Extraction - ACS Publications - American Chemical Society

George H. Morrison, and Henry. Freiser. Anal. Chem. , 1960, 32 (5), pp 37–47 ... George K. Schweitzer , W. van Willis. Analytica Chimica Acta 1964 3...
3 downloads 0 Views 1MB Size
(139) Songina, 0.A., Kemeleva, K. G., Kozlovskii, M. T., Zavodskaya Lab. 23, 896-900 (1957). (140)Stromatt, R. W.,U. S. At. E n e r a c o r n . , Em-59447, 19 pp. (1959). (141) Stromatt, R. W.,ANAL. CHEM.32, 134-5 (1960). (142) Sundberg, 0. E., Craig, H. C., Parsons, J. S., M., 30, 1%-6 (1958). (143) Sykut, K., Ann. Unw. Manae Curie-Sklodowska, Lublin-Polonio 10, Sect. iL4, 25-34 (1955). (144) M . , 11, Sect. AA, 93-107 (1956). (145) Sykut, W. B., Acta Polon. Pharm. 16,21-4 (1959). (116) Takahashi, T., Proc. Intern. Cmgr. Pure and Appl. C h a . 15th Cmgr. (Anal. Chem.) Lisbon 1956, Vol. I, 949-63. (147) Takahashi, T., Xi&, E., Sakurai, H., Bunseki Kayaku 7, 93-8, 98-103 (1958).

(148) Takahashi, T., Sakurai, H., Zbid., 7, 296-300, 631-6 (1958). (149) Tarurka, M.,Zbid. 6, 311-3, 344-9, 404-13, 413-8, 477-82, 482-6, 617-21 (1957). (150) Terrey, H.,“habit, J., J . Chem. Soc. 1957, 3064-6; 1958, 1303. (151) Trobisch, K., Chem. Tech. (Berlin) 9,649-54 (1957). (152) TutundZiC, P. S., Anal. Chim. Acta 18, 60-8 (1958). (153) Tutundiit, P. S., Intern. Congr. Pure and Appl. Chem. 15th C m g . (Anal. Chem.) Lisbon 1956, Vol. I, 979-86. (154) TutundZit, P. S., Mladenovit, S., Anal. Chim. Acta 12, 382-9 (1955). (155) Ware, G. C., Lob. Practice 6, 656 (1957); Sewage & Ind. Wastes 30, 1121-2 (1958).

(156) Waters, P. L., J . Sci. In&. 35, 41-6 (1958). (157) W h , D. H., Hibbs, L. E., Anal. Chim. Acta 16, 449-51 (1957). (158) Will, F. G., 2. Elektrochem: 63, 484-91,689-94 (1959). (159) Willey, A. R., Kelsey, D. F., ha.CEI!IM. 30, 1804-6 (1958). (160) Yokoeuks, S., Bunseki K a q a h 6, 696-700, 7534,756-61 (1957). (161) Yoshimura, C., Nippon Kaguku Z w h i 78, 1586-8 (1957). (162) Zsgorchev, B.,Lipchinskii, A., SheItanov, Kh., Yordanov, B., J . prakt. C h m . [4], 4,241-3 (1957). (163) Zhdanov, A. K., Khadeev, V. .4., Mirzabekov, F. M., Zhur. Anal. Khim. 13, 661-3 (1958). (164) Zhdanov, A. K.,Khadeev, V. A., Mirzabekov, F. M., Zhur. Priklad. Khim. 31,640-3 (1958).

Review of Fundamental Develoaments in Analvsis

Extraction George H. Morrison General Telephone & Eledronics Laboratories, Inc., Bayside,

N. Y .

Henry Freiser University of Arizona, Tucson, Ariz.

T

HE PRESENT REVIEW is closely patterned after the previous one (240) and represents a n extension and expansion of the subject of extraction which has been necessitated by the increased popularity of the technique in chemical analysis. As in the past, the emphasis is on the separation of inorganic-materials. This review surveys the literature from late 1957 to late 1959 and f d o m without overlapping the material presented in the previous review. W W S AND BOOKS

The book by i’dorrison and Freiser (24.2) still represents the only comprehensive treatment of extraction as applied to inorganic analysis. hZore recently their chapter in “Comprehensive Analytical Chemistry” (241) has served to present the ktest information in a rapidly developing area of analysis. An excellent book bv Iwantscheff (161) treats the use of dithizone in micro and trace analysis, and presents much useful information of this chelate extraction system. The new edition of Sandell’s book (SOori) also gives increasing emphasis t o extraction methods. A collection of papers presented a t the A.S.T.M. symposium on “Solvent Extraction in the Analysis of Metals” has been published (338)and includes some

of the more recent aspects of the subject. With regard to reviews, a number of articles on the use of extraction in analysis have appeared (14, ,966,360) in addition t o the present series. It is particularly interesting t o note the recognition of the extraction method as a valuable technique in radiochemical separations, and a chapter has been included in the latest volume of “Annual Review of Nuclear Science” (106). Another review of extractions in radiochemical separations is that by Vdovenko (357‘). The engineering aspects of the extraction technique continue to be reviemd in an excellent manner by Treybal in the series in Industrial and Ew‘neering C h i s t r y (S@), and a new edition of the book by Alders (4) has been published. DCTRACTlON SYSTEMS

Because of the greatly increasing number of extraction studies published each year, it hss been necessary to limit this section t o a representative sample of the various investigations of the distribution of metal complexes. These studies describe the extraction behavior of various elements under m e r e n t experimental conditions. Their value is

to provide suggestive information for the further development of analytical separation procedures. In view of the large variety of chemical systems reported, it has been most helpful to employ the classification of extraction system which was described in detail in the last review (840). This c l a d c a t i o n is based on the manner in which the extractable species is formed and two broad categories are the chelate and ion association extraction systems. The former includes only those extractions .involving neutral cheiates. Chelate Extraction Systems. DITHIZONE. T h e extraction of lead using both a chloroform (263) and a carbon tetrachloride (911) solution of dithimne hss been reinvestigsted. The over;d equilibrium constant of the chloroform extraction is reported as 0.12. A critical study of the cadmium and zinc separation was carried out (62). Carbon tetrachloride was reported to be euperior to chloroform or benzene for the separation in view of the higher rates of extraction attainable. The o,o’dimethyldithizone (oditoiyithiocarbazone) wa8 found to be more selective than dithizone (343). The dimethyl analog did not react with zinc,cadmium, lead, or bismuth in a citrate buffer up to pH 6.3 or in acetate buffer up to p H 5. Copper(I1) could be quantitatively VOL 32, NO. 5, APRIL 1960

37 R

extracted in the region from p H 2.0 to 4.5 whereas mercury(I1) and silver required p H values greater than unity. Polonium dithizonate and the naphthyl analog were found to sublime below 160' C. (2U2). A number of other polonium chelates including those with S-quinolinol, TTA, diethyldithiocarbamate, thiourea, thiosemicarbazide, and diphenylcarbazone were likewise found volatile. This suggests caution in the preparation of polonium extracts for counting as well as a new method of preparing carrier-free polonium samples. ~-DIKETONES.Extraction of indium with acetylacetone (299) and with TTA (896)has been studied to determine the stepwise formation constants of the indium acetylacetonate and the extent of hydrolysis of indium ion. Stepwise chelate formation constants for a number of metal acetylacetonates have been calculated from equilibrium extraction data (187). The trisacetylacetonates of iron, aluminum, and chromium were found to form solvates with two molecules of chloroform per chelate molecule (SSZ). This was not found with tetrahedral bivalent metal acetylacetonates. The solubility of rare earth metal acetylacetonates in acetylacetone, several lower alcohols, acetone, chloroform, and carbon tetrachloride was determined (96). The solubility generally increased with increasing atomic number. Chromiam(II1) (216) and vanadium(V) (115)have been extracted into acetylacetone. The extraction behavior of a series of 27 metal TTA complexes in benzene as a function of p H has been graphically summarized (320). A highly selective extraction of iron(II1) waa developed by using a TTA-xylene extraction followed bv a back-extraction of iron with hydrochloric acid (23s). TTA in 4methyl-Zpentanone has been used to extract aluminum (96) and lanthanum (121). These metals were then determined by flame photometry. Salicylic acid or glycollic acid in furfural has been applied to the problem of zirconium-hafnium, uranium-thorium, and niobium-tantalum separations (66, 3366). 8-Isopropyltropolone has been used in the extraction of several of the lanthanide and actinide metals (90). DITHIOCARBAMATES. The solubilities of a number of metal dithiocarbamates were determined in solvents including acetone, ethyl alcohol, pyridine, ethyl and isoamyl acetate, ethyl ether, benzene, chloroform, and carbon tetrachloride (311). Highest solubilities were exhibited in chloroform and pyridine. Metal exchange reactions between diethyldithiocarbamate complexes in carbon tetrachloride and metal ions in aqueous solutions a t p H 8.5 or 11 were studied ($9). The following displacement order was determined: Hg(II)>

Pd(II)>Ag(I)>Cu(II)>T1(III)>Ni(II) >Bi(III), Pb(II)> Co(III)> Co(II)> Cd

38 R

0

ANALYTICAL CHEMISTRY

(II)>TI(I)>Zn(II)>In(III)>Sb(III)> Fe(III)>Te(IV)>Mn(III)>Mn(II). Polonium was found to form a 1:l diethyldithiocarbamate complex (169). 8-QUINOLINOLS. Promethium may be extracted a t a p H of 9.3 to 9.6 and yttrium a t a p H of 8.6 into chloroform solutions of 8-quinolinol (158). Polonium forms a 1:l complex with this reagent (159). The extraction behavior of aluminum fbquinolinate and of the reagent itself has been studied and equations to account for the observed behavior have been developed (167). Vanadium has been extracted into a benzene solution of 8-quinolinol from a tartrate solution a t pH values between 2.8 and 5.5 (263). The structure of the black vanadium 8-quinolinate complex has been described as

I

/

0 :

\/ HO- V =O I\

,'o

and a number of its reactions with alcohols and amines have been studied (27). Extraction of the vanadium 8-quinolinate has been used to concentrate the metal prior to spectrographic determination (16). Uranyl 8-quinohnate has been shown to contain three moles of reagent equivalently coordinated (46). The anion U02(CBHgNO), is stable in alkaline solutions andmaybe extracted upon pairing with cations such as tetraphenylarsonium ion and quaternary ammonium ions (61). Separation of niobium from tantalum has been achieved by extraction a t p H 10 with 5,7dichloro-8-quinolinol in nitrobenzene, amyl acetate, or bis(2chloroethyl) ether (4). l-~ITROSO-2-NAPHTHOL. Neptunium(V) can be almost quantitatively (90 to 9501,) extracted in a butyl alcohol solution of 1-nitroso-%naphthol from a solution in the p H range 8 to 10 (6). DIOXIMES. An increased sensitivity for nickel is obtained using 4propyl1,%cyclohexanedione-dioxime and extracting with xylene (21s). PYRIDYLAZONAPHTHOL( PAN). Cobalt may be extracted with PAN into chloroform (116). BENZOHYDROX4MICACID. Vanadium can be extracted as the benzohydroxamate complex into octyl alcoholcarbon tetrachloride (165). Ion Association Systems. ALKYLPHOSPHORIC ACIDS. Organophosphoric acids have been shown to dimerize in organic solvents (89,174)to an even greater extent than do carboxylic

acids. Extraction of lanthanides and actinides into toluene solutions of various dialkylphosphoric acids has been shown to involve three molecules of the dimer to one of metal in a chelate-like structure (276). Chelation seems also t o be involved in dibutylphosphoric acid extraction of uranium (IS5).

