Exploring Divergent Volatility Properties from Yield and

May 4, 2016 - ... Construction, and Environmental Engineering, North Carolina State .... Downwind evolution of the volatility and mixing state of near...
1 downloads 0 Views 1MB Size
Article pubs.acs.org/est

Exploring Divergent Volatility Properties from Yield and Thermodenuder Measurements of Secondary Organic Aerosol from α‑Pinene Ozonolysis Provat K. Saha and Andrew P. Grieshop* Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, 27695 United States S Supporting Information *

ABSTRACT: There are large uncertainties in the parameters dictating the gasparticle partitioning of secondary organic aerosols (SOA), although this process has major influences on their atmospheric lifecycle. Here, we extract parameters that describe the partitioning of SOA from α-pinene ozonolysis using measurements from a dual-thermodenuder (TD) system that constrains both the equilibrium and the kinetic properties that dictate SOA phase partitioning. Parallel TDs that vary in temperature and residence time were used with an evaporation-kinetics model to extract parameter values. An evaporation coefficient of an order of 0.1 best describes the observed evaporation, suggesting equilibration time scales of atmospheric SOA on the order of minutes to hours. A total of 20−40% of SOA mass consists of low-volatility material (saturation concentration of 1 during our highest-COA experiment. Figure 4 includes αi,TD curves based on assumptions of COA = 3000 and 10 000 μg m−3 that show the yield bias factor at atmospheric concentrations (above arrow “a”) continues to increase, though more slowly, as results are extrapolated on the basis of larger COA. That increments in COA lead to smaller changes in the inferred yield bias factor likely reflects the fact that the lowest volatility material has a diminishing relative contribution to aerosol yield (and thus on bias due to vapor wall losses). Although all αi,TD determined this way may be biased by vaporwall losses, the bias should be smallest at high COA. This also means that the deviation between αi,TD and αi,growth curves can G

DOI: 10.1021/acs.est.6b00303 Environ. Sci. Technol. XXXX, XXX, XXX−XXX

Article

Environmental Science & Technology at best provide a conservative (low) estimate of the yield bias factor. αi,TD distributions corresponding to COA of exp 1 (445 μg m−3) and COA = 10 000 μg m−3 are tabulated in Table 1. 3.5. Atmospheric Implications. Relative to the traditional yield-based volatility distribution, the TD-derived distribution (αi,TD, exp 1) predicts a factor of 2 to 4 higher SOA yields under atmospherically relevant conditions (T: −10 to 40 °C, COA: 0.5 to 20 μg m−3), with stronger biases observed at higher temperatures and lower COA values (Figure S.12). The application of this revised volatility distribution in atmospheric modeling would have large influences on predicted SOA, especially at the surface. The SOA gas-particle-equilibration time scales determined from our dual-TD observations (order of minutes to an hour) are long enough to have large implications for interpreting TD observations but not so long that time scales for repartitioning must be considered in typical chemical transport models, with time steps on the order of an hour. The feasible ΔHvap range suggested by our TD observations is significantly higher compared to typical assumptions (e.g., 30−40 kJ mol−1) for SOA modeling in a chemical transport model17−19 but lower than that suggested by Epstein et al.38 Assumed ΔHvap values have substantial implications for atmospheric SOA modeling. For example, doubling the assumed ΔHvap (e.g., from 30 to 60 kJ mol−1) tripled the predicted SOA burden and doubled the average OA lifetime in a global chemical transport model with a fixed assumed SOA volatility distribution.18 Furthermore, the presence of ELVOCs in SOA suggested by our and others’ observations26,44,45 may have important implications for the understanding of atmospheric new particle formation. The dual-TD-based volatility-characterization method presented here provides insight into SOA volatility that is complementary to detailed chemical characterization using advanced instrumentation5,26,44,55 and is readily extendable to ambient conditions. However, higher-volatility products (SVOC and IVOCs) that may make large contribution to the impacts of later-generation SOA formation are not constrained by TD measurements because they do not condense under normal ambient conditions.





for assumed D during evaporation kinetics modeling, a comparison of SOA yields across studies, room-temperature evaporation of SOA, and the ratio of AMF corresponding to αi,TD to that from αi,growth under a wide range of atmospherically relevant (T, COA) conditions. (PDF)

AUTHOR INFORMATION

Corresponding Author

*Phone: (919) 513-1181; e-mail: [email protected]. Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS We thank Andrey Khlystov for providing two SMPS systems for this work, Jose-Luis Jimenez and his research group for providing SMPS data analysis tools, and Gabriel IsaacmanVanwertz and Allen Robinson for useful discussions. This material is based upon work supported by the National Science Foundation under Grant No. CBET-13-51721 and by start-up support from North Carolina State University.



