati, B., Eskandarieh, S., Esteghamati, A., Estep, K., Faraon, E. J. A., Farinha, C. S. e S., Faro, A., Farzadfar, F., Fay, K., Feigin, V. L., Fereshtehnejad, S.-M., Fernandes, J. C., Ferrari, A. J., Feyissa, T. R., Filip, I., Fischer, F., Fitzmaurice, C., Flaxman, A. D., Foigt, N., Foreman, K. J., Frostad, J. J., Fullman, N., Fürst, T., Furtado, J. M., Ganji, M., Garcia-Basteiro, A. L., Gebrehiwot, T. T., Geleijnse, J. M., Geleto, A., Gemechu, B. L., Gesesew, H. A., Gething, P. W., Ghajar, A., Gibney, K. B., Gill, P. S., Gillum, R. F., Giref, A. Z., Gishu, M. D., Giussani, G., Godwin, W. W., Gona, P. N., Goodridge, A., Gopalani, S. V., Goryakin, Y., Goulart, A. C., Graetz, N., Gugnani, H. C., Guo, J., Gupta, R., Gupta, T., Gupta, V., Gutiérrez, R. A., Hachinski, V., Hafezi-Nejad, N., Hailu, G. B., Hamadeh, R. R., Hamidi, S., Hammami, M., Handal, A. J., Hankey, G. J., Hanson, S. W., Harb, H. L., Hareri, H. A., Hassanvand, M. S., Havmoeller, R., Hawley, C., Hay, S. I., Hedayati, M. T., Hendrie, D., Heredia-Pi, I. B., Hernandez, J. C. M., Hoek, H. W., Horita, N., Hosgood, H. D., Hostiuc, S., Hoy, D. G., Hsairi, M., Hu, G., Huang, J. J., Huang, H., Ibrahim, N. M., Iburg, K. M., Ikeda, C., Inoue, M., Irvine, C. M. S., Jackson, M. D., Jacobsen, K. H., Jahanmehr, N., Jakovljevic, M. B., Jauregui, A., Javanbakht, M., Jeemon, P., Johansson, L. R. K., Johnson, C. O., Jonas, J. B., Jürisson, M., Kabir, Z., Kadel, R., Kahsay, A., Kamal, R., Karch, A., Karema, C. K., Kasaeian, A., Kassebaum, N. J., Kastor, A., Katikireddi, S. V., Kawakami, N., Keiyoro, P. N., Kelbore, S. G., Kemmer, L., Kengne, A. P., Kesavachandran, C. N., Khader, Y. S., Khalil, I. A., Khan, E. A.,

