Ferrous metallurgy

Ferrous Metallurgy. L C. Pasztor and C. R. Hines, Graham Research Laboratory, Jones & Laughlin Steel Corp., Pittsburgh, Pa. 15230. This review, coveri...
19 downloads 0 Views 2MB Size
Ferrous Metallurgy 1. C. Pasztor and C. R. Hines, Graham Research Laboratory, loner 8, laughlin Steel Corp., Pittsburgh, Pa. 7 5230

T

HIS review, covering the period from December 1966 to November 1968, draws extensively from abstracts. Papers which were not published in English, French, German, or Hungarian were reviewed exclusively from abstracts. The procedures reviewed were found to be largely refinements of existing procedures. The trend noted in our previous reviews (30, 402) continued : increasing automation (187, 281, 305), the use of computers (99, @ 2 ) , and more rapid analysis. Fast steelmaking processes, continuous casting, and vacuum degassing require very rapid analysis of metallurgical samples. Many rapid techniques were developed for the analysis of well-prepared samples, but, unfortunately, the limitations in sampling and sample preparation techniques represent a serious problem in the rapid analysis of iron and steel. I n attempts to overcome these difficulties, new sampling techniques (68, 115, 116, 208, 354, 618, 521, 529) and direct analytical approaches were developed. Among the new approaches, sampling was eliminated b y directly analyzing the molten steel a t least for the most critical elements-e .g ., oxygen by electromotive force measurements (64, 150, 161), carbon by liquidus arrest temperature measurements (95, 278, 284, 386, 554), or several elements by spectrography (468) or immersion plasma-jet arc emission spectroscopy (66). I n connection with the general use of spectrometric methods, the demand for accurate standardized samples increased and, accordingly, various techniques for the preparation for reliable standards were offered (32,369,362,417,607).

ALUMINUM

Volumetric procedures for the determination of aluminum in steel involved the backtitration of complexing agents [or acids used for the dissolution of the Al(OH)a precipitate] after separation of the aluminum from interfering elements. Reagents used were E D T A (163, 478) and sulfuric acid (492). Strict p H adjustment to 3.7 to 3.9 during the precipitation of A1 with ammonium phosphate (430) was emphasized in a gravimetric procedure. Photometric procedures were described for the determination of total or acidsolubIe and acid-insoluble aluminum using Chrome Azurol-S (533) and Stilbazo (536). Two modifications of the Eriochrome Cyanine photometric procedure were described (69, 464). 90 R

0

ANALYTICAL CHEMISTRY

The polarographic methods for the determination of aluminum in steels were reviewed (667). Sitrous oxide-acetylene flames were used in atomic absorption procedures for aluminum in steel (133, 666) and three times greater sensitivity was achieved using an organic solvent rather than aqueous solutions (666). Spectrographic methods were developed for determining trace amounts of aluminum in steels (302, 340, 428), Cr-Ni-Mo steels (429), and white iron (441). Hollow-cathode discharge excitation improved the sensitivity of the aluminum determination in cast iron (442). Spectrochemical procedures were used for the determination of metallurgically dissolved aluminum in steel and cast iron in which the sample is analyzed either in solution (363, 389) or as a dry powder (363). I n a rapid spectrochemical determination of acidsoluble aluminum, cadmium was used as an internal standard (27). I n a spectrometric method a stabilized plasma-jet flame was used for the determination of aluminum in steel (176).

BERYLLIUM

An iron oxide powder-d.c. arc spectrographic procedure was described for the determination of beryllium in iron and steel and especially in high nickel alloy steels (272). BISMUTH

Bismuth was separated by ion exchange (318) or the interferences, including antimony, were removed by solvent extraction (416, 477), in the iodonietric-photometric determination of bismuth in steel and cast iron. Other photometric procedures involved the use of dithizone (l47), thiourea (S29), and Xylenol Orange (446) after the separation of bismuth from interferences. A hollow cathode discharge was used for the spectrographic determination of bismuth in cast iron (442). Another spectrographic procedure for the determination of microgram quantities of bismuth in cast iron was based on the fractional distillation in d. c. arc excitation of a powdered sample (4.61).

