Subscriber access provided by UNIV OF LOUISIANA
Environmental Modeling
Estimated Long-term (1981-2016) Concentrations of Ambient Fine Particulate Matter across North America from Chemical Transport Modeling, Satellite Remote Sensing and Ground-based Measurements Jun Meng, Chi Li, Randall V Martin, Aaron van Donkelaar, Perry Hystad, and Michael Brauer Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.8b06875 • Publication Date (Web): 17 Apr 2019 Downloaded from http://pubs.acs.org on April 18, 2019
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 28
1 2 3
Environmental Science & Technology
Estimated Long-term (1981-2016) Concentrations of Ambient Fine Particulate Matter across North America from Chemical Transport Modeling, Satellite Remote Sensing and Ground-based Measurements
4 5
Jun Meng1*, Chi Li1, Randall V. Martin1,2, Aaron van Donkelaar1, Perry Hystad3, Michael Brauer4
6 7 8
Affiliations
9
1Department
of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
10
2Smithsonian
Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
11
3College
12
4School
13
Columbia, V6T 1Z3, Canada
of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
of Population and Public Health, The University of British Columbia, 2206 East Mall, Vancouver, British
14 15 16
*Corresponding
author:
17
Address: 6310 Coburg road, Sir James Dunn bldg., Halifax, NS. Canada B3H 4J5
18
Phone: (902) 932-3886; E-mail:
[email protected];
19 20 21 22 23 24
1
ACS Paragon Plus Environment
Environmental Science & Technology
25
Abstract Art
26 27
Abstract
28
Accurate data concerning historical fine particulate matter (PM2.5) concentrations are needed
29
to assess long-term changes in exposure and associated health risks. We estimated historical
30
PM2.5 concentrations over North America from 1981-2016 for the first time by combining
31
chemical transport modeling, satellite remote sensing and ground-based measurements. We
32
constrained and evaluated our estimates with direct ground-based PM2.5 measurements when
33
available and otherwise with historical estimates of PM2.5 from PM10 measurements or total
34
suspended particles (TSP) measurements. The estimated PM2.5 concentrations were generally
35
consistent with direct ground-based PM2.5 measurements over their duration from 1988
36
onward (R2 = 0.6-0.85) and to a lesser extent with PM2.5 inferred from PM10 measurements
37
from 1985 to 1998 (R2 =0.5-0.6). The collocated comparison of the trends of population-
38
weighted annual average PM2.5 from our estimates and ground-based measurements were
39
highly consistent (RMSD = 0.66 μg m-3). The population-weighted annual average PM2.5 over
40
North America decreased from 22 6.4 μg m-3 in 1981, to 12 3.2 μg m-3 in 1998, and to 7.9
41
2.1 μg m-3 in 2016, with an overall trend of -0.33 μg m-3 yr-1 (95% CI: -0.35 -0.30).
2
ACS Paragon Plus Environment
Page 2 of 28
Page 3 of 28
42 43
Environmental Science & Technology
1 Introduction Ambient fine particulate matter with aerodynamic diameter less than 2.5 microns
44
(PM2.5) is recognized as the leading environmental risk factor for the global burden of disease
45
with an estimated 4.1 million [3.6 million to 4.6 million] attributable deaths in 20161. Long-term
46
exposure to high PM2.5 adversely affects human health2–8. Several epidemiological studies
47
reported adverse effects from long-term exposure at levels of PM2.5 concentrations9–12 below
48
the World Health Organization (WHO) guideline (10 μg m-3 annual average), the U.S. standard
49
(12 μg m-3 annual average) and the Canadian standard (10 μg m-3 annual average, to be
50
reduced to 8.8 μg m-3 in 2020). However, the shape of the concentration-response function at
51
these low PM2.5 concentrations remains uncertain. Information about historical PM2.5
52
concentrations across Canada and the United States is needed to understand long-term
53
changes in exposure and their implications for health effects research.
54
Understanding historical long-term exposure is complicated by the paucity of PM2.5
55
monitoring sites across North America before the late 1990s and by the spatial variation of
56
monitoring sites over time. Ground-based monitoring provides historical time series at specific
57
points for PM2.5, PM10, and total suspended particles (TSP). Several cohort studies have
58
attempted to infer historical PM estimates using monitoring data for urban areas in later
59
years4,13,14. A recent study by Kim et al.15 demonstrated that historical measurements of PM10
60
and TSP offer valuable information for prediction of historical PM2.5 concentrations across the
61
continental United States.
62 63
Additional sources of data are available to inform estimates of historical PM2.5 spatial and temporal variations to improve the overall representativeness. Chemical transport 3
ACS Paragon Plus Environment
Environmental Science & Technology
64
modeling offers additional valuable information about historical PM2.5 concentrations through
65
the representation of atmospheric processes with historical emission inventories16–18. Satellite
66
remote sensing offers a powerful additional constraint on PM2.5 spatial distributions19,20
67
especially after 2002 when both the Terra and Aqua satellites were in orbit. Some studies21,22
68
have developed prediction models to estimate historical PM2.5 by back-casting using the ratio
69
between PM2.5 and PM10 or TSP observations. Other studies19,23–25 use land-use regression,
70
which included predictor variables derived from geographic information systems, or combine
71
information from other PM measurements or satellite data. However, those studies either
72
focused on smaller regions21,25 or shorter durations19.
73
In this paper, we present historical estimates of PM2.5 across North America by
74
combining information from chemical transport modeling, satellite-derived PM2.5 estimates and
75
ground-based monitoring from 1981-2016. These estimates can be used to assess long-term
76
health impacts associated with low levels of PM2.5 throughout North America.
77 78 79
2 Materials and Methods Figure 1 provides an overview of our method to develop estimates of historical PM2.5
80
concentrations across North America by incorporating information from ground-based
81
monitoring, chemical transport modeling, and satellite-derived PM2.5. We started with a fine
82
resolution chemical transport model (GEOS-Chem) simulation across North America for 1989–
83
2016. We downscaled the simulation to 0.01 x 0.01 using a satellite-derived PM2.5 dataset20.
84
We applied geographically weighted regression (GWR) to the downscaled simulation to
85
incorporate information from ground-based measurements into the estimates. For the years 4
ACS Paragon Plus Environment
Page 4 of 28
Page 5 of 28
Environmental Science & Technology
86
1981-1988, we relied on information on interannual variation from ground-based
87
measurements to backcast the gridded PM2.5 concentrations. Each step is described further
88
below.
