7 Demulsification of Crude Oils Use of Azeotropic
Distillation
LESLIE L. BALASSA and DONALD F. OTHMER
Downloaded by UNIV OF LEEDS on May 21, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch007
Slate Hill, Ν. Y. 10973 and Polytechnic Institute, Brooklyn, Ν. Y. 11201
Water and often fine sand and silt are held in various crude oils in permanent emulsions. Particularly crudes obtained by secondary methods and those from tar sands where water or steam are used contain water and mineral matter emulsified therein by the surface forces on small particles and drops. Azeotropic distillation removes the relatively small amount of water, using the solvent as an entrainer which dilutes the crude. This allows: the mineral matter to be separated easily without using centrifuges with their substantial cost and wear, free of organic material, so it may be discarded with out hazards of fire or odors; the bitumen to be recovered for such use or cracked to give volatile fractions and coked to an ash-free coke; the water to be obtained as distilled water for reuse.
" p e t r o l e u m crudes p r o d u c e d b y w a t e r
flooding,
hot water displacement,
pressure steam, or steam i n j e c t i o n u s u a l l y are e m u l s i o n s , either w a t e r i n - o i l o r o i l - i n - w a t e r , a n d are f r e q u e n t l y a c o m b i n a t i o n o f b o t h . E m u l s i o n s of these h i g h v i s c o s i t y oils often c a n n o t b e b r o k e n a n d d e h y d r a t e d b y conventional methods. A n e v e n m o r e difficult p r o c e s s i n g c o n d i t i o n arises w i t h h e a v y b i t u m i n o u s oils w h i c h a l w a y s c a r r y m u c h sand, c l a y , a n d silt of coarse a n d s m a l l p a r t i c l e sizes w h i c h s t a b i l i z e the oil—water e m u l s i o n s e v e n m o r e . T h e b i t u m i n o u s oils h a v e specific gravities of 0.9-1.4 a n d h a v e h i g h viscosi ties; thus t h e y c a n n o t b e separated f r o m the w a t e r or solids present b y s e t t l i n g or b y u s i n g the most efficient centrifuges. D i l u t i n g these e m u l s i o n s o f h e a v y oils w i t h l i g h t
solvents—e.g.,
kerosene, solvent n a p h t h a , b e n z e n e , etc.—reduces the specific g r a v i t y of the o i l phase of the e m u l s i o n s b e l o w t h a t of w a t e r a n d l o w e r s the v i s 108
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
7.
B A L A S S A
A N D
O T H M E R
Demulsification
of Crude
109
Oils
cosity so that some of the w a t e r a n d m i n e r a l matters u s u a l l y c a n b e r e m o v e d b y s e d i m e n t a t i o n , centrifuge, or h y d r o - c y c l o n e . A d d i t i o n of a l o w viscosity h y d r o c a r b o n solvent often extracts t h e o i l f r o m the w a t e r ; t h e extract l a y e r of solvent a n d solute separates f r o m the water. T h e large a m o u n t of solvent n e e d e d to separate e m u l s i o n s of w a t e r i n a viscous h e a v y o i l is u n e c o n o m i c because of t h e d i l u t e s o l u t i o n n e e d e d to o b t a i n a c o n t i n u o u s w a t e r phase. A d d i t i o n of solvent, p o s s i b l y u p to a n e q u a l a m o u n t , is reasonable a n d is d e s i r a b l e to r e d u c e t h e v i s c o s i t y suffic i e n t l y to p u m p a n d transport the h e a v y o i l . A c h e a p a l i p h a t i c s o l v e n t — e.g., k e r o s e n e — i s preferable, b u t b i t u m i n o u s o i l fractions are m u c h m o r e
Downloaded by UNIV OF LEEDS on May 21, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch007
s o l u b l e i n a r o m a t i c solvents, p a r t i c u l a r l y at temperatures near t h e a m bient. H o w e v e r , the w a t e r a n d s o l i d particles are not at a c c e p t a b l e l i m i t s e v e n after m u c h d i l u t i o n , e s p e c i a l l y i n the presence of fine p a r t i c l e s as i n some crudes f r o m C a l i f o r n i a a n d V e n e z u e l a a n d p a r t i c u l a r l y f r o m t a r sands as those i n A t h a b a s c a ( A l b e r t a , C a n a d a ) . P r o c e s s i n g o i l emulsions f r o m t a r sands is difficult w i t h t h e o i l a n d the aqueous phase. T h e o i l phase carries m u c h c l a y a n d silt ( s a n d ) of s m a l l p a r t i c l e size w h i c h are s u s p e n d e d a n d d o not settle o u t e v e n o n p r o l o n g e d storage.
T h e surface or m o l e c u l a r forces b e t w e e n viscous oils a n d s u c h
fine p a r t i c l e s are m o r e i m p o r t a n t i n d e t e r m i n i n g t h e latter's m o t i o n s , or l a c k of m o t i o n , t h a n t h e m e c h a n i c a l forces r e s u l t i n g f r o m differences i n specific gravity. S o m e particles i n the a q u e o u s phase are w e t b y o i l i n s t e a d of
by
water, a n d these o i l - c o a t e d p a r t i c l e s g i v e a n u n u s u a l l y stable s u s p e n s i o n for a b o u t the same reason. T h i s o i l i n t h e oil-wet m i n e r a l matter, susp e n d e d i n t h e aqueous phase, makes it u n s u i t a b l e for r e c y c l i n g i n t h e p r o c e s s i n g o p e r a t i o n or d i s c h a r g i n g b a c k i n t o surface waters.