RO

O--H*..O

OR

M = lanthanide or actinide R = 2-ethylhexyl, etc. -4ssociation of bis(2-ethylhexyl)phosphoric acid in hexane is related to the formation of chain polymers of uranium extraction complexes (16). Tributyl phosphate and dibutylbutylphosphonate have been found to increase greatly the extent of extractability of U(VI), Pu(VI), and Pu(1V) with bis(2-ethylhexyl)phosphoric acid whereas the extraction of U(IV), V(IV), Al, hIo(VI), Fe(III), Ti, and Th showed either no significant improvement or some decrease (68, 1'7.2). Mono(2-ethylhexy1)phosphoric acid in toluene has been applied to the ertraction of Np(1V) (276). The extraction is reduced by use of tributyl phosphate, which aids in returning the neptunium to the aqueous phase. The application of this monoalkylphosphoiic acid to the separation of certain actinides and lanthanides in oxidation states 111, IV, and VI shows promise. Monodecylphosphoric acid was used to advantage for uranium extraction (314). Uranium(1V) has also been extracted from phosphoric acid using bis(2butylocty1)pyrophosphate in diluent solvents ($74). TRIALKYLPHOSPHINE OXIDES. Trialkylphosphine oxides were found to be the best of all neutral phosphorylated solvents for uranium and plutonium in accord with their having the greatest basicity (47, 135, 171). White and Ross have continued to develop the interesting extractant trioctylphosphine oxide. Analytical extraction procedures for iron(II1) out of hydrochloric acid (295), chromium(V1) out of hydrochloric or sulfuric acid (207, 367), uranium(V1) out of a nitric acid solution ( I @ ) , thorium out of hydrochloric or nitric acids (294),zirconium out of hydrochloric or nitric acids (368),and for titanium(1V) out of a thiocyanate medium (S72)have been developed. An interesting development in the completion of the analysis was made by adding a color-forming reagent directly to the extract; diphenylcarbazide for chromium (ZO?),dibenzoylmethane for uranium (14.2) [see also (2U5)I. A variety of phosphorus compounds including acid and neutral phosphate, phosphonate, and phosphite esters as

w-ell as triphcnylphosphine form orange complexes with peroxymolybdic acid (99). When these complexes are heated t o 100” t o 165O, oxygen is lost and intensely blue products form. Both orange and blue forms are soluble in organic solvents. CATIONIC CHELATES. 2,4,6-Tripyridyl-s-triazine forms a n intense violet-colored complex with iron(I1) that may be extracted into nitrobenzene (67). SITRATES. The continuing tremendous interest in tributyl phosphate (TBP) in nitrate extractions is amply demonstrated by the large number of publications dealing with various aspects of T B P use (217). hlam transfer data for the estraction of nitric acid or water into TBP-hesane ITere obtained ( 2 6 5 . I t was concluded that of the three steps in nitric acid est’raction, (1) trmsfer of HKO3from the aqueous phase to the interface. ( 2 ) formation of the TBP.HNOa a t the interface, and (3) transfer of the complex T B P . HX03 from the interface to the organic phase, the third is rate-determining. Similar conclusions are reached for the extraction of uranyl nitrate into TBPkrrosine from self-diffusion coefficient determinations ( i 2 8 ) . The role of the interfacial barrier was demonstrated by t h e use of :t surf:tctnnt in retardation of estrxction. The transfer rates of other nitr:itcs including yttrium, zirconium, c ~ l i d t thorium, . and neptunium to T B P ha1-e been shown to fall somewhat Kith iiic>rrasingatomic number (g19). ‘l%e many equilibrium studies include sJ-stenisfor uranium (2!+,65,83,297,298, 3iiii, 306, 326‘), thorium (101, 139, 39$, plutonium (139, 39.9): actinides (3,.13.2, I ; I ) . cwium ( 1 0 0 , 257), lanthanides ( 3 1 , Q,.’.ItAS), cobalt(I1) ( I % ) , bismuth (14O), ruthenium (41), as well as nitric acid (65’. 109, 352) and hydrogen peroside (35.3). These studies confirm the, presence of T B P in a coordination comples with the metal. The distribution ratio of uriinium was found to decrease loguvithmically wit’h the temperature (Sd i .

The use of various back-estraction agents for uranium has been evaluated (307). Ammonium oxalate was found most effective alt’hough carbonates also h:iye utility. The effect of butylphosphoric acid impurities upon estraction with T B P has been noted (89, 322). Anomalous zirconium, niobium, and ruthenium extraction ,Kith TBP may ibly be due to similar impurities ). Below 10-3M; the monobutyl acid, and below 10-4M the dibutyl acid \\-illnot affect plutonium extraction Kith rrw (922). The application of zirconium-hafnium separation via T B P extraction to process technology has also been described (7Oj. Further studies of uranyl nitrate j

and rhenium (280). It is possible to with ether have been made. Equilibdetermine from 0.2 to 25 y of boron in rium studies (358) and heats of solusteel b y extracting BF4- with methylene tion (359) show the formation of mixed blue cationinto l,2-dichloroethane (272) hydrate-etherates. The detailed effects THIOCYANATES. Uranium may be of ammonium nitrate (52, 53) as well as extracted to over 80% into tributyl other salting-out agents (137, 169, 188) phosphate, mesityl oxide, or methyl on uranyl nit,rate ether extractions have ethyl ketone from phosphoric acid solubeen described. tions using a twentyfold excess of An early evaluation of 45 organic ammonium thiocyanate (264). It W M solvents for uranium and protactinium found possible to extract iron(II1) nitrate extractions has recently been quantitatively as the thiocyanate comdeclassified The use of ethyl plex using methyl thiocyanate as solether for extraction of thorium nitrate vent (290). The extraction of niobium (188)) ruthenium (258), cerium(1V) thiocyanate has been studied (349). (31 6), beryllium and lanthanide nitrates The effect of solvent on the extent of (d56)has also been investigated. cobalt thiocyanate extraction has been The trinitrato uranyl complex has shown consistent with the basici!y been predicted in butyl ether extraction (electron density and steric availability) (361). Other solvents evaluated in(43). Basic strengths of various solclude cyclohexanone for urnnium-thovents relative to nater have been studied riuni separation (313) and for ruthenium using cobalt thiocyanate and halides a8 (i?091, diisohutylcarhinol for protactinreference acids (13). Cobalt(l1) which ium (966),methy: isobutyl ketone for does not estract into acetylacetone alone actinide elements :ind fission products will do so if thiocyanate is present in (302), diethyl Cellosolre for thorium the aqueous phase. This is of use in the ( I @ ) , and dibutyl CarbitoliButes) for extraction of cobalt following the prior fission products $?IS). .in unusually extraction of interferences with acetylselective extraction procedure for uraacetone ( 4 6 ) . nium using a n acid-deficient aluminum HALIDES. Diamond (79) has connitrate solution containing ietrnpropyltinued his development of quantitative ammonium nitrate with met!lyl isobutyl extraction equilibrium expressions for ketone as solvent has becn developed certain halide extraction systems. The (39, 204, 205). It is possible in this role of the oxygen-containing solvent manner to separate uranium qiinntitain “oxonium” extraction systems was tively in one step from 1-year cooled cizrified by the recognition of the hyproducts. HIGH MOLECULAR WEIGHT AJIIP~ES. drated hydronium ion, HpOc+. as the cation which pairs Kith the metal chloroHigh molecular weight amines in acid anion in the estractabie complex (80). solutions form large cations capable of This cation forming estractable ion pairs Kith a variety of anions. The extractior, equilibria of a number of secondary and tertiary amine sulfates and bisulfates into either benzene or carbon tetrachloride (33) have been investigated. Sulfate was found considerably more estractable than bisulfate, and benzene was a better solvent than carbon tetrachloride. Methyldioctylamine and tribenzylamine have proved to be quite useful and versatile in the extraction of mineral, organic, and complex mctal must be stabilized by hydrogen bonding acids (229). Methyldioctylammonium ion pairs with the chloroanions of to the solvent. Thus, in “oxonium” extractions the coordinating ability of polonium, plutonium, uranium, zirconium, hafnium, and protactinium to give the solvent is of central significance. I n contrast, as quaternary ammonium complexes that are quantitatively extracted into xylene (2.59). Trioctyl(or..arsonium, etc.) ions are stable without this coordination, the nature of the amine has also been used in uranium chloride extraction ( 2 6 ) . solvent in such extractions is of much less importance. Sulfato complexes of uranium (VI) extract into benzene with didecylamine Study of the extraction behavior of protactinium out of hydrochloric acid (34, 214) and trioctylamine ( 7 ) . The solutions (124) has prompted the dedata indicate the formation of 2.1 sulfatouranyl anion but little or no 3:l velopment of an explanation similar complex. to that of Morrison and Freiser (242) Falling into this class also are the based on ion-pair formation for extraction from halide solutions. The extracnitrogen-containing dyes such as Rhotion of Protactinium, niobium, and damine B and others. The formation of tantalum out of hydrochloric acid into extractable ion pairs with basic dyes diisopropylcarbinol has been studied provides the basis of new photometric methods for tantalum, boron, indium, (50)’ I

(la).