89
2.1 Historical Particulate Matter Monitoring Data
90
We collected ground-based measurements for 1981-2016 across Canada and the United
91
States. Canadian particulate matter (PM) data were obtained from the National Air Pollutant
92
Surveillance (NAPS) (http://maps-cartes.ec.gc.ca/rnspa-naps/data.aspx?lang=en). This database
93
includes continuous PM measurement data, dichotomous sampler (dichot, PM10 and PM2.5)
94
data and total suspended particulate (TSP) data. Instrument-specific calibrations were applied
95
as recommended by the Canadian Council of Ministers of the Environment (CCME)26. Daily PM
96
data for the United States were obtained from the US Air Quality System Data Mart for PM10
97
and PM2.5 (https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html). In addition,
98
data from the inhalable particle network (IPN) which consisted of PM2.5 measurements in the
99
early 1980’s were included. Table S1 in the supporting information summarizes available
100
monitoring data by measurement type in selected years (1981-2016). In Canada, dichot PM2.5
101
and PM10 sampling began in the mid 1980s, followed by continuous PM2.5 monitoring in the late
102
1990s. In the United States, most PM10 sampling began in the late 1980s, followed by
103
widespread PM2.5 monitoring in 1999. Limited PM2.5 measurements were available prior to
104
1999. Separate predictive models based on uniform method were created for Canada and US
105
monitoring data since the larger number of monitoring stations in the US would overwhelm the
106
Canadian dataset. Detailed information about the predictive models of inferring monthly PM2.5
5
ACS Paragon Plus Environment
Environmental Science & Technology
107
concentrations from the historical PM10 and TSP measurements is provided in the supporting
108
information SI.1
109
2.2 Estimated Historical Gridded PM2.5 Data
110
GEOS-Chem Chemical Transport Model
111
We use the GEOS-Chem chemical transport model (version 11-01, http://www.geos-
112
chem.org), with updated historical emissions inventories and meteorological data to
113
consistently simulate PM2.5 concentrations across North America for 1989-2016. GEOS-Chem
114
includes detailed aerosol-oxidant chemistry27,28. The simulation of concentrations of PM2.5
115
components includes the sulfate-nitrate-ammonium (SNA) aerosol system28,29, mineral dust30,
116
sea salt31, and carbonaceous aerosol32 with updates to black carbon33, and SOA34,35 including an
117
aqueous-phase mechanism for SOA from isoprene35.Our simulation used a relative humidity
118
dependent and composition dependent fixed size distribution following Martin et al.36 with
119
updates to organics37and mineral dust38. We drove the simulation using MERRA-2
120
meteorological data from NASA’s Global Modeling and Assimilation Office (GMAO) with a
121
nested resolution at 0.5˚ × 0.625˚ over North America for 1989-2016 for which updated
122
historical emissions were available. Anthropogenic emissions over North America were from
123
the 2011 National Emissions Inventory (NEI2011, http://ww.epa.gov/air-emissions-inventories)
124
for the US and the Criteria Air Contaminants (CAC, http://www.ec.gc.ca/inrp-npri/) for Canada
125
with historical scale factors applied to each simulating year. Black carbon (BC) and organic
126
carbon (OC) emissions were calculated by applying sector-specific OC and BC to PM2.5 emission
127
ratios18,39,40. Open fire emissions were from GFED441 for years 1997-2016 and from the RETRO
128
fire emission inventory42 for earlier years.
6
ACS Paragon Plus Environment
Page 6 of 28
Page 7 of 28
129
Environmental Science & Technology
Creation of Historical Gridded PM2.5 Dataset
130
Given our objective of a consistent dataset over the entire 1989-2016 period, and the
131
lack of satellite aerosol optical depth (AOD) for the entire period, we used the 5-year average
132
from near the middle of the period (2004-2008) of geophysical satellite-based PM2.5 estimates
133
(referred to as PMsat)20, derived from both the Terra and Aqua satellites, to downscale GEOS-
134
Chem model simulation (1989-2016) to a resolution relevant for exposure at 0.01˚ × 0.01˚
135
following C. Li et al.18 We calculated the ratio between PMsat and the 5-yr average (2004-2008)
136
of GEOS-Chem simulations. Then, we used this ratio to downscale simulations in all the years
137
from 1989 to 2016. The downscaling process does not change the simulated relative temporal
138
variation of PM2.5, since the same scale factor was applied to all years. This downscaled
139
estimate (referred to as PMscl) contained fine-scale spatial information from satellite-derived
140
PM2.5 estimates (PMsat) and long-term temporal information from the GEOS-Chem simulation.
141
We evaluate the approach by excluding the satellite-based estimates.
142
Ground-based monitoring offers reliable information on PM2.5 when and where
143
available. We used this information to constrain our estimates. We included monitor
144
information across both the US and Canada to produce a continuous surface for North America.
145
Following van Donkelaar et al.20, we applied geographically weighted regression (GWR) to PMscl
146
over 1989-2016 using available PM2.5 observations, and PM2.5 concentrations inferred from
147
PM10 observations. Geographically weighted regression (GWR)43 is a multiple regression, an
148
extension of least-squares regression, to allow predictor coefficients to vary by choosing
149
different spatial weighting function at several geographic locations according to their inverse-
150
squared distance from individual observation sites. We used GWR to regress the spatial
7
ACS Paragon Plus Environment
Environmental Science & Technology
Page 8 of 28
151
relationship between multiple predictors and the bias between PM2.5 estimates and PM2.5
152
measurements. Our predictors in GWR include urban land cover, sub-grid elevation difference,
153
and aerosol chemical composition from GEOS-Chem simulation. We fit the GWR model at the
154
same resolution (1o x 1o) as the downscaled PM2.5 estimates, which was scaled by satellite-
155
driven PM2.5, following the equation (1) below:
156
(Measured PM2.5 – Estimated PM2.5) = 1ULC + 2SED + 3SUL + 4NIT + 5PrC + 6SOA + 7DST +
157
(1)
158
where 1 to 7 represented the spatial weighted predictor coefficients for each
159
predictor, and is the error. ULC was the percent of urban land cover from the 500-m spatial
160
resolution MODIS land cover type product44. SED was the sub-grid elevation difference, which is
161
the difference between the site elevation, which is from the ETOPO1 Global Relief Model of the
162
National Geophysical Data Center45, and the annual mean elevation of the GEOS-Chem grid cell.
163
SUL, NIT, PrC, SOA and DST are sulfate, nitrate, primary carbon, secondary carbon and dust
164
respectively as simulated with GEOS-Chem. We conducted sensitivity tests by changing the
165
weight of PM10 observations in the GWR regression and found that a reduction by 75% of the
166
weight of PM10 best represented its uncertainty compared to direct PM2.5 measurements from
167
ground-based measurements, GEOS-Chem transport model simulations and satellite remote
168
sensing.
169
For years 1981-1988, reliable emission inventories were not available for GEOS-Chem
170
simulation. Instead we used the information on inter-annual variation from ground-based
171
measurements to back-cast the gridded PM2.5 concentrations following previous studies21,22.
172
Ground-based measurements include TSP measurements, PM10 measurements and PM2.5
8
ACS Paragon Plus Environment
Page 9 of 28
Environmental Science & Technology
173
measurements. Ground-based PM2.5 concentrations inferred from TSP measurements were
174
included for this time period since fewer than 200 PM10 sites existed before 1986 and even
175
fewer PM2.5 monitoring sites existed. For each year (e.g. 1988), we calculated the ratio between
176
the annual mean PM2.5 of this year and the following 3-year mean PM2.5 (e.g. 1989-1991) for
177
each ground-based monitoring site. We used the ratios from TSP sites as the basis, which were
178
overwritten by the ratios from PM10 sites, and then by the ratios from PM2.5 sites. This ratio
179
field from ground-based measurements was then interpolated to other grids using distance
180
weighted interpolation. Finally, we applied this gridded ratio field to the following 3-year mean
181
PM2.5 estimates to get the estimated PM2.5 for each year. The process is described by equation
182
(2) below:
183 184 185
Y(t)= [Y(t+1) + Y(t+2) + Y(t+3)]/3
(2)
where Y(t) represents the PM2.5 estimates in year t, and is the gridded ratio field. We evaluated the backcasting method by repeating the procedure for the years 2001-
186
2008 using measurements for the years 2001-2011, for comparison with our estimates for
187
2001-2008 (SI Table S5).
188 189
We calculated the overall root mean square difference (RMSD) between the estimates and measurements for each year over 1981-2016 as a measure of uncertainty.
