Evaporation of Sea Water in Long-Tube Vertical Evaporators F. C. STANDIFORD, Jr., and H. F. BJORK
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch013
W. L Badger Associates, Inc., Ann Arbor, Mich.
An inexpensive, dependable method of producing fresh water from saline sources is becoming increasingly important throughout the world as fresh water requirements grow and supplies decrease. Use of a falling-film long-tube vertical multiple-effect evaporation system in conjunction with a sludge recirculation technique has prevented scale formation from sea water evaporation at operating temperatures up to 250°F. Pilot plant test runs of over 1500 hours have been made. Pilot plant results translated to the design of a 1,000,000-gallon-per-day demonstration plant indicate fresh water costs of $1.00 per 1000 gallons. Ultimate costs for 15,000,000-gallon-per-day production will be 35 cents per 1000 gallons of fresh water.
The l a t e W . L . B a d g e r ' s 4 0 y e a r s ' experience w i t h c o m m e r c i a l e v a p o r a t o r s i n t h e c h e m i c a l i n d u s t r y h a s p r o v i d e d t h e basis f o r t h e e c o n o m i c p r o d u c t i o n o f f r e s h w a t e r f r o m sea w a t e r . F i v e y e a r s ago, those f a m i l i a r w i t h sea w a t e r e v a p o r a t i o n p r a c t i c e c o u l d p r e d i c t m i n i m u m p o s s i b l e w a t e r costs n o l o w e r t h a n a b o u t $1.60 p e r 1000 g a l l o n s . I n 1955, t h e Office of S a l i n e W a t e r , U . S . D e p a r t m e n t o f t h e I n t e r i o r , c o m m i s s i o n e d W . L . B a d g e r a n d A s s o c i a t e s t o s t u d y t h e m i n i m u m cost o f m a k i n g f r e s h w a t e r f r o m sea w a t e r b y u s i n g e v a p o r a t o r t e c h n i q u e s of t h e c h e m i c a l i n d u s t r y . B e c a u s e p r e v i o u s e s t i m a t e s of w a t e r cost h a d b e e n s e v e r a l t i m e s a b o v e t h e Office o f S a l i n e W a t e r ' s g o a l , s e v e r a l o p t i m i s t i c a s s u m p t i o n s s e r v e d as a basis f o r t h i s s t u d y : T h a t t h e h i g h e s t p e r f o r m a n c e e v a p o r a t o r c o u l d b e u s e d f o r sea w a t e r . B y p e r f o r m a n c e w a s m e a n t h e a t t r a n s f e r coefficient n o t i n B . t . u . / h r . / ° F . / s q . f t . b u t i n B . t . u . / h r . / ° F . / d o l l a r o f i n s t a l l e d cost. F o r a l o n g t i m e , t h e l o n g - t u b e v e r t i c a l ( L T V ) e v a p o r a t o r h a s best fitted t h i s d e s c r i p t i o n , a t least u n d e r f a v o r a b l e o p e r a t i n g c o n d i t i o n s , s u c h as a t r e l a t i v e l y h i g h t e m p e r a t u r e differences ( u s u a l l y ) , a n d w i t h l i t t l e scale formation. T h a t t h e e v a p o r a t o r c o u l d be m a d e as efficient as e c o n o m i c a l l y j u s t i f i a b l e . T h e r m a l efficiency of a n e v a p o r a t o r i s i n c r e a s e d b y m u l t i p l e - e f f e c t o p e r a t i o n , b y r e c o m p r e s s i o n of t h e v a p o r , b y a c o m b i n a t i o n of these, a n d b y a n u m b e r o f o t h e r d e s i g n f e a t u r e s . W h i l e sea w a t e r e v a p o r a t o r s h a d r a r e l y b e e n m a d e w i t h m o r e t h a n t h r e e effects, c o m m e r c i a l e v a p o r a t o r s o f s i x a n d s e v e n effects a r e c o m m o n a n d ten-effect e v a p o r a t o r s h a v e been u s e d . T h a t t h e L T V e v a p o r a t o r c o u l d b e k e p t free o f scale, a t l i t t l e o r n o cost f o r scale p r e v e n t i o n , a t t e m p e r a t u r e s as h i g h as 2 5 0 ° F . I n 1955, n o s a t i s f a c t o r y m e t h o d o f scale 115
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
116
ADVANCES IN CHEMISTRY SERIES
p r e v e n t i o n w a s p r o v e d f o r sea w a t e r e v a p o r a t o r s , scale w a s m o s t severe a t t h e h i g h e s t temperatures, a n d about 220° F . was the highest t e m p e r a t u r e t h a t h a d been used. T h a t t h e e v a p o r a t o r c o u l d b e m a d e as l a r g e i n c a p a c i t y a s p r a c t i c a l a n d c o u l d t a k e u p as m u c h r o o m as n e c e s s a r y . A l t h o u g h a " l a r g e " e v a p o r a t o r t u r n e d o u t t o b e s m a l l i n terms of m u n i c i p a l water requirements, i t w o u l d be several orders of magnitude l a r g e r t h a n m o s t sea w a t e r e v a p o r a t o r s , w h i c h w e r e b u i l t s m a l l , c o m p a c t , a n d e a s i l y o p e r a b l e f o r s h i p b o a r d a n d m i l i t a r y use. T h a t t h e e v a p o r a t o r c o u l d b e f a b r i c a t e d p r i m a r i l y o r c o m p l e t e l y f r o m steel.
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch013
Preliminary Estimates O n t h e basis o f these a s s u m p t i o n s , p l a n t designs a n d cost e s t i m a t e s w e r e p r e p a r e d t h a t s h o w e d c o n s i d e r a b l e e c o n o m i c p r o m i s e (3). T w o b a s i c t y p e s o f flowsheet w e r e considered. One used exhaust steam f r o m a power p l a n t , a t a price, t o heat a m u l t i p l e effect L T V e v a p o r a t o r h a v i n g a c a p a c i t y o f a b o u t 17,000,000 g a l l o n s p e r d a y . W a t e r cost w a s e s t i m a t e d a t 23 cents p e r 1000 g a l l o n s w h e n t h e s t e a m cost w a s a d j u s t e d t o g i v e t h e same p o w e r cost as w o u l d b e i n c u r r e d b y a c o n v e n t i o n a l p o w e r p l a n t t h a t e x p a n d e d t h e s t e a m t o h i g h v a c u u m . T h e o t h e r t y p e o f flowsheet w a s s i m i l a r , e x c e p t t h a t the powerhouse t u r b i n e drove a v a p o r compressor instead of a generator. T h e c o m p r e s s o r s e r v e d a n u m b e r o f L T V e v a p o r a t o r bodies, m a k i n g a t h e r m o c o m p r e s s i o n e v a p o r a t o r , a n d t h e t u r b i n e e x h a u s t w a s u s e d t o heat a m u l t i p l e - e f f e c t L T V e v a p o r a t o r . T h e c a p a c i t y o f t h e p l a n t w a s also a b o u t 17,000,000 g a l l o n s p e r d a y . B e c a u s e t h e o n l y p o w e r g e n e r a t e d w a s f o r use i n d r i v i n g p l a n t a u x i l i a r i e s , a l l costs were c h a r g e a b l e t o t h e p r o d u c t i o n o f w a t e r . T a b l e I shows t h e c a p i t a l cost o f t h e p l a n t as e s t i m a t e d i n 1955 a n d T a b l e I I shows t h e a n n u a l o p e r a t i n g cost.