REFERENCES

(1) Jimenez, J. L.; Canagaratna, M. R.; Donahue, N. M.; Prevot, A. S. H.; Zhang, Q.; Kroll, J. H.; DeCarlo, P. F.; Allan, J. D.; Coe, H.; Ng, N. L.; et al. Evolution of Organic Aerosols in the Atmosphere. Science 2009, 326 (5959), 1525−1529. (2) Zhang, Q.; Jimenez, J. L.; Canagaratna, M. R.; Allan, J. D.; Coe, H.; Ulbrich, I.; Alfarra, M. R.; Takami, A.; Middlebrook, A. M.; Sun, Y. L.; et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 2007, 34 (13), L13801. (3) Donahue, N. M.; Kroll, J. H.; Pandis, S. N.; Robinson, A. L. A two-dimensional volatility basis set − Part 2: Diagnostics of organicaerosol evolution. Atmos. Chem. Phys. 2012, 12 (2), 615−634. (4) Robinson, A. L.; Donahue, N. M.; Shrivastava, M. K.; Weitkamp, E. A.; Sage, A. M.; Grieshop, A. P.; Lane, T. E.; Pierce, J. R.; Pandis, S. N. Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging. Science 2007, 315 (5816), 1259−1262. (5) Zhang, X.; McVay, R. C.; Huang, D. D.; Dalleska, N. F.; Aumont, B.; Flagan, R. C.; Seinfeld, J. H. Formation and evolution of molecular products in α-pinene secondary organic aerosol. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 14168. (6) Donahue, N. M.; Robinson, A. L.; Stanier, C. O.; Pandis, S. N. Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics. Environ. Sci. Technol. 2006, 40 (8), 2635−2643. (7) Pankow, J. F. An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmos. Environ. 1994, 28 (2), 185−188. (8) Kroll, J. H.; Lim, C. Y.; Kessler, S. H.; Wilson, K. R. Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon. J. Phys. Chem. A 2015, 119 (44), 10767−10783. (9) Shiraiwa, M.; Ammann, M.; Koop, T.; Pöschl, U. Gas uptake and chemical aging of semisolid organic aerosol particles. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (27), 11003−11008. (10) Kroll, J. H.; Seinfeld, J. H. Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 2008, 42 (16), 3593−3624. (11) Odum, J. R.; Hoffmann, T.; Bowman, F.; Collins, D.; Flagan, R. C.; Seinfeld, J. H. Gas/Particle Partitioning and Secondary Organic Aerosol Yields. Environ. Sci. Technol. 1996, 30 (8), 2580−2585. (12) Cocker, D. R., III; Clegg, S. L.; Flagan, R. C.; Seinfeld, J. H. The effect of water on gas−particle partitioning of secondary organic aerosol. Part I: α-pinene/ozone system. Atmos. Environ. 2001, 35 (35), 6049−6072.

ASSOCIATED CONTENT

* Supporting Information S

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.6b00303. Additional information is included on the conversion of a TD-derived distribution to an equivalent αi,TD, smogchamber yield experiments, fitting yield experiment data, thermodenuder evaporation kinetic modeling, and roomtemperature evaporation of SOA particles due to vapor stripping. Tables showing a summary of experiments performed in this study, TD kinetics model input parameters, summary of fitting results in the γe and ΔHvap space that produce acceptable fits, SOA mass yield coefficients, and SOA volatility distributions from basecase and extended lower C* bins fits. Figures showing example SOA size distributions, a schematic of the experimental setup, observed variability during an experiment, measured and modeled VFRs for all data from eight experiments, modeled thermograms with the volatility distributions from base-case and extended lower C* bin fits, a comparison of thermograms across studies, variation of f44 and f43 with COA and T, sensitivity analysis H