Also, the
m i n e r a l sludge w h i c h is separated f r o m w a t e r s t i l l contains a s u b s t a n t i a l percentage of o i l ; it c a n n o t b e d i s p o s e d of e v e n b y r e t u r n i n g i t t o t h e p l a c e w h e r e it w a s m i n e d or p r o d u c e d . F i r e s h a v e o c c u r r e d f r o m s p o n taneous c o m b u s t i o n r e s u l t i n g f r o m this s l u d g e of fine p a r t i c l e s a n d o i l . P r i o r processes p r o p o s e d to d e m u l s i f y it are unsatisfactory because so m u c h o i l is a l w a y s lost i n the aqueous p h a s e o r i n t h e d e w a t e r e d sludge. A l s o , the content of w a t e r a n d m i n e r a l s i n the o i l separated b y c o n v e n t i o n a l processes is u s u a l l y a b o v e a c c e p t a b l e l i m i t s for p i p e l i n e t r a n s p o r t a t i o n or for r e f i n i n g purposes. F i n a n c i a l losses are e x p e r i e n c e d i n o i l w a s t e d , i n e q u i p m e n t a n d c a p i t a l charges of w o r n e q u i p m e n t i n plants, a n d i n l a n d v a l u e of d i s p o s a l p o n d s . T r e m e n d o u s d i s p o s a l p o n d s of d i s c a r d e d emulsions i n V e n e z u e l a a n d elsewhere
take u p available land.
I n separating emulsions from
tar sands, the extremely abrasive silt has r u i n e d expensive
centrifuges
a n d makes u s i n g t h e m i m p r a c t i c a l .
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
110
E X T R A C T I V E
Azeotropic
A N D A Z E O T R O P I C
DISTILLATION
Distillation
T h e w a t e r content of a n e m u l s i o n is r e m o v e d b y d i s t i l l a t i o n , h o w e v e r , d i r e c t a n d s i m p l e d i s t i l l a t i o n presents several p r a c t i c a l p r o b l e m s .
I n the
presence of a s o l v e n t - d i l u e n t after p r e l i m i n a r y s e p a r a t i o n of m u c h of the water
as a c o n t i n u o u s phase, the b a l a n c e is r e m o v e d
by
azeotropic
distillation. F o r m a n y years w a t e r has b e e n separated f r o m m a n y l i q u i d s b y a z e o t r o p i c d i s t i l l a t i o n . W a t e r is s u b s t a n t i a l l y i n s o l u b l e n o t o n l y i n the oils b u t also i n the d i l u e n t s o r solvents. T h u s , the v a p o r pressures of t h e w a t e r a n d d i l u e n t are a d d i t i v e as i n t h e f a m i l i a r steam d i s t i l l a t i o n s . A Downloaded by UNIV OF LEEDS on May 21, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch007
heterogeneous
azeotrope is f o r m e d ; this a l w a y s b o i l s b e l o w t h e b o i l i n g
p o i n t of w a t e r because pressure m u s t b e r e d u c e d f o r w a t e r t o b o i l at t h e v a p o r pressure of t h e h y d r o c a r b o n . T h e p r i n c i p l e s of a z e o t r o p i c d i s t i l l a t i o n h a v e often b e e n (1,2,3,4,5,6,7),
described
a n d a p p l y i n g t h e m gives a s i m p l e m e t h o d of s e p a r a t i n g
w a t e r f r o m its o i l emulsions. T h e l o w - b o i l i n g constituents of a n o i l — o r the d i l u e n t u s e d — w o u l d b e t h e entraîner ( w i t h d r a w i n g a g e n t ) w h i c h forms t h e heterogeneous
azeotrope or steam d i s t i l l a t i o n w i t h t h e water.
B e c a u s e of n o n e q u i l i b r i u m b o i l i n g c o n d i t i o n s i n a s i m p l e d i s t i l l a t i o n , the vapors m a y n o t c o n t a i n t h e t r u e azeotrope, a n d t h e heat cost m a y b e too h i g h . T h e r e f o r e a c o l u m n is s t i l l u s e d to r e c t i f y the exact azeotrope at t h e h e a d of the c o l u m n ; h o w e v e r , o n l y a f e w trays are r e q u i r e d . T h e azeotrope contains t h e l o w e r h y d r o c a r b o n s of t h e d i l u e n t . I f a w i d e - c u t f r a c t i o n is u s e d , t h e m o r e v o l a t i l e ones c o m e to t h e t o p of t h e c o l u m n w i t h the water. A t a n y t e m p e r a t u r e t h e v a p o r pressure of w a t e r p l u s that o f t h e entraîner, o r t h e effective v a p o r pressure of the m i x t u r e of l i q u i d s o p e r a t i n g as t h e entraîner, gives t h e azeotrope's v a p o r pressure. T h e t e m p e r a t u r e w h e r e this s u m m a t i o n c u r v e crosses the a t m o s p h e r i c l i n e , o r other o p e r a t i n g pressure of t h e d i s t i l l a t i o n , is t h e a z e o t r o p i c point.
boiling
A close-cut f r a c t i o n o r a single m o r e or less p u r e c o m p o u n d as
a d i l u e n t a n d a z e o t r o p i c w i t h d r a w i n g agent is preferable, a l t h o u g h n o t necessary.
I f the m i x t u r e loses some o f its m o r e v o l a t i l e
components
at t h e h e a d of the c o l u m n o v e r a p e r i o d of t i m e , t h e a z e o t r o p i c b o i l i n g p o i n t w i l l g r a d u a l l y rise. T h e condensate has t w o l i q u i d phases. It r u n s f r o m t h e condenser to a separator o r decanter w h e r e the w a t e r layer is r e m o v e d f o r d i s c a r d a n d t h e solvent layer is r e t u r n e d , u s u a l l y as reflux to t h e c o l u m n . T h i s reflux of " a l l o r p a r t " ( t h e solvent l a y e r ) of the condensate after décantation, r a t h e r t h a n " p a r t of a l l , " w a s d e v e l o p e d i n 1927 (2)
f o r acetic a c i d d e h y -
d r a t i o n w i t h a n a d d e d solvent as entraîner a n d for b u t a n o l d e h y d r a t i o n u s i n g b u t a n o l itself as t h e entraîner.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
7.
B A L A S S A
A N D
O T H M E R
Demulsification
of Crude
111
Oils
S e p a r a t i n g w a t e r f r o m a n o i l e m u l s i o n is best d o n e b y a n entraîner a d d e d as a d i l u e n t to the o i l . F o r example, the d i l u e n t a d d e d to t h e o i l e m u l s i o n is a n a p h t h a f r a c t i o n h a v i n g a n effective v a p o r pressure e q u a l to that of octane. T h i s n a p h t h a is a d d e d to the o i l , a n d as m u c h w a t e r as possible is separated; the o i l e m u l s i o n layer w h i c h is n o t b r o k e n contains
Downloaded by UNIV OF LEEDS on May 21, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch007
the a d d e d n a p h t h a .
