INDUSTRIAL AND ENGINEERING CHEMISTRY
March, 1941
e
(34) Herniann, S., Neiger, R., and Zentner, M., Arch. ezptl. Path. Pharmakol., 188,526-32 (1938). (35) Hijnel, H.(to Beck, Koller and Co., Inc.), U. 8. Patent 1,870,455 (Aug. 9, 1932). (36) Hopff, H., and Steinbrunn, G. (to I. G. Farbenindustrie Akt.Ges.), Ihid., 2,182,316(Dec. 5, 1939). (37) I. G. Farbenindustrie Akt.-Ges., Brit. Patent 508,016 (June 21,1939). (38) I. G. Farbenindustrie Akt.-Ges., French Patent 841,521(Feb. 6, 1939). (39) I. G.Farbenindustrie Akt.-Ges., German Patent 437,154 (Nov. 11, 1926). (40) Jaeger, A. 0.(to Am. Cyanamid and Chemical Corp.), U. 9. Patent 2,176,423(Oct. 17, 1939). (41) Jaeger, A. 0.(to Selden Co.), Ibid., 1,844,394(Feb. 9, 1932). (42) Kienle, R. H., IND. ENG.CHEM.,22,590-4 (1930). (43) Kienle, R. H., and Schlingman, P. F., Ibid., 25, 971-5 (1933). (44) Krebs, H. A., Salvin, E., and Johnson, W. A., Biochem. J . , 32, 113-17 (1938). (45) Kropa, E. L., and Bradley, T. F., IND. ENQ.CHEM.,31, 1512-16 (1939). (46) Lange, N. A,, and Sinks, M. H., J . Am. Chem. Soc., 52, 2602-4 (1’930). (47) Littman, E. R., IND. ENO.CHEM.,28, 1150-2 (1936). (48) McGill, J. H.,and Imperial Chemical Industries, Brit. Patent 509,711 (July 19, 1939). (49) Milas, N.A.,J. Am. Chem. SOC.,59,2342-4 (1937). (50) Milas, N.A., and Terry, E. M., Ibid., 47, 1412-18 (1925). (51) . . Morrell. R. 8.. Marks, S.. and Samuels, S., Brit. Patent 407,957 (March 19. 1934). (52) Norris, J. F., and Cummings, E. O . , U. S. Patent 1,457,791 (June 5, 1923). (53) Orten, J. M., and Smith. A. H.. J . Biot. Chem.. 117. 556-67 (1937).
319
(54) Peterson, E.G. (to Hercules Powder Co.), U. S. Patents 1,993,026-7, 1,993,031,1,993,034(March 5, 1935). (55) Phelps, I. K.,U. S. Patent 974,182 (Nov. 1, 1910); German Patent 254,420 (Dec. 2,1912). (56) . . Ponstord, A. P., and Smedles-Maclean. Ida, Biochem. J . . 26, 1340-4 (1932). (57) Richter, Victor von, “Organic Chemistry”, Vol. I, Philadelphia, P Blakiston’s Son & Co., 1934. (58) Rust, J. B., IND.ENQ.CHEM.,32,64-7 (1940). (69) Snell. F. D.. Ibid.. 29. 560-4 (1937). (60j Tanatar, S.,‘ Ber.,’29,’1477-9‘(1896). (61) Term. E. M., and Eichelberger. L., J . Am. Chem. SOC..47, 1402-12 (1925). (62) Vincent, H. L.,IND. ENG.CHEM.,29, 1267-9 (1937). (63) Weisberg, L. (to Barrett Co.), U. S. Patent 1,413,144-5(April 18. 1922). __.~.~~ (64) Ibid., 1,443,935(Jan. 30, 1923). (65)Ibid., 1,443,936(Jan. 30, 1923). (66) Weisbern. L.. and Potter, R. S. (to Barrett Co.), Ibid., 1,424,137 (July 25, 1922) (67) Weiss, J. M. (to Calorider Corp.), Ibid., 2,206,377(July 2, 1940) and 2,209,908(July 30, 1940). (68) Weiss, J. M., and Downs, C. R., J . Am. Chem. Soc., 44,1118-28 (1922). (69) I&., 45, 1003-8 (1923). (70) Ibid., 45,2341-9 (1923). (71) Weiss, J . M., and Downs, C. R., J. INDENGCHEM.,12,228-32 (1920). (72) Weiss, J. M., and Downs, C. R. (to Barrett Co.), U. S. Patents 1,318,631and 1,318,633(Oct. 14, 1919). (73) Weiss, J. M., Downs, C. R., and Corson, H. P., IND ENG. CHEM.,15, 628-30 (1923). (74) Zwilgmeyer, F. (to National Aniline and Chemical Co.), U. S. Patent 1,950,468(March 13, 1934)
EVAPORATION NOMOGRAPH
W
D. S . DAVIS
HEN dealing with evaporators it is frequently necessary to calculate the amount of water evaporated per 100 pounds of thin liquor. Let s = solids in thin liquor, % ’ S = solids in thick liquor, yo W = Ib. water evaporated per 100 lb. thin liquor
Wayne University, Detroit, Mich.
F’
Then 100 - s = percentage of water in the thin liquor, and 100 - S = percentage of water in the thick liquor. The number of pounds of water evaporated per pound of solids is
so
100 s - - 100 - s _ ___ S S
20
L
and the number of pounds of water evaporated per 100 pounds of thin liquor is W: per
Lbs
Water Removed Thin Llquor
100 Lbs
The expression
W
= 100 (1
-;)
is solved conveniently by the nomograph in which the broken line indicates that 84.7 pounds of water are evaporated from 100 pounds of thin liquor in changing the concentration from 2.60 to 17.0 per cent solids. The chart can be used for values of s and S below the range of the scales by moving the decimal point in these values one place to the left without changing the W scale in any way. Thus the broken line also shows that 84.7 pounds of water are removed from 100 pounds of thin liquor in increasing the concentration from 0.260 to 1.70 per cent solids. What is W for s = 60 and S = 801 Sixty is beyond the range of the s scale but W can be found to be 25 by connecting 6 on the 8 scale with 8 on the S scale. d
t
---
-----I--