10 Separation of Water, Methyl Ethyl Ketone, and Tetrahydrofuran Mixtures
Downloaded by MICHIGAN STATE UNIV on September 27, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch010
HUGH M. LYBARGER and HOWARD L. GREENE Department of Chemical Engineering, The University of Akron, Akron, Ohio 44304
Ternary vapor-liquid equilibrium data for the system water-methyl ethyl ketone-tetrahydrofuran were determined with a vapor recirculating equilibrium still of the type used by Hipkin and Myers. All experimental points were checked for thermodynamic consistency using the test proposed by McDermott and Ellis. Calculated liquid phase activity coefficients were correlated over the range of solvent concentrations using regression analysis. These results indicate a low boiling valley between the binary azeotropes of water-tetrahydrofuran and water-methyl ethyl ketone, but no ternary azeotrope was found. A solvent purification scheme, aided by development of a modified Thiele-Geddes computer program, was designed to separate the ternary mixture into pure components. The resulting system requires use of three ordinary distillation columns and extractive distillation, using dimethylformamide as the solvent.
'^efrahydrofuran
( T H F ) a n d m e t h y l e t h y l k e t o n e ( M E K ) are c o m -
m o n l y u s e d as solvents for h i g h m o l e c u l a r w e i g h t p o l y v i n y l c h l o r i d e resins i n t o p c o a t i n g a n d a d h e s i v e a p p l i c a t i o n s . B l e n d s are u s e d to c o m b i n e the l o w cost o f m e t h y l e t h y l ketone w i t h the h i g h e r s o l v e n c y a n d greater v o l a t i l i t y of t e t r a h y d r o f u r a n .
B e c a u s e of the large a m o u n t of
T H F u s e d , its r e l a t i v e l y h i g h cost, a n d a i r p o l l u t i o n considerations, rec o v e r y is n o r m a l l y necessary. T h e solvent v a p o r m a y b e r e c o v e r e d i n c o m m e r c i a l l y a v a i l a b l e activ a t e d c a r b o n a d s o r p t i o n units.
W h e n the v a p o r - a i r m i x t u r e is passed
t h r o u g h a b e d of a c t i v a t e d c a r b o n , solvent vapors are a d s o r b e d w h i l e the s t r i p p e d a i r passes t h r o u g h . P e r i o d i c regeneration o f the a c t i v a t e d 148
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
10.
LYBARGER
AND
GREENE
Separation
of
149
Mixtures
c a r b o n w i t h l o w pressure steam, h o w e v e r , g e n e r a l l y contaminates t h e solvents w i t h a large a m o u n t o f w a t e r , i n c r e a s i n g greatly t h e difficulty of s u b s e q u e n t separations. T h i s s t u d y w a s u n d e r t a k e n to o b t a i n t h e necessary v a p o r - l i q u i d equilibrium
d a t a a n d to d e t e r m i n e
the distillation requirements
r e c o v e r i n g solvent f o r reuse f r o m t h e s o l v e n t - w a t e r f r o m a d s o r b e r regeneration. d a t a (2, 3)
Previous binary v a p o r - l i q u i d e q u i l i b r i u m
i n d i c a t e d t w o b i n a r y azeotropes
M E K ) a n d a t w o phase region ( w a t e r - M E K ) . Downloaded by MICHIGAN STATE UNIV on September 27, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch010
for
mixture obtained
(water-THF
and water-
T h e t e r n a r y system w a s
thus e x p e c t e d t o b e h i g h l y n o n i d e a l . Results of this s t u d y h a v e b e e n u s e d to d e s i g n a solvent
recovery
system c a p a b l e of s e p a r a t i n g e a c h solvent i n t o its o r i g i n a l p u r e state. I f s e p a r a t i o n o f t h e T H F - M E K m i x t u r e is unnecessary o r i f p u r i t y r e q u i r e ments are less d e m a n d i n g , t h e p r o p o s e d system c o u l d b e a p p r o p r i a t e l y simplified. Experimental A v a p o r - r e c i r c u l a t i n g e q u i l i b r i u m s t i l l s i m i l a r to t h a t d e s c r i b e d b y H i p k i n a n d M y e r s ( 1 ) w a s u s e d to d e t e r m i n e v a p o r - l i q u i d e q u i l i b r i u m d a t a f o r t h e system, w a t e r - M E K - T H F . I n this s t i l l s h o w n s c h e m a t i c a l l y i n F i g u r e 1, a r e c i r c u l a t i n g v a p o r is c o n t i n u o u s l y c o n t a c t e d w i t h a static l i q u i d sample. T h e v a p o r - l i q u i d system is e n c l o s e d b y a jacket w h e r e
KEY 1 2 3 4 5 β 7 8 9 IΟ II 12 13 14 15 16
Figure 1.