DOI: 10.1021/acs.est.6b00303 Environ. Sci. Technol. XXXX, XXX, XXX−XXX

Article

Environmental Science & Technology

aerosol on particle volatility. Atmos. Chem. Phys. 2015, 15 (16), 9327− 9343. (32) Grieshop, A. P.; Donahue, N. M.; Robinson, A. L. Is the gasparticle partitioning in alpha-pinene secondary organic aerosol reversible? Geophys. Res. Lett. 2007, 34 (14), L14810. (33) Saleh, R.; Shihadeh, A.; Khlystov, A. On transport phenomena and equilibration time scales in thermodenuders. Atmos. Meas. Tech. 2011, 4 (3), 571−581. (34) Riipinen, I.; Pierce, J. R.; Donahue, N. M.; Pandis, S. N. Equilibration time scales of organic aerosol inside thermodenuders: Evaporation kinetics versus thermodynamics. Atmos. Environ. 2010, 44 (5), 597−607. (35) Karnezi, E.; Riipinen, I.; Pandis, S. N. Measuring the atmospheric organic aerosol volatility distribution: a theoretical analysis. Atmos. Meas. Tech. 2014, 7 (9), 2953−2965. (36) Cappa, C. D.; Jimenez, J. L. Quantitative estimates of the volatility of ambient organic aerosol. Atmos. Chem. Phys. 2010, 10 (12), 5409−5424. (37) Park, S. H.; Rogak, S. N.; Grieshop, A. P. A Two-Dimensional Laminar Flow Model for Thermodenuders Applied to Vapor Pressure Measurements. Aerosol Sci. Technol. 2013, 47 (3), 283−293. (38) Epstein, S. A.; Riipinen, I.; Donahue, N. M. A Semiempirical Correlation between Enthalpy of Vaporization and Saturation Concentration for Organic Aerosol. Environ. Sci. Technol. 2010, 44 (2), 743−748. (39) Saha, P. K.; Khlystov, A.; Grieshop, A. P. Determining Aerosol Volatility Parameters Using a “Dual Thermodenuder” System: Application to Laboratory-Generated Organic Aerosols. Aerosol Sci. Technol. 2015, 49 (8), 620−632. (40) Donahue, N. M.; Epstein, S. A.; Pandis, S. N.; Robinson, A. L. A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics. Atmos. Chem. Phys. 2011, 11 (7), 3303−3318. (41) May, A. A.; Levin, E. J. T.; Hennigan, C. J.; Riipinen, I.; Lee, T.; Collett, J. L.; Jimenez, J. L.; Kreidenweis, S. M.; Robinson, A. L. Gasparticle partitioning of primary organic aerosol emissions: 3. Biomass burning. J. Geophys. Res. Atmospheres 2013, 118 (19), 11327−11338. (42) Ranjan, M.; Presto, A. A.; May, A. A.; Robinson, A. L. Temperature Dependence of Gas−Particle Partitioning of Primary Organic Aerosol Emissions from a Small Diesel Engine. Aerosol Sci. Technol. 2012, 46 (1), 13−21. (43) Donahue, N. M.; Henry, K. M.; Mentel, T. F.; Kiendler-Scharr, A.; Spindler, C.; Bohn, B.; Brauers, T.; Dorn, H. P.; Fuchs, H.; Tillmann, R.; et al. Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (34), 13503−13508. (44) Ehn, M.; Thornton, J. A.; Kleist, E.; Sipilä, M.; Junninen, H.; Pullinen, I.; Springer, M.; Rubach, F.; Tillmann, R.; Lee, B.; et al. A large source of low-volatility secondary organic aerosol. Nature 2014, 506 (7489), 476−479. (45) Kokkola, H.; Yli-Pirilä, P.; Vesterinen, M.; Korhonen, H.; Keskinen, H.; Romakkaniemi, S.; Hao, L.; Kortelainen, A.; Joutsensaari, J.; Worsnop, D. R.; et al. The role of low volatile organics on secondary organic aerosol formation. Atmos. Chem. Phys. 2014, 14 (3), 1689−1700. (46) Huffman, J. A.; Docherty, K. S.; Mohr, C.; Cubison, M. J.; Ulbrich, I. M.; Ziemann, P. J.; Onasch, T. B.; Jimenez, J. L. ChemicallyResolved Volatility Measurements of Organic Aerosol from Different Sources. Environ. Sci. Technol. 2009, 43 (14), 5351−5357. (47) Jonsson, Å. M.; Hallquist, M.; Saathoff, H. Volatility of secondary organic aerosols from the ozone initiated oxidation of -pinene and limonene. J. Aerosol Sci. 2007, 38 (8), 843−852. (48) Lee, B.-H.; Pierce, J. R.; Engelhart, G. J.; Pandis, S. N. Volatility of secondary organic aerosol from the ozonolysis of monoterpenes. Atmos. Environ. 2011, 45 (14), 2443−2452. (49) Kang, E.; Toohey, D. W.; Brune, W. H. Dependence of SOA oxidation on organic aerosol mass concentration and OH exposure: experimental PAM chamber studies. Atmos. Chem. Phys. 2011, 11 (4), 1837−1852.