21

ACS Paragon Plus Environment

Environmental Science & Technology

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

Khang, Y.-H., Khosravi, A., Khubchandani, J., Kiadaliri, A. A., Kieling, C., Kim, J. Y., Kim, Y. J., Kim, D., Kimokoti, R. W., Kinfu, Y., Kisa, A., Kissimova-Skarbek, K. A., Kivimaki, M., Knibbs, L. D., Knudsen, A. K., Kopec, J. A., Kosen, S., Koul, P. A., Koyanagi, A., Kravchenko, M., Krohn, K. J., Kromhout, H., Kumar, G. A., Kutz, M., Kyu, H. H., Lal, D. K., Lalloo, R., Lallukka, T., Lan, Q., Lansingh, V. C., Larsson, A., Lee, P. H., Lee, A., Leigh, J., Leung, J., Levi, M., Levy, T. S., Li, Yichong, Li, Y., Liang, X., Liben, M. L., Linn, S., Liu, P., Lodha, R., Logroscino, G., Looker, K. J., Lopez, A. D., Lorkowski, S., Lotufo, P. A., Lozano, R., Lunevicius, R., Macarayan, E. R. K., Razek, H. M. A. E., Razek, M. M. A. E., Majdan, M., Majdzadeh, R., Majeed, A., Malekzadeh, R., Malhotra, R., Malta, D. C., Mamun, A. A., Manguerra, H., Mantovani, L. G., Mapoma, C. C., Martin, R. V., Martinez-Raga, J., Martins-Melo, F. R., Mathur, M. R., Matsushita, K., Matzopoulos, R., Mazidi, M., McAlinden, C., McGrath, J. J., Mehata, S., Mehndiratta, M. M., Meier, T., Melaku, Y. A., Memiah, P., Memish, Z. A., Mendoza, W., Mengesha, M. M., Mensah, G. A., Mensink, G. B. M., Mereta, S. T., Meretoja, T. J., Meretoja, A., Mezgebe, H. B., Micha, R., Millear, A., Miller, T. R., Minnig, S., Mirarefin, M., Mirrakhimov, E. M., Misganaw, A., Mishra, S. R., Mohammad, K. A., Mohammed, K. E., Mohammed, S., Mohan, M. B. V., Mokdad, A. H., Monasta, L., Montico, M., Moradi-Lakeh, M., Moraga, P., Morawska, L., Morrison, S. D., Mountjoy-Venning, C., Mueller, U. O., Mullany, E. C., Muller, K., Murthy, G. V. S., Musa, K. I., Naghavi, M., Naheed, A., Nangia, V., Natarajan, G., Negoi, R. I., Negoi, I., Nguyen, C. T., Nguyen, Q. L., Nguyen, T. H., Nguyen, G., Nguyen, M., Nichols, E., Ningrum, D. N. A., Nomura, M., Nong, V. M., Norheim, O. F., Norrving, B., Noubiap, J. J. N., Obermeyer, C. M., Ogbo, F. A., Oh, I.H., Oladimeji, O., Olagunju, A. T., Olagunju, T. O., Olivares, P. R., Olsen, H. E., Olusanya, B. O., Olusanya, J. O., Opio, J. N., Oren, E., Ortiz, A., Ota, E., Owolabi, M.O., Pa, M., Pacella, R. E., Pana, A., Panda, B. K., Panda-Jonas, S., Pandian, J. D., Papachristou, C., Park, E.