Schematic diagram of the equilibrium
Vacuum Pump Manometer Mtrcury Traps Jacket Condenser Sample Condenser Thermocouples Thermistors Jacket Heater Reboiler Jacket Contactor Body Contactor Throat Contactor Sample Valve Vapor Sample Volve Needle Valves Nitrogen Tank
still
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
150
EXTRACTIVE AND AZEOTROPIC
T a b l e I.
Downloaded by MICHIGAN STATE UNIV on September 27, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch010
Run No.
a
ywater.
ΎΜΕΚ,
DISTILLATION
Liquid
YTHF.
Phase
XMEK,
mole fr.
mole fr.
mole fr.
mole fr.
mole fr.
1 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29"
.288 .217 .256 .257 .275 .236 .199 .226 .297 .244 .226 .234 .267 .314 .250 .247 .121 .103 .230 .163 .248 .311 .269 .244 .215 .181 .206 .262
.181 .289 .177 .209 .388 .223 .102 .178 .478 .216 .058 .162 .327 .299 .182 .174 .039 .278 .619 .123 .477 .599 .291 .304 .040 .350 .284 .284
.532 .494 .566 .534 .337 .541 .699 .596 .225 .540 .717 .604 .407 .387 .568 .580 .841 .619 .152 .714 .275 .090 .440 .452 .746 .474 .510 .453
30 31 32 33 34 35 36 37 38 39 40 41*
.165 .201 .095 .219 .134 .153 .221 .211 .160 .141 .144 .293
.436 .149 .523 .006 .000 .000 .000 .000 .018 .031 .059 .366
.399 .650 .383 .775 .866 .847 .779 .790 .822 .828 .796 .342
42°
.353
.370
.277
43 44"
.197 .318
.071 .447
.732 .235
.561 .486 .866 .506 .377 .460 .322 .697 .375 .508 .585 .869 .379 .507 .507 .438 .071 .043 .110 .118 .184 .281 .438 .289 .296 .501 .169 .594 .862 .093 .189 .034 .596 .091 .121 .424 .661 .131 .093 .113 .502 .892 .469 .914 .177 .518 .862
.166 .237 .039 .181 .399 .211 .124 .092 .486 .194 .046 .037 .342 .267 .169 .181 .062 .409 .787 .197 .607 .665 .287 .374 .051 .279 .409 .208 .064 .587 .213 .678 .005 .000 .000 .000 .000 .029 .048 .092 .315 .064 .383 .058 .103 .368 .101
Two-phase run.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
10.
LYBARGER
Activity
AND
GREENE
Separation
of
Mixtures
Coefficients
XTHF
y
water
fMEK
y
THF
Downloaded by MICHIGAN STATE UNIV on September 27, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch010
.273 .276 .094 .313 .224 .329 .553 .212 .140 .298 .369 .095 .279 .226 .324 .381 .867 .548 .103 .686 .209 .054 .275 .338 .653 .220 .422 .197 .074 .321 .598 .288 .399 .909 .879 .577 .339 .840 .859 .796 .184 .044 .149 .028 .721 .113 .037
Temp. °C.
