13
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
Photochemical Production of Reactive Organometallics for Synthesis and Catalysis William C. Trogler Department of Chemistry, D-006, University of California at San Diego, La Jolla, CA 92093 Photochemical reactions of unsaturated metallacycles and of platinum and palladium complexes that contain chelating oxalate yield intermediates with two reac tive sites that are either ligand or metal centered. Unsaturated metallacycles exhibit low lying π* excited states that can also function as photoreceptors to pro mote ligand dissociation elsewhere in the molecule. A strong coupling model for excited state reactivity of metal carbonyls is presented. Reactions of photogenerated PtL2 and PdL2 fragments (L = trialkylphosphine) are summarized along with methods of preparing silica attached photocatalysts. S y n t h e t i c a l l y u s e f u l photochemical r e a c t i o n s o f o r g a n o t r a n s i t i o n m e t a l complexes c a n be c l a s s i f i e d a c c o r d i n g t o Scheme I . Scheme I 1)
Ligand
Photodissociation
Cr(C0)
2)
h
V
>»
6
Homolysis o f Metal Ligand
CoMe([l4]aneN )0H2
+
h
4
3)
( 1_) :
V
Cr(C0)
5
+
CO
Bond ( 2 ) :
>
Co([l4]aneN )
2 +
4
+ CH^ +
P h o t o c h e m i c a l H o m o l y s i s o f a M e t a l - M e t a l Bond ( 3 ) : Mn (C0) 2
2Mn(C0)
1 Q
5
or Pd (CNCH )^ 2
3
+
h
V
>
2 Pd(CNCH )^ 3
0097-6156/ 86/ 0307-0177506.00/ 0 © 1986 American Chemical Society
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
178 4)
EXCITED STATES AND Photooxidation
(4):
Fe(n-C H ) 5
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
5)
REACTIVE INTERMEDIATES
5
2
Photochemical Reductive
g
T
>
[Fe(n-C H ) ] Cl" 5
5
(5):
E l i m i n a t i o n of
hv
^
H
2
2
WW
+
è 16e
18e
These r e a c t i o n s g e n e r a t e a s i n g l e r e a c t i v e s i t e and o c c u r v i a 15e, 16e, 17e, o r 18e i n t e r m e d i a t e s ( 6 - 8 ) . One o f our g o a l s was t o ex amine t h e p h o t o c h e m i c a l b e h a v i o r o f complexes t h a t c o n t a i n an un s a t u r a t e d c h e l a t e chromophore. P h o t o f r a g m e n t a t i o n o f t h e s e systems might l e a d t o two r e a c t i v e c e n t e r s , e i t h e r on t h e l i g a n d o r m e t a l . T h i s c o u l d produce i n t e r m e d i a t e s t h a t e x h i b i t n o v e l c h e m i s t r y . Metallacyclopentadiene, Metalladiazabutadiene, azadiene Photochemistry
and M e t a l l a t e t r a -
C o n s i d e r t h e s e r i e s o f m e t a l l a c y c l e s A-C. These u n s a t u r a t e d r i n g systems were e x p e c t e d t o show low l y i n g e l e c t r o n i c t r a n s i t i o n s
\
/
c—c
1
\
/
Ν —
//
metallacyclo pentadiene
metalladiaza butadiene
Ν
W
metallatetraazabutadiene
because o f t h e u n s a t u r a t e d m e t a l - l i g a n d π system. The photochemis t r y o f CpCo[C4Ph4][PPh3] ( 9 ) , where Cp = n-C^H^ and Ph = C ^ in benzene s o l v e n t i s summarized i n E q u a t i o n 1. I n t h e absence o f 02 phosphine d i s s o c i a t i o n was shown t o y i e l d a 16e i n t e r m e d i a t e t h a t 9
CpCo[C Ph ](PPh ) 4
hv
4
3
CpCo(n-C Ph ) 4
4
CpCo[n -OC(Ph)C(Ph)C(Ph)C(Ph)0]
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
(1)
13.
179
Photochemical Production of Reactive Organometallics
TROGLER
r e a r r a n g e d t o t h e η - t e t r a p h e n y l ( c y c l o b u t a d i e n e ) complex. In the presence o f O 2 , s t e r e o s p e c i f i c o x i d a t i o n o f t h e t e t r a p h e n y l metall a c y c l e occurred t o y i e l d Z-dibenzoylstilbene. Single crystal X-ray d i f f r a c t i o n ( 9 ) showed t h a t t h i s l i g a n d bound t o CO i n an τΑ-eneone f a s h i o n . S e v e r a l t e t r a a z a b u t a d i e n e complexes t h a t c o n t a i n e d t h e CpCo fragment were s y n t h e s i z e d (10,11), E q u a t i o n 2. A l l t h e d e r i v a t i v e s
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
CpCo(C0)
2
+
2N R
R = CH =Me, C H 3
6
y
>
CpCo[N(R)NNN(R)]
C ^ , 2,6-Me^H^
(2)
2,4-F^^
were i n t e n s e l y c o l o r e d and c a l c u l a t i o n s (SCF-Xa-DV) (_12) o f t h e model complex CpCo[N(H)NNN(H)], F i g u r e 1, showed t h e p r e s e n c e o f a l o w - l y i n g 30a m e t a l l a c y c l e π* o r b i t a l . S t r o n g π back b o n d i n g t o t h e t e t r a a z a b u t a d i e n e l i g a n d was e v i d e n c e d by s h o r t Co-N bond l e n g t h s and a s i n g l e s h o r t N-N bond l e n g t h i n t h e s t r u c t u r e o f CpCo[N(C6F )NNN(C5F5)], F i g u r e 2. A f u r t h e r i n d i c a t i o n o f t h e s t r o n g π a c c e p t o r c h a r a c t e r o f t h e N 4 R 2 l i g a n d was t h e f o r m a t i o n (13) o f s t a b l e 19e a n i o n s on e l e c t r o c h e m i c a l o r c h e m i c a l (Na/Hg) r e duction. That a d e l o c a l i z e d m e t a l l a c y c l e π o r b i t a l was t h e a c c e p t o r o r b i t a l was s u g g e s t e d by t h e l a r g e v a r i a t i o n i n r e d u c t i o n p o t e n t i a l s on c h a n g i n g t h e s u b s t i t u e n t a s w e l l a s t h e Co h y p e r f i n e s p l i t t i n g i n t h e EPR s p e c t r a ( T a b l e I , ^60% c o b a l t c h a r a c t e r ) . These r e s u l t s 1
5
Table
I.
R e d u c t i o n P o t e n t i a l s v s . NHE i n CH^CN and EPR S p e c t r a l Data i n THF S o l u t i o n f o r (η-C H )CO(1,4-R N,) Complexes. Q
R CH
E°',V
3
2,6-(CH ) C H 3
C
6
3
A
iso(Co),G
iso 2.055
-1.31
2.061
56.3
-1.01
2.078
50.0
-0.97
2.070
51.6
-O.7O
2.066
51.7
57.9
H
6 5 2,4-F C H 2
C
2
S
-1.53
6
3
F
6 5
c o n t r a s t e d w i t h t h o s e f o r complexes t h a t c o n t a i n r i n g System A where l i t t l e π back-bonding t o t h e l i g a n d i s observed (14). I r r a d i a t i o n o f t h e n e u t r a l R = Me d e r i v a t i v e l e d t o slow decom p o s i t i o n ; however, t h e a r y l d e r i v a t i v e s e x t r u d e d N 2 on p h o t o l y s i s (Φ = 10~3-10~ , χ = nm) t o form a s e r i e s o f benzoquinone d i i m i n e complexes (10^11_) i n y i e l d s o f 65-90$, E q u a t i o n s 3-5· Because t h i s r e a c t i o n had no p r e c e d e n t , and because C-F and C-C bond c l e a v a g e was unknown i n t h e o r g a n i c p h o t o c h e m i s t r y o f n i t r e n e s , t h e s t r u c t u r e o f the p e r f l u o r o p h e n y l p h o t o p r o d u c t was v e r i f i e d (V5) by c r y s t a l l o graphy. M e t r i c a l p a r a m e t e r s o f t h e s t r u c t u r e a r e c o n s i s t e n t w i t h s t r o n g Co-N π b o n d i n g i n t h e s e p r o d u c t m e t a l l a c y c l e s . Benzoquinone d i i m i n e s do n o t appear t o be a s good π a c c e p t o r s a s t e t r a a z a b u t a d i e n e s j u d g i n g by t h e i r more n e g a t i v e (13) (by 0.3 t o 0.6 V) r e d u c t i o n p o t e n t i a l s . The mechanism o f f r a g m e n t a t i o n - r e a r r a n g e m e n t t h a t 4
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
180
EXCITED STATES AND REACTIVE INTERMEDIATES
F i g u r e 1. O r b i t a l energy diagram from SCC-Xa-DV c a l c u l a t i o n s o f t h e CpCo and H-N=N-N=N-H fragments a s w e l l a s t h e CpCo(l,4-H N4) molecule. Reproduced from Ref. 12. C o p y r i g h t 1982, American Chemical S o c i e t y . 2
F i g u r e 2. ORTEP (50% e l l i p s o i d s ) o f CpCo[l ^ - ^ F ^ N / J w i t h s e l e c t e d bond d i s t a n c e s and a n g l e s . Reproduced from R e f . 12. C o p y r i g h t 1982, American C h e m i c a l S o c i e t y .