Table I. Capital Cost of 17,350,000-Gallon-per-Day Combination Thermocompression-10-Effect Sea Water Evaporation Plant Boiler Turbine-generator T u r b i n e - v a p o r compressor Evaporators H e a t exchangers Pumps Instruments T o t a l installed process e q u i p m e n t
$1,020,000 170,000 925,000 2,425,000 991 > 999 138,000 305,000 ^υ,υυυ $6,014,000
Site development Office, shop, a n d l a b Weatherproofing Engineering Contingencies T o t a l p l a n t cost
70,000 135,000 300,000 481,000 600,000 $7,600,000
P i p i n
P
g
Table II. Annual Operating Cost of 17,350,000-Gallon-per-Day Combination Thermocompression-10-Effect Sea Water Evaporation Plant Interest, 3 % of t o t a l c a p i t a l Insurance, 1 % of t o t a l c a p i t a l D e p r e c i a t i o n , 5 % of t o t a l c a p i t a l M a i n t e n a n c e , 3 % of equipment cost L a b o r , $2.50 per m a n - h o u r F u e l , $0.30 per m i l l i o n B . t . u . Total
$
228,000 76,000 380,000 180,000 138,000 991,000 $1,993,000
E q u i v a l e n t t o $0.328 per 1000 gallons or $106.90 per acre-foot P l a n t s of t h i s size were c o n s i d e r e d a b o u t t h e l a r g e s t t h a t c o u l d b e b u i l t as single u n i t s . S m a l l e r p l a n t s c o u l d e a s i l y b e b u i l t , b u t t h e r e d u c e d efficiencies o f p u m p s , t u r b i n e s , a n d c o m p r e s s o r s a n d t h e i n a b i l i t y t o reduce l a b o r costs m a d e t h e w a t e r cost
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
STANDIFORD AND BJORK—EVAPORATION IN LONG-TUBE VERTICAL EVAPORATORS
117
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch013
f r o m s m a l l p l a n t s a p p r e c i a b l y h i g h e r . F i g u r e 1 i s a n e s t i m a t e p r e p a r e d i n 1955 o f t h e w a t e r cost f r o m v a r i o u s sizes o f these c o m b i n a t i o n m u l t i p l e - e f f e c t , t h e r m o c o m p r e s s i o n L T V p l a n t s . T h e s e e s t i m a t e s w e r e p r e p a r e d b e f o r e t h e Office o f S a l i n e W a t e r ' s " s t a n d a r d estimating p r o c e d u r e " was available, b u t later estimates made o n t h e basis of t h i s p r o c e d u r e g a v e s u b s t a n t i a l l y t h e same w a t e r costs, i f t h e a s s u m p t i o n s l i s t e d a b o v e were true.
Pilot Plant Investigation T h e cost e s t i m a t e s w e r e so p r o m i s i n g t h a t t h e Office of S a l i n e W a t e r financed a p i l o t p l a n t p r o g r a m t o test these o p t i m i s t i c a s s u m p t i o n s . T h i s p i l o t p l a n t i s l o c a t e d o n t h e site o f t h e I n t e r n a t i o n a l N i c k e l C o . T e s t S t a t i o n a t W r i g h t s v i l l e B e a c h , N . C . I t w a s designed b y W . L . B a d g e r Associates, I n c . , a n d w a s erected a n d h a s been operated for the past 2 / years b y t h e m under subcontract f r o m the W h i t i n g Corp. ( 1 ) . T h e pilot plant contains a n L T V evaporator, donated b y the Swenson E v a p o r a t o r C o . , D i v i s i o n o f t h e W h i t i n g C o r p . , t h a t has t u b e s o f t h e d i m e n s i o n s t h a t w o u l d p r o b a b l y b e u s e d i n a f u l l scale p l a n t . T h e r e a r e s e v e n o f these t u b e s , e a c h 2 i n c h e s i n o u t s i d e d i a m e t e r b y 2 4 feet l o n g , a n d i n s u l a t e d f r o m e a c h o t h e r a n d f r o m t h e s h e l l , so t h a t different t u b e m a t e r i a l s c a n b e t e s t e d w i t h o u t t h e c o m p l i c a t i o n o f g a l v a n i c c o r r o s i o n . T h e L T V e v a p o r a t o r i s i n s t r u m e n t e d so t h a t i t c a n b e r u n u n d e r a n y d e s i r e d c o n d i t i o n s of feed r a t e , feed t e m p e r a t u r e , b o i l i n g p o i n t , a n d s t e a m flow. T h i s m a k e s i t possible t o d u p l i c a t e o p e r a t i n g c o n d i t i o n s t h a t w o u l d b e m e t i n a n y effect o f a m u l t i p l e - e f f e c t evaporator or i n a thermocompression evaporator. 1
2
B e c a u s e t h e feed t o o n e effect i n t h i s t y p e of e v a p o r a t o r i s t h e p a r t i a l l y c o n c e n t r a t e d sea w a t e r d i s c h a r g e d f r o m a n o t h e r effect, i t w a s n e c e s s a r y t o h a v e a source of p a r t i a l l y concentrated sea water f o r t h e pilot p l a n t . R a t h e r t h a n t r y i n g t o store p r e v i o u s l y c o n c e n t r a t e d s e a w a t e r , w i t h t h e possible r e s u l t t h a t some o f t h e p o t e n t i a l scale m i g h t d e p o s i t o n s t o r a g e , sea w a t e r i s c o n c e n t r a t e d c o n t i n u o u s l y i n one o r t w o f o r c e d - c i r c u l a t i o n e v a p o r a t o r s w h i c h c a n b e o p e r a t e d single o r d o u b l e effect, as n e c e s s a r y , a n d c a n p r o v i d e sea w a t e r feed t o t h e L T V a t a n y d e s i r e d c o n c e n t r a t i o n . H e a t T r a n s f e r . T h e first series o f tests were m a d e t o m e a s u r e h e a t t r a n s f e r coefficients a n d t h e r e b y c o n f i r m t h e o p e r a t i n g c o n d i t i o n s t h a t h a d b e e n p r e d i c t e d for t h e v a r i o u s effects i n t h e p r o d u c t i o n p l a n t s . T h e L T V e v a p o r a t o r c a n b e b u i l t t o o p e r ate i n one o f t w o w a y s . M o s t s u c h e v a p o r a t o r s h a v e t h e l i q u i d feed a t t h e b o t t o m . T h e l i q u i d rises i n t h e t u b e s , i s h e a t e d , a n d b e g i n s t o b o i l , a n d t h e v a p o r f o r m e d creates s u c h h i g h v e l o c i t i e s i n t h e b o i l i n g s e c t i o n t h a t h i g h t r a n s f e r coefficients a r e o b t a i n e d i n t h e
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
ADVANCES IN CHEMISTRY SERIES
118
b o i l i n g s e c t i o n . T h e o t h e r m e t h o d of o p e r a t i o n i n v o l v e s feeding l i q u i d t o t h e t o p s of t h e t u b e s as a film, so t h a t b o i l i n g t a k e s p l a c e f o r p r a c t i c a l l y t h e f u l l l e n g t h o f t h e t u b e . T h e p i l o t p l a n t e v a p o r a t o r w a s b u i l t so t h a t i t c o u l d b e o p e r a t e d e i t h e r w a y . T h e first tests u s e d r i s i n g flow t h r o u g h t h e t u b e s . I t w a s f o u n d t h a t , u n d e r c o n d i t i o n s o f l o w t e m p e r a t u r e difference a n d w i t h feed p r a c t i c a l l y a t t h e v a p o r h e a d b o i l i n g p o i n t , as w o u l d b e e x p e c t e d i n t h e p r o d u c t i o n p l a n t , h e a t t r a n s f e r coefficients were l o w . T h e p r i m a r y c o n t r o l l i n g v a r i a b l e s w e r e t e m p e r a t u r e a n d t e m p e r a t u r e difference. E v e n a t h i g h t e m p e r a t u r e differences b e t w e e n s t e a m a n d b o i l i n g l i q u i d , h e a t t r a n s f e r coefficients w e r e o n l y a b o u t 150 B . t . u . / h r . / s q . f t . / F . a t l o w t e m p e r a t u r e a n d a b o u t 500 i n t h e same u n i t s a t h i g h t e m p e r a t u r e . P r e s s u r e d r o p m e a s u r e m e n t s i n d i c a t e d t h a t m o s t of t h e t u b e l e n g t h w a s filled w i t h n o n b o i l i n g a n d t h e r e f o r e r e l a t i v e l y s l o w - m o v i n g liquid a n d that this was most pronounced at l o w temperature a n d l o w temperature difference. C o n s e q u e n t l y , a l l s u b s e q u e n t w o r k w a s d o n e w i t h f a l l i n g - f i l m o p e r a t i o n t o e l i m i n a t e t h i s h y d r o s t a t i c h e a d t h a t p r e v e n t e d b o i l i n g i n m o s t of t h e t u b e l e n g t h .