mole fr. 2.021 1.710 1.343 2.065 2.497 1.925 2.577 1.267 2.608 1.846 1.598 1.088 2.463 2.157 1.876 2.143 7.289 8.396 5.933 5.455 4.274 3.385 2.188 2.994 3.101 1.244 4.588
1.722 1.891 8.008 1.878 1.379 1.612 1.352 3.058 1.353 1.723 2.045 7.152 1.375 1.611 1.661 1.476 1.057 0.980 0.962 0.989 1.050 1.167 1.481 1.186 1.318 1.791 1.060
1.946 1.752 6.582 1.738 1.362 1.587 1.306 2.794 1.421 1.777 2.005 6.462 1.343 1.570 1.706 1.483 1.022 1.041 1.182 1.035 1.136 1.407 1.492 1.242 1.204 1.968 1.173
64.7 65.3 61.6 64.0 67.9 65.8 63.5 64.9 68.8 65.3 63.6 64.2 67.4 67.5 65.5 65.5 62.9 67.4 72.2 64.8 69.6 70.5 67.0 67.1 62.9 67.7 65.7 67.4
5.872 4.179 8.089 1.558 6.745 5.455 2.321 1.375 5.186 6.412 5.343
1.020 1.108 0.966 1.845 0.000 0.000 0.000 0.000 1.054 1.087 1.065
1.099 1.086 1.086 2.038 1.052 1.022 1.465 2.467 1.025 1.010 1.036
68.8 64.7 71.5 63.1 61.4 62.7 62.0 62.7 63.1 63.1 63.5 68.3 68.8
4.738
1.162
1.063
63.1 70.3
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by MICHIGAN STATE UNIV on September 27, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch010
152
EXTRACTIVE
AND
AZEOTROPIC
DISTILLATION
h y d r o c a r b o n v a p o r is m a i n t a i n e d at the b o i l i n g t e m p e r a t u r e of the l i q u i d s a m p l e i n t h e contactor. T h e s t i l l is t h o r o u g h l y i n s u l a t e d so that the l i q u i d a n d v a p o r i n the c o n t a c t o r are m a i n t a i n e d at a d i a b a t i c c o n d i t i o n s . S t a n d a r d i z e d p r o c e d u r e s for o b t a i n i n g e q u i l i b r i u m a n d for s a m p l i n g t h e r e s u l t a n t v a p o r a n d l i q u i d , as o u t l i n e d b y L y b a r g e r ( 7 ) , w e r e f o l l o w e d . A l l v a p o r - l i q u i d e q u i l i b r i u m d a t a w e r e o b t a i n e d at a constant pressure of 730 m m of m e r c u r y w h i c h w a s a c h i e v e d b y a p p l y i n g v a c u u m or n i t r o g e n pressure to the s t i l l ( d e p e n d i n g o n a t m o s p h e r i c pressure) u n t i l the d e s i r e d differential w a s o b t a i n e d . A f t e r the v a p o r was r e c i r c u l a t e d , a constant pressure c o u l d b e m a i n t a i n e d i n the s t i l l w i t h o u t further adjustments. A l l l i q u i d a n d v a p o r samples w e r e a n a l y z e d o n a V a r i a n A e r o g r a p h M o d e l 202-1B t h e r m a l c o n d u c t i v i t y gas c h r o m a t o g r a p h . A 12-foot c o l u m n p a c k e d w i t h P o r a p a k Q , w h i c h g a v e a c l e a n s e p a r a t i o n for water, was u s e d , b u t it c a u s e d the peaks for m e t h y l e t h y l ketone a n d t e t r a h y d r o f u r a n to b e s l i g h t l y m e r g e d . T h e c h r o m a t o g r a p h w a s c a l i b r a t e d u s i n g 11 solvent b l e n d s of k n o w n c o m p o s i t i o n s . A r e a c o r r e c t i o n factors w e r e d e t e r m i n e d f r o m the s t a n d a r d samples, r e l a t i n g w e i g h t f r a c t i o n to a r e a f r a c t i o n . A l l samples w e r e a n a l y z e d t w i c e , a n d the results w e r e a v e r a g e d . C a l i b r a t i o n of the c h r o m a t o g r a p h w i t h k n o w n w a t e r - M E K - T H F samples i n d i c a t e d accurate d e t e r m i n a t i o n to w i t h i n ±0.002-0.005 m o l e f r a c t i o n , d e p e n d i n g o n composition. Results and
Discussion
Vapor—Liquid Equilibrium Data.
F o r t y - f o u r pairs of v a p o r - l i q u i d
e q u i l i b r i u m d a t a w e r e d e t e r m i n e d for the t e r n a r y system; l i q u i d c o m p o sitions i n the s i n g l e a n d two-phase regions w e r e s t u d i e d . Results of these runs are s u m m a r i z e d i n T a b l e
I a l o n g w i t h the l i q u i d phase
activity
coefficients a n d b o i l i n g p o i n t s o b t a i n e d at a pressure of 730 m m of mercury.