(13) Griffin, R. J.; Cocker, D. R.; Flagan, R. C.; Seinfeld, J. H. Organic aerosol formation from the oxidation of biogenic hydrocarbons. J. Geophys. Res. Atmospheres 1999, 104 (D3), 3555−3567. (14) Pathak, R. K.; Presto, A. A.; Lane, T. E.; Stanier, C. O.; Donahue, N. M.; Pandis, S. N. Ozonolysis of α-pinene: parameterization of secondary organic aerosol mass fraction. Atmos. Chem. Phys. 2007, 7 (14), 3811−3821. (15) Presto, A. A.; Donahue, N. M. Investigation of α-Pinene + Ozone Secondary Organic Aerosol Formation at Low Total Aerosol Mass. Environ. Sci. Technol. 2006, 40 (11), 3536−3543. (16) Stanier, C. O.; Donahue, N.; Pandis, S. N. Parameterization of secondary organic aerosol mass fractions from smog chamber data. Atmos. Environ. 2008, 42 (10), 2276−2299. (17) Pye, H. O. T.; Seinfeld, J. H. A global perspective on aerosol from low-volatility organic compounds. Atmos. Chem. Phys. 2010, 10 (9), 4377−4401. (18) Farina, S. C.; Adams, P. J.; Pandis, S. N. Modeling global secondary organic aerosol formation and processing with the volatility basis set: Implications for anthropogenic secondary organic aerosol. J. Geophys. Res. 2010, 115 (D9), D09202. (19) Lane, T. E.; Donahue, N. M.; Pandis, S. N. Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model. Atmos. Environ. 2008, 42 (32), 7439−7451. (20) Cappa, C. D.; Wilson, K. R. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior. Atmos. Chem. Phys. 2011, 11 (5), 1895−1911. (21) Vaden, T. D.; Imre, D.; Beránek, J.; Shrivastava, M.; Zelenyuk, A. Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 2190. (22) Virtanen, A.; Joutsensaari, J.; Koop, T.; Kannosto, J.; Yli-Pirilä, P.; Leskinen, J.; Mäkelä, J. M.; Holopainen, J. K.; Pöschl, U.; Kulmala, M.; et al. An amorphous solid state of biogenic secondary organic aerosol particles. Nature 2010, 467 (7317), 824−827. (23) Zobrist, B.; Marcolli, C.; Pedernera, D. A.; Koop, T. Do atmospheric aerosols form glasses? Atmos. Chem. Phys. 2008, 8 (17), 5221−5244. (24) Cappa, C. D.; Jathar, S. H.; Kleeman, M. J.; Docherty, K. S.; Jimenez, J. L.; Seinfeld, J. H.; Wexler, A. S. Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model − Part 2: Assessing the influence of vapor wall losses. Atmos. Chem. Phys. Discuss. 2015, 15 (21), 30081−30126. (25) Zhang, X.; Cappa, C. D.; Jathar, S. H.; McVay, R. C.; Ensberg, J. J.; Kleeman, M. J.; Seinfeld, J. H. Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (16), 5802−5807. (26) Jokinen, T.; Berndt, T.; Makkonen, R.; Kerminen, V.-M.; Junninen, H.; Paasonen, P.; Stratmann, F.; Herrmann, H.; Guenther, A. B.; Worsnop, D. R.; et al. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (23), 7123−7128. (27) Hall, W. A.; Johnston, M. V. Oligomer Content of α-Pinene Secondary Organic Aerosol. Aerosol Sci. Technol. 2011, 45 (1), 37−45. (28) Kalberer, M.; Paulsen, D.; Sax, M.; Steinbacher, M.; Dommen, J.; Prevot, A. S. H.; Fisseha, R.; Weingartner, E.; Frankevich, V.; Zenobi, R.; et al. Identification of Polymers as Major Components of Atmospheric Organic Aerosols. Science 2004, 303 (5664), 1659−1662. (29) Saleh, R.; Donahue, N. M.; Robinson, A. L. Time Scales for GasParticle Partitioning Equilibration of Secondary Organic Aerosol Formed from Alpha-Pinene Ozonolysis. Environ. Sci. Technol. 2013, 47 (11), 5588−5594. (30) Grieshop, A. P.; Miracolo, M. A.; Donahue, N. M.; Robinson, A. L. Constraining the Volatility Distribution and Gas-Particle Partitioning of Combustion Aerosols Using Isothermal Dilution and Thermodenuder Measurements. Environ. Sci. Technol. 2009, 43 (13), 4750−4756. (31) Kolesar, K. R.; Chen, C.; Johnson, D.; Cappa, C. D. The influences of mass loading and rapid dilution of secondary organic I