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch013
0
T h e tests u n d e r f a l l i n g - f i l m c o n d i t i o n s g a v e h e a t t r a n s f e r coefficients t h a t were p r a c t i c a l l y t h e same as those u s e d i n p r e p a r i n g t h e o r i g i n a l p l a n t designs a n d cost e s t i m a t e s . T h e coefficient d e p e n d e d m a i n l y o n b o i l i n g t e m p e r a t u r e a n d v a r i e d f r o m 3 5 0 t o 400 a t a b o u t 100° F . t o 700 t o 800 a t 2 5 0 ° F . S u b s e q u e n t tests u n d e r c o n d i t i o n s t h a t w o u l d b e m e t i n a 12-effect e v a p o r a t o r o p e r a t i n g b e t w e e n a n i n i t i a l b o i l i n g p o i n t o f 2 5 0 ° F . a n d a final b o i l i n g p o i n t of 1 2 5 ° F . g a v e coefficients t h a t v a r i e d as s h o w n i n
750
3SOl 100
ι
ι
IIO
120
ι
ι
ι
ι
ι
ι
ι
ι
ι
ι
130
140
150
160
170
180
190
200
210
220
ι — ι — I 230
240
250
TEMPERATURE
F i g u r e 2 (2). T h e s e coefficients were d e t e r m i n e d w h e n t h e f o l l o w i n g t u b e s w e r e i n s t a l l e d in the evaporator: 2 c o p p e r , 1 A d m i r a l t y , 1 A m p c o G r a d e 8, 2 a l u m i n u m b r a s s , a n d 1 c u p r o n i c k e l . E a c h t u b e w a s 2 i n c h e s i n o u t s i d e d i a m e t e r a n d 24 feet l o n g , a n d h a d a 0 . 1 0 9 - i n c h w a l l . T h e d a s h e d c u r v e o f F i g u r e 2 shows t h e h e a t t r a n s f e r coefficients t h a t w e r e a s s u m e d i n p r e p a r i n g t h e o r i g i n a l e s t i m a t e s . I n these tests, t e m p e r a t u r e differences
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
STANDIFORD AND BJORK—EVAPORATION IN LONG-TUBE VERTICAL EVAPORATORS
119
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch013
w e r e o b t a i n e d f r o m p r e s s u r e m e a s u r e m e n t s u s i n g m a n o m e t e r s o r c a l i b r a t e d gages a n d w e r e c o r r e c t e d f o r b o i l i n g p o i n t e l e v a t i o n of t h e c o n c e n t r a t e d s e a w a t e r . A r e a s w e r e b a s e d o n t h e i n s i d e d i a m e t e r of the t u b e s . T h e a m o u n t o f heat t r a n s f e r r e d w a s c a l c u lated b o t h f r o m steam consumption (measured b y a calibrated d r i p tank) corrected for s u p e r h e a t , c o n d e n s a t e s u b c o o l i n g , a n d c a l i b r a t e d h e a t losses f r o m t h e s t e a m chest a n d f r o m e v a p o r a t i o n r a t e ( m e a s u r e d b y a n o t h e r c a l i b r a t e d d r i p t a n k ) , sensible heat c h a n g e , a n d c a l i b r a t e d h e a t losses f r o m t h e v a p o r side. M a t e r i a l b a l a n c e s u s u a l l y c h e c k e d w i t h i n 3 % a n d heat balances w i t h i n 8 % . Scale P r e v e n t i o n . T h e scale n o r m a l l y f o r m e d o n h e a t t r a n s f e r surfaces of sea w a t e r e v a p o r a t o r s consists o f c a l c i u m c a r b o n a t e , m a g n e s i u m h y d r o x i d e , a n d / o r c a l c i u m s u l f a t e . T h e first t w o f o r m as a r e s u l t o f t h e b r e a k d o w n o f b i c a r b o n a t e i n sea w a t e r , w h i c h i s i n i t i a l l y s a t u r a t e d w i t h c a l c i u m c a r b o n a t e . C a l c i u m s u l f a t e scale f o r m s p u r e l y as a r e s u l t o f i t s i n v e r t e d s o l u b i l i t y c u r v e . S e a w a t e r i s n o t s a t u r a t e d w i t h c a l c i u m s u l f a t e a n d a n e c o n o m i c a l l y r e a s o n a b l e a m o u n t of f r e s h w a t e r c a n b e r e c o v e r e d f r o m sea w a t e r w i t h o u t exceeding s a t u r a t i o n w i t h c a l c i u m s u l f a t e . H o w e v e r , a t t h e s t a r t of t h i s i n v e s t i g a t i o n , t h e s o l u b i l i t y of c a l c i u m s u l f a t e i n sea w a t e r w a s n o t a c c u r a t e l y e n o u g h k n o w n t o t e l l w h e t h e r 30, 5 0 , o r 8 0 % o f t h e w a t e r c o n t e n t c o u l d b e r e m o v e d a t v a r i o u s t e m p e r a t u r e s w i t h o u t e n c o u n t e r i n g c a l c i u m s u l f a t e scale. T h e o r i g i n a l p l a n t designs a n d cost e s t i m a t e s w e r e n o t m a d e w i t h o u t h a v i n g p l a n s f o r c o m b a t i n g scale f o r m a t i o n . T w o r a t h e r i n e x p e n s i v e p o s s i b i l i t i e s w e r e p r o p o s e d . O n e i n v o l v e d t h e u s e of a c i d t o p r e v e n t c a l c i u m c a r b o n a t e a n d m a g n e s i u m h y d r o x i d e scale. I f t h e c a r b o n d i o x i d e t h a t i s lost w h e n b i c a r b o n a t e d e c o m p o s e s i s r e p l a c e d b y n o n v o l a t i l e a c i d , t h e p H c a n b e k e p t l o w e n o u g h t o p r e v e n t f o r m a t i o n o f these a l k a l i n e scales. T h i s m e t h o d w a s a d o p t e d a t a b o u t t h e same t i m e b y t h e m i l i t a r y , u s i n g c i t r i c a c i d . T h e cost of u s i n g t h i s a c i d a m o u n t e d t o a b o u t 5 0 cents p e r 1000 g a l l o n s of d i s t i l l e d w a t e r — m o r e t h a n t h e t o t a l cost o f w a t e r f r o m t h e p r o p o s e d p l a n t s . H o w e v e r , i t w a s felt t h a t i n l a r g e l a n d - b a s e d p l a n t s , s u f f i c i e n t l y close c o n t r o l c o u l d b e a t t a i n e d t o p e r m i t t h e use o f c h e a p s u l f u r i c a c i d . E v e n i f a l l t h e b i c a r b o n a t e b r o k e d o w n t o c a r b o n d i o x i d e , t h e cost o f a c i d r e q u i r e d a m o u n t e d t o o n l y a b o u t 2 cents p e r 1000 g a l l o n s . T h i s m e t h o d o f scale p r e v e n t i o n w o u l d n o t i n t r o d u c e e n o u g h s u l f a t e i o n , c o m p a r e d t o t h a t a l r e a d y p r e s e n t i n t h e sea w a t e r , t o affect t h e s o l u b i l i t y of c a l c i u m s u l f a t e a p p r e c i a b l y . T h e chief d i s a d v a n t a g e s o f t h i s m e t h o d , besides a c i d cost, were t h a t i t c o u l d n o t b y i t s e l f p r e v e n t c a l c i u m s u l f a t e scale f o r m a t i o n a n d t h a t i t m i g h t r e q u i r e o p e r a t i o n a t p H ' s s l i g h t l y b e l o w n e u t r a l i t y , t h u s i n c r e a s i n g c o r r o s i v e tendencies. T h e o t h e r m e t h o d of scale p r e v e n t i o n p r o p o s e d , a n d i n c o r p o r a t e d i n t h e o r i g i n a l p l a n t designs a n d cost e s t i m a t e s , i n v o l v e d a seeding t e c h n i q u e . I f s o m e o f t h e s c a l i n g i n g r e d i e n t is g o i n g t o p r e c i p i t a t e , i t w i l l d e p o s i t o n t h e h e a t i n g s u r f a c e i f n o o t h e r s u r f a c e is a v a i l a b l e . H o w e v e r , i t w o u l d p r e f e r t o deposit o n c r y s t a l s o f i t s o w n k i n d . B y p r o v i d i n g seed c r y s t a l s of the s c a l i n g i n g r e d i e n t i n s u s p e n s i o n i n t h e l i q u i d , i t w a s h o p e d t h a t a l l p r e c i p i t a t i o n c o u l d b e i n d u c e d t o o c c u r o n these seeds r a t h e r t h a n o n t h e h e a t i n g s u r f a c e . T h i s p r a c t i c e h a d b e e n c o m p l e t e l y successful f o r t h e p r e v e n t i o n of c a l c i u m s u l f a t e scale f o r m a t i o n i n t h e s a l t i n d u s t r y . I n p r a c t i c e , t h i s m e t h o d of scale p r e v e n t i o n w o u l d i n