-K., Parry, C. D., Patten, S. B., Patton, G. C., Pereira, D. M., Perico, N., Pesudovs, K., Petzold, M., Phillips, M. R., Pillay, J. D., Piradov, M. A., Pishgar, F., Plass, D., Pletcher, M. A., Polinder, S., Popova, S., Poulton, R. G., Pourmalek, F., Prasad, N., Purcell, C., Qorbani, M., Radfar, A., Rafay, A., Rahimi-Movaghar, A., Rahimi-Movaghar, V., Rahman, M. H. U., Rahman, M. A., Rahman, M., Rai, R. K., Rajsic, S., Ram, U., Rawaf, S., Rehm, C. D., Rehm, J., Reiner, R. C., Reitsma, M. B., Remuzzi, G., Renzaho, A. M. N., Resnikoff, S., Reynales-Shigematsu, L. M., Rezaei, S., Ribeiro, A. L., Rivera, J. A., Roba, K. T., Rojas-Rueda, D., Roman, Y., Room, R., Roshandel, G., Roth, G. A., Rothenbacher, D., Rubagotti, E., Rushton, L., Sadat, N., Safdarian, M., Safi, S., Safiri, S., Sahathevan, R., Salama, J., Salomon, J. A., Samy, A. M., Sanabria, J. R., Sanchez-Niño, M. D., Sánchez-Pimienta, T. G., Santomauro, D., Santos, I. S., Milicevic, M. M. S., Sartorius, B., Satpathy, M., Sawhney, M., Saxena, S., Schmidt, M. I., Schneider, I. J. C., Schutte, A. E., Schwebel, D. C., Schwendicke, F., Seedat, S., Sepanlou, S. G., Serdar, B., Servan-Mori, E. E., Shaddick, G., Shaheen, A., Shahraz, S., Shaikh, M. A., Shamsipour, M., Shamsizadeh, M., Islam, S. M. S., Sharma, J., Sharma, R., She, J., Shen, J., Shi, P., Shibuya, K., Shields, C., Shiferaw, M. S., Shigematsu, M., Shin, M.-J., Shiri, R., Shirkoohi, R., Shishani, K., Shoman, H., Shrime, M. G., Sigfusdottir, I. D., Silva, D. A. S., Silva, J. P., Silveira, D. G. A., Singh, J. A., Singh, V., Sinha, D. N., Skiadaresi, E., Slepak, E. L., Smith, D. L., Smith, M., Sobaih, B. H. A., Sobngwi, E., Soneji, S., Sorensen, R. J. D., Sposato, L. A., Sreeramareddy, C. T., Srinivasan, V., Steel, N., Stein, D. J., Steiner, C., Steinke, S., Stokes, M. A., Strub, B., Subart, M., Sufiyan, M. B., Suliankatchi, R. A., Sur, P. J., Swaminathan, S., 22