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Photochemical Production of Reactive Organometallics
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
TROGLER
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
182
EXCITED STATES AND REACTIVE INTERMEDIATES
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
we f a v o r i s shown i n E q u a t i o n 6.
The f i n a l s t e p o f t h e mechanism,
a t t a c k a t an o r t h o r i n g p o s i t i o n , may o c c u r by a r a d i c a l d i s p l a c e ment mechanism ( 1 6 ) * f o r t h e 2,6-Me C5H d e r i v a t i v e t h e e l i m i n a t e d m e t h y l group l e d t o f o r m a t i o n o f methane ( 1 1 ) . 2
3
P h o t o d i s s o c i a t i o n o f CO From T r i c a r b o n y l i r o n D i a z a b u t a d i e n e s and Tetraazabutadienes The i s o l o b a l b e h a v i o r (17) o f t h e CpCo and F e ( C 0 ) fragments i s known. Both F e ( C 0 ) [ l , 4 - R N ] and F e ( C 0 ) [ N ( R ) C ( R ) C ( R ) N ( R ) ] com p l e x e s can be p r e p a r e d and b o t h a r e p h o t o a c t i v e . M o l e c u l a r o r b i t a l c a l c u l a t i o n s (_18) show t h a t s t r o n g back-bonding o c c u r s from t h e F e ( C O ) ^ fragment t o t h e t e t r a a z a b u t a d i e n e l i g a n d π system j u s t as f o r t h e CpCo d e r i v a t i v e . The s i m i l a r i t y between t h e average CO s t r e t c h i n g f r e q u e n c y i n F e ( C 0 ) [ l , 4 - M e N 4 ] and F e i C O ) ^ s u g g e s t s (18) t h a t t h e π a c c e p t o r a b i l i t y o f a t e t r a a z a b u t a d i e n e c h e l a t e compares w i t h t h a t o f two C 0 s . D i a z a b u t a d i e n e complexes, whose c a r b o n y l IR s t r e t c h i n g f r e q u e n c i e s l i e 35-40 cm"'' t o lower energy ( 1 9 ) , a r e weaker π a c c e p t o r s . T h e r e f o r e , t h e r e l a t i v e back-bonding a b i l i t y o f t h e m e t a l l a c y c l e s , C > Β > A, p a r a l l e l s t h e e l e c t r o n e g a t i v i t y o f t h e r i n g atoms. T e t r a a z a b u t a d i e n e (18) and d i a z a b u t a d i e n e (20) complexes c o n t a i n i n g t h e F e ( C O ) ^ moiety e x h i b i t i n t e n s e v i s i b l e a b s o r p t i o n s a t t r i buted t o t r a n s i t i o n s from Fe d o r b i t a l s t o a l o w - l y i n g m e t a l l a c y c l e π* o r b i t a l . A l t h o u g h t h e e x c i t e d s t a t e does n o t d i r e c t l y i n v o l v e Fe-CO bonding o r b i t a l s , e f f i c i e n t CO s u b s t i t u t i o n (21) o c c u r s i n t h e 3
!
3
2
4
!
3
3
2
!
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
13.
183
Photochemical Production of Reactive Organometallics
TROGLER
p r e s e n c e o f n e u t r a l l i g a n d s , E q u a t i o n s 7, 8, and 9· The a b i l i t y t o generate c o o r d i n a t e l y unsaturated i r o n c e n t e r s with v i s i b l e l i g h t i n
Fe(CO) [ l , 4 - M e N ] 2
+
4
L
- ^ - ^
Fe(C0) L[l,4-Me^]
L = NC H , P ( M e ) , PPl^, P i c - C g H ^ ) ^ 5
5
3
P(0Ph)
3
Fe(C0) [N(Ph)C(Me)C(Me)N(Ph)]
^
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
3
Fe(C0) (PPh,)[N(Ph)C(Me)C(Me)N(Ph] έ 3 o
P(0Me)
3
+
CO
+
2
3 >
CO
C ^
>
+
(8)
CO
Fe(C0)[P(0Me) ] [l,4-Me N ] 3
+
Fe[P(OMe )]
2
2
(7)
(9)
4
[l,4-Me N ]
3
2
4
t h e p r e s e n c e o f o t h e r UV p h o t o s e n s i t i v e complexes ( e . g . Fe(CO),_) p e r m i t s c o n d e n s a t i o n r e a c t i o n s (21) such as E q u a t i o n 10.
0
II r / \ ^Ν^Γ j ^ ^ χ ^ \
CH v
Fe(C0Ul,4-(CH ),NJ 3 3 2 4 +
Fe(C0)
i
i
b
e
. ^ ^ > irradiation
J
3
CH 3
(0C) Fe
Fe(C0) [P(CH ) ] 3
3
3
2
hv P(CH ) 3
(11)
3
Fe(C0) [P(CH ) ][N(t-C H )C(CH )C(CH )N(t-C H )] 2
3
3
4
9
3
3
4
9
S t e r i c crowding i n t h e t h e r m a l S t r a n s i t i o n s t a t e f o r E q u a t i o n 11 f a v o r s l o s s o f t h e b u l k y d i a z a b u t a d i e n e l i g a n d , w h i l e under p h o t o chemical c o n d i t i o n s simple s u b s t i t u t i o n occurs. N 2
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
184
EXCITED STATES AND
REACTIVE INTERMEDIATES
R e c e n t l y Kokkes, S t u f k e n s , and Oskam (23) have q u e s t i o n e d whe t h e r CO d i s s o c i a t i o n o c c u r s i n t h e m e t a l l a c y c l e systems we s t u d i e d . T h e i r e v i d e n c e a g a i n s t d i s s o c i a t i o n was t h a t s t e r i c a l l y h i n d e r e d de r i v a t i v e s t h e y examined, Fe(CO)-3[NRCHCHNR], where R = 2 , 6 - i - ( C 3 H ) 6 3 > £ - 6 1 1 > 4-Me(C H4), t-Bu = t-C^Hg, and C H [ C H ( C H 3 ) ] , d i d n o t photodecompose i n s o l u t i o n " ( i n t h e absence o f l i g a n d s ) . They f a i l e d t o n o t i c e our o b s e r v a t i o n (21) ( t h e f i r s t s e n t e n c e under t h e h e a d i n g Photochemical Reactions) t h a t " v i s i b l e l i g h t p h o t o l y s i s of F e ( C O ) y [1,4-Me N4] ( i n hexanes, c y c l o h e x a n e , benzene, C H C 1 , THF, o r CH3CN) r e s u l t s i n t h e l o s s o f CO t o y i e l d an u n s t a b l e s p e c i e s " . Even i f t h e i r statement were t r u e f o r F e ( C 0 ) [ l ^ - ( C H ^ ) ^ ] i t i s d o u b t f u l whether a p h o t o d e c o m p o s i t i o n c r i t e r i o n f o r p h o t o d i s s o c i a t i o n i s meaningful. F o r example, C r ( C O ) ^ does n o t decompose e f f i c i e n t l y when i r r a d i a t e d i n pure h y d r o c a r b o n s o l v e n t s ( i n t h e absence o f l i gands) because o f r a p i d r e v e r s e b i n d i n g (24) o f d i s s o c i a t e d CO. I r o n p e n t a c a r b o n y l e x h i b i t s e f f i c i e n t p h o t o d e c o m p o s i t i o n ( i n t h e ab sence o f l i g a n d s ) because t h e b i m o l e c u l a r r e a c t i o n between F e ( C O ) ^ and p h o t o g e n e r a t e d F e ( C 0 ) 4 y i e l d s i n s o l u b l e Fe (C0)o,. Sterically unhindered Fe(C0) [l,4-Me N4] mimics t h e b e h a v i o r o f F e ( C O ) ^ i n f o r ming a c l u s t e r on i r r a d i a t i o n i n t h e absence o f l i g a n d s . Furthermore s e l e c t i v e p h o t o d i s s o c i a t i o n o f CO from t h e t e t r a a z a b u t a d i e n e complex produces a c o o r d i n a t i v e l y u n s a t u r a t e d s p e c i e s t h a t r e a c t s ( l i k e p h o t o g e n e r a t e d F e ( C 0 ) 4 ) w i t h Fe(CO)^ t o form a dimer, E q u a t i o n 10. 7
C
H
c
H
2
6
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
2
2
2
2
3
2
2
3
T h e r e f o r e , we a t t r i b u t e t h e p h o t o s t a b i l i t y o f t h e complexes s t u d i e d by Kokkes e t a l . , t o t h e r e v e r s i b l e p r o c e s s o f E q u a t i o n 12.