ANTIMONY BORON

Solvent extraction of colored complexes was necessary in the spectrophotometric determination of antimony in steels using Crystal Violet ( l a ) , Brilliant Green (368), and Safranine T (413), and distillation separation as SbCll was necessary before photometric determination with methylene blue (86). For 0.001 to 0.065% antimony in iron ores rhodamine B was used (316). The Sb 2598-w line was recommended for the spectrometric determination of antimony in steel and nickel alloys (499). ARSENIC

Arsenic in steel and cast iron can be determined amperometrically by dimercaptothiopyrone titration (526). I n connection with the stannous chlorideiodometric procedure the effect of various acids and coexisting ions was established (332). The neutron-activation determination of arsenic in steel was reviewed (107) and a neutron-activation method was described in detail, in which the arsenic is determined after a distillation separation from interfering elements (108). Three X-ray methods-a briquet technique and two solution procedureswere also repoited (462).

The methylene blue dichloroethane extraction method originally described by Pasztor and Bode (402) was modified for the determination of boron in iron and steel (159, 186, 249, 326) and alloy steels (871). Reagents for other photometric methods were quinalizarin (87), curcumin (66), and l-hydroxy-4-ptoluidioanthraquinone (31). A fluorometric method based on the fluorescence of the hydroxy-4-niethyosybenzophenine-boron complex employed the mercury triplet for excitation (367). I n the titrimetric determination of boron in ferroboron the interferences were eliminated by ion exchange separation (64). Available spectral lines for the spectrometric determination of boron in steel were evaluated (210); the spectrographic methods developed included the use of a vacuum spectrograph (125), a carbon monoxide atmosphere (449), a hollow cathode discharge (442), a solution technique (128), and a carrier distillation technique (441). One spectrographic point-to-plane technique stresses electrode shape and polarity (S04), and another uses a high dispersion spectrograph to separate the 2497.73-a. line from F e 2497.72 A (263). A spark source mass spectrographic method was also developed (166). Neutron-activation techniques are proving very useful in determining

trace amounts of boron in steels (17, 91 , 166) and stainless steels (36). Neutron irradiation with a polymer detector was used in the a-particle track etching method for the determination of total boron and to establish the distribution of boron in austenitic steels ( I ? ) . CALCIUM

Photometric EDT.4 titration was used for the simultaneous determination of calcium and magnesium after mercury cathode and precipitation separations in iron and steel (341) and for the determination of calcium in ferrosilicon (562). The spectrophotometric determination of calcium in iron was carried out with glyoxol bis-(2-hydroxyanil) after the interfering iron was separated b y solvent extraction (243). Atomic absorption spectrophotometry was found suitable for the determination of calcium in cast iron (25). CARBON

In connection with the demand for the fast determination of carbon in molten steel during rapid and modern steelmaking, variations of the liquidus arrest temperature measurement technique here described (95, 2?8, 284, 386, 564). The incorporation of a directreading (interference) compensator in the liquidus arrest temperature equipment significantly increased the accuracy of this technique (284). The methods based on the fusion extraction of carbon, in a stream of oxygen, were further modified. Pb304 (561) and Cr-203 or CeOt (232) were employed as fluxes, and the use of a combustion tube with an open end (561) was recommended in the thermal conductometric determination of carbon in iron and steel (561) and alloy steels (232). Various modifications, involving coulometric (503, 511, 558), conductometric (245, 505), and gas chromatographic (258) finishes were also reported. A new type of infrared detector (355) and a differential oil manometer (20) were used in other rapid methods. Seven ways of sampling were evaluated for the determination of carbon in gray irons (547). A spectrographic approach was used to measure the degree of decarburization of steel (51) in decarburizatiog studies. The CX’ band at 3883.35 A with short (3- to &second) exposures was used in the rapid determination of carbon in steel (484). A rapid activation technique was based on the counting of the prompt y-ray radiation, emitted by carbon, during deuteron bombardment (411 ) . I n another method, y-ray irradiation was used and the activity of carbon was

measured after it was extracted from iron (during fusion) in a stream of oxygen (434). CHROMIUM