190 191 192
3 Results and Discussion We first evaluated the approach in the years when only PM2.5 stations were used for
193
GWR adjustment to statistically incorporate information from ground-based observations into
194
the downscaled model results. Figure 2 shows scatter plots of 2004-2008 mean PM2.5 from the 9
ACS Paragon Plus Environment
Environmental Science & Technology
195
downscaled simulation (PMscl) before and after GWR adjustment, versus in situ PM2.5. As found
196
by van Donkelaar et al.20, the GWR model significantly reduces the mean bias (MB) and root
197
mean square difference (RMSD) over both Canada and the US. Out-of-sample cross validation
198
using 50% of randomly selected sites to train the GWR model exhibits significantly improved
199
performance (R2 = 0.69; RMSD = 2.3 μg m-3) (bottom left panel) compared with the base case
200
(R2 = 0.52; RMSD = 3.1 μg m-3). In such a holdback analysis, GWR parameter coefficients are
201
trained using only 50% of available ground-based monitors. The withheld sites provide an
202
independent dataset with which to evaluate the quality of fused PM2.5 estimates in areas
203
without ground-based observation. The improvement at these independent sites suggests
204
improvement in the GWR adjusted surface even at locations away from ground-based
205
observation. The bottom right panel of Figure 2 shows the 2004-2008 mean performance of
206
GWR-adjusted values made using only the PM2.5 sites that were also available before 1998 (< 70
207
sites in total), consisting mostly of remote and rural U.S.-based sites. Limiting the GWR-based
208
adjustment to only these earlier-available PM2.5 sites provided no improvement in agreement
209
compared to the initial estimates without GWR. The negative MB in PMscl (-1.00 μg m-3) (top
210
left panel) is not corrected in the adjusted estimates (-0.83 μg m-3) (bottom right panel), due to
211
a lack of representative urban and eastern sites which generally have higher PM2.5 levels.
212
Complementary information from PM10 sites that are representative of urban environments is
213
necessary for early years.
214
Figure 3 shows scatter plots for the 1992-1996 time period to evaluate the performance
215
of PM2.5 inferred from PM10. The top panels show that the performance of the scaled
216
geophysical estimate is promising with an R2 versus PM2.5 monitors of 0.69 that increases to
10
ACS Paragon Plus Environment
Page 10 of 28
Page 11 of 28
Environmental Science & Technology
217
0.86 after GWR adjustment. The RMSD decreases from 2.7 to 1.5 μg m-3 over ~100 PM2.5 sites in
218
the adjusted estimates. For ~2000 PM10 sites, significantly improved agreement is also found
219
after GWR adjustment. Cross validation with 50% out-of-sample sites (bottom left) further
220
confirms the overall robustness of the approach. As found in the 2004-2008 period, using only
221
PM2.5 sites for GWR modeling does not improve the overall representation of the estimates,
222
especially for PM10 sites in urban areas.
223
Figure 4 shows the R2 and RMSD for each year (1981-2016) of the estimates versus
224
ground-based measurements to provide an overall assessment of uncertainty. Only PM2.5 data
225
are used over 1999-2016 since sufficient PM2.5 measurements are available after 1999. Since
226
the number of PM10 sites reduces significantly prior to 1989 (~1000 in 1989, ~600 in 1988, ~400
227
sites in 1986 and < 50 sites in 1984), the back-casting from 1985 to 1981 is based primarily on
228
the trend information from TSP-based estimates, and expected to be more uncertain. The R2
229
increases with the increase of PM10 sites for years 1985-1990. The R2 is around 0.8 for years
230
1989-2005 compared to PM2.5 sites. The relative RMSD at only PM2.5 sites drops from 30% in
231
the early 1990s to below 20% prior to 1999 when the PM2.5 measurements became more
232
widespread. The decrease in R2 after 2008 reflects weaker spatial PM2.5 gradients in recent
233
years as PM2.5 levels decline across North America. Higher RMSD errors are expected before
234
1999 due to more uncertainties in emission inventories as well as larger uncertainties in the
235
monitor data used in GWR adjustments. Overall, the GWR-adjusted PM2.5 estimates yield an
236
estimated error of less than 20% since 1999 and, less than 30% from 1981-1998.
237 238
We tested how the satellite-derived PM2.5 data used for downscaling affected the performance of the estimated dataset. Supporting information SI.3 describes sensitivity
11
ACS Paragon Plus Environment
Environmental Science & Technology
239
estimates of PM2.5 data without satellite remote sensing. The R2 of these sensitivity estimates
240
are between 0.1 - 0.2 lower than our base estimate across all years, with larger differences in
241
years preceding 1999 when fewer PM2.5 measurements were available. The relative RMSD of
242
the sensitivity estimates at direct observed PM2.5 sites are higher than the base estimates by
243
10% - 20%. This analysis indicates the significance of the constraints on PM2.5 spatial
244
distributions offered by satellite remote sensing.
245
Figure 5 shows the distribution of PM2.5 estimates and ground-based measurements for
246
1985, 1995, 2005 and 2015 from this study. Enhancements in both the GWR adjusted estimates
247
and ground-based measurements are apparent across eastern US and California. The estimated
248
PM2.5 is generally consistent with ground-based measurements (Figure 4), especially with the
249
direct PM2.5 measurements. PM2.5 concentrations decrease dramatically during the last three
250
decades, especially in eastern United States.
251
Figure 6 shows the time series of population-weighted annual average PM2.5
252
concentrations across North America. We used gridded population estimates from the
253
Socioeconomic Data and Applications Center46,47 for calculating population-weighted average
254
(SI.3). The population-weighted annual average PM2.5 over North America decreased from 22
255
6.4 μg m-3 in the year 1981 to 7.9 2.1 μg m-3 in the year 2016. The linear tendency over this
256
period is -0.33 μg m-3 yr-1 0.2 μg m-3 yr-1. Both time series of the in-situ measurements and
257
estimates of population-weighted annual mean PM2.5 exhibit minor peaks in 2005 and 2007.
258
The collocated comparison of the trends of population-weighted annual average PM2.5 from our
259
estimates and ground-based measurements are highly consistent (RMSD=0.66 μg m-3) over
260
1985-1995. Population-weighted annual average PM2.5 calculated from direct PM2.5 sites is 20%
12
ACS Paragon Plus Environment
Page 12 of 28
Page 13 of 28
Environmental Science & Technology
261
lower than that calculated from all in-situ sites, illustrating the effects of changes in monitor
262
placement over time when assessing long-term changes in ambient PM2.5, and the value of
263
spatiotemporally continuous PM2.5 estimates from this work. Larger errorbars prior to 1990
264
reflect greater uncertainty in the TSP dataset.
265
Figure S5 in the supporting information shows regional time series of population-
266
weighted annual average PM2.5. Figure S6 in the supporting information shows regional time
267
series of relative percentage change of population-weighted annual average PM2.5
268
concentrations using 2016 as the reference year. Northwestern North America has the most
269
dramatical decline for population-weighted average PM2.5 concentrations with a factor of 2.7
270
decrease over 1981-2016, followed by southeastern and northeastern North America with a
271
factor of 2.4 decrease over 1981-2016. The relative changes in northcentral, southcentral and
272
southwestern North America are similar with a factor of 1.6–2.0 decrease in population-
273
weighted PM2.5 over 1981-2016. Overall the spatially resolved historical PM2.5 dataset across
274
North America reveals a factor of 1.7 decrease in population-weighted PM2.5 over 1981-2016.
275
Comparison with previous estimates of historical PM2.5 concentrations is instructive. Our
276
estimated historical PM2.5 concentrations during 1982-1991 in the southeastern US indicate a
277
decrease of 3.9 μg m-3, similar to the reported decline of 3-5 μg m-3 found by Parhurst et al.21
278
We find similar large-scale reductions in historical PM2.5 concentrations during 1981-2000 as
279
Lall et al.22, albeit with smoother temporal trends in the present study that are more consistent
280
with Kim et al.15 The primary difference with our prior historical PM2.5 estimates48–50 is that our
281
current study spans a time period (1981-2016) about twice as long as our prior work by
282
including more trend information from our GEOS-Chem simulation, and includes historical
13
ACS Paragon Plus Environment
Environmental Science & Technology
283
ground-based measurements prior to 1999. Nonetheless the population-weighted trends from
284
our current dataset remain within 0.03 μg m-3 yr-1 of our prior work, indicating overall
285
consistency as further discussed in the supporting information (SI.4).