ACS Paragon Plus Environment

Page 22 of 28

Page 23 of 28

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

Environmental Science & Technology

(2)

(3)

(4) (5)

Sykes, B. L., Szoeke, C. E. I., Tabarés-Seisdedos, R., Tadakamadla, S. K., Takahashi, K., Takala, J. S., Tandon, N., Tanner, M., Tarekegn, Y. L., Tavakkoli, M., Tegegne, T. K., TehraniBanihashemi, A., Terkawi, A. S., Tesssema, B., Thakur, J. S., Thamsuwan, O., Thankappan, K. R., Theis, A. M., Thomas, M. L., Thomson, A. J., Thrift, A. G., Tillmann, T., Tobe-Gai, R., Tobollik, M., Tollanes, M. C., Tonelli, M., Topor-Madry, R., Torre, A., Tortajada, M., Touvier, M., Tran, B. X., Truelsen, T., Tuem, K. B., Tuzcu, E. M., Tyrovolas, S., Ukwaja, K. N., Uneke, C. J., Updike, R., Uthman, O. A., Boven, J. F. M. van, Varughese, S., Vasankari, T., Veerman, L. J., Venkateswaran, V., Venketasubramanian, N., Violante, F. S., Vladimirov, S. K., Vlassov, V. V., Vollset, S. E., Vos, T., Wadilo, F., Wakayo, T., Wallin, M. T., Wang, Y.-P., Weichenthal, S., Weiderpass, E., Weintraub, R. G., Weiss, D. J., Werdecker, A., Westerman, R., Whiteford, H. A., Wiysonge, C. S., Woldeyes, B. G., Wolfe, C. D. A., Woodbrook, R., Workicho, A., Xavier, D., Xu, G., Yadgir, S., Yakob, B., Yan, L. L., Yaseri, M., Yimam, H. H., Yip, P., Yonemoto, N., Yoon, S.-J., Yotebieng, M., Younis, M. Z., Zaidi, Z., Zaki, M. E. S., Zavala-Arciniega, L., Zhang, X., Zimsen, S. R. M., Zipkin, B., Zodpey, S., Lim, S. S., Murray, C. J. L.,. Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. The Lancet 2017, 390 (10100), 1345–1422. https://doi.org/10.1016/S0140-6736(17)32366-8. Beelen, R.; Raaschou-Nielsen, O.; Stafoggia, M.; Andersen, Z. J.; Weinmayr, G.; Hoffmann, B.; Wolf, K.; Samoli, E.; Fischer, P.; Nieuwenhuijsen, M.; Vineis, P., Xun, W. W., Katsouyanni, K., Dimakopoulou, K., Oudin, A., Forsberg, B., Modig, L., Havulinna, A. S., Lanki, T., Turunen, A., Oftedal, B., Nystad, W., Nafstad, P., De Faire, U., Pedersen, N. L., Östenson, C.-G., Fratiglioni, L., Penell, J., Korek, M., Pershagen, G., Eriksen, K. T., Overvad, K., Ellermann, T., Eeftens, M., Peeters, P. H., Meliefste, K., Wang, M., Bueno-de-Mesquita, B., Sugiri, D., Krämer, U., Heinrich, J., de Hoogh, K., Key, T., Peters, A., Hampel, R., Concin, H., Nagel, G., Ineichen, A., Schaffner, E., Probst-Hensch, N., Künzli, N., Schindler, C., Schikowski, T., Adam, M., Phuleria, H., Vilier, A., Clavel-Chapelon, F., Declercq, C., Grioni, S., Krogh, V., Tsai, M.-Y., Ricceri, F., Sacerdote, C., Galassi, C., Migliore, E., Ranzi, A., Cesaroni, G., Badaloni, C., Forastiere, F., Tamayo, I., Amiano, P., Dorronsoro, M., Katsoulis, M., Trichopoulou, A., Brunekreef, B., Hoek, G. Effects of Long-Term Exposure to Air Pollution on Natural-Cause Mortality: An Analysis of 22 European Cohorts within the Multicentre ESCAPE Project. Lancet Lond. Engl. 2014, 383 (9919), 785–795. https://doi.org/10.1016/S0140-6736(13)62158-3. Boldo, E.; Medina, S.; LeTertre, A.; Hurley, F.; Mücke, H.-G.; Ballester, F.; Aguilera, I.; Eilstein, D.; Apheis Group. Apheis: Health Impact Assessment of Long-Term Exposure to PM2.5 in 23 European Cities. Eur. J. Epidemiol. 2006, 21 (6), 449–458. https://doi.org/10.1007/s10654-006-9014-0. Caiazzo, F.; Ashok, A.; Waitz, I. A.; Yim, S. H. L.; Barrett, S. R. H. Air Pollution and Early Deaths in the United States. Part I: Quantifying the Impact of Major Sectors in 2005. Atmos. Environ. 2013, 79, 198–208. https://doi.org/10.1016/j.atmosenv.2013.05.081. Schwartz, J. Harvesting and Long Term Exposure Effects in the Relation between Air Pollution and Mortality. Am. J. Epidemiol. 2000, 151 (5), 440–448. https://doi.org/10.1093/oxfordjournals.aje.a010228.