Fe
(C0) (DAB) 3
DAB
^
Fe(C0) (DAB) 2
+
CO
(12)
= diazabutadiene chelate
The F e ( C 0 ) ( D A B ) s p e c i e s s h o u l d r e s i s t b i n u c l e a r d e c o m p o s i t i o n p a t h ways because o f s t e r i c h i n d r a n c e from t h e b u l k y s u b s t i t u e n t s on t h e DAB l i g a n d . I n a d d i t i o n c o o r d i n a t e l y u n s a t u r a t e d s p e c i e s may be f u r t h e r s t a b i l i z e d by weak c o o r d i n a t i o n t o benzene s o l v e n t employed i n the photochemical s t u d i e s . The a l t e r n a t i v e mechanism t o CO d i s s o c i a t i o n , proposed by S t u f k e n s (23) f o r t h e DAB complexes, i s n o t c o n s i s t e n t w i t h t h e d i f f e r e n c e between t h e r m a l and p h o t o c h e m i c a l r e a c t i o n p r o d u c t s , E q u a t i o n 11. I n s o l u t i o n Kokkes e t a l . propose t h a t one end o f t h e DAB c h e l a t e d i s s o c i a t e s on p h o t o l y s i s . I f t h i s were t h e case i t would be d i f f i c u l t t o u n d e r s t a n d why t h e p h o t o c h e m i c a l r e a c t i o n (where t h e DAB l i g a n d i s h a l f a t t a c h e d ) l e a d s o n l y t o CO d i s p l a c e ment, w h i l e t h e a s s o c i a t i v e t h e r m a l r e a c t i o n l e a d s o n l y t o DAB d i s placement. C o n s i d e r t h e mechanism, E q u a t i o n 13, e s t a b l i s h e d (19) f o r t h e r m a l l o s s o f DAB. The key t o DAB l o s s i s f o r m a t i o n o f t h e monod e n t a t e s p e c i e s D o f E q u a t i o n 13· This intermediate i s i d e n t i c a l to t h a t proposed by Kokkes e t a l . (23) f o r p h o t o c h e m i c a l CO r e p l a c e m e n t . A c c o r d i n g t o t h e i r mechanism, E q u a t i o n 14, the same s p e c i e s D, forms i n a two s t e p p r o c e s s and would t h e r e f o r e be t h e r m a l l y e q u i l i b r a t e d . Thus t h e a l t e r n a t i v e mechanism i s n o t c o n s i s t e n t w i t h t h e r m a l chem i s t r y o f t h e s e systems. 2
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Photochemical Production of Reactive Organometallics
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
13. TROGLER
-CH 0=C—Fe
hv
185
H r
0=C—Fe. sCH I R
R
(14)
L»
R I / ^CH N
^C
L'
I
0r=C~Fe 0
U
I R
0*»
J
„
C a r r y i n g t h e a n a l o g y between t h e p h o t o c h e m i s t r y o f F e ( C O ) ^ and Fe(C0)3[l,4-Me2N4] one s t e p f u r t h e r we n o t e t h a t b o t h compounds (25,26) behave a s p h o t o a s s i s t e d o l e f i n h y d r o s i l a t i o n and i s o m e r i z a tion catalysts. One d i s t i n c t i o n between t h e two c a t a l y s t systems i s t h e l a t t e r (26) o p e r a t e s e f f e c t i v e l y w i t h l o n g wavelength r a d i a t i o n , Table I I . H y d r o s i l a t i o n a c t i v i t y r e q u i r e s continuous p h o t o l y s i s ;
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
186
EXCITED STATES AND
REACTIVE INTERMEDIATES
o l e f i n i s o m e r i z a t i o n a c t i v i t y remains d u r i n g dark r e a c t i o n s a f t e r c a t a l y s t g e n e r a t i o n . F u r t h e r study o f t h e s e c a t a l y t i c r e a c t i o n s i s needed. Table I I .
P h o t o c a t a l y t i c R e a c t i o n s o f Fe(CO) [1 ^ ( C H ^ ) ^ ] O l e f i n s and T r i a l k y l s i l a n e s
with
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
a
O l e f i n (M) Ethylene (0.12)
S i l a n e (M) HSiEt (0.42)
Fe, M 0.01
3
Irrad. i (min) Conv. 80 65
Products (%) S i E t 4 (98) E t S i C H = C H (2) 3
Ethylene (0.12)
HSiMe (0.36)
0.01
1-Pentene (2)
HSiMe
0.005
3
80
75
2
EtSiife
(90) J
3
90
b
>
95
(2)
Pentene i s o m e r s and Pentane (~85) P e n t y l s i l a n e and Pentenylsilanes (-15)
cis-2-Pentene
HSiMe
0.02
3
58°
>
(0.8)
(8)
95
Pentene i s o m e r s (no h y d r o s i l a t i o n products)
a R e a c t i o n s a t 25°C i n benzene ( o r n e a t ) u s i n g a t o t a l s o l u t i o n v o l ume o f 0.3 mL. The r e a c t i o n s were monitored by p r o t o n NMR and f o r t h e f i r s t t h r e e e n t r i e s , t h e p r o d u c t s were a n a l y z e d by GC-mass spectrometry. A 200W mercury-xenon a r c lamp was used f o r t h e i r r a d i a t i o n s t o g e t h e r w i t h C o r n i n g 3-74 (λ > 400 nm, f i r s t two en t r i e s ) o r 0-52 (λ > 340 nm, l a s t e n t r y ) f i l t e r s . No t h e r m a l r e a c t i o n s were o b s e r v e d p r i o r t o p h o t o l y s i s . b The l a s t 40$ o f t h e r e a c t i o n took p l a c e d u r i n g 10 h i n t h e C o n t i n u e d p h o t o l y s i s f o r 265 min gave no change i n t h e NMR
dark. spectrum.
c P a r t o f t h e r e a c t i o n took p l a c e , a f t e r i r r a d i a t i o n , d u r i n g 20 h i n the dark. d Mostly trans-2-pentene
and < 5%
1-pentene.