OIL, SILT β DILUENT OUT Figure 1. Flow sheet for removing emulsified water from crude oil and diluent using azeotropic distilfotion with fixed amount of entraîner
F i g u r e 1 i n d i c a t e s one o p e r a b l e
flow
sheet w h e n this o i l e m u l s i o n
c o n t a i n i n g the n a p h t h a w i l l h a v e a sufficiently l o w v i s c o s i t y to b e p u m p e d t h r o u g h a t u b u l a r condenser a n d t h e n t h r o u g h a t u b u l a r bottoms
cooler
for heat i n t e r c h a n g i n g a n d r e c o v e r y . It is t h e n p u m p e d to a n u p p e r p l a t e of a c o l u m n s t i l l . T h i s m i g h t h a v e 1 0 - 1 5 trays d e s i g n e d to a l l o w
ready
passage d o w n w a r d of a n y silt. T h e c o l u m n is thus self-cleaning as m u c h as possible, b u t p r o v i s i o n s are also m a d e for o p e n i n g to c l e a n m e c h a n i c a l l y , i f necessary. T a b l e I gives several azeotropes o f w a t e r w i t h h y d r o c a r b o n s
and
b u t a n o l , u s e d as entrainers. A s s u m i n g t h e entraîner—diluent has the p r o p -
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
112
e x t r a c t i v e
Table I.
Downloaded by UNIV OF LEEDS on May 21, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch007
a z e o t r o p i c
d i s t i l l a t i o n
Azeotropes of Water and Entrainers Composition by Weight
Temperature, °C (1 atm) Boiling Point Compound
a n d
Azeo. Temp.
Azeo. Vapors
%
Upper Layers
Lower Layers
Separated Layers
Volume,
%
Toluene Water
110.6 100
85
79.8 20.2
99.9 0.1
0.1 99.9
82 18
Up Low
m-Xylene Water
139.1 100
94.5
60 40
99.95 0.05
0.05 99.95
63.4 36.6
Up Low
n-Octane Water
125.7 100
89.6
74.5 25.5
99.98 0.02
0.02 99.98
80 20
Up Low
Butanol Water
117.7 100
93
55.5 45.5
77.5 22.5
8.0 92.0
71.5 28.5
Up Low
erties of o c t a n e , the c o l u m n has a t o p v a p o r t e m p e r a t u r e of 89.6 ° C . T h e s e v a p o r s are c o n d e n s e d i n p r e h e a t i n g the f e e d a n d i n another w a t e r c o o l e d condenser i f n e e d e d .
T h e condensate flows to a decanter w h i c h
c o n t i n u o u s l y separates 8 0 %
b y v o l u m e as the d i l u e n t - e n t r a i n e r l a y e r
a n d 2 0 % b y v o l u m e of a w a t e r layer. T h e a m o u n t of e a c h c o m p o n e n t d i s s o l v e d i n the other layer is so s m a l l that it is d i s r e g a r d e d ; t h u s the w a t e r l a y e r flows to waste. T h e entraîner l a y e r is r e t u r n e d to the t o p of t h e c o l u m n as reflux to w i t h d r a w m o r e w a t e r , a n d the d r y o i l w i t h sedim e n t passes o u t the b o t t o m a n d t h r o u g h a bottoms exchanger.
T h e silt
n o w settles a n d separates r e l a t i v e l y easily f r o m the o i l w h i c h is d e c a n t e d . T h e silt is w a s h e d w i t h t h e s o l v e n t - d i l u e n t w h i c h is t h e n r e u s e d w i t h a f o l l o w i n g o i l e m u l s i o n a n d t h e n s t e a m e d to recover the n a p h t h a . I n this flow sheet the solvent-diluent—entraîner passes t h r o u g h t h e system a n d o u t w i t h t h e o i l f o r t r a n s p o r t o r r e f i n i n g — a first step w h i c h m a y r e c o v e r n a p h t h a for reuse. H o w e v e r , i n the c y c l e at the h e a d of the a z e o t r o p i c c o l u m n w i t h t h e condenser a n d the decanter, f r a c t i o n a t i n g l i g h t - e n d s f r o m the n a p h t h a p a s s i n g t h r o u g h w i t h the o i l occurs to g i v e the a z e o t r o p e w i t h w a t e r w h i c h has a c o m p o s i t i o n d e p e n d i n g o n the effective v a p o r p r e s s u r e of the m i x t u r e of h y d r o c a r b o n s w h i c h stabilizes t h e r e as t i m e passes. T h i s m a y h a v e a c o n s i d e r a b l y l o w e r b o i l i n g p o i n t t h a n the n a p h t h a f r a c t i o n , a n d the light-ends congregate a n d b e c o m e the entraîner. S o m e of this m a y b e r e m o v e d f r o m the system b y w i t h d r a w i n g f r o m the reflux s t r e a m to the c o l u m n . If there are so m a n y l o w ends that the azeot r o p i c b o i l i n g p o i n t goes d o w n , a n a p h t h a f r a c t i o n of s o m e w h a t h i g h e r b o i l i n g r a n g e is u s e d as the d i l u e n t . A c t u a l l y this i n d i c a t e s a n o p e r a t i o n c o m p a r a b l e w i t h the d e h y d r a t i o n of m a n y other l i q u i d s w i t h a separate entraîner. T h u s , i f no d i l u e n t
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
7
ΒA L A S SA
A N D
O T H M E R
Demulsification
of Crude
113
Oils
is necessary to r e d u c e t h e v i s c o s i t y of t h e o i l so that i t m a y b e h a n d l e d a n d n o d i l u e n t is u s e d to g i v e a p r e v i o u s p a r t i a l d e m u l s i f i c a t i o n , e n o u g h entraîner c o u l d b e selected a n d s u p p l i e d to t h e a z e o t r o p i c system t o charge the u p p e r p a r t o f the c o l u m n , t h e condenser, decanter, a n d c o n nections. T h e a d d e d entraîner w o u l d t h e n w i t h d r a w w a t e r f r o m t h e o i l e m u l s i o n f e d i n t o a n d o u t of t h e c o l u m n , a n d t h e entraîner w o u l d t h e n act l i k e a m e c h a n i c a l p a r t of t h e system. T a b l e I shows that, as t h e b o i l i n g p o i n t of the h y d r o c a r b o n u s e d as t h e entraîner increases so does that of t h e azeotrope w i t h w a t e r a n d t h e p e r c e n t of w a t e r t h e r e i n . A h i g h percentage
of w a t e r i n t h e a z e o t r o p e
Downloaded by UNIV OF LEEDS on May 21, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch007
is d e s i r e d for the heat r e q u i r e d for t h e d i s t i l l a t i o n , w h i c h is m a i n l y t h a t of t h e latent heat of t h e w a t e r p l u s that of t h e entraîner. Sufficient e n t r a i n e r s h o u l d b e a v a i l a b l e i n the azeotrope f o r reflux to t h e c o l u m n a l t h o u g h this r e q u i r e m e n t is n o t large.