I n the persulfate method, the addition of E D T A eliminated manganese interference (466), and in a.c. amperometric titration two indicator electrodes were used to overcome interferences (144, 146). Amperometric titration can also be used for the simultaneous determination of Cr, Ce, and M n in low alloy steels (574). A photometric procedure was based on the formation of a colored pyrophosphate complex (482). Other photometric methods were suitable for the simultaneous determination of Cr, Ki, P, and Si in cast iron (543) and Cr, Cu, Mo, and Xi in steels (308). Instrumental techniques included atomic absorption spectroscopy (174, 567), laser excitation source emission spectroscopy (536), and stable isotopedilution mass spectrometry (200). X-ray fluorescent methods were studied to establish the effects of rough surface (188) and correction formulas for interelement effects (6).

COBALT

I n the presence of manganese, cobalt in steel was determined potentiometrically ( 9 ) . Nitrosonaphthol reagent was used in a gravimetric procedure (85). X’itroso-R salt was employed after ion-exchange separation for the photometric determination of cobalt in steel (I39), and the solvent extraction of the colored Co-diethyldithiocarbamate complex into carbon tetrachloride mas employed for ferronickel (447). For steels, atomic absorption (118), for stainless steels with >4.9% Co nondestructive neutron activation, for those with 2/55’), manganese (22, 24, 38, 481, 567), nickel (38, 421, 567), tellurium (349), titanium (50, 198, 369), and zinc (653, 540) in various ferrous materials. MASS SPECTROSCOPY

Although solids mass spectroscopy has not become a routine technique, its use is spreading because it is a very

sensitive and reasonably accurate means of determining trace elements in steel. Several techniques in analyzing steels (2i6, 534, 546) and a specific use, for the determination of boron in steel, were described (I55). Nuclear. Neutron activation procedures have become routine in ferrous metallurgy. A report describes the iiistrumentation available, the possible nuclear reactions, a n d source of interference in t h e determination of u p to 12 elements ill steel, ores, a n d slags by neutron activation (456). A general schenie of analysis for the determination of impurities in iron involves standard additions and solvent extraction (13). Specific applications of activation analyses are reported under the following headings : aluminum, antimony, arsenic, boron, copper, cobalt, germanium, indium, manganese, nickel, nitrogen, oxygen, phosphorus, selenium, silicon, sulfur, tungsten, vanadium, and slags and ores. Beta-backscattering methods were developed for the analysis of ferroalloys (485) and ores, slags, agglomerates, and steel (228). Optical Emission. Although spectrographic procedures have been firmly established for many years as routine ill ferrous metallurgy, t,here is still much investigation of the basic theories in t h e technique. These studies include the effect of vaporization of electrodes (47), the diffusion of elements during discharge (380), the effect of sample composition (74), especially nonmetallic inclusions (202, 203, 296, 338), sample microstructure (76, 501), sample heterogeneit'y ( S d Z ) , and presparking (72, 390). Other investigations included a time-resolving technique, the use of low voltage sparks with high succession frequency (dog), the excitation of a sample which has just been melted in a d.c. arc (61), the use of a magnetic field to repress oside formation (80), the influence of rod sample diameter (73),and the effects of atmospheres and atmospheric pressures (262). Vacuum spectrometry is constantly being improved for the determination of carbon, phosphorus, and sulfur (19, 75, 293) and for routine sbeel analyses (175, 391 , 508). Vacuum spectrometers are also being routinely used for analyses of high alloy and stainless steels (209, 149,290,463)and cast iron (519,535). Spectrographic methods were described for the analysis of high alloy steel (SOS),low alloy steels (34, 41, 124, 467), and cast iron (28, 40, 42, 103,260). A method was also discussed for analyzing cast iron using a n air-path spectrometer (426), and a new mold for sampling pig and cast iron was described (489). A microspectrographic method used corundum rings to isolate a dis-