VOL. 32, NO. 5, APRIL 1960

39 R

Studies of iron chloride extraction include the observation that a mixture of methyl isobutyl ketone and amyl acetate is superior to either solvent alone (59)

0

The use of methyl isobutyl ketone as a solvent in chloride extractions has been systematically explained (111, 124). Ions that are significantly extracted are iron(III), 99.9%; antimony(V), 99%; tin(IV), 99%; arsenic(III), 91%; arsenic(V), 28%; selenium(IV), 99%; tellurium( IV), 97% ; germanium(1V) , 98%; chromium(VI), 82%; vanadium (W, 87%; molybdenum(VI), 95%. Comparative effectiveness of solvents for chloride extractions has been explored. For antimony(V), the most effective of several ethers was found to be isopropyl ether (SI@, whereas for molybdenum(VI) results obtained with ethyl benzoate were found to be superior t o those of other esters or alcohols (377). A similar study for iron(II1) indicated that tributyl or triamyl phosphates were most effective (19). Tributyl phosphate in butyl ether has also been employed for the extraction of other chlorides (111, 154, 238). It F a s found possible to achieve separation of platinum and palladium of rhodium extracting in a countercurrent manner from a 3N hydrochloric acid solution into tributyl phosphate (25). Phosphoric or oxalic and hydrofluoric acids have been usid as maaking agents in the separation of molybdenum from tungsten by extraction from a 6N hydrochloric acid solution into ether (S76). The separation of zinc and cadmium chlorides using h c t a n o l has been studied (237). The distribution of mercury(I1) chloride, bromide, and iodide between water and benzene has been used t o determine the formation constants of mercury halide complexes (608). The stability increases from chloride to iodide. Anionic silver complexes such as AgC1,-, Ag(CNS)*- may be extracted as ion-pair complexes with tributylammonium ion into dichloromethane (379). Similarly, silver, copper(I), gold(I), thallium(1) and lead(I1) extract into dichloromethane using tributylammonium iodide (580). Silver iodide complexes also extract into cyclohexanone (330). Antimony(II1) extracts into benzene from iodide-containing solutions of H2S04or HClO, as SbI, (286). With cyclohexanone, one obtains better s e p aration of gallium from indium as iodides than with ether (133). The extraction of the hydrohalogen acids and of lithium halides into tributyl phosphates has been studied (17). PERCHLORATES. The extraction of perchloric acid (282) and uranyl per-

40 R

a

ANALYTICAL CHEMISTRY

chlorate (321) into T B P has been reported.

NONAQUEOUS EXTRACTION SYSTEMS. Plutonium may be separated from UCb using magnesium chloride in the temperature range 1150" t o 1250" C. (220). APPARATUS

Although progress has been made in the design of extractors for engineering purposes (348), very little has been done in the development of apparatus for use in chemical analysis. As expected. the separatory funnel remains as the most convenient apparatus for batch extraction, the technique with the greatest applicability to analytical problems. An interesting versatile technique to facilitate separation of phases following extraction is reported by Kuznetsov (189, 190) who dissolves a n extractant in a lo\v-melting organic solid such as paraffin or stearic acid, for example. The extraction is performed a t a temperature assuring a liquid organic phase. Following extraction, the mixture is cooled and the aqueous phase is easily decanted and washed from the solid. A few modifications have been made on continuous extractors, which are used in those cases n here the distribution ratio is relatively small. Those innovations that have been introduced were prompted by very specific problems, and consequently, are of limited general applicability. A micro-miser-settler a p paratus with a companion constant delivery device has been designed for use in countercurrent extraction (170). Another innovation in continuous extraction is the immobilization of the aqueous phase with regenerated cellulose in order to avoid the formation of stable emulsions (346). A few aids have been suggested for facilitating the use of Soshlet extractors (196, 245, 661) . With regard t o the discontinuous countercurrent distribution method of extraction used in fractionation problems, the apparatus of Craig and Post (71) continues to be of general use. A nen- design of apparatus by Raymond (687) has been claimed to offer the advantages of compactness, erne of adjustment, and flesibility in use. The apparatus includes both automatic drive mechanism and a 100-tube extraction train on a base 24 inches square. PROCEDURES

Within the past 2 years a large increase has been noted in the number of papers devoted t o analytical procedures involving extraction methods of separation. I n view of the large number and many similar procedures, no attempt has been made to include them all. As in the past review, a representative collection of studies are arranged in Table I according to elements,

with information, wherever possible, on the conditions employed and the s e p arations achieved. I n many cases the extraction noted is just one step in a more complete procedure involving other separation methods. The final method 01 estimation obviously enters into the choice of extraction. Most of the published extraction procedures involve the isolation of individual elements for subsequent quantitation. However, there has been a recent trend to use solvent extraction as a valuable adjunct in trace analysis, whereby a large number of impurity elements are concentrated simultaneously by a series of extraction steps, follon-ed by spectrographic analysis of the concentrate. Thus, impurities in high purity materials such as the metals and compounds of aluminum (178), titanium (179), zirconium (180), and selenium (181) have been concentrated by extraction with such reagents as the ammonium salts of pyrollidinedithiocarbamate and tetramethylenedithiocarbamate, dithizone, and 8-quinolinol. A series of estractions was performed on the aqueous phases at various values of pH to ensure maximum extraction of as many elements as possible. ii similar approach has been used to analyze for trace elements in silicate rocks (199) and noble metals in rocks (129) using the appropriate extraction reagents. Alternatively, trace impurities in high purity indium have been concentrated by extraction of the matrix, followed by polarographic analysis of the aqueous phase (279). Khen a multielement analysis ie desired, concentration by extraction folloir ed by emission spectroscopy or other methods of estimation capable of resolving complex mixtures of trace elements, is a most useful approach. I n radiochemical analysis, however, it is often desirable to isolate each element prior to counting. I n connection with neutron activation analysis of trace impurities, 1Iorrison and Cosgrove (239) have devised a solvent extraction scheme for the rapid separation of a mixture of 30 elements. Fractionation of the initial complex mixture into a number of smaller groups is accomplished by a series of extractions with chloroform employing the following chelating reagents: dithizone, a-benzoinoxhe, CUP ferron, 8-quinolinol, and ammonium diethyldithiocarbamate. The ex-tractions, using the appropriate reagents, are performed sequentially on an aqueous phase whose pH is progressively increased. The elements present in the respective groups are eventually isolated by a variety of solvent extraction systems, depending on their chemistry. West and Mukherji (365) have devised a separation and microidentifkation scheme for 35 metallic ions based on

Table 1.

Element Extracted Aluminum

Antimony

Arsenic Beryllium Bismuth

Boron Bromine

Cadmium

Cerium

Chlorine Chromium

Cobalt

Solvent System (before hlixing) Aqueous Phase Organic Phase pH 5, 8quinolino1, acetate Chloroform pH 9, &quinolinol, acetate Chloroform Nitrilotriacetic acid, 8-quinolinol, NaCS Chloroform pH 4.5, HCl, cupferron Chloroform &Quinolinol, thioglycolic acid, KaCN Trichloroethylene pH 1.0-1.2, fuchsin, Na citrate Amy1 acetate pH 0.6-1.2, malachte green, Na citrate Amyl acetate Pb HCl, SnCL, NaNOz, urea, crystal violet Toluene Pb, Sn, Hg, Ni, Cr 6N HCl Ethyl acetate 10.5-11N HCl Chloroform Hydrazine sulfate, ( N H I ) ~ I L l o O l Isoamyl alcohol H2SOI, KI, NazSzOs Diethyldithiocarbamic acid in chloroform Mixed fission pH 6.0-9.0, acetylacetone, EDTA Chloroform products EDTA, weakly acidic Acetylacetone pH 8.1-%hydroxyquinaldine Chloroform Pb, Sn Thiourea in chloroform Kd, Pr Diethylammonium diethyldithiocarbamate in chloroform U pH 5.5-6.0, acetate Diethylammonium diethyldithiocarbamate in chloroform V, Nb pH 11-12, diethyldithiocarbamate, tar- Chloroform trate cyanide pH 3.4, HF, methyl violet Benzene c1 KBrOa, HzSO, diisobutylene Petroleum ether HSO1, KMnO, U Carbon tetrachloride c1 HNOa, KMnO. Carbon tetrachloride In, Th pH 5, tartaric acid, KSCN, acetate Pyridine-chloroform (1 :20) pH 11-12, diethyldithiocarbamate V, Nb Chloroform Tartrate, cyanide, hydroxylamine hydro- Dithizone in chloroform chloride Nitrate Tributyl phosphate pH 9.6, methylene blue Benzene pH 8.5, tartrate 0.1% 5,7-dibromo-&quinolinol in chloroform AgNOs, HCHO Dithizone in chloroform Fe, Ni, U, Cu 1M HC1 Hexone 1-Naphthylamine, tartaric acid Isoamyl alcohol Sulfate or chloride ALkali metals 0.231 trioctylphosphine oxide in benzene 6M HC1 Trioctylphosphine oxide in cyclohexanone A diantipyrylmethane derivative, NH,- Chloroform SCN pH 5.6, KSCN, pyridine Hexone 2-Nitroso-1-naphthol, citrate Isoamyl acetate 1-Nitroso-%naphthol, alkaline citrate Chloroform solution pH 6.3-7.6, borate b d e r 5,8-Quinolinedionedioximein isoamyl alTh

Copper

Zn, Cd, Bi

Many elements Cd Fe Fe Silicate rocks

Germanium

References

( I8, 877, 560) (134, 578) (117) (299) (96)

(23) ( 260 )

(850)

(342) (46, 175) (165)

(198)

(824) (224)

(947) (880)

(176) (1W

(887) (537) (89, 7 6 ) (8811

(807) (366) (328 1

(118)

pH 3-6, 1-(%pyridylazo)-2-naphthol pH 4-7, phosphate b d e r Acetate, hydroxylamine 8-Mercaptoquinoline