23

ACS Paragon Plus Environment

Environmental Science & Technology

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

(6) Weichenthal, S.; Villeneuve, P. J.; Burnett, R. T.; van Donkelaar, A.; Martin, R. V.; Jones, R. R.; DellaValle, C. T.; Sandler, D. P.; Ward, M. H.; Hoppin, J. A. Long-Term Exposure to Fine Particulate Matter: Association with Nonaccidental and Cardiovascular Mortality in the Agricultural Health Study Cohort. Environ. Health Perspect. 2014, 122 (6), 609–615. https://doi.org/10.1289/ehp.1307277. (7) Zhang, Y.; West, J. J.; Mathur, R.; Xing, J.; Hogrefe, C.; Roselle, S. J.; Bash, J. O.; Pleim, J. E.; Gan, C.-M.; Wong, D. C. Long-Term Trends in the Ambient PM2.5- and O3-Related Mortality Burdens in the United States under Emission Reductions from 1990 to 2010. Atmospheric Chem. Phys. 2018, 18 (20), 15003–15016. https://doi.org/https://doi.org/10.5194/acp-1815003-2018. (8) Pope, C. A.; Ezzati, M.; Dockery, D. W. Fine-Particulate Air Pollution and Life Expectancy in the United States. N. Engl. J. Med. 2009, 360 (4), 376–386. https://doi.org/10.1056/NEJMsa0805646. (9) Crouse, D. L.; Peters, P. A.; van Donkelaar, A.; Goldberg, M. S.; Villeneuve, P. J.; Brion, O.; Khan, S.; Atari, D. O.; Jerrett, M.; Pope, C. A.; Brauer, M; Brook, J. R.; Martin, R. V.; Stieb, D.; Burnett, R. T. Risk of Nonaccidental and Cardiovascular Mortality in Relation to LongTerm Exposure to Low Concentrations of Fine Particulate Matter: A Canadian NationalLevel Cohort Study. Environ. Health Perspect. 2012, 120 (5), 708–714. https://doi.org/10.1289/ehp.1104049. (10) Hales, S.; Blakely, T.; Woodward, A. Air Pollution and Mortality in New Zealand: Cohort Study. J. Epidemiol. Community Health 2012, 66 (5), 468–473. https://doi.org/10.1136/jech.2010.112490. (11) Schwartz, J.; Bind, M.-A.; Koutrakis, P. Estimating Causal Effects of Local Air Pollution on Daily Deaths: Effect of Low Levels. Environ. Health Perspect. 2017, 125 (1), 23–29. https://doi.org/10.1289/EHP232. (12) Shi, L.; Zanobetti, A.; Kloog, I.; Coull, B. A.; Koutrakis, P.; Melly, S. J.; Schwartz, J. D. LowConcentration PM2.5 and Mortality: Estimating Acute and Chronic Effects in a PopulationBased Study. Environ. Health Perspect. 2016, 124 (1), 46–52. https://doi.org/10.1289/ehp.1409111. (13) Beelen, R.; Hoek, G.; van den Brandt, P. A.; Goldbohm, R. A.; Fischer, P.; Schouten, L. J.; Jerrett, M.; Hughes, E.; Armstrong, B.; Brunekreef, B. Long-Term Effects of Traffic-Related Air Pollution on Mortality in a Dutch Cohort (NLCS-AIR Study). Environ. Health Perspect. 2008, 116 (2), 196–202. https://doi.org/10.1289/ehp.10767. (14) Lepeule, J.; Laden, F.; Dockery, D.; Schwartz, J. Chronic Exposure to Fine Particles and Mortality: An Extended Follow-up of the Harvard Six Cities Study from 1974 to 2009. Environ. Health Perspect. 2012, 120 (7), 965–970. https://doi.org/10.1289/ehp.1104660. (15) Kim, S.-Y.; Olives, C.; Sheppard, L.; Sampson, P. D.; Larson, T. V.; Keller, J. P.; Kaufman, J. D. Historical Prediction Modeling Approach for Estimating Long-Term Concentrations of PM2.5 in Cohort Studies before the 1999 Implementation of Widespread Monitoring. Environ. Health Perspect. 2017, 125 (1), 38–46. https://doi.org/10.1289/EHP131. (16) Hoesly, R. M.; Smith, S. J.; Feng, L.; Klimont, Z.; Janssens-Maenhout, G.; Pitkanen, T.; Seibert, J. J.; Vu, L.; Andres, R. J.; Bolt, R. M.; Bond, T. C.; Dawidowski, L.; Kholod, N.; Kurokawa, J.; Li, M.; Liu, L.; Lu, Z.; Moura, M. C. P.; O'Rourke, P. R.; Zhang, Q. Historical (1750–2014) Anthropogenic Emissions of Reactive Gases and Aerosols from the 24

ACS Paragon Plus Environment

Page 24 of 28

Page 25 of 28

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

Environmental Science & Technology

(17) (18)

(19) (20)

(21)

(22) (23)

(24)

(25) (26)