286 287
Data availability. The annual mean estimated PM2.5 for 1981-2016 across North America
288
dataset has been deposited in the Zenodo Digital Repository (DOI: 10.5281/zenodo.2616769)51.
289 290
Supplemental Information. Detailed description of prediction of monitoring historical PM2.5
291
from measured PM10 and TSP, sensitivity test of estimated PM2.5 dataset without satellite
292
remote sensing information, population data and further discussion of population-weighted
293
PM2.5 trends. Supporting figures for section 3 are provided.
294 295
Acknowledgements. This research was supported by research agreement 4952-RFA14-3/16-3
296
with the Health Effects Institute (HEI), an organization jointly funded by the United States
297
Environmental Protection Agency (EPA) (Assistance Award No. R-82811201) and certain motor
298
vehicle and engine manufacturers. The contents of this article do not necessarily reflect the
299
views of HEI, or its sponsors, nor do they necessarily reflect the views and policies of the EPA or
300
motor vehicle and engine manufacturers. We are grateful to the Atlantic Computational
301
Excellence Network and Compute Canada for computing resources.
14
ACS Paragon Plus Environment
Page 14 of 28
Page 15 of 28
302
303 304 305 306 307 308 309
Environmental Science & Technology
5. Figures and tables
Figure 1. Overview of estimation method.
15
ACS Paragon Plus Environment
Environmental Science & Technology
310 311 312 313 314 315 316
Figure 2. Comparison over 2004-2008 of mean PM2.5 estimates with in situ measurements before (top left) and after GWR adjustment using all sites (top right), using cross validation sites using 50% random holdout (bottom left), and using PM2.5 sites present over 1989-1997 (bottom right). Open circles are Canadian sites and crosses are US sites. Number of sites are shown in brackets. Statistics shown are mean bias (MB, in μg m-3), coefficient of determination (R2) and root mean square difference (RMSD, in μg m-3).
16
ACS Paragon Plus Environment
Page 16 of 28
Page 17 of 28
317 318 319 320 321 322 323
Environmental Science & Technology
Figure 3 Comparison over 1992-1996 of mean PM2.5 estimates with in situ measurements before (top left) and after GWR adjustment using all sites (top right), using cross validation using 50% random holdout (bottom left), and using only PM2.5 sites (bottom right). Open circles are Canadian sites and crosses are US sites. No. of sites are shown in brackets. Comparison for PM2.5 (black) and PM10 (red) sites are shown separately. Statistics shown are mean bias (MB, in μg m-3), coefficient of determination (R2) and root mean square difference (RMSD, in μg m-3).
324
17
ACS Paragon Plus Environment
Environmental Science & Technology
325 326 327 328 329 330 331 332 333 334
Figure 4. Statistics (R2 and RMSD) of estimated PM2.5 against ground-based measurements from year 1981 to 2016. Solid lines indicate performance of base estimates. Dashed lines indicate performance of sensitivity estimates that exclude satellite remote sensing information (no blue dashed line). Numbers at the top of each figure indicate the number of monitors of direct PM2.5 (black), PM2.5 inferred from PM10 (green) and PM2.5 inferred from TSP (blue).
18
ACS Paragon Plus Environment
Page 18 of 28
Page 19 of 28
Environmental Science & Technology
335 336 337 338 339
Figure 5. Estimated fine particulate matter annual means in 1985, 1995, 2005 and 2015 over North America. Left panels are estimated PM2.5. Inset values in the left panel are the population-weighted average PM2.5 mass. Right panels indicate PM2.5 derived from ground-based measurements of PM2.5, PM10 and TSP.
19
ACS Paragon Plus Environment
Environmental Science & Technology
340
341 342 343 344
Figure 6. Time series of population-weighted average annual PM2.5 concentrations across North America. Error bars are included for population-weighted annual mean estimated PM2.5 concentrations.
345 346 347 348 349 350 351 352 353 354 355 356 357 358 20
ACS Paragon Plus Environment
Page 20 of 28
Page 21 of 28
Environmental Science & Technology
359
Reference
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
(1) Gakidou, E.; Afshin, A.; Abajobir, A. A.; Abate, K. H.; Abbafati, C.; Abbas, K. M.; Abd-Allah, F.; Abdulle, A. M.; Abera, S. F.; Aboyans, V.; Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., Abyu, G. Y., Adedeji, I. A., Adetokunboh, O., Afarideh, M., Agrawal, A., Agrawal, S., Ahmadieh, H., Ahmed, M. B., Aichour, M. T. E., Aichour, A. N., Aichour, I., Akinyemi, R. O., Akseer, N., Alahdab, F., Al-Aly, Z., Alam, K., Alam, N., Alam, T., Alasfoor, D., Alene, K. A., Ali, K., Alizadeh-Navaei, R., Alkerwi, A., Alla, F., Allebeck, P., Al-Raddadi, R., Alsharif, U., Altirkawi, K.A., Alvis-Guzman, N., Amare, A. T., Amini, E., Ammar, W., Amoako, Y. A., Ansari, H., Antó, J. M., Antonio, C. A. T., Anwari, P., Arian, N., Ärnlöv, J., Artaman, A., Aryal, K. K., Asayesh, H., Asgedom, S. W., Atey, T. M., Avila-Burgos, L., Avokpaho, E. F. G. A., Awasthi, A., Azzopardi, P., Bacha, U., Badawi, A., Balakrishnan, K., Ballew, S. H., Barac, A., Barber, R. M., Barker-Collo, S. L., Bärnighausen, T., Barquera, S., Barregard, L., Barrero, L. H., Batis, C., Battle, K. E., Baumgarner, B. R., Baune, B. T., Beardsley, J., Bedi, N., Beghi, E., Bell, M. L., Bennett, D. A., Bennett, J. R., Bensenor, I. M., Berhane, A., Berhe, D. F., Bernabé, E., Betsu, B. D., Beuran, M., Beyene, A. S., Bhansali, A., Bhutta, Z. A., Bicer, B. K., Bikbov, B., Birungi, C., Biryukov, S., Blosser, C. D., Boneya, D. J., Bou-Orm, I. R., Brauer, M., Breitborde, N. J. K., Brenner, H., Brugha, T. S., Bulto, L. N. B., Butt, Z. A., Cahuana-Hurtado, L., Cárdenas, R., Carrero, J. J., Castañeda-Orjuela, C. A., Catalá-López, F., Cercy, K., Chang, H.