charge area of 1 mm. on the steel surface (645). Spectrochemical methods included powder techniques fcr ferroalloys (288, 358) and an iron oside powder technique for determining platinum elements (270) and traces of alloying elements (269) in steel. Solution techniques (101, 379) and powder dilution procedures (266) were also described. Ores and slags were analyzed spectrometrically as powders using a tape machine (220), as briquets (46, 4 2 4 , and after fusion with a sodium phosphate-borate mixture (438). Considerable research has gone into the use of the laser as a source (84, 111, 366, 443, 537, 575, 578). The plasma arc (372) and time-resolving techniques were evaluated (179). Turnings or steel chips were analyzed b y pressing the small particles into briquets (126, 292) or by remelting and casting (259, 279, 423) and a semiquantitative method using filings and cuttings of steel was presented (322). A visual spectroscope was offered as a quantitative tool (191). Reviews were presented on the development of spectrographic analysis in the U.S. S. R. (69) and the spectrographic analysis of molten steel (458), and a specific method for determining nickel in molten steel was described (199).

X-Ray and Electron Microprobe. T h e main use of X-ray spectroscopy in ferrous metallurgy continues t o be t h e analysis of high alloy steels (5, 14, 49, 98, 106, $51, 352, 462, 471, 613) and most of the research in this type of analysis has been directed t o the mathematical treatment of data to correct for interelement and matrix effects (5, 98, 351, 362, 471, 613). X-ray fluorescence has also been applied in analyzing iron and low alloy steels for trace and residual elements (105, 229, 205, 273, 538). In the analysis of ferroalloys (393, 617 ) and slags and ores (62, 274) , a crushed powder technique is used on a routine basis. Although the analysis of steels is normally performed with solids, other techniques were also used, such as the briquetting (of turnings) (127), solution (53), and dry powder (432). Special studies in X-ray fluorescence included the investigation of the effect of heat treatment of steels on X-ray fluorescence intensities (525), and the use of the technique t o study chromium segregation in steel (229)and to identify grades of stainless steels qualitatively (195). Methods for determining thickness of various coatings on steel were developed (240). New all-automatic commercial instrumentation was described (281, 305, 360) and the theory and application of primary X-rays for analysis using a radioisotope source (437) and electron

beam source (236) were discussed. Some applications of X-ray diffraction as a quantitative technique were offered (167, 472). The a r t of quantitative X-ray microanalysis in the steel industry was reviewed (164). The quantitative analysis of ferrous metals by electron microprobe analysis has been constantly improved, mainly through studies of absorption and enhancement effects in the analysis of binary (43) and tertiary (571) alloys, which can then be used to calculate corrections. The determination of light elements such as carbon, oxygen, nitrogen, and silicoii by electron microprobe analysis is used to determine nonmetallic compounds qualitatively and quantitatively in steels (282, 473, 552). SULFUR

A combustion-potentiometric titration was described for determining sulfur and carbon in the same sample (505). A comparison of combustion and wet decomposition techniques showed no significant difference in the titrimetric determination of sulfur (454). Vanadium pentoxide was employed as an accelerator flus to improve the recovery of sulfur in the analysis of iron and steel (77, 182). Therinometric titration determination of sulfur with *O.OOl% to o.00470 S accuracy, based on primary and secondary reactions, was employed for steel and pig irons (444). Electron microprobe techniques were used t o study sulfur segregation in cast iron (312) and neutron activation analysis was employed in the determination of >2.5 ppm of S in alloy steels (375) I

TELLURIUM

Interfering elements were extracted with isobutyl methyl ketone before the spectrophotometric determination of tellurium in iron and steel, using thiourea (197). Tellurium was reduced to metallic tellurium and dispersed in an aqueous solution in a turbidimetric method (4). An atomic absorption procedure was described for the determination of 0.0005 to o.0370 T e in iron and steel ($49). I n the vacuum X-ray spectrometric determination of ppm quantities of tellurium in steel, tellurium was separated b y reduction and precipitation and the precipitate, separated on a membrane filter, was analyzed (78). TIN

Spectrophotometric methods for determining tin in steel were reported using phenylfluorone (317, 327, ~ $ 1 0 ) ~ gallein (373), catechol violet (669), quercetin (86), and haematein (486) as VOL. 41, NO. 5, APRIL 1969