M a y elements Fe

Gallium

Extraction Procedures

Separated from Many elements Ti, V, others

2,2'-Diquinolyl in 1-hexanol Chlorobenzene, chloroform, or amyl acetate Diethyldithiocarbamate, EDTA Carbon tetrachloride Na diethyldithiocarbamate, citric acid, Chloroform EDTA p H 3 - 4 , P b diethyldithiocarbamate Chloroform KHzPOI Diphenylcarbazone in benzene Ni diethyldithiophosphate in carbon H~SOI tetrachloride pH 3.5, acetate b d e r , Cd diethyldithio- Carbon tetrachloride carbamate pH 2, citric acid, hydroxylamine Dithizone in carbon tetrachloride pH 4,5, neocuproine, citrate, hydroxyl- Chloroform amine Pyridine, KBr, hydroxylamine Chloroform pH 6, KCl, acetate 0.04M Ebquinolinol in chloroform NHSCN, pyridine Chloroform 6.5N HCI, T i c & Isopropyl ether HC1 Amyl acetate 5,7-Dibromo-8-quinolinol Chloroform pH 3.9, Shydroxyquinaldine, hydroxyl- Chloroform amine, acetate 6N HCI, Rhodamine B Ethyl ether-benzene (1 :3) Chloroform, carbon tetrachloride, hexone Isoamyl alcohol

(191) (81j

(11% 146)

(670) (185)

(191) (48) (888) (873) (106, 166) (168)

(40) (387)

(505 1

(77, 861,916) (318)

(Conlinued)

VOL 32, NO. 5, APRIL 1960

41 R

Element Extraotad Gold Iodine Indium

Table 1. Extraction Solvent System (before Mixing) Se arated ET0m Aqueous Phase Organic Phase References Cu, Cd, and others 3N HBr Isopropyl ether pH 1, methyl violet Trichloroethylene Te 0.2N HCl, H20z Tributyl phospliate 2.5N HBr, Rhodamine B Benzene Fe HBr, TiCL Ethyl ether HBr, HzG Isopropyl ether Cu, Cd, Zn 5N HBr Butyl acetate Ga 0.5M NaI, 1M HClO, Hexone Th pH 5.5, 8-hydroxyquinaldine Chloroform Be 0.1yo,5,7-dibromo-8-quinolinol in chlopH 3.5-4.5, phthalate roform

U A1 Many elements

Lanthanum

Chloroform

Bathophenanthroline, citrate, EDTA Bathophenanthroline, NH,SCN, KCN, hydroxylamine pH 3-6, 2,2'-dipyridyl, acetate, hydroxykmine, Na alkyl sulfonate 6N HC1 HCl or LiCl pH 3.4, tributylammonium acetate, NHISCN Tributylammonium acetate, ferron

Hexyl alcohol, isoamyl alcohol Chloroform

pH 5, acetate buffer Many elements

Lead

pH 2.2-5.5, 8-quinolinol

T1 and other metals Many element8

Chloroform Ethyl ether Hexone Isoamyl acetate Isoamyl alcohol 0.1.44 TTA in hexone

Dithizone in chloroform or carbon tetra- (82, 119, 152, chloride 283, 362) (22, 110, 29a) Na diethyldithiocarbamate, citrate, or Toluene-pentanol, chloroform tartrate Diethylammonium dithiocarbamate in (212, 226) Acid solution chloroform or trichloroethane HC1, NHdF, Na rhodizonate Chloroform, carbon tetrachloride, or (64) chlorobenzene Citrate, KCN

Manganese

Ce, U

pH 7.5-8.0, 8.2-8.6, Na diethyldithiocarbamate, citrate

Chloroform

(63, 149)

Molybdenum

W

HCl, 602 HCl, NaF

Toluene-3,4-dithiol in amyl acetate Morin in butyl alcohol

(8)

Toluene-3,4dithiol, hydrazine sulfate HC1 0.05N HC1, K xanthate KSCN, NaF, EDTA KSCN, NaF, SnC12 KSCN, NaNO1, SnC12 KSCN HgNOs K S C g acid solution HCl, H3P04

Carbon tdtrachloride a-Benzoinoxime in chloroform Toluene Isoamyl alcohol-carbon tetrachloride Butyl acetate Ethyl ether-light petroleum (2: 1) Ethyl ether Butyl acetate Ethyl ether 0.5M TTA in xylene

U Cr, V, Co, Ti W U Re Zr

w

Neptunium Nickel

U, Pu, Am, Cu, 1M HCl, FeClz

and fission products Co and other ele- Dimethylglyoxime, ments KCN

alkaline solution, Chloroform or carbon tetrachloride

Fe, Ti, 9 1 pH 2.2, diethyldithiocarbamate U, Th, Cu, Fe, Cr pH 5-5.5, 4methylcyclohexane-1,2-dionedioxime, tartrate, thioglycolic acid pH 7-8, 4isopropyl-l,2-cyclohexanedionedioxime co pH 4.6, KSCN, pyridine Niobium

Pu,

u

Palladium

Phosphorus

KSCN, HC1, SnCln 6.3M H2S04, 1.6M H F HC10, coniferin pH 1.2-2.6, diallyldithiocarbamidohydrazine 6N HCl, thio-oxine, thiourea ("daMoO4 (NH,)1Mo04, aafranine

Plutonium

42R

a

Th, Zr, Nb, Rn,.al- 4.8M HCl kali and alkaline earths, rare earths 1M HNO1, NaXOz, hydroxylamine

ANALYTICAL CHEMISTRY

( 334 1

(11)

(115)

(197) (210)

(369) (160)

(344)

(1256) (376) (228, $38)

(161, 160, 177, 184, ,955,

Chloroform, isoamyl alcohol Toluene

YdL (64, 350) (30)

Xylene-

(213)

Chloroform

(103)

Ethyl ether or butyl alcohol Hexone Chloroform Chloroform

( 349 ) ( 364 )

Chloroform Butyl alcohol-chloroform, isobutyl alco- (38, 58, 78, hol, isoamyl alcohol, butyl acetate 157, 271, 300, 364) Acetophenone (84)

5y0 Tri(iso-octyl) amine in xylene

(,BO)

0.5M TTA in xylene

( $34 )

Procedures (Confinued)

Element Extracted Protactinium Rkenium Ruthenium Selenium Silver Tantalum

Tellurium

Thallium

Thorium

Solvent System Separated Aqueous Phase from Pa(1V) from Pa(V) 6 N HC1 Pa-233 from T h 6 N HC1 Pa-233 from Nb-95 6 N HCl, oxalic acid KSCN, HCI, SnCll As tetroxide CS pH 6-7, diaminobenzidine, HCOOH Perchlorate Nb, Ge, Zr, Ti, Cr, HF-HC1 Sb Nb. Zr HF-HqSO, H F - H ~ O ; ,(NH,),so~ Nb: Zr pH 2.3, HF, methyl violet 2-10N HCI Te(1V) from Te(V1) 3-6Ar HCI Bi, Mo, W

Sb, Au, Fe, W Many elements Ores

u,

Tin Titanium

Tungsten Cranium

Vanadium

Yttrium Zinc

Zirconium

Bis(dimethylaminopheny1) antipyryl-

(before Mixing) Organic Phase Hexone or tributyl phosphate in benzene Diisobutylcarbinol Diisobutylcarbinol Butyl alcohol Carbon tetrachloride Toluene Mercupral in benzene Hexone Cyclohexanone Acetone-isobutyl alcohol Benzene Tributyl phosphate

Reference8 (39) ($36) (936) (

W

j

9462

(888) (76)

(863) (goo,347)

(148,147)

Na diethyldithiocarbamate in tributyl (147) phosphate Benzene-carbon tetrachloride ( 2 :3) (49)

carbinol Br water, phenol, methyl violet

Benzene, toluene

pH 10, cyanide Br water, Rhodamine B "03, Al(

Dithizone in chloroform (267) Benzene (867,868) Mesityl oxide, hexone-tributyl phosphate ( I , 8,9,97,

NP, Pu, Ra, pH 1.4-1.5, HT03 Am, Cm pH 6.5, quercetin pH 1.0, 5,7-dibromo-8-quinolinol Na diethyldithiocarbamate Cupferron, crystal violet, TiCl3 pH 5.5, cupferron, EDTA Al pH 2.2, 8-quinolino1, H202 pH 5.3, salicylaldoxime, thiourea cu NHBCN, HC1

(9.2,93, 886, 31 9 )

196)

0.531 TTA in xylene

(196,831)

Isoamyl alcohol (6) Isobutyl alcohol Benzene 4Heptanone Hexone (66) Chloroform (360) Isobutyl alcohol (18) 0.0lM tri-n-octylphosphine oxide in (378) cyclohexane pH 2.4-4, tri-n-butylsmmonium acetate, Chloroform (3881 sulfosalicylic acid HCI, dithiol Butyl acetate (803) W HCI, SnCln Toluene-3,4-dithiol in amyl acetate (334) Many elements Na diethyldithiocarbamate, EDTA, pyr- Benzene, chloroform, ethyl acetate, isoidine amyl alcohol-benzene Nd, Pr pH 5.5-6, acetate Diethylammonium diethyldithiocarbamate Th and others o-Dichlorobenzene pH 7.0 Butyl acetate Th, Bi 8-Quinolinol in hexone Many elements Tributyl phosphate-chloroform, tributyl phosphate-benzene, tributyl phosphate-iso-octane, hexone 2-methyl cyclohexanone, dibutylcarbinol, ethyl acetate NH4SCS, EDTA, ascorbic acid Tributyl phosphate-carbon tetrachloride "03, HCI 0.1M tri-n-octylphosphine oxide in cyclo. . . 5% hexane tri(iso-octy1)amine in xylene Many elements 7M HC1 Many elements Tetrapropyl ammonium nitrate, Hexone Al(N03)3 pH 3.5-4.5, &quinolinol, acetate Chloroform, pentanol (94% 846) Fe, Al, Cr, Mn: pH 3.8-4.5, NaF 0.3% 8-quinolinol in isobutyl alcohol (376) c Co, Ni KSCT, SnCh Ethyl acetate, hexone pH 0.4-0.5, Na diethyldithiocarbamate, Amyl acetate U tartrate PH 2 Acetylacetone-chloroform (1 : 1) (816) Sr 0.1M "03 Dibutyl phosphate in chloroform (88) Pb HXO,, NH,SCN Ethyl ether (10) Sulfocyanate Isoamyl alcohol (336) Many elements p H 5.7-7.0, acetate, tartrate, KCN Dithizone in carbon tetrachloride or (166,371) chloroform Weakly alkaline, Na diethyldithiocar- Ethyl ether or chloroform ( 188, 333) bamate Many elemente 7 M HCI, NHISCN Tri-n-octylphosphine oxide in cyclohex- ( 3 7 9 ane Many elements 7 M HNOI Tri4octylphosphine oxide in cyclohex- (879) ane