Tabulated
compositions
are averages of t w o
analyses for
each
sample. C a l c u l a t e d l i q u i d p h a s e a c t i v i t y coefficients are b a s e d o n R a o u l t ' s and Dalton's laws:
Pi =
Piji
=
tiPiXi
(1)
a s s u m i n g v a p o r phase i d e a l i t y . The
v a p o r — l i q u i d e q u i l i b r i u m d a t a for the single-phase
r u n s are
g r a p h i c a l l y s h o w n i n F i g u r e 2 w h e r e the two-phase r e g i o n at 60 ° C
is
also p l o t t e d to i n d i c a t e the extent of p a r t i a l m i s c i b i l i t y at the b o i l i n g point.
A l i n e connects e a c h p a i r of v a p o r - l i q u i d e q u i l i b r i u m c o m p o s i -
tions. T e m p e r a t u r e results for the v a p o r - l i q u i d e q u i l i b r i u m d a t a i n d i c a t e a l o w b o i l i n g v a l l e y c o n n e c t i n g t h e b i n a r y azeotropes of (66.2
mole
%
M E K , normal boiling point 73.4°C)
and
water—MEK water-THF
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
10.
L Y B A R G E R
A N D
Separation
G R E E N E
of
Downloaded by MICHIGAN STATE UNIV on September 27, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch010
Water
0.00 THF
0.10
0.20
0.30
0.40
0.50
153
Mixtures
KEY
0.60
0.70
0.80
030
100 MEK
Figure 2. Ternary vapor-liquid equilibrium data for the one-phase region at 730 mm mercury absolute pressure with the solubility envelope for 60° C
(81.7 m o l e
%
T H F , normal boiling point 64.0°C).
The
dashed line
s h o w n i n F i g u r e 2 indicates the a p p r o x i m a t e l o c a t i o n of this v a l l e y . Results for the two-phase r u n s are p l o t t e d i n F i g u r e 3 a l o n g w i t h the s o l u b i l i t y e n v e l o p e at 60 ° C .
A l t h o u g h the e q u i l i b r i u m s t i l l w a s n o t
d e s i g n e d for two-phase o p e r a t i o n , it was p o s s i b l e to o b t a i n the necessary d a t a for this solvent system since t h e v a p o r i n e q u i l i b r i u m w i t h the t w o phase l i q u i d was a l w a y s single-phase w h e n c o n d e n s e d . S e v e r a l two-phase samples w e r e a n a l y z e d after c o o l i n g h a d o c c u r r e d , a c c o u n t i n g for t h e fact t h a t the ends of the l i q u i d - l i q u i d tielines i n this r e g i o n d o n o t q u i t e e x t e n d to the s o l u b i l i t y c u r v e .
E q u i l i b r i u m vapor compositions
corre-
s p o n d i n g to the l i q u i d c o m p o s i t i o n s are also p l o t t e d i n F i g u r e 3 a n d , except for R u n 42 w h i c h e x p e r i e n c e d
severe b u m p i n g d u r i n g b o i l i n g ,
f a l l a l o n g a n a l m o s t straight l i n e . F o r a t e r n a r y system the c o m p o s i t i o n of v a p o r i n e q u i l i b r i u m w i t h a heterogeneous l i q u i d m i x t u r e c a n b e r e l a t e d to the l i q u i d c o m p o s i t i o n s b y two relationships (5).
F i r s t , the same v a p o r c o m p o s i t i o n w i l l result
f r o m a n y l i q u i d c o m p o s i t i o n o n a g i v e n l i q u i d - l i q u i d tieline. S e c o n d , a
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
154
EXTRACTIVE
AND
AZEOTROPIC
DISTILLATION
s m o o t h c u r v e c a n be d r a w n t h r o u g h the v a p o r c o m p o s i t i o n s i n e q u i l i b r i u m w i t h heterogeneous
liquid
c o m p o s i t i o n s . T h i s c u r v e extends
f r o m the v a p o r i n e q u i l i b r i u m w i t h the b i n a r y heterogeneous azeotrope to v a p o r i n e q u i l i b r i u m w i t h the h o m o g e n e o u s l i q u i d w h e r e t h e c o m p o sitions of t h e t w o l i q u i d phases b e c o m e c o i n c i d e n t ( t h e p l a i t p o i n t ) . W i t h these t w o r e l a t i o n s h i p s , one c a n .closely a p p r o x i m a t e t h e c o m p o s i
Downloaded by MICHIGAN STATE UNIV on September 27, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch010
t i o n o f v a p o r i n e q u i l i b r i u m w i t h a g i v e n t w o - p h a s e l i q u i d f r o m F i g u r e 3.