v o l v e i n c o r p o r a t i o n o f scale solids i n t h e sea w a t e r t o m a k e a d i l u t e s l u r r y a n d r e c o v e r y o f these solids f r o m t h e w a s t e sea w a t e r c o n c e n t r a t e . T h e seeds w o u l d b e c o n t i n u o u s l y a d d e d t o b y p r e c i p i t a t i o n o f t h e s c a l i n g i n g r e d i e n t i n t h e sea w a t e r , t h e r e b y m a k i n g u p f o r m i n o r m e c h a n i c a l losses of s o l i d s . T h u s t h e o n l y cost f o r t h i s m e t h o d of scale p r e v e n t i o n w o u l d b e t h e cost o f e q u i p m e n t r e q u i r e d t o s e p a r a t e t h e solids f r o m t h e c o n c e n t r a t e d sea w a t e r a n d r e t u r n t h e m t o t h e feed. I t w a s h o p e d t h a t t h i s m e t h o d w o u l d w o r k b o t h f o r c a l c i u m s u l f a t e , w h i c h deposits b y one m e c h a n i s m , a n d f o r c a l c i u m c a r b o n a t e a n d m a g n e s i u m h y d r o x i d e , w h i c h deposit b y a n o t h e r m e c h a n i s m . T h i s m e t h o d o f scale p r e v e n t i o n w o u l d h a v e t h e a d d i t i o n a l advantage that evaporation w o u l d be conducted under alkaline conditions, where c o r r o s i o n s h o u l d b e less severe. A s t h e a c i d m e t h o d of scale p r e v e n t i o n h a d a l r e a d y b e e n p r o v e d b y o t h e r s , o n l y a few trials were made t o determine t h e a p p r o x i m a t e l i m i t i n g conditions f o r L T V evaporators. W e e k - l o n g tests w e r e m a d e u s i n g s u l f u r i c a c i d t o d e t e r m i n e t h e e x t e n t
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
120
ADVANCES IN CHEMISTRY SERIES
to w h i c h e q u i l i b r i u m p H c o u l d b e exceeded. T h e tests w e r e m a d e u n d e r t h e f o l l o w i n g c o n d i t i o n s , w h i c h w e r e a t t h e t i m e t h o u g h t t o r e p r e s e n t t h e m o s t severe t h a t w o u l d b e encountered w i t h o u t calcium sulfate depositing:
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch013
B o i l i n g point, ° F . T e m p e r a t u r e difference, ° F . F e e d temperature, ° F . F e e d concentration
192 8 to 10 190 2 . 3 5 times n o r m a l sea water
I n t h e .first r u n , a c i d feed r a t e w a s g r a d u a l l y r e d u c e d w i t h o u t i m m e d i a t e evidence of scale f o r m a t i o n a n d t h e n w a s c u t off e n t i r e l y . H e a t t r a n s f e r coefficients s t a r t e d t o d r o p i m m e d i a t e l y a n d a t t h e e n d of t h e w e e k t h e t u b e s w e r e c o a t e d w i t h c a l c i u m c a r b o n a t e scale. I n t h i s first r u n , t h e p H e n t e r i n g t h e e v a p o r a t o r w a s 8.3 a n d l e a v i n g i t w a s 8.4. L a n g e l i e r , C a l d w e l l , a n d L a w r e n c e h a v e m e a s u r e d t h e e q u i l i b r i u m p H a b o v e w h i c h a sea w a t e r c o n c e n t r a t e i s s u p e r s a t u r a t e d w i t h respect t o c a l c i u m c a r b o n a t e a n d m a g n e s i u m h y d r o x i d e ( 4 ) . U n d e r t h e c o n d i t i o n s o f t h i s test, t h e f o l l o w i n g c o n d i t i o n s were e n c o u n t e r e d :
C o n c e n t r a t i o n factor Total alkalinity, p.p.m. C a C 0 Equilibrium p H , C a C 0 Equilibrium p H , M g ( O H ) Actual p H
3
3
2
L T V Feed
L T V Blowdown
2.46 159 6.8 7.8 8.3
2.88 145 6.8 7.8 8.3
I t w a s e v i d e n t t h a t , u n d e r c o n d i t i o n s o f t h i s test, c a l c i u m c a r b o n a t e scale w o u l d f o r m i f t h e e q u i l i b r i u m p H w e r e exceeded b y 1.5 p H u n i t s . I n t h e s e c o n d test, t h e a c i d free r a t e w a s a d j u s t e d t o m a i n t a i n a n L T V b l o w d o w n p H o f 7.5. T h e a c i d w a s f e d t o t h e f o r c e d - c i r c u l a t i o n e v a p o r a t o r p r e c e d i n g t h e L T V , so t h a t t h e a d d i t i o n a l t i m e a v a i l a b l e p e r m i t t e d e v e n i n g o u t f l u c t u a t i o n s i n a c i d feed r a t e . U n d e r these c o n d i t i o n s , some o f t h e t o t a l a l k a l i n i t y w a s lost a n d t h e L T V o p e r a t e d under the following scaling environment:
C o n c e n t r a t i o n factor Total alkalinity, p.p.m. C a C 0 Equilibrium p H , C a C 0 Equilibrium p H , M g ( O H ) Actual p H 3
2
3
L T V Feed
L T V Blowdown
2.31 73.7 7.2 7.85 7.51
2.70 83.1 7.1 7.8 7.52
W h e n o p e r a t e d u n d e r these c o n d i t i o n s f o r a w e e k , n o scale w a s e v i d e n t , e i t h e r b y a decrease i n h e a t t r a n s f e r coefficients o r b y e x a m i n a t i o n a t t h e e n d o f t h e r u n . T h u s , i t i s a p p a r e n t t h a t scale c a n b e p r e v e n t e d b y t h i s m e c h a n i s m w h e n t h e e q u i l i b r i u m p H is exceeded b y s o m e t h i n g m o r e t h a n 0.3 t o 0.4 a n d less t h a n 1.5 p H u n i t s . A l l h e a t t r a n s f e r tests w e r e m a d e w i t h use o f a c i d f o r scale p r e v e n t i o n . I n these tests, t h e p H was k e p t b e l o w t h e e q u i l i b r i u m p H i n o r d e r t o b e o n t h e safe side, a n d n o s c a l i n g w a s ever detected. A s e v i d e n t f r o m t h e a b o v e d a t a , t h e p H r e q u i r e d i s n o t so l o w as to i n v o l v e operation under acidic conditions, where accelerated corrosion m i g h t be expected. T h e n e x t series of tests w a s m a d e t o p r o v e o u t t h e seeding m e t h o d o f scale p r e v e n t i o n . T h e first test w a s m a d e u n d e r t h e same c o n d i t i o n s as f o r t h e a c i d t r i a l s . O n c e t h e m e c h a n i c a l p r o b l e m s o f r e c y c l i n g t h e seeds i n t h e p i l o t p l a n t w e r e s o l v e d , i t w a s f o u n d possible t o p r e v e n t scale f o r m a t i o n c o m p l e t e l y , i f t h e e v a p o r a t i n g l i q u i d c o n t a i n e d 0 . 5 % c a l c i u m c a r b o n a t e s o l i d s . T h e solids w e r e m a d e i n i t i a l l y b y s l o w l y a d d i n g s o d a a s h t o sea w a t e r .
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch013
STANDIFORD AND BJORK—EVAPORATION IN LONG-TUBE VERTICAL EVAPORATORS
121
The first trials at higher temperature were unsuccessful m preventing scale forma tion. These trials were made under conditions such that calcium sulfate scale might be expected (concentration factor of 3.3, boiling points of 205° and 255° F.). A slurry of calcium carbonate was tried first, in the hope that this would also serve as seeds for the calcium sulfate. Heat transfer coefficients dropped rapidly and a heavy scale was found on all tubes at the end of the run. The next trials therefore used a mixed slurry of calcium carbonate and calcium sulfate. Two crystal forms of calcium sulfate might be expected as scale—hemihydrate and anhydrite. Both were tried as seeds, using purchased materials ( U . S. Gypsum Hydrocal White for hemihydrate and the Snow White filler for anhydrite). Trials with hemihydrate resulted mainly in the cementing shut of all drains, stagnant pockets, etc., where the temperature was below 180° to 190° F., the transition temperature of hemihydrate to gypsum in these solutions. Trials with a mixed slurry of calcium carbonate and anhydrite always resulted in scale forma tion, although the scaling rate was tantalizingly low in some runs.