A l s o , the s o l u b i l i t y o r d i l u t i o n
effect is better w i t h l o w e r - b o i l i n g h y d r o c a r b o n s .
T h u s t h e r e a r e several
factors to be b a l a n c e d i n c h o o s i n g t h e azeotrope.
T h e effect of r e l a t i v e
b o i l i n g points, v a p o r pressures, a n d amounts of different
entrainers i n
t h e i r azeotropes w i t h w a t e r has b e e n d i s c u s s e d as affecting the c h o i c e o f entrainers for s e p a r a t i n g w a t e r f r o m acetic a c i d ( 5 ) .
However,
that
represents a m u c h m o r e difficult selection because there t h e q u a n t i t y of reflux is i m p o r t a n t a n d also the solvent characteristics of the entraîner for t h e acetic a c i d also c o n t r o l t h e choice. However,
t h e o p t i m u m a z e o t r o p i c entraîner for w a t e r f r o m a n o i l
e m u l s i o n is p a r t i a l l y selected a c c o r d i n g to those p r i n c i p l e s . T h e highest b o i l i n g l i q u i d s o b v i o u s l y c a r r y m o r e w a t e r for a g i v e n heat i n p u t .
A
selected a n d stable t e m p e r a t u r e at t h e t o p of t h e azeo c o l u m n is necessary f o r o p t i m u m o p e r a t i o n , a n d this m i g h t seem to b e s e c u r e d best b y a pure aromatic.
A l t e r n a t e l y , a p u r e a l i p h a t i c or a close-cut n a p h t h a
f r a c t i o n m i g h t b e o b t a i n e d a n d m a i n t a i n e d i n the a z e o t r o p i c
column.
T h e use of a p u r e c o m p o u n d is n o t advantageous i f a close-cut n a p h t h a f r a c t i o n is u s e d as a n entraîner i n this c o n t i n u o u s o p e r a t i o n because t h e losses a n d m a k e - u p of s u c h entraîner i n a c o l u m n are so s m a l l ; thus, the effective a z e o t r o p i c b o i l i n g p o i n t r e m a i n s constant. T h e entraîner s h o u l d b e a h y d r o c a r b o n w h i c h has a l o w e r b o i l i n g p o i n t t h a n t h e light-ends, w h a t e v e r the feedstock of o i l e m u l s i o n ; otherw i s e l i g h t ends c o n t i n u a l l y fractionate i n t o the azeotrope a n d h a v e to b e removed.
I n other systems i n v o l v i n g a z e o t r o p i c w i t h d r a w i n g agents w i t h
a m i x t u r e of v a r i o u s volatilities, a stable entraîner is d e v e l o p e d a n d m a i n t a i n e d at t h e d e s i r e d b o i l i n g p o i n t b y r e m o v i n g p e r i o d i c a l l y some o f t h e entraîner to k e e p its effective b o i l i n g p o i n t sufficiently h i g h .
Sometimes
s m a l l heads c o l u m n s h a v e b e e n i n c o r p o r a t e d to d o this c o n t i n u o u s l y .
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
114
EXTRACTIVE
Laboratory
AND
AZEOTROPIC
DISTILLATION
Testing
H a v i n g c o n s i d e r e d a b a s i c flow sheet a n d the e l e m e n t a r y p r i n c i p l e s of a z e o t r o p i c d i s t i l l a t i o n as t h e y m a y b e u s e d , w e c o n s i d e r e d t e s t i n g emulsions i n the l a b o r a t o r y p r i o r to process design. T h e first step i n t e s t i n g t h e m a t e r i a l f o r s u i t a b i l i t y o f t h e d e m u l s i f y i n g , d e h y d r a t i n g process is to d i l u t e t h e c r u d e o i l w i t h a solvent w h i c h is u s e d b y itself or m i x e d w i t h another i n a z e o t r o p i c d e h y d r a t i o n of the emulsion.
T h e m i n i m u m a m o u n t of solvent w h i c h is sufficient for the
first step is t h a t w h i c h cuts t h e viscosity of the c r u d e e n o u g h to a l l o w a z e o t r o p i c d i s t i l l a t i o n w i t h o u t excessive f o a m i n g . T h i s m a y r e q u i r e a b o u t Downloaded by UNIV OF LEEDS on May 21, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch007
4 0 - 6 0 v o l u m e s solvent p e r 100 v o l u m e s of c r u d e , b u t this r a t i o of solvent, h o w e v e r , m a y not b e sufficient to r e d u c e the g r a v i t y of the c r u d e b e l o w that of w a t e r to a l l o w p r e l i m i n a r y décantation of some of the w a t e r . T o a c h i e v e this, a v o l u m e of solvent a b o u t e q u a l to t h a t of the c r u d e m a y h a v e to b e u s e d (sometimes a n e v e n h i g h e r r a t i o of s o l v e n t ) .