-Y., Charlson, F. J., Chimed-Ochir, O., Chisumpa, V. H., Chitheer, A. A., Christensen, H., Christopher, D. J., Cirillo, M., Cohen, A. J., Comfort, H., Cooper, C., Coresh, J., Cornaby, L., Cortesi, P. A., Criqui, M. H., Crump, J. A., Dandona, L., Dandona, R., Neves, J. das, Davey, G., Davitoiu, D.V., Davletov, K., Courten, B. de, Defo, B. K., Degenhardt, L., Deiparine, S., Dellavalle, R. P., Deribe, K., Deshpande, A., Dharmaratne, S. D., Ding, E. L., Djalalinia, S., Do, H. P., Dokova, K., Doku, D. T., Donkelaar, A. van, Dorsey, E. R., Driscoll, T. R., Dubey, M., Duncan, B. B., Duncan, S., Ebrahimi, H., El-Khatib, Z. Z., Enayati, A., Endries, A. Y., Ermakov, S. P., Erskine, H. E., Eshrati, B., Eskandarieh, S., Esteghamati, A., Estep, K., Faraon, E. J. A., Farinha, C. S. e S., Faro, A., Farzadfar, F., Fay, K., Feigin, V. L., Fereshtehnejad, S.-M., Fernandes, J. C., Ferrari, A. J., Feyissa, T. R., Filip, I., Fischer, F., Fitzmaurice, C., Flaxman, A. D., Foigt, N., Foreman, K. J., Frostad, J. J., Fullman, N., Fürst, T., Furtado, J. M., Ganji, M., Garcia-Basteiro, A. L., Gebrehiwot, T. T., Geleijnse, J. M., Geleto, A., Gemechu, B. L., Gesesew, H. A., Gething, P. W., Ghajar, A., Gibney, K. B., Gill, P. S., Gillum, R. F., Giref, A. Z., Gishu, M. D., Giussani, G., Godwin, W. W., Gona, P. N., Goodridge, A., Gopalani, S. V., Goryakin, Y., Goulart, A. C., Graetz, N., Gugnani, H. C., Guo, J., Gupta, R., Gupta, T., Gupta, V., Gutiérrez, R. A., Hachinski, V., Hafezi-Nejad, N., Hailu, G. B., Hamadeh, R. R., Hamidi, S., Hammami, M., Handal, A. J., Hankey, G. J., Hanson, S. W., Harb, H. L., Hareri, H. A., Hassanvand, M. S., Havmoeller, R., Hawley, C., Hay, S. I., Hedayati, M. T., Hendrie, D., Heredia-Pi, I. B., Hernandez, J. C. M., Hoek, H. W., Horita, N., Hosgood, H. D., Hostiuc, S., Hoy, D. G., Hsairi, M., Hu, G., Huang, J. J., Huang, H., Ibrahim, N. M., Iburg, K. M., Ikeda, C., Inoue, M., Irvine, C. M. S., Jackson, M. D., Jacobsen, K. H., Jahanmehr, N., Jakovljevic, M. B., Jauregui, A., Javanbakht, M., Jeemon, P., Johansson, L. R. K., Johnson, C. O., Jonas, J. B., Jürisson, M., Kabir, Z., Kadel, R., Kahsay, A., Kamal, R., Karch, A., Karema, C. K., Kasaeian, A., Kassebaum, N. J., Kastor, A., Katikireddi, S. V., Kawakami, N., Keiyoro, P. N., Kelbore, S. G., Kemmer, L., Kengne, A. P., Kesavachandran, C. N., Khader, Y. S., Khalil, I. A., Khan, E. A.,
21
ACS Paragon Plus Environment
Environmental Science & Technology
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
Khang, Y.-H., Khosravi, A., Khubchandani, J., Kiadaliri, A. A., Kieling, C., Kim, J. Y., Kim, Y. J., Kim, D., Kimokoti, R. W., Kinfu, Y., Kisa, A., Kissimova-Skarbek, K. A., Kivimaki, M., Knibbs, L. D., Knudsen, A. K., Kopec, J. A., Kosen, S., Koul, P. A., Koyanagi, A., Kravchenko, M., Krohn, K. J., Kromhout, H., Kumar, G. A., Kutz, M., Kyu, H. H., Lal, D. K., Lalloo, R., Lallukka, T., Lan, Q., Lansingh, V. C., Larsson, A., Lee, P. H., Lee, A., Leigh, J., Leung, J., Levi, M., Levy, T. S., Li, Yichong, Li, Y., Liang, X., Liben, M. L., Linn, S., Liu, P., Lodha, R., Logroscino, G., Looker, K. J., Lopez, A. D., Lorkowski, S., Lotufo, P. A., Lozano, R., Lunevicius, R., Macarayan, E. R. K., Razek, H. M. A. E., Razek, M. M. A. E., Majdan, M., Majdzadeh, R., Majeed, A., Malekzadeh, R., Malhotra, R., Malta, D. C., Mamun, A. A., Manguerra, H., Mantovani, L. G., Mapoma, C. C., Martin, R. V., Martinez-Raga, J., Martins-Melo, F. R., Mathur, M. R., Matsushita, K., Matzopoulos, R., Mazidi, M., McAlinden, C., McGrath, J. J., Mehata, S., Mehndiratta, M. M., Meier, T., Melaku, Y. A., Memiah, P., Memish, Z. A., Mendoza, W., Mengesha, M. M., Mensah, G. A., Mensink, G. B. M., Mereta, S. T., Meretoja, T. J., Meretoja, A., Mezgebe, H. B., Micha, R., Millear, A., Miller, T. R., Minnig, S., Mirarefin, M., Mirrakhimov, E. M., Misganaw, A., Mishra, S. R., Mohammad, K. A., Mohammed, K. E., Mohammed, S., Mohan, M. B. V., Mokdad, A. H., Monasta, L., Montico, M., Moradi-Lakeh, M., Moraga, P., Morawska, L., Morrison, S. D., Mountjoy-Venning, C., Mueller, U. O., Mullany, E. C., Muller, K., Murthy, G. V. S., Musa, K. I., Naghavi, M., Naheed, A., Nangia, V., Natarajan, G., Negoi, R. I., Negoi, I., Nguyen, C. T., Nguyen, Q. L., Nguyen, T. H., Nguyen, G., Nguyen, M., Nichols, E., Ningrum, D. N. A., Nomura, M., Nong, V. M., Norheim, O. F., Norrving, B., Noubiap, J. J. N., Obermeyer, C. M., Ogbo, F. A., Oh, I.H., Oladimeji, O., Olagunju, A. T., Olagunju, T. O., Olivares, P. R., Olsen, H. E., Olusanya, B. O., Olusanya, J. O., Opio, J. N., Oren, E., Ortiz, A., Ota, E., Owolabi, M.O., Pa, M., Pacella, R. E., Pana, A., Panda, B. K., Panda-Jonas, S., Pandian, J. D., Papachristou, C., Park, E.