Ferrous analysis - Analytical Chemistry (ACS Publications)

Jun 15, 1987 - William A. Straub. Anal. Chem. , 1987, 59 (12), ... Albert K. Athnasios , Anthony F. Gross , and Peter S. Given. Analytical Chemistry 1...
0 downloads 0 Views 5MB Size
Anal. Chem. 1987, 59, 46 R-67 R (38) Shcherbakov. V. M.; Mnatsakanov, S. S. Lakokras. Met. 1984, No. 3, 40-2. , J. MapftW SegLVllled 1984, 4(14),51-7. (39) T r ~ J l l b M. (40) Vartv, P. D. BSc Thesis, Trent Polytechnic 1983,91 pp. (41) Verkholantsev, V. V. Lakokras. Met. 1985, No. 4, 49-53. MISCELLANEOUS MEASUREMENTS (INCLUDINQ PHYSICAL TESTS)

(1) Aboukhashaba, A. A.; Rabah, M. A.; Aly, M. S. JOCCA 1984. 67(9), 239-41. (2) American Society for Testing & Materials. ASTM D 1005-84,7985 AnnuaiBookofASTMStamrds, 06.01,164-7. (3) American Society for Testlng & Materials. ASTM D 1044-82,7985 Annual Book of ASTM standi?& I 08 .O 1, 543-7. (4) American Society for Testing & Materials. ASTM D 3359-63,7964 Annual Book of ASTM Standerds 08.01 668-72. (5) American Society for Testlfig & Materials. ASTM D 4060-84,7965 AnnuaiBook ofASTMStandemk, 06.01, 879-81. (6)American Society for Testlng & Materials. ASTM Res. Rept . No RR D -7 7037, 1984. 13 pp. (7) Anon. flastverarbelter 1984. 35(1),94-5. (8) Anon. f/g. Resh Tech. 1985, 14(6), 14-8. (9) Basin, V. E. Frog. Ckg.Coat. 1984, 72(3),213-50. (lo) Bell, R. T. Surface Coat@$ Austral. 1984, 27(8). 8-10. (11) Bonora, P. L.; Fenu, F.; Cerkola, G.; Balboni, P. fmUre Vernici 1984. 60(7),60-3. (12) Bradshaw, R. L.; Amksakis. C. Roc. Xth Internat. Conf. in Org'enic Coathgs Science & Technorogy, Athens 1884, 429-46. (13) Brann, B. L. J . Radlstbn Curing 1985, 72(3),4-10. (14) Braun, R.; Malltschek, 0. Fetfe Selfen Ansfrich. 1984, 86(2),76-82. (15) Chan, H. L. W.; Unsworth, J. Eur. folym. J . 1985, 27(4),377-82. (16) Chee. K. K. J . Appl. fo/ym. Scl. 1985, 30(4), 1359-63. (17) Chee. K. K. J . Appl. folym. Scl. 1885. 30(8). 2607-14. (18) Cipolla, B. G. Rlv. del Col. 1984, 17(195/196),214-6. (19) Coil, H.; Haseier, S. C. J . Co//okj Interface Sci. 1984, 99(2),591-2. (20) Coucoulas, L. M.; Dawe, R. A. J . Co/lokj Interface Sci. 1985, 703(1), 230-6. (21) Crewdson, M. J.; Lane, S. G. Metal Fin. 1984, &(lo), 83-8. (22) Deutsches lnstitut Fuer Normung. DIN 55 680, 1983: BSI WorMwMe List Stand. 1984 (May), 41. (23) Dixon, D. J. Coatings Tech. 1984, 56(717),60. (24) Eshuis, A.; Mellem, J. J . ColloM folym. Scf. 1984, 262(2), 159-70. (25) Ettei. W.-P.; Weske, M. flssfe Kaulschuk 1984, 37(1),30-2. (26) Fox, R. B.; Bitner, J. L.; Hinkiey, J. A,; Carter, W. folym. Engng. Sci. 1985, 25(3),157-63. (27) Funke, W. JOCCA 1985. 68(9),229-32. (28) Fytas, G.;Wang, C. H.; Meler, G.; Fkcher, E. W. h4acromoiecuies 1985, 78(7), 1492-6. (29) Gieldowski, L. Frzem. Drzew. 1983, No. 9,7-10. (30) Goodwin, J. W.; Gregory, T.; Miles. J. A.; Warren, B. C. H. J. Colloid Interface S o . 1984, 97(2). 488-95. (31) Guerdoux, L.; Duckett, R. A.; Froelich, D. Polymer 1984, 25(10), 1392-6. (32) Hecht, P.; Otto, R.; Qerber, K. Plsste Kautschuk 1984, 31(11),436-7 (33) Hopman, P. C. JOCCA 1984. 67(7), 179-84. (34) Hopman, P. C.; Burgmeyer, J. W. Farbe L8Ck 1984, 90(7), 556-9. (35) Hourston, D. J.; Klein, P. G. ACS, Div. fMSE 1984, 51, 488-93. #