By
d i l u t i n g the c r u d e first w i t h t o l u e n e u p to a v o l u m e of 2 0 % of the c r u d e a n d c o n t i n u i n g the d i l u t i o n w i t h a l i g h t gasoline f r a c t i o n i n the r a n g e of hexane, octane, or h i g h e r , the g r a v i t y is l o w e r e d w i t h less t o t a l solvent. A l s o d i l u t i o n w i t h a n a p h t h a f r a c t i o n a l o n e m a y suffice at 80 ° C .
Each
c r u d e has to b e separately e v a l u a t e d b a s e d o n its properties a n d w a t e r content. If the w a t e r i n the p e r m a n e n t e m u l s i o n is l o w , it m a y not b e w o r t h w h i l e to a d d sufficient solvent to separate a w a t e r layer. T h e w a t e r i n the c r u d e w h i c h is not i n a p e r m a n e n t e m u l s i o n is d e t e r m i n e d b y d i l u t i n g the c r u d e w i t h a m i x t u r e of toluene a n d a n a p h t h a f r a c t i o n ; m u c h of the w a t e r together w i t h the water-set i n o r g a n i c m a t t e r t h e n settles out i n a separatory f u n n e l . If a centrifuge is u s e d , the h i g h g r a v i t y oil-wet i n o r g a n i c m a t t e r separates w i t h the w a t e r c a r r y i n g w i t h i t a s u b s t a n t i a l a m o u n t of o i l . T h u s , s i m p l e g r a v i t y s e p a r a t i o n is preferable. T h e o i l d i l u t e d w i t h the solvent only m a y b e d i s t i l l e d i n a glass flask, fitted
w i t h a r e l a t i v e l y s i m p l e l a b o r a t o r y c o l u m n . B o i l i n g i n the flask is
a c c o m p l i s h e d w i t h o u t b u m p i n g i f a n i n t e r n a l electric heater w h i c h a l l o w s l i t t l e superheat is u s e d . T h e a z e o t r o p i c d i s t i l l a t i o n b r i n g s o v e r v a p o r s w h i c h are c o n d e n s e d . C o n d e n s a t e is separated i n a c o n t i n u o u s glass dec a n t e r w h i c h returns the h y d r o c a r b o n l a y e r to the c o l u m n a n d discharges the w a t e r layer. W h e n the w a t e r content of the s o l u t i o n is r e d u c e d to b e l o w 0 . 1 - 0 . 2 % , no w a t e r is v i s i b l e i n the condensate; the t e m p e r a t u r e at the h e a d of the c o l u m n rises to the b o i l i n g p o i n t of the entraîner itself, a n d the d e h y d r a t i o n is c o m p l e t e . T h e t o t a l w a t e r separated is m e a s u r e d . T h i s v o l u m e w i t h the w a t e r w h i c h has b e e n separated b y décantation after d i l u t i o n a n d before d i s t i l l a t i o n represents the o r i g i n a l a m o u n t of w a t e r present.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
7.
B A L A S S A
A N D
O T H M E R
Demulsification
of Crude
Oils
115
B a t c h a z e o t r o p i c d i s t i l l a t i o n is also a c c o m p l i s h e d i n t h e l a b o r a t o r y w i t h a s i m p l e flask, condenser, a n d r e c e i v e r w i t h o u t a c o l u m n , c o n t i n u o u s decanter, a n d c o n t i n u o u s reflux, b u t i t takes m u c h l o n g e r a n d is n o t c o m p a r a b l e to a p l a n t o p e r a t i o n , w h i c h is d e v e l o p e d f r o m s u c h l a b o r a t o r y testing. T h e oil-wet s l u d g e is r e m o v e d f r o m t h e d e h y d r a t e d o i l s o l u t i o n i n the flask b y s e t t l i n g a n d d e c a n t i n g or c e n t r i f u g i n g . solvent to free i t of o i l , d r i e d , a n d w e i g h e d .
It is w a s h e d w i t h
T h e w a s h s o l u t i o n is c o m -
b i n e d w i t h the d e h y d r a t e d o i l s o l u t i o n w h i c h contains other solvent a n d the separate entraîner, i f o n e w a s u s e d . S o l v e n t is s t r i p p e d f r o m t h e s o l u -
Downloaded by UNIV OF LEEDS on May 21, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch007
t i o n b y d i s t i l l a t i o n to d e t e r m i n e t h e a v a i l a b l e o i l of the c r u d e w h i c h remains. A s m a l l a m o u n t of a d d i t i o n a l i n o r g a n i c m a t t e r m a y settle o u t of c r u d e after a f e w days storage. T h i s is a n extremely s m a l l p a r t i c l e size silt w h i c h is u s u a l l y less t h a n 0 . 0 5 % of t h e o i l . It m i g h t b e r e m o v e d b y a m o r e efficient, h i g h e r speed, centrifuge t h a n u s u a l l y a v a i l a b l e . H o w e v e r , s u c h h i g h s p e e d centrifuges m i g h t b e b a d l y a b r a d e d b y t h e fine silt a n d w o u l d b e too expensive to u s e i n a c t u a l p r a c t i c e . O n e o r t w o days s e t t l i n g at 120°C for example, is a better test m e t h o d a n d is a better p r a c t i c e i n p r o d u c t i o n i f the necessary storage facilities a r e a v a i l a b l e . A d d i t i v e s t o flocculate
the fine silt m i g h t also b e u s e d .
Modified Azeotropic
Distillation
C o n t i n u o u s d i s t i l l a t i o n a l w a y s gives a better, m o r e u n i f o r m p r o d u c t at a l o w e r heat cost a n d u s u a l l y a l o w e r p l a n t cost. A c o n t i n u o u s o p e r a t i o n is essential i n a z e o t r o p i c d i s t i l l a t i o n w h e n a n entraîner is a d d e d , o r it w o u l d necessarily h a v e to b e f r a c t i o n a t e d off to reuse i t after e a c h b a t c h . S e v e r a l v a r i a t i o n s of t h e flow sheet for a z e o t r o p i c d i s t i l l a t i o n are possible, e a c h h a v i n g a c o n t i n u o u s d e c a n t e r w h i c h discharges p u r e w a t e r (less t h a n 0 . 1 % d i s s o l v e d h y d r o c a r b o n o r a r o m a t i c s a n d less t h a n 0 . 0 1 % for a l i p h a t i c s ). F i g u r e 1 is the s i m p l e s t flow sheet. T h e entraîner selected is c h a r g e d to t h e a z e o t r o p i c c o l u m n a n d r e m a i n s s u b s t a n t i a l l y there, rem o v i n g w a t e r c o n t i n u o u s l y b u t b e i n g a l m o s t u n c h a n g e d i f i t has a l o w e r b o i l i n g p o i n t t h a n t h e l i g h t ends of t h e feedstock.