95R

complexing agents. After separation from iron b y coprecipitation with beryllium as the hydroxide in the presence of EDTA, tin was determined by. square-wave polarography (242) and photometrically with phenylfluorone (16). Tin was separated by distillation as the bromide before its oscillographicvoltametric determination (347). I n the spectrometric determination of traces of tin in steel, molybdenum interference was corrected by the use of an empirical diagram (339). Americium was used as a radiation source in the X-ray determination of tin-coating thickness on steel strips (110). TITANIUM

After an electrolytic separation of the interferences and cupferron precipitation, titanium was determined gravimetrically as the dioxide in ferrotitanium (488). An EDTA backt'itration was also reported for determining titanium in ferrotitanium (70). Various spectrophotometric procedures were described using diantipyrinylmethane (96, $34, $16) and catechol and picolinic acid (453). The peroxide met'hod was further refined (562, 479). A nitrous oxide-acetylene flame was required in the determination of titanium in steel b y atomic absorption spectroscopy (50, 198, 369). An internal standard technique was used in the radioactivation determination of titanium in iron ( I ) . TUNGSTEN

Tungsten was precipitated with Variamine Blue in the gravimetric determination of tungsten in alloy steels and weighed as the oxide (235). The pyrocatechol violet complex was used in the spectrophotometric determination of tungsten in steels (401). After ionexchange separation, 3-hydroxyflavone was used for the fluorimetric determination of tungsten in steel (48). Keutron activation was used in conjunction with chromatographic separation (142). To improve the sensitivity in the nondestructive determination of tungsten in iron and steel, the samples were wrapped in cadmium foil during irradiation (481). Beta-ray backscattering was also employed for the determination of tungsten in ores and highspeed steels (26). VANADIUM

Thallium was used to coprecipitate vanadium in the gravimetric determination of vanadium in iron-vanadium alloys (217). Two indicator electrodes were employed in the amperometric determination of vanadium in alloy steels (145, 277). I n the spectrophotometric determination of vanadium, the reagents studied were 3,3-dimethylnaphthidine (440), N-furoylphenylhy96 R

0

ANALYTICAL CHEMISTRY

droxylamine (414), 8-quinolinol (318), sodium tungstate (170, I T I ) , and diphenylcarbazone (171). Another spectrophotometric method used anthranilic acid and salicylaldehyde to form a Schiff base and suggested this base for the rapid detection of vanadium in steel with a spot test (33). ZINC

Zinc was separated as the negatively charged chloride on an anion exchange resin and titrated with EDTA in the determination of zinc in steelmaking dust (550). Ion exchange chromatographic separation was also employed in the titrimetric or polarographic determination of zinc in iron ores (350). I n the simultaneous polarographic determination of zinc and lead in iron, steel, and iron ores, iron was extracted with isobutyl methyl ketone (182). Preliminary separations were necessary in the atomic absorption spectrophotometric determination of zinc in iron and steel (265). A rapid X-ray procedure was developed for determining zinc in flue dust and sinter (549). ZIRCONIUM

For the direct spectrophotometric determination of zirconium in steel the Xylenol orange (85) and the arsenazo I11 (251) methods were modified. bfter mercury cathode separation of interferences, arsenazo I11 (247, 251), after solvent extraction separation, picramine R with arsenazo I11 (450), mere used in the photometric determination of small quantities of zirconium in steels (83), stainless steels (252),and high alloy steels (450). Acknowledgement

T h e author thanks hIml Sein for her assistance in abstracting in and filing references and hi. Reich for typing and proofreading this review. LITERATURE CITED

(1) Abe, S., J. Chem. Soc. J a '~ p a n (Pure Chem.'Sek.) Chem. Sect.) 87, 710 (1966). (2) Zbid., 88,52 (1967). (3) Abe, Y., Tamura, AI., Takazawa, S., Tetsu To Hagane 54,520 (1968). (4) Adachi, T., Isarai, R., Denki-Seiko 7l7 46 /(1966). lclAfil 37,96 ((5) Adachi, T., Ito, RI., Zbid., 34, 384 (1963). ((61 Zbid.. 37. 208 (1966). (7) Affsprung, H'. E.,' Robinson, J. L., Anal. Chim. Acta 37,81 (1967).