-K., Parry, C. D., Patten, S. B., Patton, G. C., Pereira, D. M., Perico, N., Pesudovs, K., Petzold, M., Phillips, M. R., Pillay, J. D., Piradov, M. A., Pishgar, F., Plass, D., Pletcher, M. A., Polinder, S., Popova, S., Poulton, R. G., Pourmalek, F., Prasad, N., Purcell, C., Qorbani, M., Radfar, A., Rafay, A., Rahimi-Movaghar, A., Rahimi-Movaghar, V., Rahman, M. H. U., Rahman, M. A., Rahman, M., Rai, R. K., Rajsic, S., Ram, U., Rawaf, S., Rehm, C. D., Rehm, J., Reiner, R. C., Reitsma, M. B., Remuzzi, G., Renzaho, A. M. N., Resnikoff, S., Reynales-Shigematsu, L. M., Rezaei, S., Ribeiro, A. L., Rivera, J. A., Roba, K. T., Rojas-Rueda, D., Roman, Y., Room, R., Roshandel, G., Roth, G. A., Rothenbacher, D., Rubagotti, E., Rushton, L., Sadat, N., Safdarian, M., Safi, S., Safiri, S., Sahathevan, R., Salama, J., Salomon, J. A., Samy, A. M., Sanabria, J. R., Sanchez-Niño, M. D., Sánchez-Pimienta, T. G., Santomauro, D., Santos, I. S., Milicevic, M. M. S., Sartorius, B., Satpathy, M., Sawhney, M., Saxena, S., Schmidt, M. I., Schneider, I. J. C., Schutte, A. E., Schwebel, D. C., Schwendicke, F., Seedat, S., Sepanlou, S. G., Serdar, B., Servan-Mori, E. E., Shaddick, G., Shaheen, A., Shahraz, S., Shaikh, M. A., Shamsipour, M., Shamsizadeh, M., Islam, S. M. S., Sharma, J., Sharma, R., She, J., Shen, J., Shi, P., Shibuya, K., Shields, C., Shiferaw, M. S., Shigematsu, M., Shin, M.-J., Shiri, R., Shirkoohi, R., Shishani, K., Shoman, H., Shrime, M. G., Sigfusdottir, I. D., Silva, D. A. S., Silva, J. P., Silveira, D. G. A., Singh, J. A., Singh, V., Sinha, D. N., Skiadaresi, E., Slepak, E. L., Smith, D. L., Smith, M., Sobaih, B. H. A., Sobngwi, E., Soneji, S., Sorensen, R. J. D., Sposato, L. A., Sreeramareddy, C. T., Srinivasan, V., Steel, N., Stein, D. J., Steiner, C., Steinke, S., Stokes, M. A., Strub, B., Subart, M., Sufiyan, M. B., Suliankatchi, R. A., Sur, P. J., Swaminathan, S., 22
ACS Paragon Plus Environment
Page 22 of 28
Page 23 of 28
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
Environmental Science & Technology
(2)
(3)
(4) (5)
Sykes, B. L., Szoeke, C. E. I., Tabarés-Seisdedos, R., Tadakamadla, S. K., Takahashi, K., Takala, J. S., Tandon, N., Tanner, M., Tarekegn, Y. L., Tavakkoli, M., Tegegne, T. K., TehraniBanihashemi, A., Terkawi, A. S., Tesssema, B., Thakur, J. S., Thamsuwan, O., Thankappan, K. R., Theis, A. M., Thomas, M. L., Thomson, A. J., Thrift, A. G., Tillmann, T., Tobe-Gai, R., Tobollik, M., Tollanes, M. C., Tonelli, M., Topor-Madry, R., Torre, A., Tortajada, M., Touvier, M., Tran, B. X., Truelsen, T., Tuem, K. B., Tuzcu, E. M., Tyrovolas, S., Ukwaja, K. N., Uneke, C. J., Updike, R., Uthman, O. A., Boven, J. F. M. van, Varughese, S., Vasankari, T., Veerman, L. J., Venkateswaran, V., Venketasubramanian, N., Violante, F. S., Vladimirov, S. K., Vlassov, V. V., Vollset, S. E., Vos, T., Wadilo, F., Wakayo, T., Wallin, M. T., Wang, Y.-P., Weichenthal, S., Weiderpass, E., Weintraub, R. G., Weiss, D. J., Werdecker, A., Westerman, R., Whiteford, H. A., Wiysonge, C. S., Woldeyes, B. G., Wolfe, C. D. A., Woodbrook, R., Workicho, A., Xavier, D., Xu, G., Yadgir, S., Yakob, B., Yan, L. L., Yaseri, M., Yimam, H. H., Yip, P., Yonemoto, N., Yoon, S.-J., Yotebieng, M., Younis, M. Z., Zaidi, Z., Zaki, M. E. S., Zavala-Arciniega, L., Zhang, X., Zimsen, S. R. M., Zipkin, B., Zodpey, S., Lim, S. S., Murray, C. J. L.,. Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. The Lancet 2017, 390 (10100), 1345–1422. https://doi.org/10.1016/S0140-6736(17)32366-8. Beelen, R.; Raaschou-Nielsen, O.; Stafoggia, M.; Andersen, Z. J.; Weinmayr, G.; Hoffmann, B.; Wolf, K.; Samoli, E.; Fischer, P.; Nieuwenhuijsen, M.; Vineis, P., Xun, W. W., Katsouyanni, K., Dimakopoulou, K., Oudin, A., Forsberg, B., Modig, L., Havulinna, A. S., Lanki, T., Turunen, A., Oftedal, B., Nystad, W., Nafstad, P., De Faire, U., Pedersen, N. L., Östenson, C.-G., Fratiglioni, L., Penell, J., Korek, M., Pershagen, G., Eriksen, K. T., Overvad, K., Ellermann, T., Eeftens, M., Peeters, P. H., Meliefste, K., Wang, M., Bueno-de-Mesquita, B., Sugiri, D., Krämer, U., Heinrich, J., de Hoogh, K., Key, T., Peters, A., Hampel, R., Concin, H., Nagel, G., Ineichen, A., Schaffner, E., Probst-Hensch, N., Künzli, N., Schindler, C., Schikowski, T., Adam, M., Phuleria, H., Vilier, A., Clavel-Chapelon, F., Declercq, C., Grioni, S., Krogh, V., Tsai, M.-Y., Ricceri, F., Sacerdote, C., Galassi, C., Migliore, E., Ranzi, A., Cesaroni, G., Badaloni, C., Forastiere, F., Tamayo, I., Amiano, P., Dorronsoro, M., Katsoulis, M., Trichopoulou, A., Brunekreef, B., Hoek, G. Effects of Long-Term Exposure to Air Pollution on Natural-Cause Mortality: An Analysis of 22 European Cohorts within the Multicentre ESCAPE Project. Lancet Lond. Engl. 2014, 383 (9919), 785–795. https://doi.org/10.1016/S0140-6736(13)62158-3. Boldo, E.; Medina, S.; LeTertre, A.; Hurley, F.; Mücke, H.-G.; Ballester, F.; Aguilera, I.; Eilstein, D.; Apheis Group. Apheis: Health Impact Assessment of Long-Term Exposure to PM2.5 in 23 European Cities. Eur. J. Epidemiol. 2006, 21 (6), 449–458. https://doi.org/10.1007/s10654-006-9014-0. Caiazzo, F.; Ashok, A.; Waitz, I. A.; Yim, S. H. L.; Barrett, S. R. H. Air Pollution and Early Deaths in the United States. Part I: Quantifying the Impact of Major Sectors in 2005. Atmos. Environ. 2013, 79, 198–208. https://doi.org/10.1016/j.atmosenv.2013.05.081. Schwartz, J. Harvesting and Long Term Exposure Effects in the Relation between Air Pollution and Mortality. Am. J. Epidemiol. 2000, 151 (5), 440–448. https://doi.org/10.1093/oxfordjournals.aje.a010228.