Wottr
0.00
0.10
0.20
0.30
0.40
0.50
0.70
O60
030
0.90
THF
1.00 MEK
Figure 3. Ternary vapor-liquid equilibrium data for the two-phase region at 730 mm mercury absolute pressure with the solubility envelope for 60° C Thermodynamic and Ellis (6)
Consistency.
T h e test d e v e l o p e d b y M c D e r m o t t
w a s u s e d to d e t e r m i n e t h e t h e r m o d y n a m i c c o n s i s t e n c y of
the v a p o r - l i q u i d e q u i l i b r i u m d a t a . T h i s test i n v o l v e s c a l c u l a t i o n of the deviation, ( D
c d
) , b e t w e e n p a i r s of p o i n t s (c, d)
as d e f i n e d b e l o w :
η D
cd
=
Σ i=l
(x
ic
+ x) id
(log y id
-
log y ) ic
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(2)
Downloaded by MICHIGAN STATE UNIV on September 27, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch010
10.
L Y B A R G E R
Separation
A N D G R E E N E
155
of Mioctures
T h i s d e v i a t i o n is d e r i v e d f r o m t h e i s o t h e r m a l - i s o b a r i c f o r m of t h e G i b b s D u h e m e q u a t i o n a n d c a n b e a p p l i e d to i s o b a r i c e q u i l i b r i u m d a t a b y m i n i m i z i n g t h e c o m p o s i t i o n a n d t e m p e r a t u r e differences b e t w e e n p a i r s of points. T h i s w a s d o n e b y c h o o s i n g d a t a paths t h r o u g h t h e ternary e q u i l i b r i u m d i a g r a m so that differences i n c o m p o s i t i o n a n d t e m p e r a t u r e b e t w e e n pairs o f p o i n t s w e r e m i n i m i z e d . A p o i n t w a s c o n s i d e r e d to b e inconsistent i f i t d e v i a t e d m o r e t h a n 0.02 w i t h b o t h o f its n e i g h b o r s . T h i s d e v i a t i o n w a s chosen since i t a p p r o a c h e d t h e a p p r o x i m a t e l i m i t of t h e d e v i a t i o n c a u s e d b y a n a l y t i c a l i n a c c u r a c y . R u n s 1, 4, 5, 13, 15, 2 3 , 27, a n d 28 w e r e d e t e r m i n e d to b e inconsistent o n this basis. Correlation of Liquid Phase Activity Coefficients. F o r a c t i v i t y c o efficients to b e u s e d i n d i s t i l l a t i o n c a l c u l a t i o n s , t h e y are n o r m a l l y repre sented as a f u n c t i o n o f c o m p o s i t i o n . H e r e a m u l t i p l e regression c o m p u t e r p r o g r a m w a s u s e d to d e t e r m i n e t h e coefficients f o r a n e q u a t i o n o f t h e form lny.i
= α + a&i + a x 0
2
aaXz
2
+
α 7Χ&2
+ a3 X 3 + a X i + 2
4
2
+
a&ix
z
+
a&
2
2
+
(3)
a& x 2
z
w h e r e x x , a n d x a r e t h e l i q u i d m o l e fractions of water, m e t h y l e t h y l ketone, a n d t e t r a h y d r o f u r a n , respectively. l9
2
s
T e r m s w e r e d e l e t e d f r o m t h e regression e q u a t i o n u n t i l a n e q u a t i o n c o n t a i n i n g o n l y terms h a v i n g a confidence l e v e l of greater t h a n 8 0 % to i m p r o v e fit ( i n terms o f s u m o f squares e r r o r ) w a s o b t a i n e d . Coefficients (α/s) f o r t h e r e s u l t i n g s i m p l i f i e d equations a r e s u m m a r i z e d i n T a b l e I I w i t h a n estimate o f fit. Table II.
Regression Analysis Coefficients Used in Equation 3 an
ai
en
a5
-4.5041
2.4778
—
-0.0426
—
2.0063
- 0.1641
-0.0017
—
2.0828
0.1995
a
W a t e r (1) ( R = 0.996) MEK
(2)
( R = 0.983) THF
(3)
( R = 0.997) a
2.2301
All a{'8 not listed above were determined to be zero.