(8) Afghan, B. K., Dagnall, R. AI., TaZanta 14,239 (1967). (9) Agafanov, P. F., Zavodsk. Lab. 33,

28 (1967). (10) Akaiwa, H., Kawamoto, H., J a p a n Analyst 16,359 (1967). (11) Albert, P., Blouni, J., Cleyrergue, C.. Deschamm. N.. LeHericv. J.. ~, J. Ra'dioanal. Chi&. 1,389 (1968): ' (12) Alderisio, A., Gauzzi, F., Ric. Sci. 36,1025 (1966). (13) Alian, A., Shaleana, R., TaZanta 15,257 (1968). (14) Alley, J., NASA Accession No. N65-32135, Rept. AD 467156 (1965).

(15) Ambrigavalli, S., Chemist Analyst 56,79 (1967). (16) Amsheev, A. A,, Zavodsk. Lab. 34, 789 (1968). (17) Armijo, J. S., Rosenbaum, H. S., J.A p p l . Phys. 38,2064 (1967). (18) Reference omitted in text. (19) Armautov, N. I'., Kiteev, A. D., Izv. Sib. Ctd. Akad. K a u k SSSR, Set. K h i m . X a u k , 4, 145 (1967). (20) Athavale, V. T., Awasthi, S. P.,

Krishmamachari, N., Sundarison, RZ., 1-arde, 11.S., Anal. Chim. Acta 35, 247

(1966). (21) Atsuya, I., J a p a n Analyst 15, 247 (1966). (22) Zbid., 15,672 (1966). (23) Atsuya, I., Sei. Rept. Rio Inst., Tohoku Univ. Ser. A 19, 59 (1967). (24) Zbid., 19,67 (1967). (25) Atsuya, I., Ikeda, S., Yoto, H., Ibid., 18,76 (1966). (26) Balakriahman, B. R., Balasuloramanian, T., Mater. Eval. 25, 173 (1967). (27) Ball, 11. C., BIIrns, D., Gray, A,, Lab. Pract. 17,186 (1968). (28) Barleakadze, D. F., Neparidze, N. A., Zavodsk. Lab. 33,1096 (1967). (29) Barrandon, J. K., Delerun, J. L., Albert, P., Communaute Eur. Energ. A t . EUR-3896,277 (1968). (30) Beeghly, A. F., PaSztor, L. C., ANAL. CHEM.37.87R (19651. (31) Bell, 'D., McArthur, K., Analyst 93,298 (1968). (32) Belohlavik, O., Pribil, E., Hutnicke Listy 21,418 (1966). (33) Ben-Dor, L., Jungreis, E., Jungreis, C., Israel J.Chem. 4, 189 (1966). (34) Benta, RI., Rica, I., Metalurgia (Bucharest) 18,335 (1966). (35) Bergh, S., Grunbaum, G., Jernkont A n n l i 151,327 (1967). (36) Bermanis, H. L., S u c l . A p p l . 2, 48 (1966). (37) Bernal Sievas, J., Herrero Lancina, &I.,ReotaMetal. 2 , 135 (1966). (38) Beyer, M., A t . Absorption IVewsletter4, 212 (1963). (39) Bhargava, 0. P., Hines, W., AXAL. CHEM.40,413 (1968). (40) Bieber, B. Ihexlergova, J., Hutnicke Listy21, ;io (1966). (41) Ibid., 21,646 (1966). (42) Bieber, B., S'ecero, Z., Zbid., 20, 808 (1963). (43) Blorh, R., Peganz, J., Schablauer, C., Wzkrochim. Acta 1967, No. 2, 149. (44) Bodya, E., Ftorek, SI., Zavodsk. Lab. 32, 1473 (1966). (46) Bogovina, Y. I., Usatinko, Y. I., Mal'tsev, Y. F., Zbid., 32, 412 (1966). (46) Bojie, Sf., Bourdieu, J. XI., Jorre, I)., Method. Phys. Anal. 1966,226. (47) Bondarenko, B. F., Zavodsk. Lab. 34,161 (1968). (48) Bottei, R. S., Trusk, A., Anal. Chim. Acta 37,409 (1967). (49) Bowman, I). W., Rogers, R. J., U.S.