T h e reboiler m a y be
h e a t e d b y other w a y s t h a n b y t h e steam s h o w n i n F i g u r e 1. F i g u r e 2 shows a c o n t i n u o u s a z e o t r o p i c c o l u m n u s i n g a fixed a m o u n t of entraîner w h i c h r e m a i n s i n t h e u n i t . S i n c e reflux is l a r g e l y s u p p l i e d b y f e e d of the e m u l s i o n near the t o p of t h e c o l u m n , t h e entraîner f r o m the d e c a n t e r passes to a r e b o i l e r a n d is f e d b a c k to t h e t o w e r as vapors. T h i s gives a m o r e n e a r l y c o u n t e r - c u r r e n t a c t i o n of the a z e o t r o p i c d i s t i l l i n g o p e r a t i o n , a n d a lesser heat i n p u t r e q u i r e d i n t o t h e viscous o i l at the base of the c o l u m n , u s u a l l y w i t h m o r e or less silt i n suspension w h i l e
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
116
EXTRACTIVE
AND
AZEOTROPIC
DISTILLATION
Downloaded by UNIV OF LEEDS on May 21, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch007
CONDENSER >
Figure 2. Flow sheet for removing emulsified water by azeotropic distillation using a vapor feed of the reflux of a fixed amount of entraîner the b a l a n c e of the heat r e q u i r e m e n t s for the a z e o t r o p i c d i s t i l l a t i o n w o u l d b e s u p p l i e d to the t h i n , p u r e , entraîner i n a separate reboiler. F i g u r e 3 u t i l i z e s the d i l u t i n g of the o i l e m u l s i o n w i t h the entraîner c o m i n g f r o m the decanter.
T h i s occurs at or near t h e a z e o t r o p i c b o i l i n g
p o i n t . T h i s m i x e r dissolves t h e o i l i n the e m u l s i o n a n d p a r t i a l l y breaks i t w i t h some of the w a t e r a n d silt b e i n g d e c a n t e d off of the f e e d stream of p e r m a n e n t column.
e m u l s i o n a n d entrainer-solvent
g o i n g to the t o p of
the
M o r e entraîner m u s t b e u s e d i n this system to s u p p l y t h a t i n
the m i x e r a n d the decanter; h o w e v e r , it is m i x e d w i t h the o i l p a s s i n g through continuously. F i g u r e 4 is a m o d i f i c a t i o n o f F i g u r e 3 w h e r e the f u n c t i o n of the m i x e r i n d i s s o l v i n g the entraîner a n d the f e e d of o i l e m u l s i o n a n d t h e f u n c t i o n of t h e decanter i n s e p a r a t i n g t h e w a t e r layer f o r m e d is t a k e n o v e r b y a n extractor. I t is one o f the several m e c h a n i c a l l y a g i t a t e d types w h i c h washes o r extracts the o i l out of t h e e m u l s i o n a n d precipitates or discharges as a raffinate l a y e r the w a t e r a l o n g w i t h most of the silt. T h e r e m a i n i n g perm a n e n t e m u l s i o n o i l l a y e r c a r r i e d b y the d i s s o l v i n g entraîner solvent goes to t h e top of the c o l u m n .
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
7.
B A L A S S A
A N D
O T H M E R
Demulsification
of Crude
Oils
117
T h e b o t t o m of F i g u r e 4 i n d i c a t e s one system for the h a n d l i n g of t h e c r u d e w i t h silt f r o m the b o t t o m of t h e c o l u m n before, after, or w i t h o u t a heat exchanger to r e c o v e r the sensible heat of the bottoms f r o m this still. A c o n t i n u o u s t h i c k e n e r , of t h e u s u a l r o t a t i n g t y p e w i t h hoes, t h i c k e n s the s u s p e n d e d silt i n t o a n o i l - m u d w h i c h is r e m o v e d , w a s h e d , a n d steamed b e f o r e d i s c a r d . T h e solvent r e c o v e r e d f r o m this w a s h i n g of m u d goes b a c k to t h e f e e d d i s s o l u t i o n . T h e c l e a r c r u d e kerosene s o l u t i o n , n o w free of w a t e r a n d silt, has kerosene r e m o v e d b y d i s t i l l a t i o n , o r i t is p u m p e d t o the refinery. O f t e n w h e r e the c r u d e does not c o n t a i n too m u c h w a t e r i n a p e r m a n e n t e m u l s i o n o r is not too difficult to p u m p , i t w o u l d n o t r e q u i r e
Downloaded by UNIV OF LEEDS on May 21, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch007
the i n i t i a l d i l u t i o n . O t h e r v a r i a t i o n s of flows are p o s s i b l e ; i n e a c h case i f m o r e solvente n t r a i n e r is a d d e d to the e m u l s i o n i n a d v a n c e , it is r e c o v e r e d b y d r a w i n g off a c o r r e s p o n d i n g percentage
of the entraîner layer w h i c h discharges
f r o m the decanter a n d r e c y c l i n g i t b a c k to s o l u t i o n t a n k w h e r e i t is a d d e d to the o p t i m u m p r o p o r t i o n a l a m o u n t of f e e d e m u l s i o n . T h u s , i f kerosene a n d a n a r o m a t i c solvent—e.g., t o l u e n e or x y l e n e — a r e u s e d i n d i s s o l u t i o n of t h e e m u l s i o n , t h e a r o m a t i c c h o s e n as the entraîner is c o n t i n u o u s l y
Figure 3. Flow sheet using entraîner as diluent with premixer and predecanter for separating some of the silt and water
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF LEEDS on May 21, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch007
118
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
Figure 4. Flow sheet using entraîner as diluent solvent in an extractor used to extract oil from an emulsion with water and to remove a raffinate layer of silt and water (with removal of final silt from the bottoms stream by a thickener, either before or after a heat exchanger) s e p a r a t e d i n the a m o u n t of its a r r i v a l i n the c o l u m n a n d r e c y c l e d b a c k for c o n t i n u o u s d i s s o l u t i o n i n t h e m i x e r . T h i s is c o n t r o l l e d b y o b s e r v i n g the temperatures at several m i d s e c t i o n plates, t h e same as t h e a m o u n t of b u t y l acetate i n the c o l u m n is c o n t r o l l e d i n acetic a c i d d e h y d r a t i o n
(5).