TEMPERATURE^
The inability to control calcium sulfate scale formation led to a more thorough investigation of solubility limits of calcium sulfate in sea water concentrates (δ). The current "best guess" as to solubility of the different crystal forms of calcium sulfate is shown in Figure 3. Anhydrite is so inert that it is almost never encountered as scale in evaporators. The main difference between this solubility diagram and previous estimates (4) is a much higher solubility limit for gypsum or hemihydrate at tempera tures below 212° F. Figure 3 indicates that concentration factors of more than 4 can be achieved if the evaporator is operated in such a manner that high concentrations are reached only at low temperatures. This corresponds to recovery of over 80% of the water under conditions such that calcium sulfate solubility is not exceeded and hence no scale can form from this source. Such conditions can be achieved by use of a forward-feed evaporator in which unconcentrated sea water enters the first, or hottest, effect and is then passed from effect to effect until concentrated sea water is pumped from the last, or coolest, effect and discarded. Typical conditions for a 12-effect forward-feed evaporator are plotted in Figure 3. Also plotted in this diagram are the equilibrium pH's for the acid method of preventing calcium carbonate and magnesium hydroxide scale, assuming that no carbonate alkalinity has been lost. Forward-feed operation results in relatively mild p H conditions—much milder than for a backwardfeed evaporator, where the high concentrations are reached at high temperatures. In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
122
ADVANCES IN CHEMISTRY SERIES
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch013
B y a d o p t i n g a f o r w a r d - f e e d flowsheet, i t b e c a m e possible t o i g n o r e t h e c a l c i u m s u l f a t e scale p r o b l e m . H o w e v e r , i t w a s s t i l l necessary t o p r o v e t h a t t h e a l k a l i n e scales c o u l d b e p r e v e n t e d a t t e m p e r a t u r e s u p t o 2 5 0 ° F . T h e first t r i a l w a s m a d e a t 2 5 0 ° F . w i t h r a w sea w a t e r feed a n d a c a l c i u m c a r b o n a t e s l u r r y . T h e e v a p o r a t o r s c a l e d r a p i d l y a n d a n a l y s i s s h o w e d t h e scale t o b e m a g n e s i u m h y d r o x i d e . T h e n e x t r u n w a s t h e r e f o r e made under the same conditions, except t h a t a m a g n e s i u m h y d r o x i d e s l u r r y was used. T h i s s l u r r y was made before the r u n started b y slowly adding caustic soda t o the i n i t i a l dilute c a l c i u m carbonate s l u r r y u n t i l t h e solids contained about 5 0 % magnesium h y d r o x i d e . D u r i n g t h e 200 h o u r s o f t h e r u n , t h e m a g n e s i u m h y d r o x i d e c o n t e n t o f t h e solids g r a d u a l l y i n c r e a s e d t o o v e r 9 5 % a n d n o scale f o r m e d i n t h e t u b e s .
Table
Summary of Operating Conditions for All Sludge Runs
Evap. Feed Temp., Temp., °F. °F.
Run No.
Disch. Concn. Factor
Temp. Diff., °F.
Hr. Operation
Sludge Used
3
6.5 46
CaC0
3
22
5.5
CaC0
3
44
?
2.75 2.75 3.3
7.5 13 11
CaC0 CaC0 CaC0
210 150 162
None None CaS0
4
3.3
14
CaC0 + CaS0 CaC0 + CaSCV CaC0 + CaS(V CaC0 + CaS0 «
52
CaS0
4
LWBB-1 -2
190 190
192 192
2.75 2.75
8 8
CaC0 CaC0
-3
190
192
2.75
7
-4
190
192
2.75
-5 -6 -7
190 187 194
192 192 204
LWBC-1
250
255
3
3 3 3
3
4
-2
250
255
3.3
14
-3
250
255
3.3
14
-4
250
255
3.3
10
Reason for Termination
Tvpe of Scale Trace, 2 alloy tubes
200
205
11
3.0
Descaling
3
33
3
26
CaS0
4
33
CaS0
4
16
CaS0
4
3
Plugged piping Descaling D e s c a l i n g , low solids
CaCO* + CaS0 ° CaC0 + CaS0
CaS0 . V2H 0
Descaling, plugged p i p i n ( N o scale-steel tube) P l u g g e d orifices
4
-2
195
200
13
3.5
3
4
LWBE-1
250
250
13
3.5
-2
250
250
13
3.3
168
&
4
2
CaC0 + CaS0 CaC0 + CaS0
141
CaS0
154
CaS0 . 7 H 0
3
4
4
&
3
4
6
2
225 250
250 250
1.0 1.2
9.5 9.5
CaC0 Mg(OH)
2
133 200
Mg(OH) None
LWBG-1
250
250
1.7
7
Mg(OH)
2
170 141
CaS0 . V H 0 None
2
238 167 160
None None None
Mg(OH)2
593
CaS0 . V H 0 None
3
250
LSBH-1 LWBI-1 LWBJ-1
130 236 203
120 220 186
LWBG-3a
250
250
1.7 3.0-5.7 2.0 2.3 1.6
7
Mg(OH)
13 8 7
Mg(OH) Mg(OH) Mg(OH)
7-8
2
2 2
a 6
250
250
1.6
7-8
Mg(OH)
2
1001
2
4
2
-3b
2
4
2
250
Hurricane
4
2
LWBF-1 -2
-2
B u r s t filter cartridges P l u g g e d feed controller
a
4
LWBD-1
M e c h . trouble B u r s t filter cartridges
2
P o w e r failure
Descaling, overconcentrated
C a S 0 solids were C a S 0 . V H 0 ( H y d r o c a l W h i t e , U . S. G y p s u m C o . ) . C a S 0 solids were C a S 0 (insoluble) (Snow W h i t e filler, U . S. G y p s u m C o . ) . 4
4
4
4
2
2
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
STANDIFORD AND BJORK—EVAPORATION IN LONG-TUBE VERTICAL EVAPORATORS
123
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch013
S u b s e q u e n t r u n s were m a d e , u s i n g t h i s same m a g n e s i u m h y d r o x i d e s l u r r y , a t l o w e r t e m p e r a t u r e s a n d h i g h e r c o n c e n t r a t i o n f a c t o r s a n d a l l w e r e successful as l o n g as c o n d i t i o n s were u n d e r t h e h e m i h y d r a t e a n d g y p s u m s o l u b i l i t y c u r v e o f F i g u r e 3. A f i n a l r u n of 1594 h o u r s ' d u r a t i o n w a s m a d e t o p r o v e t h i s m e t h o d o f scale p r e v e n t i o n u n d e r t h e m o s t severe c o n d i t i o n s t h a t m i g h t b e e n c o u n t e r e d — 2 5 0 ° F . a n d a c o n c e n t r a t i o n f a c t o r j u s t u n d e r t h e h e m i h y d r a t e s o l u b i l i t y c u r v e . I n t h e first 593 h o u r s , p o o r c o n t r o l a l l o w e d c o n c e n t r a t i o n s t o exceed h e m i h y d r a t e s o l u b i l i t y a t t i m e s a n d a h e m i h y d r a t e scale f o r m e d s l o w l y . T h i s w a s r e m o v e d b y r i n s i n g w i t h sea w a t e r a n d t h e r u n c o n t i n u e d u n d e r m o r e c a r e f u l c o n t r o l f o r a n o t h e r 1001 h o u r s w i t h n o scale f o r m a t i o n w h a t s o e v e r . T a b l e I I I s u m m a r i z e s t h e r u n s t h a t p r o v e d t h e efficacy o f t h e seeding m e t h o d o f scale c o n t r o l f o r t h e d e m o n s t r a t i o n p l a n t (1). T h i s w o r k i s b e i n g c o n t i n u e d a t s t i l l higher temperatures ( u p to 300° F . ) , b u t i t has been found impossible t o keep below the c a l c i u m sulfate s o l u b i l i t y curve. Consequently, t h e a t t a c k is again being concent r a t e d o n use o f seeding f o r p r e v e n t i o n of c a l c i u m s u l f a t e scale. I f t h i s w o r k i s s u c cessful, i t s h o u l d p e r m i t d e v e l o p m e n t of e v a p o r a t o r s t h a t c o u l d o p e r a t e a t s t i l l h i g h e r t e m p e r a t u r e s , t h e r e b y m a k i n g p r a c t i c a l use o f m o r e effects w i t h a consequent s a v i n g i n s t e a m ; design o f e v a p o r a t o r s t o c o n c e n t r a t e sea w a t e r t o o r b e y o n d t h e p o i n t w h e r e i t i s s a t u r a t e d w i t h s o d i u m c h l o r i d e , m a k i n g possible t h e r e c o v e r y of b y - p r o d u c t s ; a n d design of e v a p o r a t o r s f o r b r a c k i s h w a t e r s h i g h i n c a l c i u m s u l f a t e . C o r r o s i o n . T h e tubes i n the L T V evaporator were installed w i t h Swenson r u b b e r grommet p a c k i n g c o m m o n l y used f o r K a r b a t e tubes i n acid evaporators. T h i s b o t h insulated t h e tubes f r o m galvanic corrosion a n d allowed nondestructive r e m o v a l for w e i g h i n g . C o r r o s i o n r a t e s w e r e e s t i m a t e d b o t h f r o m w e i g h t loss o f t h e t u b e s a n d f r o m I n t e r n a t i o n a l N i c k e l C o . test spools l o c a t e d b o t h i n t h e v a p o r space a n d i m m e r s e d i n the l i q u i d i n the b l o w d o w n t a n k . T h e first set of c o r r o s i o n r e s u l t s w a s p r o m i s i n g , e v e n t h o u g h t h e d a t a w e r e t a k e n d u r i n g t h e t i m e t h e first h e a t t r a n s f e r r u n s w e r e m a d e , u s i n g excess a c i d ( p H ' s d o w n t o 3 ) , a n d t h e t i m e t h e tests o f t h e a c i d m e t h o d o f scale p r e v e n t i o n w e r e u n d e r w a y . C o r r o s i o n r a t e s f r o m I N C O test s p o o l d a t a w e r e as f o l l o w s ( i n i n c h e s p e r y e a r ) : Material