Community Emissions Data System (CEDS). Geosci. Model Dev. 2018, 11 (1), 369–408. https://doi.org/https://doi.org/10.5194/gmd-11-369-2018. EPA. Air Quality Improves as America Grows; 2017. https://gispub.epa.gov/air/trendsreport/2017/ Li, C.; Martin, R. V.; van Donkelaar, A.; Boys, B. L.; Hammer, M. S.; Xu, J.-W.; Marais, E. A.; Reff, A.; Strum, M.; Ridley, D. A.; Crippa, M.; Brauer, M.; Zhang, Q. Trends in Chemical Composition of Global and Regional Population-Weighted Fine Particulate Matter Estimated for 25 Years. Environ. Sci. Technol. 2017, 51 (19), 11185–11195. https://doi.org/10.1021/acs.est.7b02530. Ma, Z.; Hu, X.; Sayer, A. M.; Levy, R.; Zhang, Q.; Xue, Y.; Tong, S.; Bi, J.; Huang, L.; Liu, Y. Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004-2013. Environ. Health Perspect. 2016, 124 (2), 184–192. https://doi.org/10.1289/ehp.1409481. van Donkelaar, A.; Martin, R. V.; Spurr, R. J. D.; Burnett, R. T. High-Resolution SatelliteDerived PM2.5 from Optimal Estimation and Geographically Weighted Regression over North America. Environ. Sci. Technol. 2015, 49 (17), 10482–10491. https://doi.org/10.1021/acs.est.5b02076. Parkhurst, W. J.; Tanner, R. L.; Weatherford, F. P.; Valente, R. J.; Meagher, J. F. Historic PM2.5/PM10 Concentrations in the Southeastern United States - Potential Implications of the Revised Particulate Matter Standard. J. Air Waste Manag. Assoc. 1999, 49 (9), 1060– 1067. https://doi.org/10.1080/10473289.1999.10463894. Lall, R.; Kendall, M.; Ito, K.; Thurston, G. D. Estimation of Historical Annual PM2.5 Exposures for Health Effects Assessment. Atmos. Environ. 2004, 38 (31), 5217–5226. https://doi.org/10.1016/j.atmosenv.2004.01.053. Beckerman, B. S.; Jerrett, M.; Serre, M.; Martin, R. V.; Lee, S.-J.; van Donkelaar, A.; Ross, Z.; Su, J.; Burnett, R. T. A Hybrid Approach to Estimating National Scale Spatiotemporal Variability of PM2.5 in the Contiguous United States. Environ. Sci. Technol. 2013, 47 (13), 7233–7241. https://doi.org/10.1021/es400039u. Eeftens, M.; Beelen, R.; de Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dėdelė, A.; Dons, E.; de Nazelle, A.; Dimakopoulou, K., Eriksen, K., Falq, G., Fischer, P., Galassi, C., Gražulevičienė, R., Heinrich, J., Hoffmann, B., Jerrett, M., Keidel, D., Korek, M., Lanki, T., Lindley, S., Madsen, C., Mölter, A., Nádor, G., Nieuwenhuijsen, M., Nonnemacher, M., Pedeli, X., Raaschou-Nielsen, O., Patelarou, E., Quass, U., Ranzi, A., Schindler, C., Stempfelet, M., Stephanou, E., Sugiri, D., Tsai, M.-Y., Yli-Tuomi, T., Varró, M. J., Vienneau, D., Klot, S. von, Wolf, K., Brunekreef, B., Hoek, G. Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PMCoarse in 20 European Study Areas; Results of the ESCAPE Project. Environ. Sci. Technol. 2012, 46 (20), 11195–11205. https://doi.org/10.1021/es301948k. Li, L.; Wu, A. H.; Cheng, I.; Chen, J.-C.; Wu, J. Spatiotemporal Estimation of Historical PM2.5 Concentrations Using PM10, Meteorological Variables, and Spatial Effect. Atmos. Environ. 2017, 166, 182–191. https://doi.org/10.1016/j.atmosenv.2017.07.023. Canadian Council of Ministers of the Environment (CCME). Ambient Air Monitoring Protocol for PM2.5 and Ozone: Canada-Wide Standards for Particulate Matter and Ozone; 2011.

25

ACS Paragon Plus Environment

Environmental Science & Technology

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

(27)

(28)

(29)

(30) (31)

(32) (33)

(34) (35)

(36) (37)