T h e h i g h e r b o i l i n g kerosene is d i s t i l l e d a w a y f r o m t h e c r u d e i n a separate c o l u m n , or it m a y r e m a i n to t h i n the c r u d e i n its t r a n s p o r t to the refinery. Comparison of Azeotropic
Demulsification
with GCOS Process
T o e x e m p l i f y the p r o b l e m s of d e m u l s i f i c a t i o n of o i l , some steps i n the r e c o v e r y of b i t u m i n o u s o i l f r o m t a r sands are c o n s i d e r e d . T h e G r e a t C a n a d i a n O i l Sands, L t d . ( G C O S ) Process has b e e n d e s c r i b e d i n v a r i o u s
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
7.
B A L A S S A
A N D
Demulsification
O T H M E R
p u b l i c a t i o n s (e.g., 8),
of Crude
119
Oils
a n d because of the major p r o b l e m s of s e p a r a t i n g
w a t e r a n d a b r a s i v e m i n e r a l s f r o m the c r u d e , o p e r a t i o n a l losses of m a n y m i l l i o n s of dollars h a v e r e s u l t e d . Mining—overburden,
r e m o v a l , a n d m i n i n g of tar sands
T r a n s p o r t — t a r sands c o n v e y e d , stored, a n d l o a d e d i n extractors Primary Extraction. T h i s is a c c o m p l i s h e d w i t h steam a n d hot w a t e r i n r o t a t i n g c o n d i t i o n i n g d r u m s at a b o u t 190 °F.
T h e t o t a l mass is p i p e d
i n t o a v e r t i c a l s e p a r a t i o n c e l l w h e r e — ( a ) t h e c r u d e b i t u m e n , as a f r o t h , rises to the surface a n d is r e m o v e d ; ( b )
a b o t t o m layer c o n t a i n i n g m a i n l y
sand, c l a y , a n d w a t e r w i t h n o t m o r e t h a n a b o u t 2 % b i t u m e n is p i p e d to
Downloaded by UNIV OF LEEDS on May 21, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch007
the t a i l i n g p o n d ; ( c )
a " m i d d l i n g s " layer w i t h o u t s h a r p d i v i d i n g lines
b e t w e e n the f r o t h a b o v e or the s a n d a n d w a t e r b e l o w . T h i s is a tenacious e m u l s i o n of b i t u m e n i n w a t e r , s t a b i l i z e d b y a s u b s t a n t i a l a m o u n t of s a n d a n d c l a y — m o s t l y oil-wet.
M o s t of the b i t u m e n is r e m o v e d i n
cells b y a i r - f r o t h i n g . T h e s a n d , clay, a n d w a t e r a n d some b i t u m e n is p u m p e d to t h e t a i l i n g s p o n d .
scavenger
unrecoverable
B i t u m e n r e c o v e r y is n o t m o r e
t h a n 9 0 % , thus the tailings c a r r y off at least 1 0 % of that o r i g i n a l l y present. Final Extraction. T h e b i t u m e n f r o m the f r o t h , c o n t a i n i n g s u b s t a n t i a l q u a n t i t i e s of s a n d , clay, a n d w a t e r , is d i l u t e d w i t h n a p h t h a to r e d u c e its v i s c o s i t y so i t c a n b e p u m p e d r e a d i l y .
It is first p u m p e d to 14 s c r o l l -
t y p e centrifuges to r e m o v e l a r g e m i n e r a l particles a n d t h e n to 26 n o z z l e t y p e centrifuges A b r a s i o n i n the charge.
to r e m o v e m o s t of t h e r e m a i n i n g m i n e r a l s a n d expensive
centrifuges
has b e e n
a major
water.
operational
T h e d i l u t e d b i t u m e n s t i l l contains significant q u a n t i t i e s of w a t e r
a n d h y d r o p h i l i c s a n d a n d clay. Cracking and Coking.
T h e d i l u t e b i t u m e n is p u m p e d i n t o
d r u m s , w h e r e i t is c r a c k e d to y i e l d gas a n d c r u d e o i l o v e r h e a d , goes to the refinery.
coker which
R e s i d u a l c o k e contains a l l of the r e s i d u a l s a n d a n d
c l a y w h i c h c o u l d not b e r e m o v e d i n the final extraction, a n d therefore i t is u s e d o n l y as a f u e l for t h e boilers. I n the a z e o t r o p i c system ( J ) , the m i n i n g a n d transport steps are the same, also the c r a c k i n g a n d c o k i n g step, except t h a t i t gives a m u c h i m p r o v e d coke w h i c h is u s e d for m o r e v a l u a b l e p r o d u c t s t h a n as a h i g h ash f u e l . I n the p r i m a r y extraction, h o w e v e r , a h y d r o c a r b o n solvent is a d d e d . This allows a relatively sharp separation between the " m i d d l i n g s " a n d the aqueous b o t t o m layer.
A f r a c t i o n w i t h b o i l i n g r a n g e of octane
suitable, since i t t h e n becomes the a z e o t r o p i c
entraîner for the
A n a r o m a t i c solvent—e.g., t o l u e n e — m i g h t b e better, b u t i t m a y
is
water. require
another s e p a r a t i o n later. I n the final e x t r a c t i o n because of solvent a d d i t i o n i n t h e p r i m a r y extraction, the m i n e r a l matter r e a d i l y separates f r o m the b o t t o m
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
aqueous
120
EXTRACTIVE
AND
AZEOTROPIC
DISTILLATION
l a y e r i n s t e a d of r e q u i r i n g batteries of expensive centrifuges w i t h c o n s i d e r a b l e d a m a g e r e s u l t i n g f r o m a b r a s i o n of the fine s a n d . A
suitable
s e t t l i n g a i d assists this, a n d the w e t sediment, a l m o s t free of b i t u m e n , is u s e d as fill. T h e w a t e r contains o n l y a s m a l l a m o u n t of d i s s o l v e d solvent w h i c h is r e c o v e r e d b y s t r i p p i n g , o r w a s t e d , a n d the w a t e r itself is r e u s e d or d i s c a r d e d to surface waters as it is e n v i r o n m e n t a l l y
acceptable.