S t r o n g C o u p l i n g Model F o r O r g a n o m e t a l l i c
Photoreactions
We n o t e d (21_) t h a t t h e quantum y i e l d f o r p h o t o s u b s t i t u t i o n o f CO i n Fe(C0) [l,4-Me N4], F e ( C 0 ) ( P P h ) [ 1 , 4 - M e N 4 J , and F e ( C 0 ) [ P h N C ( M e ) C (Me)NPh] ( e . g . F i g u r e 3) i n c r e a s e d i n an e x p o n e n t i a l f a s h i o n w i t h i n c r e a s i n g e x c i t a t i o n energy. There was no c o r r e l a t i o n w i t h a b s o r p t i o n s p e c t r a l f e a t u r e s . The h i g h quantum e f f i c i e n c y f o r CO s u b s t i t u ât l o n g wavelengths was unexpected because Χα c a l c u l a t i o n s f o r i r o n t r i c a r b o n y l t e t r a a z a b u t a d i e n e complexes (18) and M0 c a l c u l a t i o n s f o r d i a z a b u t a d i e n e analogues (20) s u g g e s t t h a t t h e l o w e s t e x c i t e d s t a t e s do n o t a l t e r metal-C0 b o n d i n g . Resonance Raman s p e c t r a o f t h e d i a z a b u t a d i e n e complexes (27) s u p p o r t t h i s c o n c l u s i o n . To r a t i o n a l i z e t h e o b s e r v a t i o n s we s u g g e s t e d (21) a s t r o n g c o u p l i n g model f o r ex cited state r e a c t i v i t y . 3
2
2
3
2
3
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
13.
Photochemical Production of Reactive Organometallics
TROGLER
Most d i s c u s s i o n s (28-32) o f i n o r g a n i c p h o t o c h e m i c a l r e a c t i o n s have f o c u s e d on t h e s p e c i f i c n a t u r e o f e x c i t e d s t a t e s and c o r r e l a tions with photoreactivity. T h i s a s s u m e s t h e weak c o u p l i n g m o d e l (33) f o r e x c i t e d s t a t e r e a c t i v i t y . T h i s a p p r o a c h w i l l be s u c c e s s f u l when t h e e x c i t e d s t a t e t h a t p r e c e d e s t h e p h o t o r e a c t i o n h a s a l o n g l i f e t i m e o r i s l o c a l i z e d ( e . g . , M L C T , a + o* ...). F r e q u e n t l y one f i n d s f l a t Φ vs λ p r o f i l e s and r e a c t i v i t y from the l o w e s t e x c i t e d s t a t e i n t h e weak c o u p l i n g l i m i t . There i s another l i m i t t h a t s h o u l d be c o n s i d e r e d . I f the e x c i t e d state i s short l i v e d , not w e l l l o c a l i z e d , and i f p h o t o c h e m i s t r y competes w i t h v i b r a t i o n a l d e a c t i v a t i o n of an e x c i t e d s t a t e then a s t r o n g c o u p l i n g (33) ( i . e . , s t r o n g c o u p l i n g between t h e i n i t i a l l y p r e p a r e d v i b r o n i c s t a t e and t h e d i s s o c i a t i o n c o n t i n u u m ) m o d e l may b e m o r e a p p r o p r i a t e . We i n t r o d u c e d t h e p r e m i s e t h a t a c o n s t a n t f r a c t i o n o f t h e e x c i t a t i o n e n e r g y i s a v a i l a b l e f o r M-CO d i s s o c i a t i v e p r o c e s s e s . A quasis t a t i s t i c a l ( 3 4 ) p a r t i t i o n i n g o f e x c i t a t i o n e n e r g y w o u l d be f a v o r e d by 1 ) d e n s e m a n i f o l d s o f v i b r o n i c l e v e l s , 2 ) l a c k o f s y m m e t r y s e l e c t i o n r u l e s on n o n r a d i a t i v e decay pathways, and 3) d e l o c a l i z e d e x c i t e d e l e c t r o n i c s t a t e s t h a t do n o t c o u p l e s t r o n g l y w i t h a n y s i n g l e v i b r a t i o n m o d e ; we q u a l i f y t h e l a s t c o n d i t i o n b y n o t i n g t h a t e v e n l o c a l i z e d e x c i t a t i o n s can l e a d (35) t o " s t a t i s t i c a l " b e h a v i o r . The w o r d " s t a t i s t i c a l " i s not used i n a s t r i c t thermal sense, because p a r t i t i o n i n g o f e x c i t a t i o n energy depends on t h e s p e c i f i c s o f i n t r a m o l e c u l a r v i b r o n i c coupling of the i n i t i a l l y prepared s t a t e . Experimental manifestations of strong coupling that areexpected i n c l u d e the f o l l o w i n g : 1) quantum y i e l d s f o r p h o t o d i s s o c i a t i v e p a t h ways t h a t depend on t h e amount b y w h i c h t h e e x c i t a t i o n e n e r g y e x c e e d s the thermodynamic t h r e s h o l d f o r bond b r e a k i n g ; 2) m u l t i p l e r e a c t i o n p a t h w a y s t h a t become a v a i l a b l e a t h i g h e r e x c i t a t i o n e n e r g i e s ; 3) s t r u c t u r e s e n s i t i v i t y t o r e a c t i o n quantum y i e l d s b e c a u s e e n e r g y f l o w r e l i e s o n t h e v i b r a t i o n a l modes t h a t i n i t i a l l y r e c e i v e t h e e n e r g y a n d how t h e y c o u p l e t o o t h e r m o d e s ; 4 ) b o n d i n g c h a r a c t e r o f t h e e x c i t e d s t a t e becomes i r r e l e v a n t . P h o t o r e a c t i o n s o f t h e m e t a l l a c y c l e s d i s c u s s e d ( 2 1 ) show l i n e a r p l o t s o f 1 η Φ ς v s e x c i t a t i o n e n e r g y b e f o r e l i m i t i n g quantum y i e l d s are reached. T h e r e was a c o r r e l a t i o n b e t w e e n t h e d o n o r a t o m s e t about Fe and quantum y i e l d s . Thus F e ( C 0 ) ( P P h 3 ) [ 1 , 4 - M e N 4 ] and F e ( C 0 ) 3 [ l , 4 - M e N 4 ] have s i m i l a r a b s o r p t i o n s p e c t r a , but q u i t e d i f f e r e n t q u a n t u m y i e l d s f o r CO s u b s t i t u t i o n . Absorption spectra of F e ( C 0 ) [ l , 4 - M e N 4 ] and Fe(C0)3[PhNC(Me)C(Me)NPh] are d i f f e r e n t ; how e v e r , b o t h c o m p o u n d s p o s s e s s t h e same d o n o r a t o m s e t a n d e x h i b i t s i m i l a r q u a n t u m y i e l d s f o r CO l o s s . I t i s a l s o noteworthy t h a t i s o e l e c t r o n i c C p C o [ l , 4 - R N 4 ] c o m p l e x e s t h a t do n o t c o n t a i n a n e a s i l y d i s s o c i a b l e group photofragment by N l o s s ( 1 0 , 1 1 ) . T h e r e was a c o r r e l a t i o n b e t w e e n t h e mode o f p h o t o c h e m i c a l d e c o m p o s i t i o n o f t h e F e ( C 0 ) 3 a n d CpCo t e t r a a z a b u t a d i e n e c o m p l e x e s a n d t h e l o w e s t e n e r g y f r a g m e n t i n t h e i r e l e c t r o n i m p a c t mass s p e c t r a (11 ) . For these rea s o n s we f a v o r a s t r o n g c o u p l i n g d e s c r i p t i o n o f t h e p h o t o r e a c t i o n s o f t h e s e compounds where l i g h t e x c i t a t i o n i s r a p i d l y c o n v e r t e d i n t o v i b r a t i o n a l energy t h a t t h e n r e s u l t s i n bond b r e a k i n g as governed by e n e r g e t i c and s t a t i s t i c a l c o n s i d e r a t i o n s . I t s h o u l d be n o t e d t h a t t h e r e are o t h e r e x p l a n a t i o n s (36) f o r wavelength dependencies o f quantum y i e l d s . f