Vapor
Liquid
Steel Cast iron Admiralty Copper A l u m i n u m brass 90/10 cupronickel Aluminum
0.016-0.027 0.009-0.016 0.001 0.001 0.001 0.001 0.001
0.010-O.021 0.008-0.030 0.001-0.003 0.002-0.004 0.001-0.002 0.001-0.003 0.004-0.006
T h e n e x t sets of spools were e x p o s e d d u r i n g t h e e a r l y sludge r u n s , w h i c h w e r e m a d e u n d e r a l k a l i n e c o n d i t i o n s w h e r e c o r r o s i o n s h o u l d h a v e b e e n m u c h less severe. T h e r e s u l t s w e r e as f o l l o w s : Material
Vapor
Liquid
Steel Cast iron Admiralty Copper A l u m i n u m brass 90/10 cupronickel Aluminum
0.057-0.062 0.016-0.021 0.002 0.002-0.003 0.001 0.001
0.030-0.044 0.031-0.032 0.001-0.003 0.002-0.011 0.001 0.001
Perforated
T h e f a c t t h a t steel a n d cast i r o n suffered b y f a r t h e greatest c o r r o s i o n u n d e r s u p posedly the mildest conditions i n d i c a t e d a n extraneous influence. T h i s could o n l y have been atmospheric corrosion; t h e evaporator was shut d o w n a n d t h e samples were exposed t o t h e a i r f a r oftener w h e n t h e e a r l y sludge r u n s were m a d e — r u n s w h i c h s o m e times lasted only a day o r two each.
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
124
ADVANCES IN CHEMISTRY SERIES
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch013
A set o f spools exposed d u r i n g t h e 1 5 9 4 - h o u r d e m o n s t r a t i o n r u n s h o w e d t h e f o l lowing corrosion rates: Material
Vapor
Liquid
Steel Cast iron Admiralty Copper A l u m i n u m brass 9 0 / 1 0 cupronickel
0.0164 0.0147 0.0018 0.0016 0.0015 0.0009
0.0031 0.0022 0.0015 0.0019 0.0002 0.0003
E v e n t h o u g h t h e test spools were e x p o s e d t o t h e a t m o s p h e r e a f t e r 508, 593, a n d 1093 h o u r s , c o r r o s i o n rates f o r steel a n d cast i r o n w e r e a c c e p t a b l y l o w , e s p e c i a l l y f o r samples i m m e r s e d i n the l i q u i d . C o r r o s i o n rates f o r t h e t u b e s t h e m s e l v e s were e v e n l o w e r , p r e s u m a b l y because t h e y were c o n t i n u o u s l y c o a t e d w i t h f l o w i n g l i q u i d w h e n t h e e v a p o r a t o r w a s i n o p e r a t i o n . T h e o n l y t u b e m a t e r i a l s t h a t s h o w e d a n y change i n w e i g h t g r e a t e r t h a n t h e e x p e r i m e n t a l e r r o r w e r e t h e steel a n d a l u m i n u m t u b e s . T h e a l u m i n u m t u b e s s h o w e d s u c h p o o r c o r r o s i o n resistance t h a t some t u b e s f a i l e d d u r i n g t h e s h o r t t i m e of t h e tests. T h e steel t u b e s s h o w e d w e i g h t losses e q u i v a l e n t t o 0.01 i n c h p e r y e a r d u r i n g t h e l a t e r sludge r u n s . S t e e l t u b e s u s e d d u r i n g t h e 1 5 9 3 - h o u r d e m o n s t r a t i o n r u n s h o w e d n o w e i g h t loss. T h e r e w a s some evidence o f p i t t i n g of t h e t u b e s u s e d d u r i n g t h e first 593 h o u r s , b u t n o p i t s deeper t h a n 0.001 i n c h w e r e f o u n d i n t u b e s u s e d d u r i n g t h e l a s t 1001 h o u r s . These good results could be a t t r i b u t e d t o the p r a c t i c a l l y continuous operation after the c a l c i u m s u l f a t e scale p r o b l e m o f t h e first 593 h o u r s w a s o v e r c o m e . T h e s e c o r r o s i o n d a t a i n d i c a t e t h a t d e a e r a t i o n of t h e sea w a t e r i s e s s e n t i a l t o l o n g life o f steel sea w a t e r e v a p o r a t o r s . W h e r e reasonable c o r r o s i o n a l l o w a n c e s c a n b e m a d e , as i n p i p i n g , v a p o r heads, etc., steel i s t h e m o s t p r a c t i c a l m a t e r i a l o f c o n s t r u c t i o n . I t s only u n c e r t a i n a p p l i c a t i o n is f o r the evaporator tubes, w h i c h m u s t be made t h i n f o r good heat conduction. O n l y long runs i n a continuously operating plant c a n prove w h e t h e r o r n o t steel is t h e m o s t s a t i s f a c t o r y m a t e r i a l f o r t u b e s .
Demonstration Plant T h e p i l o t p l a n t w o r k has p r o v e d t h a t t h e i n i t i a l a s s u m p t i o n s were n o t as o p t i m i s t i c as w e h a d f e a r e d n o r as i m p o s s i b l e as o t h e r s h a d p r e d i c t e d . I t w a s s h o w n t h a t : T h e cheapest t y p e o f c o m m e r c i a l e v a p o r a t o r c o u l d b e u s e d f o r sea w a t e r . T h i s L T V evaporator could be operated under such conditions that the high heat t r a n s f e r coefficients i n i t i a l l y a s s u m e d c o u l d b e a t t a i n e d . T h i s t y p e o f e v a p o r a t o r c o u l d b e k e p t free of scale, a t l i t t l e o r n o cost, a n d a t t e m p e r a t u r e s as h i g h as 2 5 0 ° F . T h e e v a p o r a t o r c o u l d be b u i l t p r i m a r i l y o f steel. E a r l y i n 1959, t h e Office o f S a l i n e W a t e r ' s d e m o n s t r a t i o n p l a n t p r o g r a m w a s i n a u g u r a t e d . T h i s process, w h i c h s h o w e d t h e greatest e c o n o m i c p r o m i s e , w a s chosen f o r t h e first o f t h e five d e m o n s t r a t i o n p l a n t s , w h i c h i s n o w u n d e r c o n s t r u c t i o n n e a r F r e e p o r t , T e x . W . L . B a d g e r A s s o c i a t e s , I n c . , p r o v i d e d t h e process d e s i g n a n d a r c h i t e c t e n g i n e e r i n g services f o r t h i s p l a n t (2), w h i c h w i l l h a v e a c a p a c i t y o f 1,000,000 g a l l o n s p e r d a y a n d w i l l use a 12-effect f a l l i n g - f i l m L T V e v a p o r a t o r . E v a p o r a t o r o p e r a t i n g c o n d i t i o n s w i l l b e as s h o w n i n F i g u r e 3. O p e r a t i n g c o n d i t i o n s w i l l b e b e l o w t h e s o l u b i l i t y c u r v e o f c a l c i u m s u l f a t e h e m i h y d r a t e , so t h a t o n l y t h e a l k a l i n e scales n e e d b e d e a l t w i t h . P r o v i s i o n s h a v e b e e n m a d e t o use t h e seeding m e t h o d as t h e b a s i c m e a n s of scale p r e v e n t i o n f o r t h e a l k a l i n e scales. T h e s e p r o v i s i o n s i n c l u d e t h e i n s t a l l a t i o n o f a t h i c k e n e r - c l a r i f i e r t o r e m o v e solids f r o m t h e c o n c e n t r a t e d sea w a t e r b l o w d o w n a n d a m i x e r t o r e i n c o r p o r a t e these solids i n t h e feed. B e c a u s e p i l o t p l a n t w o r k i n d i c a t e d t h a t d e a e r a t i o n of t h e sea w a t e r w a s i m p o r t a n t f o r c o r r o s i o n p r e v e n t i o n , a d e a e r a t o r h a s b e e n i n c o r p o r a t e d i n t h e flowsheet. T h i s d e a e r a t o r w i l l use a s m a l l p a r t o f t h e v a p o r f r o m t h e e l e v e n t h effect t o s t r i p o u t o x y g e n f r o m sea w a t e r feed t h a t h a s b e e n p a r t i a l l y p r e h e a t e d , so t h a t i t w i l l b e a t i t s b o i l i n g point under conditions i n the deaerator.