VOL. 32, NO. 5, APRIL 1960

43 R

solvent extraction fractionation of the mixture into 5 groups using the chloride, thiocyanate, acetyhcetone, and diethyldithiocarbamate extraction systems. The residual aqueous phase comprises the fifth group. The extracts were then further resolved by the ring oven technique, and the individual ions were identified by meansof spot tests. Although the main application of solvent extraction t o inorganic analysis in the past has been for the separation and determination of metals, recent studies indicate that the technique can be conveniently applied t o the analysis of anions. One approach has been to measure the retarding effect of the anion on the extraction of metal complexes. Thus, small amounts of fluoride have been determined by quantitating its fading effect on the extraction of the colored thiocyanate complex of iron (339-341). Similarly, fluoride has been determined by measuring its effect on the extraction of radioactive hafnium181 by trioctylphosphine oxide (206). More direct comple.xation reactions between anions and various organic reagents have been used to form extractable species which can be used for the determination of these anions. Thus, cyanide ions react readily with tris(1,lCphenanthroline)-iron(I1) t o form an extractable dicyano complex (309) and nitrite ions have been shown t o form a red azo dye with the appropriate reagent which is quantitatively extracted by organic solvents (91). ACKNOWLEDGMENT

The authOrs gratefully acknowledge the assistance of Joel Spivak and J. F. Cosgrove in the preparation of the manuscript. LITERATURE CITED

(1) Alberti G., Bettinali, C., Salvetti, F., Santoli, b., Ann. cham. (Rome) 49, 199 (1959). (2) Alberti, G., Bettinali, C., Salvetti, F., Santoli, S., Proc. U . N . Intern. Conf. Peaceful Uses A h i c Energy, %nd Geneva vol. 3 , p. 565, 1958. (3) Alcock, K., Best, G. F., Hesford, E., McKay, H. A. C., J. Zmrg. & Nuclear Chem. 6,328 (1958). (4) Alders, L., "Liquid-Liquid Extraction," 2nd ed., Elsevier Publishing Co., Amsterdya, 1959. (5) Alimann, I. P., Golovina, A. P., Kuteinikov, A. F., Byull. Nauch.-Tekh. Inform. Min. Gml. i Okhrany Nedr. S.S.R. 7, (12) 61 (1957); Referat. Zhur. Khim. 1958, 53431. (6) Alimarin, I. P., Zolotov, Y. A., Pal'shin, J., Doklady Akad. Nauk S.S.S.R. 124, 328 (1959). (7) Allen, K. A., J . Am. Chem. SOC.80, 4133 (1958). (8) Almassy, G., Vigvari, M., Magyar K&. Folydirat 62, 332 (1956); Hung. Tech. +bstr..9, (4) 29 (1957):. (9)1And elkod, M., Rajkovn, D. A., U. Peaceful Uses of Atomc Energy," Vol. 28, p. 210, United Nations, Geneva, 1958.

ki.

44R

ANALYTICAL CHEMISTRY

(10) Armadola de Alderuccio, H., Rev. o h a s sanit. nu&& (Buenos Aires) 21, 142 (1957). (11) Ashbrook, A. W., Chemist Analyst 48, 5 (1959). (12) Awaya, H., Miyoshi, S., Motojima, K., Japan Analyst 6,503 (1957). (13) Babko, A. K., Shvechenko, L. L., Dopwidi Aliad. Nauk Ukr. R.S.R. 1958, E O . (14) Babko, A. K., Zhrovskii, F. G., Zavodska a Lab. 25, No. 1, 42 (1959). (15) Baes, F., Zingaro, R. A., Coleman, C. F., J . Phys. Chem. 62, 129 (1958). (16) Baggett, W. L., Huyck, H. P., ANAL. CBEY. 31, 1320 (1959). (17) Baldwin, W. H., Hi 'ns, C. E., Soldano. B. A.. J. Phvs. vhem. 63. 118 (1959). (18) Banerjea, D., Z . a d . chem. 159,123 (1957). (19) Bankmann, E., Specker, H., Zbid., 162, 18 (1958). (20) Bankovskii, Y. A., Ievinsh, A. F., Zhur. Anal. Khim. 13, (5) 507 (1958). (21) Ibid., p. 643. (22) Baskova, Z. A., Zbid., 14, 75 (1959). (23) Bad, Z., Plasil, Z., Stangl, R., Rudy 5, (Prague) No. 12, 1 4 (1957). (24) Beranova, D., Maly, J., Vesely, V., Jadernd energie 4, 145 (1958). (25) Berg, E. W., Senn, W., Anal. Chim. Acta 19, 12 (1958). (26) Bizot. J.. Tremillan., B... Bull. soc. . chim. Frank 1959, 122. (27) Blair, A. J., Pantony, D. A., Minkoff, G. J., J. Zmrg. & Nuclear Chem. 5 , 316 (1958). (28) Blake, C. A., Homer, D. E., Schmitt, J. If., U . S. Atomic Energy Comm. Rept. ORNG2259 (1959). (29) Blundy, P. D., Analyst 83, 555 (1958). (30) Blundy, P. D., Simpson, M. P., Zbid., 83, 558 (1958). (31) Bochinski, J., Smutz, M., Spedding, F. H., Znd. Eng. Chem. 50, 157 (1958). (32) Bode, H., Tusche, K. J., 2. anal. Chem. 157, 414 (1957). I (33) Boirie, C., BuU. SOC. d i m . France 7, 980 f 1958). (34) Ii7d.T p. 1088. (35) Bolleter, my. T., ANAL. CHEM. 31, 201 (1959). (36) Booman, G. L., Holbrook, W. B., U . S. Atomic Energy C m m . Rept. IDO-14435 (1958). (37) Booth, E., Evett, T. W., Analyst 83, 80 (1958). (38) Booth, E., Parker, A., U . K . Atomic Energy Authority Rept. AERE-A/M-4

8.

\-___

(39) ~o;;issi~resG., Vernois, J., compt. rend. 244, (205 2508 (1957). (40) Bovd. C. C.. Easlev. W. K.. J . Chem. ' Educ."3S. 406 i1958).- ' (41) Brown, P. G. hi., Fletcher, J. M., Warn, A. G., U. R. Atomic E p 4 y AEREC/R-2260 Author& Rept. (1957). " (42)Brown, W. B., Steinbach, J. F., ANAL.CHEW31, 1805 (1959). (43) Brubaker, C. H., Johnson, C . E., J. Znorg. & Nuclear C h a . 9 , 18 (1959). (44) Bruninx, E., Irvine, J. W., Mass. Inst. Technol. Lab. Nuelear Sci. Rept., Feb. 28, 1957. (45) Buchanan, J. D., J. Znorg. & Nuclear Chem.7 , 140 (1958). (46) Bullwinkel, E. P., Noble, P., J. Am. Chem.SOC.80, 2955 (1958). (47) Burger, L. L., J. Phys. Chem. 62, 590 (1958). (48) Busev, A. I., Ivanyutin, M. I., Vestnik M o s h . Univ., Ser. Mat., Mekhan.. Astrm.. Fiz. i Khim. 13.. (2) ., 177 (1958). (49) Busev, A. I., Tiptsova, V. G., Nauk

Doklady V y s s M Shkoly, Khim. i Khim. Tekhnol. 1, 105 (1959). (50)Casey, A. C., Maddock, A. G., J . Inorg. & Nuclear Chem. 10,289 (1959). (51) Catino, A., Oddone, A., Rass. chim. 10, 13 (1958). (52) Cepelsk, J., Maly, J., Machacek, V., chem. lzsty 51, 2195 (1957). (63) Cepelak, J., Maly, J., Machacek, V., Collection Cmchoslov. Chem. Communa. 23. 1509 (1958). (54) 'Ch'en,' N.. K.,Chu, C. H., Ch'in, H. H., S h k g L.i Hs&h Pa0 1958, 153. (55) Cheng, K. L., A N ~ LCHEM. . 30, 1027 (1958). (56) Zbid., p. 1941. (57) Chernikov, Y. A., T r a m , R. S., Pevzner, K. S., Zavodskaya Lab.25,398 (1959). (58) -Chiebovsky, T., Hutnickd l h t y 13 ( 3 ) 252 (1958). (59) Claasen, A., Bastings, L., Z . anal. Chem. 160, 403 (1958). (60) Clark, L. J., AML. CHEM.30, 1153 (1958). (61) Clifford, W. E., Bullwinkel, E. P., McClaine, L. A., Noble, P., J. Am. Chem. SOC.80, 2959 (1958). (62) Clinch, J., Guy, M. J., Analyst, 8 2 , 800 (1957). (63) Zbid., 83, 429 (1958). (64) Cluett, M. L., Yoe, J. H., ANAL. CHEM.29, 1265 (1957). (65) Codding, J. W.. U . S . dtamic Energy C a m . Rept. 1D0-14454 (Dec. 12, 1958). (66) Cole, F. K., Brown, L. H., Znd. Eng. Chem. 51, 58 (1959). (67) Collins, P. F.. Diehl, H., Smith, G. F., AXAL.'CHEM.'31, 1862 (1959). (68) Collopy, T. J., Miller, W. S., Snyder, M. D., Miller, E. N., Kispert, R. C., U . S. Atomic Energy Comm. Rept. NLCO-749 (1959) (69) Cosgrove, J. F., Bastian, R. P., Morrison, G. H., AXAL. CHEM.30, 1872 (1958). (70) Cox, R. P., Peterson, H. C., Beyer, G. H., Z n d . Eng. C h . 50, 141 (1958). (71) Craig, L. C., Post, O., ANAL.CHEW 21. ,500 11949). .~ -, (72) 'Culkn, F., Riley, J. P., Analyst 82, 208 (1958). (73) Culkin, F., Riley, J. P., Nature 181, 180 (1958). (74) Cuttitta, F., Daniels, G. J., A d . Chim. Acta 20, 430 (1959). 175) Danzuka. T.. Ueno., K..* ANAL. CHEM. ' 30, 1370 (1958): (76) Dean, J. A., Beverly, M. L., Ibid.,30, 977 (1958). (77) Dekhtrikyan, 8. A., Zzvesl. A M . Nauk Annyan. S.S.R., Ser. Geol. i Geograf. Nauk 10, (4) 121 (1957). (78) Dewald, A., Acad. rep. populure Romtne. Baza eercetari sliint. Tamzsoara. Studii Cerce~ristiini. ~ e r stiink . cham: 4, 111 (1957). (79) Diamond, R. M., J. Phys. C h a . 61, 1522 (1957). (80)Zbid., 63, 659 (1959). ( 8 1 ) Diehl. H.. Buchanan. E. B... Jr... Talanta 1, 76 (1958). ' (82) Diadar, 2. I., Gal, 0. S., Rajnvajn, J. K., Bull. Zmt. Nuclear Sci. "Bonk Kidrich" (Belgrade)7,43 (1957). (83) Dizdar, Z. I., Rajnvajn, J. K., Gal, 0. s..Zb-id.. 8. 59 (1958). (84) Ducret,' L., Drouillas, M., Anal. Chim. Acta 21 ,86 (1959). (85)Ducret, L., Maurel, H., Zbid., 21,74 f 1959). (86) ZM., p. 79. (87) Dutt, N. IC., Sen Sarma, K. P., Science and Culture (Zndia) , 23.. (51 . . 249 (1957). (88) Dyrssen, D., A& Chem. Scud. 11, 1277 (1957). (89) ZM., p. 1771. ~~