I

(36) Huisman, H. F. J . Coatlngs Tech. 1984, 56(712). 85-79 (37) Hulden, M.; Hansen, C. M. Prog. Org. Coat. 1985, 73(3/4),171-94. (38) HuyskBns, P. L.; Hauialt-Plrson, M. C. Roc. Xth Internet. Conf. In Organic Coatings Science & Techndogy. Athens 1984, 125-37. (39) Ishida, S.;Kltagawa, T.; Nakamoto, Y.; Kaneko. K. folym. Bull. 1983, 70(1 I/ 12),533-7. (40)Katlme, I.; Ochoa, J. R.; Cesteros, L. C. €ur. folym. J. 1983, 79(12), 1167-9. (41) Kiempner, D.; et ai. ACS, Div. fMSE 1984, 57, 503-11. (42) Kuo, H.-H. J . Coatings Tech. 1085, 57(727),57-61. (43) Lee, G. F.; Hartmann, B. J . Appl. folym. Sci. 1984, 29(4), 1471-4. (44) Lowell, S.;Shieldsk. J. E. 2nd ed.;Powder Technolcgy Series; Chapman 8. Hall: London, 1984;xiii 4- 234 pp. (45)Massouda, D. F. J. Coatings Tech. 1985, 57(722),27-36. Dimkrov, S.; Bonchev, D. Eur. folym. J . 1983, 79(12), (46) Mekenyan, 0.; 1185-93. (47) MueHer, K. Kunststoffberater 1983, 28(11/12),28-35. (48) Nakamae, K.; Sumwa, K.; Tall, Ta.; Matsumoto, T. J . Polym. Sci., folym. S C P p . 1984, NO.71, 109-19. (49)Nakamichi, T. J . Jpn. Sco. Col. Mat. 1984, 57(12),843-51. (50) Newey, H. A.; Busso, C. J.; Beck, T. R.; Wedgewood, A. R. J. Appl. folym. Scl. 1985, 30(2),875-94. (51) OHara, K.; Gordon, W. P. Roc. XIth Int. Conf. in Organic Coatings Science & Technology,Athens 1985, 273-92. (52) Orbon, S . J.; Plazek, D. J. J . folym. Sci., folym. Phys. 1982, 20(9),

1575-83. (53) OtSubo, Y.; Amarl. T.; Watanabe, K. J. A m / . folym Sci. 1984, 29(12). 4071-80, (54) Perera, D. Y. JOCCA 1985, 67(11),275-81. (55) Perera, D. Y. J . Coatings Tech. 1984, 56(716),111-8. (56) Perera, D. Y.; Vanden Eynde, D. J . Coatlngs Tech. 1984, 56(718),

__

69-76 ._

(57) Pinks, W.; Schubert, H. Swiss Plastics 1984, 6(1/2),21-3. (58) Ponce, S.; &met, D.; Schreiber, H. P. J. Coatings Tech. 1985, 57(728),37-42. (59) POniZOvskii, V. M.; Spelkov, G. P.; Gor'kii, A. M. Prof. Metals 1983, 19(5),686-8. (60) Prttykin, L. M.:Vakula, V. L. Adhaesion 1883, 27(12),14-9. (61)Ram Mohan Reo, M. P.; Shareef, K. M. A.; Yaseen, M. fahtindla 1984, 34(12),7-14. (62) Shebeko, Hu N.; Korol'chenko, A. Ya. Lakokras. Mat. 1985, No. 3, 55-6. (63) Shimbo. M.; Ochi, M.; Arai, K. J . Coatings Tech. 1985, 57(728),93-9. (64) Sickfeld, J. Deutsche Malerblatf 1984, 55(9),993-6. (65) Slhrentoinen, I. J . CoaHngs Tech. 1985, 57(722),55-60. (66) Simpson, L. A. froc. XVII FATIPEC Congress, Lugano, Switzerland 1984, 3,453-85. (67) Szilas. A. Rheol. Acta 1984, 23(1),70-4. (68) Tant, M. R.: Wlkes, G. L.; Storey, R. F.; Kennedy, J. P. folym. frepr. 1984, 25(2), 118-9. (69) Urad Pro Normalisaci (Czechoslovakia). CSN 67 3082, 1983: BSI WwMwMe List Stand. 1884 (June), 43. (70) Wallace, B. A.; Thompson, J. C. Pipe Line Ind. 1984,6 0 , 37 (5 pp). (71) Yaseen, M.; Raju, K. v. s . n. JOCCA 1984, 67(7),185-93. (72) Zukas, W. X.; Schneider, N. S.; MacKnight, W. J. folym. frepr. 1984, 25(2),205-6.