F o r m i x t u r e s c o n t a i n i n g m o r e t h a n 0.95 m o l e f r a c t i o n o f either w a t e r o r M E K , respective a c t i v i t y coefficients f o r w a t e r o r M E K a r e r e c o m m e n d e d to b e chosen as 1.0 rather t h a n t h e v a l u e p r e d i c t e d b y t h e regression equations since insufficient d a t a i n these regions cause a c t i v i t y coefficients to d e v i a t e s o m e w h a t f r o m t h e r e q u i r e d t e r m i n a l v a l u e o f u n i t y .
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
156
EXTRACTIVE
A N DAZEOTROPIC
DISTILLATION
THF
WATER
f~~®
© IV
Downloaded by MICHIGAN STATE UNIV on September 27, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch010
20 Plates
WATER
Figure 4.
Feed 5 th
15 Plates
15 Plats»
L/D« 9
Feed 5 th
Feed β*
L/D* 3
L/D»3
1
MEK
Schematic diagram of solvent separation
T e r n a r y Separation B y Distillation.
scheme
T o design a recovery
system,
a s t a r t i n g c o m p o s i t i o n o f 85 m o l e % w a t e r , 7.5 m o l e % t e t r a h y d r o f u r a n , a n d 7.5 m o l e % m e t h y l e t h y l k e t o n e w a s chosen. T h i s assumes 1.5 p o u n d s of steam p e r p o u n d o f solvent are u s e d for r e g e n e r a t i o n a n d a b l e n d o f e q u a l a m o u n t s o f the solvents for t h e p o l y v i n y l c h l o r i d e processing. F i g u r e 2 shows b y t h e r e l a t i v e l e n g t h o f t h e c o n n e c t i n g Unes that i n t h e r e g i o n o f w a t e r - r i c h l i q u i d m i x t u r e s r e c t i f i c a t i o n to p r o d u c e v a p o r s r i c h i n T H F is easily o b t a i n e d . H o w e v e r , the existence o f a m i n i m u m b o i l i n g v a l l e y e x t e n d i n g across the d i a g r a m f r o m the T H F - w a t e r b i n a r y a z e o t r o p e t o t h e M E K - w a t e r b i n a r y azeotrope m a k e s i t i m p o s s i b l e t o r e m o v e a l l w a t e r f r o m the o v e r h e a d b y a single d i s t i l l a t i o n . T h e
best
that c a n b e d o n e i n t h e i n i t i a l d i s t i l l a t i o n is a n o v e r h e a d p r o d u c t i n the l o w b o i l i n g valley a n d a bottom product of substantially pure water. S e v e r a l alternatives exist t o treat f u r t h e r the o v e r h e a d stream. A s e c o n d d i s t i l l a t i o n , u s i n g t h e o v e r h e a d f r o m t h e i n i t i a l d i s t i l l a t i o n as feed, w o u l d y i e l d a n o v e r h e a d close t o the T H F - w a t e r b i n a r y a z e o t r o p e a n d a b o t t o m i n t h e r e g i o n o f the M E K - w a t e r b i n a r y azeotrope.
These
two
streams c o u l d t h e n b e d r i e d b y r e m o v i n g w a t e r p h y s i c a l l y — b y m o l e c u l a r
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
LYBARGER
10.
AND
Separation
GREENE
of
157
Mixtures
sieve o r c a l c i u m c h l o r i d e treatment, e t c . — t o y i e l d r e l a t i v e l y p u r e T H F and M E K . A s e c o n d alternative, u s i n g o n l y d i s t i l l a t i o n m e t h o d s , is c o n s i d e r e d here. T h i s m e t h o d , s h o w n s c h e m a t i c a l l y i n F i g u r e 4, involves t r e a t m e n t of t h e o v e r h e a d f r o m the first c o l u m n ( c o m p o s i t i o n i n t h e l o w b o i l i n g v a l l e y ) b y a d d i n g to it sufficient d r y T H F to b r i n g t h e n e w f e e d c o m p o s i t i o n across the l o w b o i l i n g v a l l e y . D i s t i l l a t i o n of this n e w f e e d y i e l d s the T H F - w a t e r azeotrope as o v e r h e a d a n d a b o t t o m c o n s i s t i n g of d r y
Downloaded by MICHIGAN STATE UNIV on September 27, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch010
M E K or an M E K - T H F mixture. T h i s T H F - w a t e r azeotrope may then b e d r i e d b y extractive d i s t i l l a t i o n w i t h d i m e t h y l f o r m a m i d e , as has b e e n p r e v i o u s l y d i s c u s s e d (4).