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
187
0
2
2
2
3
2
2
2
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
EXCITED STATES AND
188
REACTIVE INTERMEDIATES
Recent s t u d i e s (37-39) o f t h e gas phase p h o t o c h e m i s t r y o f FeiCO)^ * C r ( C 0 ) 5 by time r e s o l v e d IR methods shows t h a t e j e c t i o n of two CO s p e r i n c i d e n t photon o c c u r s as t h e e x c i t a t i o n energy i n c r e a s e s . That i s c o n s i s t e n t w i t h t h e s t r o n g c o u p l i n g model p r o p o s e d . I t a l s o appears (40) t h a t few o f t h e e j e c t e d CO groups a r e v i b r a tionally excited. We s p e c u l a t e t h a t t h e energy gap between h i g h f r e q u e n c y CO v i b r a t i o n s and low f r e q u e n c y M-C o r M-M v i b r a t i o n s in simple metal c a r b o n y l s (e.g., Cr(CO)^ or M ^ Î C O ) ^ ) t r a p s e x c i t e d s t a t e energy i n t h e M-C and M-M v i b r a t i o n a l modes. T h i s c o u l d ex p l a i n t h e h i g h quantum e f f i c i e n c i e s f o r CO d i s s o c i a t i o n o r M-M bond h o m o l y s i s i n such compounds. T h i s may a l s o be why quantum e f f i c i e n c i e s f o r CO d i s s o c i a t i o n i n s u b s t i t u t e d c a r b o n y l s (41) d e c r e a s e markedly. I n t r o d u c t i o n o f l i g a n d s w i t h low f r e q u e n c y v i b r a t i o n a l modes p r o v i d e s a s i n k f o r v i b r a t i o n a l e x c i t a t i o n energy and perhaps a b e t t e r p a t h f o r energy m i g r a t i o n t o t h e s u r r o u n d i n g s i n condensed phases. a n c
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
1
P h o t o c h e m i s t r y o f O x a l a t e and D i t h i o o x a l a t e Complexes o f N i c k e l , P a l l a d i u m , and P l a t i n u m P h o t o o x i d a t i o n o f c o o r d i n a t e d o x a l a t e has been known s i n c e t h e e a r l i e s t s t u d i e s of t r a n s i t i o n metal photochemistry (42). In these r e a c t i o n s o x a l a t e l i g a n d i s p h o t o o x i d i z e d t o C O 2 , and up t o two m e t a l c e n t e r s a r e r e d u c e d by one e l e c t r o n ( e . g . f e r r i o x a l a t e ) . We wondered whether t h e o x a l a t e l i g a n d c o u l d be a t w o - e l e c t r o n p h o t o r e d u c t a n t , by s i m u l t a n e o u s o r r a p i d s e q u e n t i a l e l e c t r o n t r a n s f e r , w i t h m e t a l s prone t o 2e redox p r o c e s s e s . A p p l i c a t i o n o f t h i s c o n c e p t t o 16e square p l a n a r d® complexes, E q u a t i o n 15, was a t t r a c t i v e because i t s h o u l d produce s o l v a t e d 14e m e t a l complexes t h a t a r e i n o r g a n i c analogues o f
M(C 0 )L £
16e
4
-*^->-
2
2C0
2
+
ML
M = N i , Pd, P t
(15)
2
14e
carbenes. The r e p o r t s (43,44) t h a t p l a t i n u m ( O ) complexes c o u l d be i s o l a t e d by i r r a d i a t i n g P t X c ^ Z f ) ( P P h - z ) 2 and t h a t r h o d i u m ( l ) s p e c i e s were o b t a i n e d by i r r a d i a t i n g R h ( C 2 0 ) C l ( p y ) s u g g e s t e d t h a t t h i s p r o c e s s might work. Because 14e P t L fragments can be made t h e r m a l l y (45,46) when L i s a b u l k y phosphine [ e . g . , PCy^ o r P ( t - B u ) ] , we examined (47,48) t h e p h o t o c h e m i s t r y o f s t e r i c a l l y u n h i n d e r e d com plexes. The p h o t o r e a c t i v i t y o f PtiC^O^)(PEt )2, E t = C 2 H 5 , i s sum m a r i z e d i n Scheme I I . P h o t o c h e m i c a l c o n v e r s i o n s a r e h i g h and few s i d e p r o d u c t s ( e . g . , F i g u r e 4) form. A l l the r e a c t i o n s suggest f o r mation o f a r e a c t i v e P t ( P E t ) 2 fragment t h a t can be t r a p p e d as a p l a t i n u m ( O ) s p e c i e s o r combined w i t h o x i d a t i v e a d d i t i o n s u b s t r a t e s t o y i e l d p l a t i n u m ( l l ) compounds. 4
3
2
3
3
3
T h i s c h e m i s t r y has been extended t o produce p a l l a d i u m ( O ) i n t e r mediates ( 4 8 ) . Much o f t h e c h e m i s t r y i s s i m i l a r t o t h a t o f t h e P t analogues e x c e p t t h a t t h e p a l l a d i u m ( O ) complexes a r e more u n s t a b l e and d i f f i c u l t t o i s o l a t e . A reaction c h a r a c t e r i s t i c of palladium i s t h e a d d i t i o n o f a l l y l compounds t o form c a t i o n i c a l l y l complexes, E q u a t i o n 16. T h i s has been p o s t u l a t e d (49) as a key s t e p i n t h e mechanism f o r P d ( d i p h o s ) p c a t a l y z e d r e a c t i o n s o f a l l y l compounds.
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
13.
TROGLER
Photochemical Production of Reactive Organometallics
189
F i g u r e 3· E l e c t r o n i c a b s o r p t i o n spectrum o f F e ( C 0 ) - z ( l ,4-Me2N ) and quantum y i e l d s f o r p h o t o s u b s t i t u t i o n o f CO by PPh3. Repro duced from Ref. 21. C o p y r i g h t 1981, American C h e m i c a l S o c i e t y . 4
Pt < P E t > ( C H > 3
6 19.6 ppM,
'j
2
2
_p
p t
4
* 3486 Hz
I
Pt(PEt ) 6 4 . 3 ppM,
3
2
P t
_p
, J
2
4
*
3
5
0
3
H
z
F i g u r e 4. S u c c e s s i v e P{ H}NMR s p e c t r a (109 MHz) showing t h e p h o t o c h e m i c a l c o n v e r s i o n under 1 atm e t h y l e n e o f P t ( P E t ^ ) 2 ( 0 2 0 4 ) t o P t ( P E t ^ ) 2 ( C H 4 ) . I r r a d i a t i o n t i m e s a r e shown a t r i g h t . The s y m m e t r i c a l l y d i s p o s e d s a t e l l i t e peaks r e s u l t from t h o s e mole c u l e s t h a t c o n t a i n ^95pt (33·8$ abundance, I = § ) . S i g n a l s marked by an a s t e r i s k i n t h e f i n a l spectrum a r e u n i d e n t i f i e d s i d e p r o d u c t s , which form a t l o n g i r r a d i a t i o n t i m e s . Reproduced from Ref. 48. C o p y r i g h t 1985, American C h e m i c a l S o c i e t y . 2
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
EXCITED STATES AND REACTIVE INTERMEDIATES
190
Scheme I I Reactions o f P t ( C 0 ^ ) ( P E t ) 2
3
2
On U l t r a v i o l e t I r r a d i a t i o n
t r a n s - P t ( C H 0)H(PEt 3
2Pt(PEt ) 3
P
t
3
(
P
E
) 3
1
* *·>
trans-Pt(R)X(PEt ) 5 £
•» CH 0H
n
3
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
r
PtCl (PEt ) 2
3
2
V 4
2
RX = C>-H_C1, 6 5 CH C l , C H I 3
hv >
Pt
/ 3
3
olefin =
2
C H 2
Pt(C0) (PEt ) 2
3
2
V
[Pt(H 0)H(PEt ) ]0H^ 2
cis-Pt(R,Si)H(PËt )
RjSiH
4
2
and t r a n s - P t H ( P E t ) 2
C0
3
2
-*-|— Pt(olefin)(PEt ) ?