T h e t o p b i t u m e n l a y e r a n d t h e " m i d d l i n g s " l a y e r are c o m b i n e d a n d are p u m p e d to a n a z e o t r o p i c d i s t i l l a t i o n system, as d i a g r a m m e d i n F i g ures 1, 2, 3, a n d 4. T h e c h o i c e of
flow
sheet d e p e n d s o n the
relative
a m o u n t s of w a t e r r e m a i n i n g a n d the a m o u n t s a n d characteristics of the
Downloaded by UNIV OF LEEDS on May 21, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch007
m i n e r a l matter. T h e systems of F i g u r e s 3 a n d 4 r e m o v e m o r e w a t e r a n d silt b e f o r e the a z e o t r o p i c d i s t i l l a t i o n , thus s a v i n g heat. U s i n g t h e system of F i g u r e 4 i n s t e a d of the t h i c k e n e r , a s i m p l e storage t a n k a l l o w i n g t w o days residence for settling o u t a l l silt, i n c l u d i n g c o l l o i d a l c l a y w h i c h passes t h r o u g h the c o l u m n , m a y b e u s e d after the heat exchanger. If a n a p h t h a f r a c t i o n has b e e n u s e d i n the d i l u t i o n a n d as the entrainer, it is left i n as a d i l u e n t for r e d u c i n g the v i s c o s i t y i n p u m p i n g the o i l to t h e refinery.
A l t e r n a t i v e l y , some o r a l l is r e m o v e d as a s l i p stream
f r o m t h e reflux g o i n g to the t o p of the a z e o t r o p i c c o l u m n . If toluene or other a r o m a t i c solvent is u s e d , i t w o u l d b e so r e m o v e d or r e m o v e d i n a separate d i s t i l l a t i o n for recycle. O i l - w e t materials, s a n d , a n d clay, s e p a r a t e d f r o m either o i l or w a t e r layers, are w a s h e d w i t h the solvent o r d i l u e n t u n t i l t h e y are free of b i t u m e n a n d the r e s i d u a l solvent is s t r i p p e d f r o m the m i n e r a l m a t t e r w i t h steam. T h e m i n e r a l m a t t e r is c l e a n a n d is sent to waste or u s e d as
fill
w i t h o u t d a n g e r of spontaneous c o m b u s t i o n , or i t is u s e d i n cement m a n u facture.
T h e aqueous phases c o n d e n s e d f r o m s u c h s t r i p p i n g a n d f r o m
the d e c a n t e r of the a z e o t r o p i c system has so l i t t l e solvent, i n h u n d r e d t h s of a percent, that i t is neglected.
It evaporates r e a d i l y i n o p e n storage.
T h i s d i s t i l l e d w a t e r is u s e d for a n y s u i t a b l e p u r p o s e . R e c o v e r y of the b i t u m e n b y this system has b e e n almost 9 8 % c o m p a r e d w i t h the losses i n the G C O S system, a n d the solvent losses are l o w . T h e major a d v a n t a g e of this system is e l i m i n a t i o n of the 14-scroll t y p e centrifuges a n d 26-nozzle t y p e m a c h i n e s u s e d i n the G C O S p l a n t w h i c h h a v e h a d excessive r e p l a c e m e n t , m a i n t e n a n c e , a n d r e p a i r costs because o f the a b r a s i v e a c t i o n of the fine solids o n these h i g h speed, p r e c i s i o n machines. T h e b i t u m e n o b t a i n e d is the u n m o d i f i e d n a t i v e b i t u m e n w i t h a s u b s t a n t i a l percentage of h i g h m e l t i n g , a l i p h a t i c s o l u b l e c o m p o n e n t s .
These
are separated f r o m t h e l o w m e l t i n g c o m p o n e n t s b y solvent e x t r a c t i o n or solvent p r e c i p i t a t i o n . T h e h i g h m e l t i n g c o m p o n e n t s are u t i l i z e d i n p r o tective coatings for metals o r i n heat resistant r o a d surface compositions. If coke is o b t a i n e d f r o m this process, it is free of m i n e r a l m a t t e r a n d
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
7.
BALASSA AND OTHMER
Demulsification of Crude Oils
121
Downloaded by UNIV OF LEEDS on May 21, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch007
is used for the same uses as other high grade petroleum cokes—e.g., in electrodes or activated carbon, as well as in metallurgical uses where the high ash content resulting from the residual minerals would prevent that from the GCOS system being used. Another advantage is that little water is required in the azeotropic process since most of the water is recycled and that which is not recycled is immediately passed to surface waters without environmental damage. Also, removing all organics from the mineral matters means that these can be used as fill or otherwise without fire hazard, odors, or other environmental problems caused by microbiological attacks on any residual bitumen left on the minerals as in the GCOS process. Literature Cited 1. Balassa, L. L., U.S. Patent 3,468,789 (Sept. 23, 1969). 2. Clarke, H. T., Othmer, D. F., U.S. Patent 1,804,745 (May 12, 1931). 3. Othmer, D. F., "Encyclopedia of Chemical Technology," 2nd ed., Vol. 2, p. 839, 1963. 4. Othmer, D. F., U.S. Patent 1,917,391 (July 11, 1933). 5. Othmer, D. F., Chem.&Met. Eng. (1941) 48, 91. 6. Othmer, D. F., Chem. Eng. Progr. (1963) 59, 6, 67. 7. Othmer, D. F., TenEyck, Ε. H., Ind. Eng. Chem. (1949) 41, 2897. 8. "Our Sun," Sun Oil Co., House Publication (Autumn, 1967). RECEIVED November 24, 1970.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.