.-

\ - -

I

\ - - - - ,

(90) Dyrssen, D., J . Znorg. & Nucbar cha. 8, 291 (1958). (91) Dzottsoti, S. K., Referat. Zhur. Zihim. 1957, Abstr. No. 15817. (92) Efremov, G. V., Galibm, V. A., Uchenye Zapiaki Leningrad. Gosudarst. Uniu. im A.A. Zhdamua No. 211, Ser. Khim. Nauk 15, 83 (1957). (93) Efremov, G. V., Leonteva, S. A., Vestnik Leningrad. Univ. 14, (4) Ser. Fiz. i Khim. (1) 141 (1959). (94) Elinson, S. V., Petrov, K. I., Regova, A. T., Zhur. Anal. Khim. 13, (5) 576 (1958). (95) Ermatsa, O., Hamala, S., Suomen Kemistalehti 31B, 204 (1958). (96) Eshelman, H. C., Dean J. A., hlenis, O., Rains, T. C., ANAL. HEM. 31, 183 (1959). (97) Everest, D. A,, Martin, J. V., Analyst 84, 312 (1959). (98) Ferraro, J. R.,J. Inorg. & Nuclear Chem., 10, 319 (1959). (99) Fields, E. K., J . Am. Chem. Soe. 80, 2858 (1958). (100) Fomin, V. V. Kartushova, R. E., Rudenko, T. I., Zhur. Neorg. Khim. 3, 2117 (1958). (101) Fomin,’ V. V., Maiorova, E. P., Ibid., 1, 1703, 2749 (1956). (102) Ibid., 3, 54U (1958). (103) Forsythe, J. H. W., Magee, R. J., \V’ilson. C. L., Talanta 1. 249 (1958). (104) Francois,‘ C. A., ANAL. &EM: 30, 50 (1958). (105) Frank, A. J., Goulston, A. B., Descutis, A. A., Zbid., 29,750 (1957). (108) Freiser, H., Morrison, G. H., in “Annual Review of Nuclear Sciencell’ E. Segre, ed., Vol. 9, Annual Reviews, Inc., Palo Alto, 1959. (107) Fritz, J. S., Bradford, E. C., ANAL. CHEM.30. 1021 (1958). (108) Fritz,’J. S.,‘Ric&rd, M. J., Anal. Chim. Acta 20, 164 (1959). (109) Fritz, J. S., Richard, M. J., Lane, W. J., ANAL.CHEM.30, i77(6 (1958). . (110) Gage, J. C., Analyst 82,453 (1957). (111) Gal. I. J.. Ruvarac. A.. BuU.Zmt. N&a; Sci.’“Bo+isKidhch” 8, 67 (1958). (112) Gibbs, R. R., Moore, F., Rubber J . 134, (14) 524 (1958). (113) Gill, H. H., Rolf, R. F., Armstrong, G. W., ANAL.CHEM.30. 1788 (1959). (114) Goble, A. G., Maddock, ‘A. G., J . I w g . & Nuclear Chem. 7, 94 (1958). (115) Goldstein. G.. Manninz. D. L.. . hienis, O., ANAL.&EM. 3 0 , 6 9 (1SFi8) ___,. (116) Zbid., 31, 192 (1959). (117) Goldstein, G., Manning, D., Menis, O., Talanto 2, 52 (19159). (118) Golovina, A. P., Alimarin, I. P., Kuznetsov, D. I., VaPtnik Moskov. Univ., Ser. Mat., Mekhon., Astron., Fiz. i Khim. 12, (5) 187 (1957). (119)Goto, H., EIirokawa, K., Sci. Rep&. Research Znst. Tohoku Unw. 10, 10 (1958). (120) Goto, H., Ikeda, S., J . Chem. SOC. Japan 79, 152 (1958). (121) Goto, H., Kakita, Y., Zbid., 78, 1521 (1957); Sci. Repts. Research Znst. Tohoku Unw., Ser. A 10, 103 (1958). (122) Goto, H., Kakita, Y., J . Chem. Soc. Japan 79. 1524 (19581. (123j Goto,. H., KakiG, Y., Sn’. Rep&. Research Zmt. Tohoku Unw., Ser. A, 9 , 253 (1957). (124) Goto, H., Kakita, Y., Furukawa, T., J . chem. Soe. Japan 79, 1513 (1958). 25) Goward, G. W., Burd, R. M., U . S. Atomic Energy Comm. Rept. WAPDCTA (GLAk192 (1957). 26) Granger, C. O., U . K . Atomic Energy Authurity Rept. R&DB(C)TN-138 (Declssa. 1958). 27) Haeffner..E., Huttmen, A..’ N&r Sci. and Eng: 3,’471 (1658j.

(128) Hahn, H. T., 3. Am. Chem. SOC.79, 4625 (1957). 1129) Hahn-Weinbeimer. P.. Z . anal. ’ Chem. 162. 161 (1958): ’ (130) Hara, ‘T.,-J.‘Ch&. SOC.Japan, Pure C h a . Sect. 78,333 (1957). (131) Hardwick, W. H., Moreton-Smith, - M:, Analyst 83,9 (1958). (132) Hardy, C. J., Scargill, D., Fletcher, J. M., J . Imrg. & Nuclear Chem. 7 , 257 (19.58). ~~.-_,. (133) Hartkamp, H., Specker, H., Talanta 2, 67 (1959). (134) Hashitani, H., Motojima, K., Japan Analyst 7 , (8)478 (1958). (135) Healy, T. V., Kennedy, J., J . Inorg. & Nuclear C h . 10, 128 (1959). (136) Healy, T. V., Kennedy, J., Raind, G. M., IM., 10,137 (1959). (137) Hellman, N. N., Wolf, hi. J., U. S. Atomic Energy Comm. Rept. TID-5223 175 (Declass. Jan. 1957). (138) Hesford, E., Jackson, E. E., hlcKay. H. A. C . . J . Inora. & Nuclear Ch&. 9, 279 (1959). (139) Hesford, E., McKay, H. A. C., Trans. Faraday SOL 54,573 (1958). (140) Heyn, A. H. A., Banerjee, G., U . S. A t m i c Energy Comm. Rept. NYO-7567 (July 1957). (141) Hok-Bernstrom, B., Rydberg, J., Acta Chem. Scad., 11, 1173 (1957). (142) Horton, C. A., White, J. C., ANAL. CHEM. 30, 1779 (1958). (143) Hyde, E. K., Tolmach, J., U. S. Atomic Energy Cunim. Rept. AXLA019 (Feb. 1957). (144) Hyde, E. K., Wolf, M. J., Zbid., TID-5223-197 (declass. Jan. 1957). (145) Ikeda, S., Nagai, H., Japan Analyst 7 , (2) 76 (1958). (146) Inarida, M., Ibid., 7 , (7) 449 (1958). (147) Inarida, M., J . Chem. Soc. Japan, Pure Chem. Sect. 79, (6) 696, 968 (1958). (148) Ibid., p. 721. 1149) Industrial Group, U. K . Atomic E w g y Authority Rept. IGO-AM/& 119 (1958).