DOI: 10.1021/acs.est.6b00303 Environ. Sci. Technol. XXXX, XXX, XXX−XXX

Article

Environmental Science & Technology (50) Ng, N. L.; Canagaratna, M. R.; Zhang, Q.; Jimenez, J. L.; Tian, J.; Ulbrich, I. M.; Kroll, J. H.; Docherty, K. S.; Chhabra, P. S.; Bahreini, R.; et al. Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry. Atmos. Chem. Phys. 2010, 10 (10), 4625−4641. (51) Cappa, C. D. A model of aerosol evaporation kinetics in a thermodenuder. Atmos. Meas. Tech. 2010, 3 (3), 579−592. (52) Kolesar, K. R.; Li, Z.; Wilson, K. R.; Cappa, C. D. HeatingInduced Evaporation of Nine Different Secondary Organic Aerosol Types. Environ. Sci. Technol. 2015, 49 (20), 12242−12252. (53) Wilson, J.; Imre, D.; Beránek, J.; Shrivastava, M.; Zelenyuk, A. Evaporation Kinetics of Laboratory-Generated Secondary Organic Aerosols at Elevated Relative Humidity. Environ. Sci. Technol. 2015, 49 (1), 243−249. (54) Philippin, S.; Wiedensohler, A.; Stratmann, F. Measurements of non-volatile fractions of pollution aerosols with an eight-tube volatility tandem differential mobility analyzer (VTDMA-8). J. Aerosol Sci. 2004, 35 (2), 185−203. (55) Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, T. F.; Carrasquillo, A. J.; Daumit, K. E.; Hunter, J. F.; et al. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds. Atmos. Chem. Phys. 2015, 15 (14), 7765−7776. (56) Loza, C. L.; Chan, A. W. H.; Galloway, M. M.; Keutsch, F. N.; Flagan, R. C.; Seinfeld, J. H. Characterization of Vapor Wall Loss in Laboratory Chambers. Environ. Sci. Technol. 2010, 44 (13), 5074− 5078. (57) Matsunaga, A.; Ziemann, P. J. Gas-Wall Partitioning of Organic Compounds in a Teflon Film Chamber and Potential Effects on Reaction Product and Aerosol Yield Measurements. Aerosol Sci. Technol. 2010, 44 (10), 881−892. (58) Tritscher, T.; Dommen, J.; DeCarlo, P. F.; Gysel, M.; Barmet, P. B.; Praplan, A. P.; Weingartner, E.; Prévôt, A. S. H.; Riipinen, I.; Donahue, N. M.; et al. Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber. Atmos. Chem. Phys. 2011, 11 (22), 11477−11496.

J

DOI: 10.1021/acs.est.6b00303 Environ. Sci. Technol. XXXX, XXX, XXX−XXX