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch013
STANDIFORD AND BJORK—EVAPORATION IN LONG-TUBE VERTICAL EVAPORATORS
125
A f o r w a r d - f e e d e v a p o r a t o r i s n o t efficient w h e n t h e feed i s c o l d , unless t h e feed i s p r e h e a t e d i n some m a n n e r a l m o s t t o t h e b o i l i n g p o i n t i n t h e first effect. O t h e r w i s e , a c o n s i d e r a b l e p r o p o r t i o n o f t h e p r i m e s t e a m m u s t b e u s e d t o p r e h e a t t h e feed a n d t h u s is u n a v a i l a b l e t o e v a p o r a t e w a t e r . I n t h e d e m o n s t r a t i o n p l a n t , feed w i l l b e p r e h e a t e d b y t w o sets o f h e a t e x c h a n g e r s . O n e set w i l l o b t a i n h e a t b y c o o l i n g o f t h e condensate f r o m e a c h effect o f t h e e v a p o r a t o r . T h e first o f these w i l l c o o l first-effect c o n d e n s a t e , t h e second w i l l c o o l c o m b i n e d f i r s t - a n d second-effect condensate, a n d so o n t o t h e l a s t one, w h i c h w i l l h a n d l e t h e c o m b i n e d condensate f r o m a l l effects, c o o l i n g t h e d i s t i l l e d w a t e r as close as p r a c t i c a l t o t h e i n c o m i n g s e a w a t e r t e m p e r a t u r e . T h e s e condensate coolers w i l l n o t p r o v i d e a l l o f t h e h e a t needed f o r p r e h e a t i n g t h e f e e d ; t h e r e m a i n d e r w i l l b e s u p p l i e d b y c o n d e n s i n g v a p o r b l e d f r o m e a c h effect o f t h e e v a p o r a t o r i n a n o t h e r series o f heat e x c h a n g e r s . T h e sea w a t e r feed w i l l pass a l t e r n a t e l y t h r o u g h a condensate cooler, a v a p o r condenser, a n o t h e r condensate cooler, etc., so t h a t h e a t c a n be r e c o v e r e d a t t h e h i g h e s t t e m p e r a t u r e l e v e l p o s s i b l e . F i g u r e 4 i s a m o d e l o f t h e p l a n t ,
Figure 4. Demonstration plant for sea water conversion s h o w i n g d i s p o s i t i o n of e v a p o r a t o r s , h e a t e x c h a n g e r s , c l a r i f i e r - t h i c k e n e r , d e a e r a t o r , a n d o t h e r a u x i l i a r y e q u i p m e n t . A s i m p l i f i e d flow d i a g r a m o f t h e p l a n t i s s h o w n i n F i g u r e 5. T h i s d e m o n s t r a t i o n p l a n t w i l l n o r m a l l y o p e r a t e a t a first-effect b o i l i n g p o i n t o f 2 5 0 ° F . , a last-effect b o i l i n g p o i n t o f 120° F . , a n d a d i s c h a r g e sea w a t e r c o n c e n t r a t i o n f a c t o r of 4. T h e p r i m a r y c o n t r o l o f t h e process i s a c c o m p l i s h e d b y a u t o m a t i c c o n t r o l of s t e a m flow r a t e , sea w a t e r flow r a t e , a n d last-effect v a c u u m . N o c o n t r o l i s needed f o r t e m p e r a t u r e o r p r e s s u r e i n t h e i n d i v i d u a l effects a n d h e a t e x c h a n g e r s , since these achieve their own levels, influenced o n l y b y the p r o p o r t i o n i n g of t h e equipment. T h e d e m o n s t r a t i o n p l a n t i s r a t h e r h e a v i l y i n s t r u m e n t e d t o p e r m i t close s u r v e i l l a n c e of o p e r a t i n g c o n d i t i o n s a n d c a r r y i n g o u t o f s p e c i a l tests. T o increase t h e v a l u e o f t h e d e m o n s t r a t i o n p l a n t , features h a v e b e e n i n c o r p o r a t e d t o p e r m i t o p e r a t i o n u n d e r o t h e r t h a n d e m o n s t r a t i o n c o n d i t i o n s . I t w i l l b e possible t o o p e r a t e t h e e v a p o r a t o r a t first-effect t e m p e r a t u r e s u p t o 3 0 0 ° F . , t h u s a l m o s t d o u b l i n g p l a n t o u t p u t i f c a l c i u m s u l f a t e scale c a n b e p r e v e n t e d , a n d t o u s e t h e a c i d m e t h o d o f scale p r e v e n t i o n i n p l a c e o f t h e sludge m e t h o d . P r o v i s i o n s h a v e b e e n m a d e f o r l a t e r installation of a v a p o r compressor, w h i c h w o u l d convert t h e p l a n t t o a combination multiple effect-thermocompression system. T h i s would add about 1 5 % to plant output and w o u l d p e r m i t performance evaluation of v a p o r compressors i n sea water service.
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
ADVANCES IN CHEMISTRY SERIES
126
1 "ΣΠ
1 - l > 2
rt
J234F
206F
I96F
m
3Œ
mu H
X F
'L-r®202
î
. J & . O
!
Λ&ΣΟΪ
25ÔF|
^42Π
^ 2 2 9 * ^ 2 " Κ - - Φ .
I
JJ »' 2
VAC.
j 1 1
i
F
440,000W,246 F
t
170F
I83F
VTTT
I54F| 2
I COjND.i ! llLlr | L J J . J» L I "-ΠΙΤ" J " * 3 , 6 4 4
I35F|
F
ZI
SEAWATER 600W 92 F
W A S T E
R
>
CONCENTRATED
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch013
ft 205F
9F INLET 85 F
1
t A
^ ?90F /
^/Ï75F
^^TeiF
^ | 4 6 F
^ ' I S Ô F
V ^ - J " ^ 98F
!