(154) Irving, H., Edgington, D. N., J . Inoro. & Nudear Chem. 10.306 (1959). (155) ishibashi, M., Shigematsu, T., Nishikawa, Y., J. Chem. SOC.Japan 78, 1139 (1957). (156) Ishihara, Y., Taguchi, Y., Japan Analyst 6 , 588 (1957). (157) Zbid., 6, (11) 724 (1957). (158) Ishimari, T., Bull. Chem. Soe. Japan 28, 203 (1955). (159) Ishimari, T., Tateda, A., J. Chem. Soe. Japan 78,78 (1957). (160) Isono, K., Japan Analyst 6, 557 (1957). (161) Jwantscheff, G., “Das Dithison und Seine Anwendung in der Mikround Spureanalyse,” Verlag Chemie, GMBH, Weinheim/Bergstr., 1958. (162) Jancik, F., Korbl, J., Talunta 1, 55 (1958). (163) Jankovsky, J., Ibid., 2,29 (1959). (164) Johnson, J. E., Lavine, M. C., Rosenberg, A. J., ANAL.CHEM.30,2055 (1958). (165) Jones, G. B., Watkinson, J. H., Zbid., 31, 1344 (1959). (166) Kagi, J. H., Vallee, B. L., Zbid., 30, 1951 (1958). (167) Kambara, T., Hashitani, H., Zbid., 31. 567 (1959). (1sSj Karkovich, G. G., Ionova, L. A., Podol’skaya, B. L., Z h w . Anal: Khim. 13,439 (1958). (169) Karpacheva, S. M., Khorkhorina,

L. P., Agashkina, G. D., Zhur. Neorg. Khim. 2,961 (1957). (170) Kemp, W. P., Ponting, K. w., Chem. & Znd. (Lotldon) 1957, (461, 1504. (171) Kennedy, J., Zbid., 1958, 950. (172) Kennedy, J., U . K . Atomic Energy Authority Rept. AEREC/M-369 (1958). (173) Kett, M., Hutnickd lzsty 13, (3) 250 (1958). (174) Khoraaani, S. 5. M. A., Khundksr, hl. H., Anal. Chim. Acta 21, 24 (1959). (175) Kirby, H. W., ANAL. CEEM. 29, 1599 (1957). ( l i 6 ) Kiss, A., Almassy, G., Magyar K h m . Folyhrat 64, (9) 332 (1958). (177) Kitagawa, H., Shibata, N., Japan Analyst 7 , (5) 284 (1958). (178) Koch, 0. G., Mikrochitn. Acta 1958, 92. (179) Ibid.. D. 151. (isoj Ibid.; b. 347. (181)Ibid., p. 402. (182) Kodama, K., Nagoya-shi KBgy6 Kenkyfijo K a k y f i HGkoku 19, 1 (1958). (183) Koppikar, K. S., Karagaonkar, V. G., Murthy, T., A d . Chim. Acta 20, 366 (1959). (184) Krasil’nikova, L. N., Sbornik Trudov. Vses. Nauch. Z n s t . Tsvet. Met. 1, 165 (1956); Referat. Zhur. Khim. 1958, 21182. (185) Kreimer, S. E., Butylkin, L. T., Zavodskaya Lab. 24, (2) 131 (1958). (186) Kress. K. E.. ANAL.CHEM.30, 432 . (1958). ’ (187) Krishen, A., Freiser, H., Zbid., 31, 923 (1959). (188) Kurnakova, A. G., Nikoalev, A. v., Zhur. Neorg. Khim. 3, 1028 (1958). (189) Kuznetsov, V. I., Seryakova, I. V., Zwodskaya Lub.23, 1176 (1957). (190) Kuznetsov, V. I., Seryakova, I. V., Zhur. A d . Khim. 14, 161 (1959). (191) Lapin, L. N., Reis, N. V., Zbid., 13, 426 (1958). (192) Lam, P. G Brown, E. A., U. 8. Atomic E ~ _ _Q %omm. U Rep1 NLCO-742 (1958). (193) La?, P. G., Brown, E. A., in “ h a ? ; Chem. in Nuclear Reactor Technol., Part - -.. 1. U. S. Atomic Enerav -- Cmm. Rept. ?ID-7568 (1958). (194) Lerner, M. W., U.S. Atomic Energy Comm. Rept. NBL-143 (1958). (195) Levine, H., Grimaldi, F. S., Geochim. et Coswwchim. Acta 14, 93 (1958). (196) Levy, L. W., Estrada, R. E., Chemist Analyst 47, 74 (1958). (197) Liang, S., HSU, P., Hua Hslieh Hszieh Pa0 22, 171 (1956). (198) Lilie, H., Z . anal. Chem. 159, 196 (1958). (199) Lounamaa, K., Swnnen Kemhtilehtz JOB, 232 (1957). (200) Luke. c. L.. ANAL.CHEM.31, 904 (1959). ‘ (201) Lur‘e, Y. Y., Zaglodina, T. V., Zavodskuya Lab. 24, (2) 133 (1958). (202) Mabuchi, H., Bull. Chem. SOC. Japan 31, 245 (1958). . Jipan (r ) Machlan, L. A., Hague, J. L., J . Tesearch Natl. Bur. Stundnrds 59, (6) -. .. 415 (1957). (204) Maeck. W. J., BOoman, G. L., . Elliot. M. C.. Rein..J. E.. ANAL.CHEM. 3011602 (195’8). ’ (205) Ibid., 31, 1130 (1959). (206) Maeck, W. J., Elliot, M. C., Booman, G. L., Rein, J. E., Symposium on Radiochemical Analysis, 136th Meeting ACS, September 1959. (207) Mann, C. K., White, J. C., ANAL. CHEM.30, 989 (1958). 1208) Marcus. Y.. Acta Chem. Scand. 11, * 329, 599, 6i0,811 (1957). (209) Martin, F. S., Gillies, G. M., U.K . Atomic E w o v AvUIoritu R a t . AEELEr C/R-816 ( d e h s . April-1959).

-

VOL 32, NO. 5, APRIL 1960

45 R

(210) Martinez, F. B., Bonza, A. P., Chemist Analyst 46, (3) 66 (1957). (211) Mathre, 0. B., Dissertation Abstr. 19, 1580 (1959). (212) Maynes, A. D., McBryde, W. -4. E., ANAL.CHEM.29, 1259 (1957). (213) McDowell, B. L., Meyer, A. S., Feathers, R. E., White, J. C., Ibid., 31, 931 (1959). (214) McDowell, W. J., Baes, C. F., J . Phys. Chem. 62, 777 (1958). (215) McKaveney, J. P., Freiser, H., ANAL. CHEM. 30, 526 (1958). (216) Zbid., p. 1965. (217) McKay, H. A. C., in “Progress in Nuclear Energy,” Ser. 111, “Process Chemistry,” Chap. 4-2, Bruce, F. R., Fletcher, J. M., Hyman, H. H., Katz, J. J., eds., Pergamon Press, New York, 1956. (218) McKay, H. A. C., Alcock, K., Scargill, D., U . K . Atomic Energy ifuihority Rept. AERE-C/R-2221 (1958). (210) RlcKay, H. 4. C., Rees, D., Ibid., .4ERE-C/R-1199 (July 24, 1958). (220) McKenzie, D. E., Elsdon, K. L., Fletcher, J. W., Can. J . Chem. 36, 1233 (1958). --(22 1 ) Menis, O., Rains, T. C., Dean, J. .4., A N A L . CHEM. 31, 187 (1959). (222) Merritt, W. F , Can. J . Chem. 36, 425 (1958). (223) hlichal, J., Pavlikova, E., Zyka, J., Z. anal. Chem. 160, 277 (1958). (224) Milner, G. W. C., Edwards, J. W., Anal. Chim. Acta 18, 513 (1958). (225) Milner, G. W. C., Edwards, J . W., U . K . Atomic Energy Authority Rept. ilERE-C/R-2613 (1958). (226) Milner, G. W. C., Edwards, J. W., Paddon. A.. Ibid.. AERE-C/R-2612 (1958). (227) Misumi, S., Taketatsu, T., Ide, Y., X e m . Fac. Sci., Ky-usyu Univ., Ser. C3, 55 (1958). (228) Moore, F. L,ANAL.CHEM. 29, 941 (1957). 1229) Ibid.. D. 1660. (230) Zbid.; 30, 908 (1958). (231) Ibid., p. 1020. (232) Ibid., p. 1368. (233) Moore, F. L., Fairman, W. D., Ganchoff, J. G., Surak, J. G., Ax.4~. CHEM.31, 1148 (1959). (234) Moore. F. L.. Hudeens. , J. E.. Jr.. Ibid.. Zbid., 29. 29, 1767 11957). (1957). (235) Moore, Modre, -F.’ F. L:, L., ‘Reynolds, Reynolds, S. A., ANAL.CHEY. 29, 1596 (1957). (236) Ibid., 31, 1080 (1959). (237) Moore, T. E., Rhode, N . G., Williams, R. E.. J. Phus. Chem. 62. 370 (1958). (238) Morris, D. F. C., Bell, C. F., J . Znorg. & Nuclear Chem. 10,337 (1959). (239) Morrison, G. H., Cosgrove, J. F., Symposium on Radiochemical Analysis, 136th Meeting ACS, September 1959. (240) Morrison, G. H., Freiser, H., ANAL. CHEM.30, 632 (1958). (2411 Morrison. G. H.. Frieser. H.. in ‘ “Comprehensive Analytical ’Chemistry,” C. L. Wilson and D. W. Wilson, eds., Vol. IA, Elsevier, Amsterdam, 1959. (242) Morrison, G . H., Freiser, H., “Solvent Extraction in Analytical Chemistry,” Wiley, New York, 1957. (243) hlotojima, K., J. Chem. SOC.Japan 78, 533 (1957). (244) Motojima, K., Hashitani, H., Japan Analyst 7, 28 (1958). (245) Muffat, P. C., Chemist Analyst 47, 75 (1958). (246) Naito, H., Sugawara, K., Bull. Chem. SOC.Japan 30, (7) 799 (1957). (247) Nazarenko, V. A., Biryuk, E. A., Zavodskaya Lab., 25, (1) 28 (1959). (248) Nazarenko, V. A., Biryuk, E. A., Ravltskaya, R. V., Zhur. Anal. Khim. 13, 445 (1958). \