Ferrous Analysis William A. Straub USS Technical Center, Monroeville, Pennsylvania 15146

This review is the seventh in the series compiled by using the Dido on-line CA Search facilities at the Information Resource 8enter of USS Technical Center covering the period from Oct. 1984 to Nov. 1,1986. I would like to make special note of the fact that my colleague in the writing of the previous six ferrous analysis reviews, Dr. J. K. Hurwitz, has retired and is moving on to other opportunities. I wish to thank him for his many contributions to our previous efforts and wish him well. Our industry, particularly the American steel-producing segment, continues to struggle with the related problems of over-capacity and decreasing markets. Coupled with the reality that steel is increasingly being sold as a commodity and that it can be supplied from almost everywhere in the industrial world, we fine that our research efforts are tending toward the development and control of continuous steel 46 R

making processes in order to reduce costs. The analytical effort that has accompanied this change of direction is clear; fewer papers are being published and research efforts are b e i i more narrowly focused on the development and adaptation of methods that are most amenable to automation. The quest for better surface properties, through the application of various electrochemical and other coating techniques, seems to have increased and reinforces the notion that only through the value added to a steel by proper fiihing steps can a major supplier hope to compete profitably. The detection, determination, and control of microalloying constituents has also been generating a lot of interest as evidenced by the number of publications devoted to this subject in the last few years. Several recent review articles, one from Japan (339), from the UK. (27),from France (204),and from Germany (252), amplify on the recent trends in the application of modern analytical

0003-2700/87/0359-46U$06.50/~ 0 1987 American Chemical Society

FERROUS ANALYSIS

Wllllam A. Stmub. As~)cIBte Technical Consuknt. USS dMSbn of USX Corpwatbn. Technical Center, Monrtlevilb. PA, has been wim USS since receiving his Ph.D. in anaiyncai Chernishy hm Cwnell universny in 1957. I n vecent years. he has been active mainly in the adaptation and development of analytical methods used in the prccess collb-01 01 variws soiutions required for me production 01 coated s t e i products. He k B member 01 me American Chemical SD ciety. has served as chaliman 01 the Society for Analyiical Chemists of Pittsburgh. and has wolked on the Pmsburgh Conference COmrninee In varbus capaclier.

technology to steelmaking. Another review has been devoted to the determination of trace elements and the simultaneous determination of elements in metals by mass spectrometry, atomic absorption spectrometry, and multielement emission spectrometry (489). The use of flame atomic absorption technology for the determination of both high- and low-level components in metals has also been covered in a recent German paper (2). Problems associated with the analysis of electroplating wastewaters have been reviewed in a recent publication that has described the use of various spectrophotometric methods for this purpose (366). The collection and treatment of analytical data in the modern steel making environment have been extensively reviewed with emphasis on the interaction of the providers and users of the analytical data, its quality, and the cost of its collection (447). Quality control, sampling, and sample treatment in the iron and steel industry has also been the subject of another German review paper (264). Raw material treatment and beneficiation was the dominant theme. ALUMINUM In a comprehensive study of the use of Chrome Fast Pure Blue B with cetyltrimethylammonium bromide to form an aluminum complex for the spectrophotometric determination of aluminum in steel, 44 elements were studied for their potential for interference with the developed method (306),while the ternary complex of aluminum, Eriochrome Black T , and diphenylguanidine has been used in an extraction-photometric procedure for the determination of aluminum in steels (33). Both soluble and insoluble aluminum in carbon steels have been assayed with acceptable precision and accuracy by the application of atomic absorption spectrometry with a nitrous oxide-acetylene flame (420). Total aluminum content of high-alloy steels (84) and several f e r r d o y s (211)has also been determined by atomic absorption analysis with this same source after appropriate sample preparation as described in two recent publications. Metallic aluminum in steels has been determined with a method that involves a bromination step to isolate the aluminum and subsequent electrothermal excitation and atomic absorption measurement of the aluminum in the isolate (575). Two papers have appeared that use the measurement of the oxygen activity of a steel melt with an electrochemical sensor to calculate or predict the soluble aluminum content of the melt by an appropriate correlation procedure (295,566). A recent patent describes a thermal emf device, to be used in direct contact with a hot steel sample to provide a rapid determination of the acid-soluble aluminum content of the steel (249). The compleximetric titration determination of aluminum in raw materials that contain high levels of iron and manganese bas been expedited by a procedure described for their rapid removal in a recent paper (345). A thermal neutron activation analysis system using a 252Cfsource on an auxilliary side stream of iron ore fines has been used effectivelyfor the on-line determination of alumina in an ore processing facility according to a recent review of methods for the hulk analysis of iron ores (184). By use of the analysis of electrochemically isolated inclusions from a melt sample through the combination of a neutron activation procedure for the oxygen content and atomic absorption determination for the dissolved aluminum content, it has been speculated that it should be possible to predict the optimum level of deoxidants to fa-

vorably effect the morphology of the inclusions (529). A procedure has been claimed in a recent patent for the emission spectrometric determination of the soluble and insoluble forms of aluminum in steel by analysis of the emission intensity of the aluminum line with time (470). Two papers have also appeared that describe the use of the intensity integration method (see the above reference) and the pulse distribution method for the emission spectrometric determination of the content of dissolved and precipitated aluminum in steels that will enable its measurement in