^PRODUCT " ^ D I S T I L L E D WATER 355.854W 99.6F
Figure 5. Flowsheet for demonstration plant Steam Sea water Condensate F. Temp., F. W. Flow, lb./hr. 0
I t w i l l also b e possible b y r e l a t i v e l y m i n o r p i p i n g changes t o c o n v e r t t h e f o r w a r d - f e e d e v a p o r a t o r t o b a c k w a r d feed, w h i c h m i g h t b e m o r e f a v o r a b l e i f t h e c a l c i u m s u l f a t e scale p r o b l e m c a n b e s o l v e d . E x c e p t f o r t u b e s , p u m p s h a f t sleeves, i m p e l l e r s , etc., t h e p l a n t w i l l b e b u i l t e x c l u s i v e l y o f steel a n d cast i r o n . T u b e m a t e r i a l s w i l l b e e v a l u a t e d b y t u b i n g different e v a p o r a t o r effects a n d h e a t e x c h a n g e r s w i t h steel, a d m i r a l t y m e t a l , a l u m i n u m brass, a n d 9 0 / 1 0 cupronickel. T h e copper alloy tubes w i l l b e used exclu s i v e l y i n t h e f i n a l condenser a n d i n t h e f e w h e a t e x c h a n g e r s t h a t a r e i n c o n t a c t w i t h n o n d e a e r a t e d sea w a t e r . T h e s e e x p e r i m e n t a l f e a t u r e s a d d t o t h e expense o f t h e b a s i c d e m o n s t r a t i o n p l a n t , i n b o t h o p e r a t i n g a n d c a p i t a l cost. T h e p r i n c i p a l i n c r e a s e i n o p e r a t i n g cost r e s u l t s f r o m t h e use o f 1 6 0 - p . s . i . s t e a m f r o m D o w a t 4 5 cents a t h o u s a n d p o u n d s i n s t e a d of 3 0 - p . s . i . s t e a m a t 4 0 cents. T h e h i g h e r s t e a m p r e s s u r e w a s c h o s e n t o p e r m i t tests a t t e m p e r a t u r e s u p t o 3 0 0 ° F . T h e e x t r a c a p i t a l costs r e s u l t f r o m t h e use of a l l o y t u b e s i n m o s t of t h e effects a n d h e a t e x c h a n g e r s , a n d p r o v i s i o n s f o r i n c r e a s e d p r o d u c t i o n i f 3 0 0 ° F . operation becomes possible, a n d f o r a c i d t r e a t m e n t a n d b a c k w a r d - f e e d operation. B a d g e r ' s cost e s t i m a t e w a s $1,374,000 f o r t h e e n t i r e p l a n t . O f t h i s $205,000 w a s c h a r g e a b l e t o e x p e r i m e n t a l f e a t u r e s a n d f a c t o r s of s a f e t y m a d e n e c e s s a r y b y t h e f a c t t h a t t h i s p l a n t , t h e first o f i t s k i n d , w a s t o b e b u i l t o n a c o m p e t i t i v e - b i d , g u a r a n t e e d - p e r f o r m a n c e b a s i s . T h e a c t u a l l o w b i d f o r t h e e n t i r e d e m o n s t r a t i o n p l a n t w a s $1,246,000, i n c l u d i n g a l l b u i l d i n g s , s e r v i c e s , site d e v e l o p m e n t , a n d i n i t i a l o p e r a t i o n t h r o u g h a s a t i s f a c t o r y p e r f o r m a n c e t e s t . T h e l o w b i d d e r , C h i c a g o B r i d g e a n d I r o n C o . , i s n o w i n t h e process of e r e c t i n g t h e p l a n t , w h i c h is due f o r c o m p l e t i o n i n A p r i l 1961. T h e o u t - o f - p o c k e t o p e r a t i n g cost of t h i s d e m o n s t r a t i o n p l a n t s h o u l d b e a b o u t $0.85 p e r 1000 g a l l o n s of d i s t i l l e d w a t e r , b a s e d o n s t e a m a n d p o w e r r e q u i r e m e n t s b o t h b y W . L . B a d g e r Associates, Inc., estimates a n d b y the low bidder's guarantees. T h i s water cost i n c l u d e s s t e a m a n d p o w e r costs, e s t i m a t e d c o n t r a c t m a i n t e n a n c e costs, a n d l a b o r costs t h a t i n c l u d e t h e i n c r e a s e d s u p e r v i s o r y l a b o r n e e d e d d u r i n g t h e d e m o n s t r a t i o n a n d test phases of t h e p r o g r a m , p r o j e c t e d t o e c o n o m i c c o n d i t i o n s t h a t w i l l p r o b a b l y exist i n 1963. W h e n i n t e r e s t , i n s u r a n c e , a n d d e p r e c i a t i o n costs o f t h e b a s i c p l a n t ( o n e t h a t does n o t i n c l u d e t h e test f e a t u r e s , etc.) a r e a d d e d a n d t h e l a b o r r e q u i r e m e n t i s r e d u c e d t o t h a t t o o p e r a t e a n o r m a l p r o d u c t i o n p l a n t , t h e t o t a l w a t e r cost i s a b o u t $1.04 p e r 1000 g a l l o n s , a g a i n b a s e d o n p r o j e c t e d 1963 costs. I f t h e costs s h o w n o n F i g u r e 1, w h i c h w e r e e s t i m a t e d i n 1955, w e r e p r o j e c t e d t o 1963 c o n d i t i o n s , t h e t o t a l w a t e r cost w o u l d b e
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
STANDIFORD AND BJORK—EVAPORATION IN LONG-TUBE VERTICAL EVAPORATORS
127
$0.98 p e r 1000 g a l l o n s . I f t h e d e m o n s t r a t i o n p l a n t h a d i n c l u d e d a t h e r m o c o m p r e s s i o n stage, as d i d t h e p l a n t o n w h i c h the 1955 estimates were b a s e d , t h e d e m o n s t r a t i o n p l a n t w o u l d h a v e s h o w n e v e n l o w e r costs.
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch013
Conclusions E s t i m a t e s of reasonable costs of e v a p o r a t i n g sea w a t e r t o p r o d u c e f r e s h w a t e r were m a d e i n 1955 b y W . L . B a d g e r A s s o c i a t e s , I n c . , o n t h e basis o f c e r t a i n a s s u m p t i o n s . T h e s e a s s u m p t i o n s were p r o v e d i n a p i l o t p l a n t p r o g r a m i n N o r t h C a r o l i n a c o n d u c t e d b y B a d g e r a n d S w e n s o n E v a p o r a t o r D i v i s i o n of W h i t i n g C o r p . f o r t h e Office o f S a l i n e W a t e r . T h e r e s u l t s w e r e so p r o m i s i n g t h a t t h e process w a s chosen b y Office o f S a l i n e W a t e r f o r i t s first d e m o n s t r a t i o n p l a n t . T h i s 1 , 0 0 0 , 0 0 0 - g a l l o n - p e r - d a y p l a n t w a s d e signed b y W . L . B a d g e r Associates, Inc., a n d is n o w under construction b y C h i c a g o B r i d g e a n d I r o n C o . T h e cost of w a t e r f r o m t h i s p l a n t w i l l b e a b o u t $1.00 p e r 1000 g a l l o n s , i n a g r e e m e n t w i t h t h e 1955 p r e d i c t i o n s . T h o s e same p r e d i c t i o n s s h o w e d t h a t i n a p l a n t o f reasonable size ( o v e r 15,000,000 g a l l o n s p e r d a y ) , w a t e r costs c o u l d b e b r o u g h t d o w n t o a b o u t $0.35 p e r 1000 g a l l o n s . P i l o t p l a n t w o r k i s s t i l l u n d e r w a y i n N o r t h C a r o l i n a , i n a n a t t e m p t t o increase e v e n f u r t h e r t h e o p e r a t i n g t e m p e r a t u r e s a n d sea w a t e r c o n c e n t r a t i o n s a t w h i c h scale f o r m a t i o n c a n be p r e v e n t e d . I f s u c h p r o v e s p o s s i b l e , w a t e r costs e v e n l o w e r t h a n those originally predicted should be achievable.
Acknowledgment T h e a u t h o r s a r e i n d e b t e d t o t h e Office o f S a l i n e W a t e r f o r s u p p o r t i n g t h e w o r k p r e s e n t e d i n t h e p a p e r . A l l e n C y w i n , J . J . S t r o b e l , a n d E . A . C a d w a l l a d e r of t h a t office were p a r t i c u l a r l y h e l p f u l i n t h e i r u n t i r i n g efforts w i t h t h e p r o g r a m . T h e c o o p e r a t i o n of the I n t e r n a t i o n a l N i c k e l C o . i n p r o v i d i n g space, services, a n d t e c h n i c a l assistance i s h i g h l y a p p r e c i a t e d . T h e c o n t i n u e d efforts of C . E . S e c h , J r . , J . R . S i n e k , a n d R . G . R e i m u s o f W . L . B a d g e r A s s o c i a t e s , I n c . , a r e also a c k n o w l e d g e d w i t h due a p p r e c i a t i o n . T h e Swenson E v a p o r a t o r D i v i s i o n of the W h i t i n g C o r p . is deserving of special t h a n k s for p r o v i d i n g e q u i p m e n t a n d v a l u a b l e t e c h n i c a l assistance.
Literature Cited (1) B a d g e r Associates, Inc., W. L., Office of Saline W a t e r , U. S. D e p t . C o m m e r c e , R. & D. R e p o r t 26, OTS Publ. 161290 (1959). (2) B a d g e r Associates, Inc., W. L., Office of Saline W a t e r , U. S. D e p t . I n t e r i o r , Specif. 195 (1960). (3) B a d g e r , W. L., S t a n d i f o r d , F. C., Natl. A c a d . Sci.-Natl. Research C o u n c i l , Publ. 568 (1958). (4) L a n g e l i e r , W. F., C a l d w e l l , D. H., L a w r e n c e , W. B., Ind. Eng. Chem. 42, 126-30 (1950). (5) S t a n d i f o r d , F. C., S i n e k , J. R., paper t o be presented at AIChE M e e t i n g , W a s h i n g t o n , D . C., D e c e m b e r 1960. RECEIVED for review A u g u s t 8, 1960. A c c e p t e d September 20, 1960.
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.