https://www.ccme.ca/files/Resources/air/pm_ozone/pm_oz_cws_monitoring_protocol_p n1456_e.pdf. Bey, I.; Jacob, D. J.; Yantosca, R. M.; Logan, J. A.; Field, B. D.; Fiore, A. M.; Li, Q.; Liu, H. Y.; Mickley, L. J.; Schultz, M. G. Global Modeling of Tropospheric Chemistry with Assimilated Meteorology: Model Description and Evaluation. J. Geophys. Res. Atmospheres 2001, 106 (D19), 23073–23095. https://doi.org/10.1029/2001JD000807. Park, R. J.; Jacob, D. J.; Field, B.; Yantosca, R. M.; Chin, M. Natural and Transboundary Pollution Influences on Sulfate-Nitrate-Ammonium Aerosols in the United States: Implications for Policy. J. of Geophys. Res. Atmospheres 2004, 109 (D15), https:doi.org/10.1029/2003JD004473. Fountoukis, C.; Nenes, A. ISORROPIA II: A Computationally Efficient Thermodynamic Equilibrium Model for K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O Aerosols. Atmospheric Chem. Phys. 2007, 7 (17), 4639–4659. https://doi.org/https://doi.org/10.5194/acp-7-46392007. Fairlie, T. D.; Jacob, D. J.; Park, R. J. The Impact of Transpacific Transport of Mineral Dust in the United States. Atmos. Environ. 2007, 41 (6), 1251–1266. https://doi.org/10.1016/j.atmosenv.2006.09.048. Jaeglé, L.; Quinn, P. K.; Bates, T. S.; Alexander, B.; Lin, J.-T. Global Distribution of Sea Salt Aerosols: New Constraints from in Situ and Remote Sensing Observations. Atmospheric Chem. Phys. 2011, 11 (7), 3137–3157. https://doi.org/https://doi.org/10.5194/acp-113137-2011. Park, R. J.; Jacob, D. J.; Chin, M.; Martin, R. V. Sources of Carbonaceous Aerosols over the United States and Implications for Natural Visibility. J. Geophys. Res. Atmospheres 2003, 108 (D12), 4355. https://doi.org/10.1029/2002JD003190. Wang, Q.; J. Jacob, D.; Ryan Spackman, J.; Perring, A.; Schwarz, J.; Moteki, N.; A. Marais, E.; Ge, C.; Wang, J.; R. H. Barrett, S. Global Budget and Radiative Forcing of Black Carbon Aerosol: Constraints from Pole-to-Pole (HIPPO) Observations across the Pacific. J. Geophys. Res. Atmospheres 2014, 119, 195–206. https://doi.org/10.1002/2013JD020824. Pye, H. O. T.; Chan, A. W. H.; Barkley, M. P.; Seinfeld, J. H. Global Modeling of Organic Aerosol: The Importance of Reactive Nitrogen (NOx and NO3). Atmospheric Chem. Phys. 2010, 10 (22), 11261–11276. https://doi.org/https://doi.org/10.5194/acp-10-11261-2010. Marais, E. A.; Jacob, D. J.; Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Hu, W.; Krechmer, J.; Zhu, L.; Kim, P. S.; Miller, C. C.; Fisher, J. A., Travis, K., Yu, K., Hanisco, T. F., Wolfe, G. M., Arkinson, H. L., Pye, H. O. T., Froyd, K. D., Liao, J., McNeill, V. F. Aqueous-Phase Mechanism for Secondary Organic Aerosol Formation from Isoprene: Application to the Southeast United States and Co-Benefit of SO2 Emission Controls. Atmospheric Chem. Phys. 2016, 16 (3), 1603–1618. https://doi.org/https://doi.org/10.5194/acp-16-1603-2016. Martin, R. V.; Jacob, D. J.; Yantosca, R. M.; Chin, M.; Ginoux, P. Global and Regional Decreases in Tropospheric Oxidants from Photochemical Effects of Aerosols. J. Geophys. Res. Atmospheres 2003, 108 (D3). https://doi.org/10.1029/2002JD002622. Drury, E.; Jacob, D. J.; Spurr, R. J. D.; Wang, J.; Shinozuka, Y.; Anderson, B. E.; Clarke, A. D.; Dibb, J.; McNaughton, C.; Weber, R. Synthesis of Satellite (MODIS), Aircraft (ICARTT), and Surface (IMPROVE, EPA-AQS, AERONET) Aerosol Observations over Eastern North America to Improve MODIS Aerosol Retrievals and Constrain Surface Aerosol Concentrations and 26

ACS Paragon Plus Environment

Page 26 of 28

Page 27 of 28

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

Environmental Science & Technology

(38) (39) (40) (41) (42)

(43) (44)

(45) (46) (47) (48)

(49)

(50)