o
PEt^ Η—PtL
-Pt H
[0 CH] 2
PEt^
X = OAc, OPh, OH OEt, C l L = diphos or [ P ( n - B u ) ] 2
3
2
Presumably P d ( d i p h o s ) i s g e n e r a t e d i n t h e c a t a l y t i c c y c l e by decom p o s i t i o n o r l i g a n d d i s s o c i a t i o n from t h e b i s ( d i p h o s ) complex. The r e a c t i v i t y o f p h o t o g e n e r a t e d P d L d i f f e r s from P t L s i n c e t h e l a t t e r s p e c i e s does n o t add a l l y l s u b s t r a t e s c l e a n l y . P h o t o c h e m i c a l r o u t e s 2
2
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
2
13.
Photochemical Production of Reactive Organometallics
TROGLER
191
t o PtL2 and P d L s p e c i e s , t h a t c o n t a i n l e s s s t e r i c a l l y h i n d e r e d p h o s p h i n e s , complements t h e r m a l c h e m i s t r y known (45,46,50) f o r b u l k y ML2 s p e c i e s (M = Pd and P t , L = PCV3 o r P ( t - B u ) 3 ) . H i g h r e a c t i v i t y o f the p h o t o g e n e r a t e d s p e c i e s i s i l l u s t r a t e d by the f o l l o w i n g com p a r i s o n (49,51,52). 2
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
Ph-Cl
+
Pt(C 0 )(PEt ) 2
4
3
Ph-Cl
+
Pt(PEt )
Ph-Cl
+
Pt(PCy )
3
>
2
3
1
1
Q
0
C
trans-PtClPh(PEt ) 3
>
trans-PtClPh(PEt ) 3
14 days 20° C ^
3
2
2
trans-PtClPh(PCy )
Our attempts t o p r e p a r e Ni(0204)!^ complexes i n v a r i a b l y l e d t o f o r m a t i o n o f i n s o l u b l e Ni(C204). T h i s may be a t t r i b u t e d t o the i n a b i l i t y o f the weak f i e l d o x a l a t e l i g a n d t o s t a b i l i z e square p l a n a r Ni(il). We t h o u g h t t h a t a s t r o n g f i e l d o r s o f t v e r s i o n o f the oxa l a t e l i g a n d might be u s e f u l . I t seemed t h a t the d i t h i o o x a l a t e (S2C20 ~) l i g a n d would e x h i b i t p h o t o c h e m i s t r y analogous t o c h e l a t i n g oxalate. T h e r e f o r e the s e r i e s o f d i t h i o o x a l a t e complexes M(S2C2~ 02)L.2 have been p r e p a r e d (53) where L = PMe3 o r , L2 = d i p h o s = Ph2~ PCH -CH PPh2 and depe = Et PCH -CH PEt2»and M = N i , Pd, and P t . The IR s t r e t c h o f the C=0 group (1680-1750 cm-1 ) p r o v e s s u l f u r c o o r d i n a t i o n f o r the S2C2O2" l i g a n d . I r r a d i a t i o n o f the d i p h o s d e r i v a t i v e s i n CH2CI2 produced f r e e SCO and MCI2(diphos). T h e r e f o r e i t appears t h a t t h e d i t h i o o x a l a t e l i g a n d can a l s o be r e d u c t i v e l y e l i m i n a t e d by photolysis. The c h e m i s t r y o f t h e s e systems i s c o m p l i c a t e d by s e c o n dary r e a c t i o n s w i t h SCO and i s under i n v e s t i g a t i o n . 2
2
2
2
2
S y n t h e s i s and P h o t o r e a c t i v i t y
2
o f Surface-Bound P l a t i n u m O x a l a t e s
The p h o t o c h e m i c a l l y produced Pt(PEt3)2 fragment, s t a b i l i z e d a s t h e c i s - and t r a n s - P t H p ( P E t ^ ) ? complexes, has proved (54,55,56) t o be an e f f i c i e n t and l o n g l i v e d homogeneous c a t a l y s t f o r H2/D2 exchange ( E q u a t i o n 17), d e u t e r a t i o n o f acetone o r a c e t o n t r i l e ( E q u a t i o n s 18 and 19), d e c o m p o s i t i o n o f f o r m i c a c i d ( E q u a t i o n 20), and h y d r o l y s i s o f a c e t o n i t r i l e ( E q u a t i o n 21). Because o f the c a t a l y t i c promise Η,
3D.
+ 2
+
>
2 HD
>
3H
CH CN 3
=>•
li
HC00H -
>
H
H0
>
0 II •NH H_C-C3
D
2
-
CH C(0)CH 3 3
1| D 2
Η C-C=N
+
+
2
-
2
(17)
+
2
H
2
+
CD C(0)CD 3 3
+
CD CN 3
co
(18)
(19)
2
(20)
2
(21)
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
192
E X C I T E D STATES A N D R E A C T I V E I N T E R M E D I A T E S
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
o f t h e s e systems we d e c i d e d t o s y n t h e s i z e s u r f a c e a t t a c h e d o x a l a t e derivatives· F o r c e r t a i n c a t a l y s t a p p l i c a t i o n s ( e . g . , ease o f s e p a r a t i o n ) i t i s d e s i r a b l e t o have h e t e r o g e n e o u s r a t h e r t h a n homogeneous c a t a l y s t s . From a f u n d a m e n t a l view t h e r e i s i n t e r e s t i n comparing t h e s u r f a c e e f f e c t on c a t a l y t i c r a t e s and mechanisms o f s u r f a c e - a t t a c h e d homo geneous c a t a l y s t s . Of t h e two commonly used s u p p o r t s ( 5 7 ) , o r g a n i c polymers o r s i l i c a , we chose s i l i c a o f h i g h pore d i a m e t e r (140A) be cause o f i t s r i g i d i t y and p e r m e a b i l i t y i n p o l a r media. Most p r e v i o u s (57) s t u d i e s o f phosphine s u p p o r t e d t r a n s i t i o n m e t a l complexes have employed a r y l p h o s p h i n e l i g a n d s . T h i s p r e s e n t s problems s i n c e a r y l p h o s p h i n e s o f t e n d i s s o c i a t e and c a t a l y s t l e a c h i n g poses a p r o b l e m . S m a l l t r i a l k y l p h o s p h i n e s , by c o n t r a s t , a r e among t h e most d i f f i c u l t l i g a n d s t o d i s p l a c e from a m e t a l c e n t e r . Aryl p h o s p h i n e s a r e b u l k y and h i n d e r s u b s t r a t e a c c e s s t o t h e m e t a l c e n t e r . C l e a v a g e o f t h e P-C bond ( i . e . , d e g r a d a t i o n ) as w e l l as o r t h o m e t a l l a t i o n o c c u r s more r e a d i l y w i t h a r y l p h o s p h i n e a n a l o g s ( 5 8 ) . Several s y n t h e t i c p r o c e d u r e s were e x p l o r e d f o r s y n t h e s i z i n g s u r f a c e a t t a c h e d o x a l a t e complexes. The b e s t p r o c e d u r e (59) i s o u t l i n e d i n Scheme I I I . I n t h e s y n t h e s i s o f Scheme I I I we used D a v i s o n S i l i c a (Grade 62, 1402 p o r e d i a m e t e r . 340 m^/g) and a c h i e v e d a maximum s u r f a c e c o v e r a g e o f 1 molecule/113% which amounts t o 70% f u n c t i o n a l i z a t i o n o f t h e s u r f a c e ( w i t h t h e assumption t h a t 6 s u r f a c e h y d r o x y l s a n c h o r one platinum complex). Key p o i n t s o f t h e s y n t h e s i s i n c l u d e : 1) t h e v o l a t i l i t y o f r e a c t a n t s i n s t e p 1 and t h e h i g h y i e l d (97%) of the photo c h e m i c a l a d d i t i o n make i t p o s s i b l e t o p r e p a r e t h e L - P E t l i g a n d i n g r e a t e r t h a n 99% p u r i t y ; 2) t h e v o l a t i l e SMe l i g a n d can be removed i n s t e p 2 and t h e d e r i v a t i z e d p l a t i n u m complex, which i s an o i l , can be i s o l a t e d i n h i g h p u r i t y ; 3) c a p p i n g r e m a i n i n g s u r f a c e h y d r o x y l groups w i t h h e x a m e t h y l d i s i l a z a n e i n s t e p 4 p r e v e n t s r e a c t i o n s o f p h o t o g e n e r a t e d P t ( 0 ) w i t h t h e s u p p o r t ; 4) p u t t i n g t h e complex on t h e s u p p o r t as a s t a b l e P t ( l l ) s p e c i e s p r o t e c t s t h e b a s i c p h o s p h i n e l i gand from o x i d a t i o n ( 6 0 ) . B e s i d e s t h e a n a l y t i c a l d a t a ( P t / P r a t i o = 1/2) t h a t c h a r a c t e r i z e t h e s u p p o r t e d complex t h e IR spectrum e x h i b i t s s t r e t c h e s t h a t a r e i d e n t i c a l t o t h o s e i n t h e homogeneous analogue (49) P t ( C 0 4 ) ( P E t 3 ) . I f t h e sample i s i r r a d i a t e d (as a n u j o l m u l l ) t h e o x a l a t e s t r e t c h e s d i s a p p e a r and a new peak a p p e a r s a t 2330 c m , a t t r i b u t e d to CO2· Thus, E q u a t i o n 22 o c c u r s on t h e s u r f a c e . R e c a l l (Scheme I I ) t h a t 9
2
2
2
2
-1
Et? "CHhv 2C0 {
< y
CH.