23
ACS Paragon Plus Environment
Environmental Science & Technology
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
(6) Weichenthal, S.; Villeneuve, P. J.; Burnett, R. T.; van Donkelaar, A.; Martin, R. V.; Jones, R. R.; DellaValle, C. T.; Sandler, D. P.; Ward, M. H.; Hoppin, J. A. Long-Term Exposure to Fine Particulate Matter: Association with Nonaccidental and Cardiovascular Mortality in the Agricultural Health Study Cohort. Environ. Health Perspect. 2014, 122 (6), 609–615. https://doi.org/10.1289/ehp.1307277. (7) Zhang, Y.; West, J. J.; Mathur, R.; Xing, J.; Hogrefe, C.; Roselle, S. J.; Bash, J. O.; Pleim, J. E.; Gan, C.-M.; Wong, D. C. Long-Term Trends in the Ambient PM2.5- and O3-Related Mortality Burdens in the United States under Emission Reductions from 1990 to 2010. Atmospheric Chem. Phys. 2018, 18 (20), 15003–15016. https://doi.org/https://doi.org/10.5194/acp-1815003-2018. (8) Pope, C. A.; Ezzati, M.; Dockery, D. W. Fine-Particulate Air Pollution and Life Expectancy in the United States. N. Engl. J. Med. 2009, 360 (4), 376–386. https://doi.org/10.1056/NEJMsa0805646. (9) Crouse, D. L.; Peters, P. A.; van Donkelaar, A.; Goldberg, M. S.; Villeneuve, P. J.; Brion, O.; Khan, S.; Atari, D. O.; Jerrett, M.; Pope, C. A.; Brauer, M; Brook, J. R.; Martin, R. V.; Stieb, D.; Burnett, R. T. Risk of Nonaccidental and Cardiovascular Mortality in Relation to LongTerm Exposure to Low Concentrations of Fine Particulate Matter: A Canadian NationalLevel Cohort Study. Environ. Health Perspect. 2012, 120 (5), 708–714. https://doi.org/10.1289/ehp.1104049. (10) Hales, S.; Blakely, T.; Woodward, A. Air Pollution and Mortality in New Zealand: Cohort Study. J. Epidemiol. Community Health 2012, 66 (5), 468–473. https://doi.org/10.1136/jech.2010.112490. (11) Schwartz, J.; Bind, M.-A.; Koutrakis, P. Estimating Causal Effects of Local Air Pollution on Daily Deaths: Effect of Low Levels. Environ. Health Perspect. 2017, 125 (1), 23–29. https://doi.org/10.1289/EHP232. (12) Shi, L.; Zanobetti, A.; Kloog, I.; Coull, B. A.; Koutrakis, P.; Melly, S. J.; Schwartz, J. D. LowConcentration PM2.5 and Mortality: Estimating Acute and Chronic Effects in a PopulationBased Study. Environ. Health Perspect. 2016, 124 (1), 46–52. https://doi.org/10.1289/ehp.1409111. (13) Beelen, R.; Hoek, G.; van den Brandt, P. A.; Goldbohm, R. A.; Fischer, P.; Schouten, L. J.; Jerrett, M.; Hughes, E.; Armstrong, B.; Brunekreef, B. Long-Term Effects of Traffic-Related Air Pollution on Mortality in a Dutch Cohort (NLCS-AIR Study). Environ. Health Perspect. 2008, 116 (2), 196–202. https://doi.org/10.1289/ehp.10767. (14) Lepeule, J.; Laden, F.; Dockery, D.; Schwartz, J. Chronic Exposure to Fine Particles and Mortality: An Extended Follow-up of the Harvard Six Cities Study from 1974 to 2009. Environ. Health Perspect. 2012, 120 (7), 965–970. https://doi.org/10.1289/ehp.1104660. (15) Kim, S.-Y.; Olives, C.; Sheppard, L.; Sampson, P. D.; Larson, T. V.; Keller, J. P.; Kaufman, J. D. Historical Prediction Modeling Approach for Estimating Long-Term Concentrations of PM2.5 in Cohort Studies before the 1999 Implementation of Widespread Monitoring. Environ. Health Perspect. 2017, 125 (1), 38–46. https://doi.org/10.1289/EHP131. (16) Hoesly, R. M.; Smith, S. J.; Feng, L.; Klimont, Z.; Janssens-Maenhout, G.; Pitkanen, T.; Seibert, J. J.; Vu, L.; Andres, R. J.; Bolt, R. M.; Bond, T. C.; Dawidowski, L.; Kholod, N.; Kurokawa, J.; Li, M.; Liu, L.; Lu, Z.; Moura, M. C. P.; O'Rourke, P. R.; Zhang, Q. Historical (1750–2014) Anthropogenic Emissions of Reactive Gases and Aerosols from the 24
ACS Paragon Plus Environment
Page 24 of 28
Page 25 of 28
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
Environmental Science & Technology
(17) (18)
(19) (20)
(21)
(22) (23)
(24)
(25) (26)
Community Emissions Data System (CEDS). Geosci. Model Dev. 2018, 11 (1), 369–408. https://doi.org/https://doi.org/10.5194/gmd-11-369-2018. EPA. Air Quality Improves as America Grows; 2017. https://gispub.epa.gov/air/trendsreport/2017/ Li, C.; Martin, R. V.; van Donkelaar, A.; Boys, B. L.; Hammer, M. S.; Xu, J.-W.; Marais, E. A.; Reff, A.; Strum, M.; Ridley, D. A.; Crippa, M.; Brauer, M.; Zhang, Q. Trends in Chemical Composition of Global and Regional Population-Weighted Fine Particulate Matter Estimated for 25 Years. Environ. Sci. Technol. 2017, 51 (19), 11185–11195. https://doi.org/10.1021/acs.est.7b02530. Ma, Z.; Hu, X.; Sayer, A. M.; Levy, R.; Zhang, Q.; Xue, Y.; Tong, S.; Bi, J.; Huang, L.; Liu, Y. Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004-2013. Environ. Health Perspect. 2016, 124 (2), 184–192. https://doi.org/10.1289/ehp.1409481. van Donkelaar, A.; Martin, R. V.; Spurr, R. J. D.; Burnett, R. T. High-Resolution SatelliteDerived PM2.5 from Optimal Estimation and Geographically Weighted Regression over North America. Environ. Sci. Technol. 2015, 49 (17), 10482–10491. https://doi.org/10.1021/acs.est.5b02076. Parkhurst, W. J.; Tanner, R. L.; Weatherford, F. P.; Valente, R. J.; Meagher, J. F. Historic PM2.5/PM10 Concentrations in the Southeastern United States - Potential Implications of the Revised Particulate Matter Standard. J. Air Waste Manag. Assoc. 1999, 49 (9), 1060– 1067. https://doi.org/10.1080/10473289.1999.10463894. Lall, R.; Kendall, M.; Ito, K.; Thurston, G. D. Estimation of Historical Annual PM2.5 Exposures for Health Effects Assessment. Atmos. Environ. 2004, 38 (31), 5217–5226. https://doi.org/10.1016/j.atmosenv.2004.01.053. Beckerman, B. S.; Jerrett, M.; Serre, M.; Martin, R. V.; Lee, S.-J.; van Donkelaar, A.; Ross, Z.; Su, J.; Burnett, R. T. A Hybrid Approach to Estimating National Scale Spatiotemporal Variability of PM2.5 in the Contiguous United States. Environ. Sci. Technol. 2013, 47 (13), 7233–7241. https://doi.org/10.1021/es400039u. Eeftens, M.; Beelen, R.; de Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dėdelė, A.; Dons, E.; de Nazelle, A.; Dimakopoulou, K., Eriksen, K., Falq, G., Fischer, P., Galassi, C., Gražulevičienė, R., Heinrich, J., Hoffmann, B., Jerrett, M., Keidel, D., Korek, M., Lanki, T., Lindley, S., Madsen, C., Mölter, A., Nádor, G., Nieuwenhuijsen, M., Nonnemacher, M., Pedeli, X., Raaschou-Nielsen, O., Patelarou, E., Quass, U., Ranzi, A., Schindler, C., Stempfelet, M., Stephanou, E., Sugiri, D., Tsai, M.-Y., Yli-Tuomi, T., Varró, M. J., Vienneau, D., Klot, S. von, Wolf, K., Brunekreef, B., Hoek, G. Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PMCoarse in 20 European Study Areas; Results of the ESCAPE Project. Environ. Sci. Technol. 2012, 46 (20), 11195–11205. https://doi.org/10.1021/es301948k. Li, L.; Wu, A. H.; Cheng, I.; Chen, J.-C.; Wu, J. Spatiotemporal Estimation of Historical PM2.5 Concentrations Using PM10, Meteorological Variables, and Spatial Effect. Atmos. Environ. 2017, 166, 182–191. https://doi.org/10.1016/j.atmosenv.2017.07.023. Canadian Council of Ministers of the Environment (CCME). Ambient Air Monitoring Protocol for PM2.5 and Ozone: Canada-Wide Standards for Particulate Matter and Ozone; 2011.