Sources. J. Geophys. Res. Atmospheres 2010, 115 (D14). https://doi.org/10.1029/2009JD012629. Ridley, D. A.; Heald, C. L.; Ford, B. North African Dust Export and Deposition: A Satellite and Model Perspective. J. Geophys. Res. Atmospheres 2012, 117, D02202. https://doi.org/10.1029/2011JD016794. Reff, A.; Bhave, P. V.; Simon, H.; Pace, T. G.; Pouliot, G. A.; Mobley, J. D.; Houyoux, M. Emissions Inventory of PM2.5 Trace Elements across the United States. Environ. Sci. Technol. 2009, 43 (15), 5790–5796. https://doi.org/10.1021/es802930x. Ridley, D. A.; Heald, C. L.; Ridley, K. J.; Kroll, J. H. Causes and Consequences of Decreasing Atmospheric Organic Aerosol in the United States. Proc. Natl. Acad. Sci. 2018, 115 (2), 290–295. https://doi.org/10.1073/pnas.1700387115. Giglio, L.; Randerson, J. T.; Werf, G. R. van der. Analysis of Daily, Monthly, and Annual Burned Area Using the Fourth-Generation Global Fire Emissions Database (GFED4). J. Geophys. Res. Biogeosciences 2013, 118 (1), 317–328. https://doi.org/10.1002/jgrg.20042. Schultz, M. G.; Heil, A.; Hoelzemann, J. J.; Spessa, A.; Thonicke, K.; Goldammer, J. G.; Held, A. C.; Pereira, J. M. C.; Bolscher, M. van het. Global Wildland Fire Emissions from 1960 to 2000. Glob. Biogeochem. Cycles 2008, 22 (2), GB2002. https://doi.org/10.1029/2007GB003031. Brunsdon, C.; Fotheringham, A. S.; Charlton, M. E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 1996, 28 (4), 281–298. https://doi.org/10.1111/j.1538-4632.1996.tb00936.x. Friedl, M. A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets. Remote Sens. Environ. 2010, 114 (1), 168–182. https://doi.org/10.1016/j.rse.2009.08.016. Information (NCEI), N. C. for E. ETOPO1 1 Arc-Minute Global Relief Model https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.dem:316 (accessed Nov 9, 2018). Global Population Count Grid Time Series Estimates, v1: Population Dynamics | SEDAC http://sedac.ciesin.columbia.edu/data/set/popdynamics-global-pop-count-time-seriesestimates (accessed Aug 8, 2018). Gridded Population of the World (GPW), v4, SEDAC http://sedac.ciesin.columbia.edu/data/collection/gpw-v4 (accessed Aug 8, 2018). Boys, B. L.; Martin, R. V.; van Donkelaar, A.; MacDonell, R. J.; Hsu, N. C.; Cooper, M. J.; Yantosca, R. M.; Lu, Z.; Streets, D. G.; Zhang, Q.; Wang, S. Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter. Environ. Sci. Technol. 2014, 48 (19), 11109– 11118. https://doi.org/10.1021/es502113p. van Donkelaar Aaron; Martin Randall V.; Brauer Michael; Boys Brian L. Use of Satellite Observations for Long-Term Exposure Assessment of Global Concentrations of Fine Particulate Matter. Environ. Health Perspect. 2015, 123 (2), 135–143. https://doi.org/10.1289/ehp.1408646. van Donkelaar, A.; Martin, R. V.; Li, C.; Burnett, R. T. Regional Estimates of Chemical Composition of Fine Particulate Matter Using a Combined Geoscience-Statistical Method

27

ACS Paragon Plus Environment

Environmental Science & Technology

663 664 665 666 667

with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2019, 53 (5), 2595–2611. https://doi.org/10.1021/acs.est.8b06392. (51) Meng, J.; Li, C.; Martin, R. V.; van Donkelaar, A.; Hystad, P.; Brauer, M. Historical PM2.5 Dataset across North America. 2019. https://doi.org/10.5281/zenodo.2616769.

28

ACS Paragon Plus Environment

Page 28 of 28