-Ρ EΡ t
A
2
(22)
. υ'
p h o t o g e n e r a t e d P t ( P E t 3 ) c o u l d be t r a p p e d w i t h CO t o form P t ( P E t 3 ) (C0) . S i n c e t h e c a r b o n y l s t r e t c h e s (1930 and 1973 cm~1) a r e c h a r a c t e r i s t i c (47) o f t h i s complex we i r r a d i a t e d t h e s u r f a c e s u p p o r t e d complex under CO. O b s e r v a t i o n o f t h e peaks a t 1929 and 1965 cm~1 2
2
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
2
193
Photochemical Production of Reactive Organometallics
13. TROGLER
Scheme I I I MeO^ (1)
MeO—Si—CH==CH
+ HPEt^
2
MeO „ \ MeO-Si-(CH ) -PEt =
hv .
Λ
2
MeO^
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
(2)
2
2
L-PEt
MeO^
2L—PEt
6
+ Pt(C 0 )(SMe )
2
2
4
6
2
> SMe
2
+ +
Pt(C 0 )(L—PEt ) 2
4
£
(3) 4 Silica —0' —0' +
Pt(C 0 )(L-PEt) 2
4
r 2
f
> 6 6
—0'
—o,
Silica^
-o. \ -0-Si-CH —
E
t 2
CH— Ρ 2
-0 -0.
Pt
-O-Si-CH—CH—P
3 (4) HN(SiMe ) 3
2
caps o f f f r e e s u r f a c e OH w i t h i n e r t SlMe., group, and wash w e l l .
suggests t h a t t h e surface generated species o f Equation t r a p p e d , E q u a t i o n 23·
22 c a n be
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
2
2
194
EXCITED STATES AND
>
Et
Et.
-CFT
1
Pt
-CH„
REACTIVE INTERMEDIATES
9
-CH+
2C0
(23)
/- \ P t
-CH-
-P Et
Eto
x
c
2
In c o n t r a s t t o homogeneous analogues (48,61) t h e s i l i c a bound P t L fragment does n o t c a t a l y z e a c e t o n i t r i l e h y d r o l y s i s . Initial experiments showed h y d r o l y s i s a c t i v i t y < 1/1000 t h a t o f t h e homo geneous system. T h i s p u z z l e d us u n t i l we found t h a t homogeneous c a t a l y s t systems where t h e phosphine l i g a n d s a r e c o n s t r a i n e d t o be c i s [ e . g . , P t ( C 0 4 ) ( d i p h o s ) ] show s i m i l a r low a c t i v i t y . Molecular modeling s t u d i e s (CPK models) o f the s u r f a c e a t t a c h e d r e a g e n t o f Scheme I I I s u g g e s t t h a t t h e p l a t i n u m c e n t e r cannot adopt a t r a n s c o n f i g u r a t i o n necessary f o r e f f e c t i v e c a t a l y s i s . P r e v i o u s work (48) w i t h homogeneous analogues showed t h a t S i - H oxidative additions y i e l d c i s products. A c i s geometry o f h y d r i d e and s i l y l may be a l l o w e d i n c a t a l y t i c h y d r o s i l a t i o n . Because t h e i n d u s t r a l homogeneous h y d r o s i l a t i o n c a t a l y s t (62) i s H P t C l £ we t e s t e d t h e a c t i v i t y o f our s u r f a c e g e n e r a t e d r e a g e n t f o r t h e r e a c t i o n of E q u a t i o n 24. A s u s p e n s i o n o f the c a t a l y s t was i r r a d i a t e d i n 1-
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
2
2
2
heptene and a v i o l e n t r e a c t i o n ensured (400 t u r n o v e r s / P t ) on a d d i t i o n of d i c h l o r o m e t h y l s i l a n e . The h y d r o s i l a t i o n p r o d u c t formed i n over 97$ y i e l d and was pure by gc and % i NMR a f t e r f i l t r a t i o n from t h e catalyst. On a p e r p l a t i n u m b a s i s the c a t a l y s t has c a 1/100 t h e a c t i v i t y of H P t C l ^ . P r e s e n t work f o c u s e s on c a t a l y t i c mechanisms o f photo and t h e r m a l g e n e r a t e d c a t a l y s t s . 2
2
Conclusions P h o t o c h e m i c a l r e a c t i o n s o f t r a n s i t i o n metal complexes t h a t c o n t a i n u n s a t u r a t e d c h e l a t e s f a l l i n t o t h r e e c a t e g o r i e s : 1) f r a g m e n t a t i o n o f t h e l i g a n d t o y i e l d two r e a c t i v e f u n c t i o n a l i t i e s ; 2) e l i m i n a t i o n o f t h e l i g a n d t o g e n e r a t e two r e a c t i v e s i t e s a t t h e m e t a l ; 3) c h e l a t e l o c a l i z e d e x c i t e d s t a t e s can f u n c t i o n as p h o t o r e c e p t o r s t o promote p h o t o d i s s o c i a t i o n o f o t h e r m e t a l - l i g a n d bonds i n t h e complex. These p r o c e s s e s can be used as an e n t r y t o new r e a c t i v e i n t e r m e d i a t e s and catalysts. Acknowledgments I thank the s t u d e n t s (C.E. Johnson, M.E. G r o s s , R.S. Paonessa, A.L. P r i g n a n o , D. P o u r r e a u , R.L. Cowan), and p o s t d o c t o r a l s (C.E. J e n s e n , M.J. Maroney) who c o n t r i b u t e d t o t h e r e s e a r c h program d e s c r i b e d . F i n a n c i a l s u p p o r t o f our r e s e a r c h by the A i r F o r c e O f f i c e o f
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
13. TROGLER
Photochemical Production of Reactive Organometallics
S c i e n t i f i c R e s e a r c h , Army R e s e a r c h Foundation i s a p p r e c i a t e d .
195
O f f i c e , and N a t i o n a l S c i e n c e
Literature Cited
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
1. 2. 3.