25
ACS Paragon Plus Environment
Environmental Science & Technology
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
(27)
(28)
(29)
(30) (31)
(32) (33)
(34) (35)
(36) (37)
https://www.ccme.ca/files/Resources/air/pm_ozone/pm_oz_cws_monitoring_protocol_p n1456_e.pdf. Bey, I.; Jacob, D. J.; Yantosca, R. M.; Logan, J. A.; Field, B. D.; Fiore, A. M.; Li, Q.; Liu, H. Y.; Mickley, L. J.; Schultz, M. G. Global Modeling of Tropospheric Chemistry with Assimilated Meteorology: Model Description and Evaluation. J. Geophys. Res. Atmospheres 2001, 106 (D19), 23073–23095. https://doi.org/10.1029/2001JD000807. Park, R. J.; Jacob, D. J.; Field, B.; Yantosca, R. M.; Chin, M. Natural and Transboundary Pollution Influences on Sulfate-Nitrate-Ammonium Aerosols in the United States: Implications for Policy. J. of Geophys. Res. Atmospheres 2004, 109 (D15), https:doi.org/10.1029/2003JD004473. Fountoukis, C.; Nenes, A. ISORROPIA II: A Computationally Efficient Thermodynamic Equilibrium Model for K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O Aerosols. Atmospheric Chem. Phys. 2007, 7 (17), 4639–4659. https://doi.org/https://doi.org/10.5194/acp-7-46392007. Fairlie, T. D.; Jacob, D. J.; Park, R. J. The Impact of Transpacific Transport of Mineral Dust in the United States. Atmos. Environ. 2007, 41 (6), 1251–1266. https://doi.org/10.1016/j.atmosenv.2006.09.048. Jaeglé, L.; Quinn, P. K.; Bates, T. S.; Alexander, B.; Lin, J.-T. Global Distribution of Sea Salt Aerosols: New Constraints from in Situ and Remote Sensing Observations. Atmospheric Chem. Phys. 2011, 11 (7), 3137–3157. https://doi.org/https://doi.org/10.5194/acp-113137-2011. Park, R. J.; Jacob, D. J.; Chin, M.; Martin, R. V. Sources of Carbonaceous Aerosols over the United States and Implications for Natural Visibility. J. Geophys. Res. Atmospheres 2003, 108 (D12), 4355. https://doi.org/10.1029/2002JD003190. Wang, Q.; J. Jacob, D.; Ryan Spackman, J.; Perring, A.; Schwarz, J.; Moteki, N.; A. Marais, E.; Ge, C.; Wang, J.; R. H. Barrett, S. Global Budget and Radiative Forcing of Black Carbon Aerosol: Constraints from Pole-to-Pole (HIPPO) Observations across the Pacific. J. Geophys. Res. Atmospheres 2014, 119, 195–206. https://doi.org/10.1002/2013JD020824. Pye, H. O. T.; Chan, A. W. H.; Barkley, M. P.; Seinfeld, J. H. Global Modeling of Organic Aerosol: The Importance of Reactive Nitrogen (NOx and NO3). Atmospheric Chem. Phys. 2010, 10 (22), 11261–11276. https://doi.org/https://doi.org/10.5194/acp-10-11261-2010. Marais, E. A.; Jacob, D. J.; Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Hu, W.; Krechmer, J.; Zhu, L.; Kim, P. S.; Miller, C. C.; Fisher, J. A., Travis, K., Yu, K., Hanisco, T. F., Wolfe, G. M., Arkinson, H. L., Pye, H. O. T., Froyd, K. D., Liao, J., McNeill, V. F. Aqueous-Phase Mechanism for Secondary Organic Aerosol Formation from Isoprene: Application to the Southeast United States and Co-Benefit of SO2 Emission Controls. Atmospheric Chem. Phys. 2016, 16 (3), 1603–1618. https://doi.org/https://doi.org/10.5194/acp-16-1603-2016. Martin, R. V.; Jacob, D. J.; Yantosca, R. M.; Chin, M.; Ginoux, P. Global and Regional Decreases in Tropospheric Oxidants from Photochemical Effects of Aerosols. J. Geophys. Res. Atmospheres 2003, 108 (D3). https://doi.org/10.1029/2002JD002622. Drury, E.; Jacob, D. J.; Spurr, R. J. D.; Wang, J.; Shinozuka, Y.; Anderson, B. E.; Clarke, A. D.; Dibb, J.; McNaughton, C.; Weber, R. Synthesis of Satellite (MODIS), Aircraft (ICARTT), and Surface (IMPROVE, EPA-AQS, AERONET) Aerosol Observations over Eastern North America to Improve MODIS Aerosol Retrievals and Constrain Surface Aerosol Concentrations and 26
ACS Paragon Plus Environment
Page 26 of 28
Page 27 of 28
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
Environmental Science & Technology
(38) (39) (40) (41) (42)
(43) (44)
(45) (46) (47) (48)
(49)
(50)
Sources. J. Geophys. Res. Atmospheres 2010, 115 (D14). https://doi.org/10.1029/2009JD012629. Ridley, D. A.; Heald, C. L.; Ford, B. North African Dust Export and Deposition: A Satellite and Model Perspective. J. Geophys. Res. Atmospheres 2012, 117, D02202. https://doi.org/10.1029/2011JD016794. Reff, A.; Bhave, P. V.; Simon, H.; Pace, T. G.; Pouliot, G. A.; Mobley, J. D.; Houyoux, M. Emissions Inventory of PM2.5 Trace Elements across the United States. Environ. Sci. Technol. 2009, 43 (15), 5790–5796. https://doi.org/10.1021/es802930x. Ridley, D. A.; Heald, C. L.; Ridley, K. J.; Kroll, J. H. Causes and Consequences of Decreasing Atmospheric Organic Aerosol in the United States. Proc. Natl. Acad. Sci. 2018, 115 (2), 290–295. https://doi.org/10.1073/pnas.1700387115. Giglio, L.; Randerson, J. T.; Werf, G. R. van der. Analysis of Daily, Monthly, and Annual Burned Area Using the Fourth-Generation Global Fire Emissions Database (GFED4). J. Geophys. Res. Biogeosciences 2013, 118 (1), 317–328. https://doi.org/10.1002/jgrg.20042. Schultz, M. G.; Heil, A.; Hoelzemann, J. J.; Spessa, A.; Thonicke, K.; Goldammer, J. G.; Held, A. C.; Pereira, J. M. C.; Bolscher, M. van het. Global Wildland Fire Emissions from 1960 to 2000. Glob. Biogeochem. Cycles 2008, 22 (2), GB2002. https://doi.org/10.1029/2007GB003031. Brunsdon, C.; Fotheringham, A. S.; Charlton, M. E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 1996, 28 (4), 281–298. https://doi.org/10.1111/j.1538-4632.1996.tb00936.x. Friedl, M. A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets. Remote Sens. Environ. 2010, 114 (1), 168–182. https://doi.org/10.1016/j.rse.2009.08.016. Information (NCEI), N. C. for E. ETOPO1 1 Arc-Minute Global Relief Model https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.dem:316 (accessed Nov 9, 2018). Global Population Count Grid Time Series Estimates, v1: Population Dynamics | SEDAC http://sedac.ciesin.columbia.edu/data/set/popdynamics-global-pop-count-time-seriesestimates (accessed Aug 8, 2018). Gridded Population of the World (GPW), v4, SEDAC http://sedac.ciesin.columbia.edu/data/collection/gpw-v4 (accessed Aug 8, 2018). Boys, B. L.; Martin, R. V.; van Donkelaar, A.; MacDonell, R. J.; Hsu, N. C.; Cooper, M. J.; Yantosca, R. M.; Lu, Z.; Streets, D. G.; Zhang, Q.; Wang, S. Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter. Environ. Sci. Technol. 2014, 48 (19), 11109– 11118. https://doi.org/10.1021/es502113p. van Donkelaar Aaron; Martin Randall V.; Brauer Michael; Boys Brian L. Use of Satellite Observations for Long-Term Exposure Assessment of Global Concentrations of Fine Particulate Matter. Environ. Health Perspect. 2015, 123 (2), 135–143. https://doi.org/10.1289/ehp.1408646. van Donkelaar, A.; Martin, R. V.; Li, C.; Burnett, R. T. Regional Estimates of Chemical Composition of Fine Particulate Matter Using a Combined Geoscience-Statistical Method
27
ACS Paragon Plus Environment
Environmental Science & Technology
663 664 665 666 667
with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2019, 53 (5), 2595–2611. https://doi.org/10.1021/acs.est.8b06392. (51) Meng, J.; Li, C.; Martin, R. V.; van Donkelaar, A.; Hystad, P.; Brauer, M. Historical PM2.5 Dataset across North America. 2019. https://doi.org/10.5281/zenodo.2616769.
28
ACS Paragon Plus Environment
Page 28 of 28