T h e b o t t o m p r o d u c t , as a n M E K - T H F m i x -
ture, is easily p u r i f i e d b y a n a d d i t i o n a l d i s t i l l a t i o n , b u t w i t h r e g u l a t i o n of f e e d c o m p o s i t i o n i n t h e p r e v i o u s c o l u m n , this stream m a y b e
made
to a p p r o a c h p u r e M E K , e h m i n a t i n g the n e e d for this s u b s e q u e n t d i s t i l l a t i o n . F i n a l l y , a s m a l l c o l u m n u s e d t o separate the solvent, d i m e t h y l f o r m a m i d e ( D M F ) , f r o m the w a t e r is necessary to c o m p l e t e the separat i o n scheme. Multicomponent Computer Methods for Sizing Required Columns. A modified Thiele-Geddes
m e t h o d , p r o g r a m m e d for a n I B M 370-155,
w a s u s e d to p e r f o r m t h e c a l c u l a t i o n s n e e d e d to size e a c h r e q u i r e d c o l u m n . E x p e r i m e n t a l a c t i v i t y coefficient d a t a w e r e u s e d to a l l o w for n o n ideal l i q u i d phase
behavior
while
e n e r g y balances, u s i n g
estimated
e n t h a l p y d a t a , w e r e u s e d to c o r r e c t for non-constant m o l a l overflow. T h e t a M e t h o d w a s u s e d for convergence, a n d a l l p l a t e efficiencies
The were
a s s u m e d to b e 1 0 0 % . ( See R e f e r e n c e 7 for a d d i t i o n a l c a l c u l a t i o n a l details a n d a program listing. ) Table III.
Stream No. Flow Rate (moles/hr) Composition (mole fraction) THF MEK H0 DMF 2
1
2
Column Specifications 3
4
5
100 20.0 80.0 34.3 26.8
.075 .374 .075 .369 .002 .850 .258 .998
6
7
7.5 21.6
.635 .799 .016 .215 .011 .984 .150 .190 —
8
9
10
15.2
5.2
10.0
.999 — —
—
—
.660 .999 .001
.340
—
.001 .999
Column Specification and Flowsheet. A s c h e m a t i c d i a g r a m of
the
solvent s e p a r a t i o n scheme a n d t h e results of the c o m p u t e r analysis for e a c h c o l u m n a r e s h o w n i n F i g u r e 4 a n d T a b l e III, respectively.
Feed
p l a t e locations are g i v e n w i t h respect to the b o t t o m of e a c h c o l u m n . P l a t e
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
158
EXTRACTIVE AND AZEOTROPIC DISTILLATION
Downloaded by MICHIGAN STATE UNIV on September 27, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch010
requirements for columns III and IV, which contain dimethylformamide, are based on an extension of a previous design analysis by Shah and Greene (4). Literature Cited 1. "Recovery of THF du Pont Tetrahydrofuran," Ε. I. du Pont de Nemours and Co. (Inc.), Electrochemicals Department, Wilmington. 2. Methyl Ethyl Ketone, Shell Chemical Corporation, Technical Publication SC: 50-2, New York. 3. Shnitko, V. Α., Kogan, V. B., "Liquid-Vapor Equilibrium in the Systems Tetrahydrofuran-Water and Tetrahydrofuran-Ethylene Glycol and a Method for Dehydration of Tetrahydrofuran,"J.Appl. Chem. USSR 4 (6) 1236-1242. 4. Shah, C. S., Greene, H. L., "Vapor-Liquid Equilibrium for the Ternary System Tetrahydrofuran-Water-Dimethylformamide," J. Chem. Eng. Data 15 (3) 408-411. 5. Hala, E., Pick, J., Fried, V., Vilim, O., "Vapor-Liquid Equilibrium," pp. 107-109, Pergamon, 1967. 6. McDermott, C., Ellis, S. R. M., "A Multicomponent Consistency Test," Chem. Eng. Sci. (1965) 20, 293-296. 7. Lybarger, Η. M., "Ternary Vapor-Liquid Equilibrium Data Applied to the Separation of a Mixture of Water, Methyl Ethyl Ketone, and Tetrahydro furan," Thesis, The University of Akron (March 1972). RECEIVED February 14, 1972.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.