Strohmeier, W. Angew. Chem. 1964, 76, 873. Mok, C.Y.; Endicott, J.F. J. Am. Chem. Soc. 1977, 99, 1276. Wrighton, M.S.; Ginley, D.S. J. Am. Chem. Soc. 1975, 97, 2065; Reinking, M.K.; Kullberg, M.L.; Cutler, A.R.; Kubiak, C.P. J. Am. Chem. Soc. 1985, 107, 3517. 4. Brand, J.C.; Snedder, W. Trans. Faraday Soc. 1957, 53, 894. 5. Green, M.L.H. Pure Appl. Chem. 1978, 50, 27. 6. Geoffroy, G.L. Prog. Inorg. Chem. 1980, 27, 123. 7. Bock, C.R.; von Gustorf, E.A.K. Adv. Photochem. 1977, 10, 222. 8. Geoffroy, G.L.; Wrighton, M.S. "Organometallic Photochemistry"; Academic Press: New York, 1979. 9. Trogler, W.C.; Ibers, J.A. Organometallics 1982, 1, 536. 10. Gross, M.E.; Trogler, W.C. J. Organomet. Chem. 1981, 209, 407. 11. Gross, M.E.; Johnson, C.E.; Maroney, M.J.; Trogler, W.C. Inorg. Chem. 1984, 23, 2968. 12. Gross, M.E.; Trogler, W.C.; Ibers, J.A. J. Am. Chem. Soc. 1981, 103, 192; Gross, M.E.; Trogler, W.C.; Ibers, J.A. Organometal lics 1982, 1, 732. 13. Maroney, M.J.; Trogler, W.C. J. Am. Chem. Soc. 1984, 106, 4144. 14. Thorn, D.L.; Hoffmann, R. Nouv. J. Chim. 1979, 3, 39. 15. Gross, M.E.; Ibers, J.A.; Trogler, W.C. Organometallics 1982, 1, 530. 16. March, J. "Advanced Organic Chemistry", 2nd ed.; McGraw-Hill: New York, 1977. 17. Elian, M.; Chen, M.M.L.; Mingos, D.M.P.; Hoffmann, R. Inorg. Chem. 1976, 5, 1148. 18. Trogler, W.C.; Johnson, C.E.; Ellis, D.E. Inorg. Chem. 1981, 20, 980. 19. Shi, Q.-Z.; Richmond, T.G.; Trogler, W.C.; Basolo, F. Organo metallics 1982, 1, 1033. 20. Kokkes, M.W.; Stufkens, D.J.; Oskam, A. J. Chem. Soc., Dalton Trans. 1983, 439. 21. Johnson, C.E.; Trogler, W.C. J. Am. Chem. Soc. 1981, 103, 6352. 22. Chang, C.-Y.; Johnson, C.E.; Richmond, T.G.; Chen, Y.-T.; Trogler, W.C.; Basolo, F. Inorg. Chem. 1981, 20, 3167. 23. Kokkes, M.W.; Stufkens, D.J.; Oskam, A. J. Chem.Soc.,Dalton Trans. 1984, 1005. 24. Church, S.P.; Grevels, F.-W.; Hermann, H.; Schaffner, K. Inorg. Chem. 1985, 24, 418-422. 25. Wrighton, M.S.; Graff, J.L.; Reichel, C.L.; Sanner, R.D. Ann. N.Y. Acad. Sci. 1980, 333, 188. 26. Johnson, C.E., Ph.D. Thesis, Northwestern University, 1981. 27. Balk, R.W.; Stufkens, D.J.; Oskam, A. J. Chem.Soc.,Dalton Trans. 1982, 275. 28. Wrighton, M.; Gray, H.B.; Hammond, G.S. Mol. Photochem. 1973, 5, 164. 29. Zink, J.I. Mol. Photochem. 1973, 5, 151.
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
EXCITED STATES AND REACTIVE INTERMEDIATES
196
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 3, 2016 | http://pubs.acs.org Publication Date: April 30, 1986 | doi: 10.1021/bk-1986-0307.ch013
30. Vanquickenborne, L.G.; Ceulemans, A. Coord. Chem. Rev. 1983, 48, 157. 31. Ford, P.C. Coord. Chem. Rev. 1982, 44, 61. 32. Adamson, A.W. Coord. Chem. Rev. 1968, 3, 169· 33. Robinson, G.W.; Frosch, R.P. J. Chem. Phys. 1962, 37, 1962; 1963, 38, 1187. 34. Chock, D.P.; Jortner, J.; Rice, S.A. J. Chem. Phys. 1968, 49, 610. 35. Jortner, J.; Rice, S.A.; Hochstrasser, R.M. Adv. Photochem. 1969, 7, 149. 36. Langford, C.H. Acc. Chem. Res. 1984, 17, 96. 37. Ouderkirk, A.J.; Wermer, P.; Schultz, N.L.; Weitz, E. J. Am. Chem. Soc. 1983, 105, 3354. 38. Seder, T.A.; Church, S.P.; Ouderkirk, A.J.; Weitz, E. J. Am. Chem. Soc. 1985, 107, 1432. 39. Tumas, W.; Gitlin, B.; Rosan, A.M.; Yardley, J.T. J. Am. Chem. Soc. 1982, 104, 55. 40. Poliakoff, M.; Weitz, E. Adv. Organomet. Chem. 1985, in press. 41. von Gustorf, E.A.K.; Leenders, L.H.G.; Fischler, I.; Perutz, R. Adv. Inorg. Chem. Radiochem. 1976, 19, 65. 42. Balzani, V.; Carassiti, V. "Photochemistry of Coordination Com pounds"; Academic Press: New York, 1970. 43. Blake, D.M.; Nyman, C.J. J. Am. Chem. Soc. 1970, 92, 5359. 44. Addison, A.W.; Gillard, R.S.; Sheridan, P.S.; Tipping, L.R.H. J. Chem.Soc.,Dalton Trans. 1974, 709. 45. Otsuka, S. J. Organomet. Chem. 1980, 200, 191. 46. Shaw, B.L. ACS Symp. Ser. 1982, 196, 101. 47. Paonessa, R.S.; Trogler, W.C. Organometallics 1982, 1, 768. 48. Paonessa, R.S.; Prignano, A.L.; Trogler, W.C. Organometallics 1985, 4, 647. 49. Trost, B.M. Acc. Chem. Res. 1980, 13, 385. 50. Stone, F.G.A. Angew. Chem., Intl. Ed. Engl. 1984, 23, 89. 51. Gerlach, D.H.; Kane, A.R.; Parshall, G.W.; Jesson, J.P.; Muetterties, E.L. J. Am. Chem. Soc. 1971, 93, 3543. 52. Fornies, J.; Green, M.; Spencer, J.L.; Stone, F.G.A. J. Chem. Soc., Dalton Trans. 1977, 1006. 53. Cowan, R.L.; Pourreau, D.; Trogler, W.C., to be published. 54. Paonessa, R.S.; Trogler, W.C. J. Am. Chem. Soc. 1982, 104, 1138. 55. Paonessa, R.S.; Trogler, W.C. J. Am. Chem. Soc. 1982, 104, 3529. 56. Paonessa, R.S.; Trogler, W.C. Inorg. Chem. 1983, 22, 1038. 57. Bailey, D.C.; Langer, S.H. Chem. Rev. 1981, 81, 109. 58. Parshall, G.W. Acc. Chem. Res. 1970, 3, 139. 59. Prignano, A.L.; Trogler, W.C., to be published. 60. Bemi, L.; Clark, H.C.; Davies, J.A.; Fyfe, C.A.; Wasylishen, R.E. J. Am. Chem. Soc 1982, 104, 438. 61. Jensen, C.M.; Trogler, W.C., submitted. 62. Parshall, G.W. "Homogeneous Catalysis"; Wiley: New York, 1980. RECEIVED November 8, 1985
In Excited States and Reactive Intermediates; Lever, A. B. P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.