,

I

,



46R

0

ANALYTICAL CHEMlSTRY

I

(249) Nazarenko, V. -4., Flyantikova, G. V.’, Zavodskaya Lab. 24, (7) 801 (1958). (250) Nazaranko, V. A., Flyantakova, G. V., Lebedeva, N. V., Ibid., 23, (8) 891 (1957). (251) Nazarenko, V. A., Lebedeva, N. B., Ravitskaya, R. V., Zbid.. 24,9 (1958). (252) Nazarenko, V. A., Shitareva, G. G., Zbid.; 24, ( 8 ) 932 (1958). (253) Nazarenko, V. A., Shustova, hl. B., Ibid., 23, (11) 1283 (1957). (254) Nebia, L., Pagani, B., Chim. e ind. (Milan)39, 663 (1957). (255) Nielsch, W., Z . Metallkunde 50, 234 (1959). (256) Kikitin, B. A., Vdovenko, V. M., Golutvina, M. A., Trudy Radievogo Inst. i m V . G . Khlopina 8 , 3 (1958). 1257) Kikolaev. A. V.. Sorokina. A. A.. ‘ hfaslennikova, A. S., Zhur.‘ Neorg: Khim. 3, 164l (1958). (258) Nikol’skil, V. D., Schmidt, V. S., Ibid., 2, 2746 (1957). (259) Nishikawa. Y.. J . Chem. Soc. Japan 79. 236 (1958): ‘ (260) Ibid:, p. 631. (261) Nusbaum, I., Chemist Analyst 47, 75 (1958). (262) Oelschlager, W., Z. anal. Chem. 154, 321 (1957). (263) Oeawa. K.. J . Chem. SOC.Japan 78, ‘ 438 (fb57).’ ’ (264) O h d a , S., Nishi, T., Veda, K., Dai-1-kai gensheryoku Symposium Hobunshu, 1957, 511. (265) Olander, D. R., Rept. to Mass. Inst. Technol. Industrial Liaison Office. (266) Oliver, J. R., Meriwether, J. R., Rainey, R. H., U. S. Atomic Energy Comm. Rept. ORNL-2668 (April 1959). (267) Onishi, H., Bull. Chem. Soc. Japan 30, 567 (1957). (268) Ibid., p. 827. (269) Paige, B. E., Elliott, M. C., Rein, J. E., ANAL. CHEM.29, 1029 (!957). (270) Paige, B. E., Goris, P., Rem, J. E., U . S. Atomic Energy Comm. Rept., IDO-14411 (1957). (271) Parshutina, hl. V., Naladocyne i Eksptl. Rabot Gosudarst. Trestapo 67ganizatsit i R a t s i m l . Elektrostantsii 11, 34 (1955). Referat. Zhur., Khim. Abstr. 32787 (1956). ‘ (272) Pasztor, L., Bode, J. D., Fernando, Q., 136th Meeting, ACS, Atlantic City, N. J., September 1959. (273) Pender. H. W., ANAL. CHEM.30, . 19’15 (i958j. (274) Peppard, D. F., Ferraro, J. R., Mason, G. W., J . Inorg. & Nuclear Chent. 7, 231 (1958). (275) Peppard, D. F., Maaon, G. W., Driscoll, W. J., Sironen, R. J., Zbid., 7, 276 (1958). (276) Peppard, D., F., Mason, G. W., Sironen, R. J., Zbzd., 10, 117 (1958). (277) Perkins. M.. Remolds. G. F..’ Anal. ‘ Ciim. Acta ‘18, (6) 616 (1958). (278) Pohl, F. A., J . Polarog. SOC.1, 8 (1958). (279) Pohl, F. A., Bonsels, W., 2. anal. Chem. 161, 108 (1958). (280) Poluektov, N. S., Kononenko, L. I., Lauer, R., Zhur. Anal. Khim. 13, 396 (1958). (281) PolyanskiI, V. N., Sbornik Trudov, Moskov. Veches. Met. Inst. 2, 253 (1957). Referat. Zhur.. Khim. Abstr. 11016 (1858). (282) Povitskil, N. S., Solovkin, A. S., Shilin, I. V., Zhur. Neorg. Khim. 3, 222. i,l-R-.-5-, 8\ . (283) Powell, R. A., Kinser, C. A,, ANAL. CHEM.30, 1139 (1958). (284) PrzhevalskiI, E. S., Nikolaeva, E. P., Klimova, N. S., Vestnik Moskoo. Univ., Ser. Mat., Mekhan., Astron., Fiz. i Khim. 13, (3) 217 (1958).

(285) Radu, A., Rev. chim. (Bucharest) 9, (6) 326 (1958). (286) Ramette. R. w.. A N A L . CHEM.30. ’ 1158 (1958).’ (287) Raymond, S., Ibid., 30,1214 (1958). (288) Riedel, K., Z. anal. Chem. 159, 25 (1957). (289) Ibid., p. 110. (290) Rigamonti, R., Spaccamela-Marchetti, E., Ann. chim. ( R m ) 49, 106 (1959). (291) Riley, J. P., Sinhaseni, P., Analyst 83, 299 (1958). (292) Rooney, R. C., Analyst 83, 83 ,.---\

Aiomic Energy Comm. Rept. ORNL. 119.57’1. (296j -Rossotti, F. J. C., Rossotti, H. S., Acta Chem. Scand. 10, 779 (1956). (297) Rozen, A. M., Soviet J . Atomic Energy 2 , 545 (1957). (298) Rozen. A. M.. Kharkhorina, L. P., Zhur. Neoig. Khim. 2,1956 (1957) (299) Rudenko, N. P., Stary, I., Trudy Komissii Anal. Khim., Akad. Nauk S.S.S.R., Inst. Geokhim. i Anal. Khim. 9, 28 (1953). (300) Ruf, E., Z . anal. Chem. 161, (1) 1 (1958). (301) Ibid., 162, (1) 9 (1958). (302) Rydberg, J., Bernstrom, B., Acta Chem. Scand. 11, 86 (1957). (303) Saltykova, V. S., Fabrikova, E. A., Zhur. Anal. Khim. 13, 63 (1958). (304) Saltzman, B. E., ANAL.CHEM.25, 493 (1953). (305) Sandell, E. B., “Colorimetric Determination of Traces of Metals,” 3rd ed., Interscience, New York, 1959. (306) Sato, T., J . Inorg. & Nuclear Chem. 6, 334 (1958). (307) Ibid., 7, 147 (1958). (308) Ibid., 9, 188 (1959). (309) &hilt. A. A.. ANAL. CHEM.30, 1409 (1958). ’ (310) Schweitzer, G. K., Storms, L. E., Anal. Chim. Acta 19, 154 (1958). (311) Sedivec, V., Flek, J., Chem. Listy 52, 545 (1958). (312) Seidl, K., Berhek, M., Zbid., 52, (2) 337 (1958). (313) Seidl, L., Berhek, M., Collection Czechoslov. Chem. Cmmuns. 24, 298 ( 1959). (314) Selmi, L., Fussi, F., Chim. e id. (Milun)40, 193 (1958). (315) Senise, P., “Selecta chim.” 16, 63 (1957). (316) Serebrennnikov, V. V., Padalka, M. A, Levin, I. S., Uchenye Zapiski Tmak. 1955. No. 26. 26. _. ... 1Jniu. (317) Seven, M. J., Pkterson,’R. E., ANAL. CHEM.30, 2016 (1958). (318) Shakhova, Z. F., Motorkina, R. K., Metody Analaza Redkikh. i Tsvef. Metal. Sbwnik 47 (1956): Referat. Zhur. Met. 1957, 13682.’ (319) Shchemeleva, G. G., Trudy Komisii Anal. Khim. Nauk S.S.S.R., Inst. Geokhim.-i Anal. Khim. 8 , (11) 135 (1958). (320) Shepard, E., hleinke, W. W., U . S. Atomic Energy Cbmm. Rept. AECU3879. (321) Shevchenko, V. B., S h i h , I. V., Solovkin, A. S., Zhur. Nemg. Khim. 3, 225 (1958). (322) Shevchenko, V. B., Smelov, V. S., Atomnaya Energ. 5, 542 (1958). (323) Shevchenko, V. B., Timoshev, V. G.. Volkov. A. A., Ibid.. 6, 426 (1959). (324) Shunko, A. D., Zhur..Anal. Khim. 12, 569 (1957). (325) Siddall, T. H.. Znd. Ens. Chem. 51, 41’(1959). ‘ ~





(326) Siekierska, M.,Roczniki Chem. 32, 1369 (1958). (327) Simo, B., Kohitszati Lapok 91, 341 (1958). (328) Sokolova, E. V., Pesis, A. S., Panova, N. I., Zhur. Anal. Khim. 12, 489 (1957). (329) Specker, H., ilrch. Ezsenhuitenw. 29, 467 11958). --, (330) Specker, H., Hartkamp, H., S a t u r wzss. 43, 516 (1956). (331) Spinner, I. H., Miller, F. C., Can. Atomic Energy Comm. IZept. AECL-789 (1959). ( 3 3 2 ) Steinbach. J. F.. Burns. J. H.. J . A h . Chem. Soc. 80,1831 (1958). (333) Stewart, J. A,, Bartlet, J. c.,ANAL. CHEM.30, 404 (1958). (334) Stonhill, L. G., Chemist Analyst 47, 68 (1958). (335) Strelnikov, I%. P., Zavodskaya Lab. 23, 277 (1957). (336) Sudarikov, B. N., ZaItsev, V. A,, Puchkov, Y. G.: Sauch. Doklady l’ysshet Shkoly, Khim. i Khim. Tekhnol. 1959, \ -

80.

(337) Suter, H., Hadorn, H., 2. anal. Chem. 160, (5) 335 (1958). (338) Symposium on Solvent Extraction in the -4nalysis of Metals, ASThl Spec. Tech. Publ. No. 238, 1958. (339) Szabo, Z. G., Beck, bl. T., andToth, K., .Vaturwiss. 43, 156 (1956). (340) Szabo, Z. G., Beck, hl. T., and Toth, K., Magyar Kgm. Folydirat 64, 35 (1958). (341) Szabo, Z. G., Beck, hl. T., and Toth, K., dfikrochim. Acta 1958, 181. (342) Tabushi, hl., Bull. Inst. Chem. X e search, Kyoto Univ. 36, (6) 156 (1958). (343) Takei, S., Japan Analyst 6 , 630 i1957). (34.1) Tarayan, V. ll., Mushegyan, L. G.,

Doklady Akad. AVaukdrmyan. S.S.R. 27, 157 (1958). (345) Tarayan, V. hl., Musheggan, L. G., Izvest. Akud. Nauk Armyan S.S.R. Khzm. Nauki 11, 397 (1958). (346) Tettamanti, K., Uskert, A., Actu Chim. Acud. Sci. Huna. 16. 379 11958). (347) Theodore, 51. L., h A i . CHEW30, 465 (1958). Treybal, R. E., Ind. Eng. Chem. 51, 378 (1959) itskii, K. V., Zhur. dnal. Kli int .

I-., (351) TsyGna, B. S.,‘S’lad