Clearinghouse Fed. Sci. Tech. Inform.,

AD-819164, (1967). (50) Bowman, J. A., Willis, J. B., ANAL. CHEM.39. 1210 (1967). (51) Bramhal1,- P'. S.,'Haynes, R. G., Willingham, R. C., Metallurgia 76, 43 (1967). (52) British Heavy Steel Association Siobium Analysis Panel, J . Iron Steel Inst. (London)204,1022 (1966). (53) British Iron & Steel Research Association, B.I.S.R.A. Mg/D/281/64 ( 1966 ). (54) Zbid., Mg/D/341/63 (1967). (55) Zbzd., Mg/D/553/67 (1967). (36) Ibid., Mg/D/554/67 (1967). (57) Ibid., Mg/D/555/67 (1967). (58) Ibid., Mg/D/556/67 (1067). (59) Zbid., Mg/D/561/67 (1967). (60) Reference omitted in text. (61) BritivhPatent 1,066,431 (19??).

(62) British Patent 1,106,074 (19??). (63) British Patent 1,106,086 (19??). (64) British Patent 1,109,032 (19??). (65) BritishPatent 1,116,052 (19??). (66) British Standards Institution, B.S. 1121, Parts 6,39,40, and 41 (1967). (67) Zbid., Part 50. (68) Ibid., B.S. 1837 (1966). (69) Britske, 51. E., Buyamov, N. V., Nedler, Y V., Zavodsk. Lab. 33, 1225 (1967): (70) Bride, E. S., Zh. Prikl. Khim. 39, 1192 (1966). (71) Bryan, F. R., Runge, E. F., Appl. Spectry. 22, (1968). (72) Buravlev, Y., Zavodsk. Lab. 32, 554 (1966). (73) Buravlev, Y. M.,Zh. Prikl. Spektrosk. 5, 562 (1966). 1741 Zbid.. 6.583 (1967). (75) Buravlev, Y. AI., Buyanuv, N. V., Ustinova, Y. I., Titovets, A. V., Korothor, Y. F., Tr., Vses. Sauehn-Issled. Inst. Stand. Obraztsov Spektr. 2, 114 (1965). (76) Buravlev, Y. RI., Generalova, L. G., Zavodsk. Lab. 32,1474 (1966). (77) Burke, K. E., ANAL. CHEM. 39, 1727 11967). (78) Burke, K. E., Yanak, M. M., Albright, C. H., Ibid., 39, 14 (1967). (79) Burmasov. S. P.. Kurochkin, K. T., ' Umrikhin, P. Y.,'Zavodsk. Lab. 33; 820 (1967'). (bo) BIivanov, N. V., Zamaraev, T'. P., Tumakkii, S. S., Zbid., 32, 1354 (1966). (81) Cakon. Rl.. Kovaiik., AI.., Hutnicke Lzsty 22, 634 (1967). (82) Casassas, E., Eek, L., Salvatella, N., Inform. Quzm. Anal. 21,48 (1967). (83) Cechova, D., Chemzst-Analyst 56, 94 (1967). (84) Cerrai, E., Trueco, R., Met. Ztal. 59,615 (1967). (85) Chattergee, G. P., Ray, H. N., Bisneas, K., Talanta 13, 1470 (1966). (66) Chetkoaski, W.,Prace Inst. Hutniczych 18, 109 (1966). (87) Chindler, X.,Tiu, AI., Metallurgia (Bucharest)19, 271 (1967). (88) Chistyakova, E. AI., Stepanov, V. I., Sb. Tr. Tsenio ,Vauchn-Issled. Inst. Chesn.Met. 49,98 (1966). (89) Reference omitted in text. (90) Chow, E. T., Cocuzza, E. P., Appl. Spectry. 21,290 (1967). (91) Cless-Bernest, T., Radex Rundchau 6,249 (1966). (92) Coe, F. R., Jenkins, N., Parker, D. A., A N ~ LCHEM. . 39.982 (1967). (93) Cohen, S., Bryan; F. R., Appl. Spectry. 22,342 (1968). (94) Conrad, F. J., Kenna, B. T., ANAL. CHEM.39,1001 (1967). (95) Coppolani, J., XIargerie, J. C., Fonderze 243,159 (1966). (96) Corbett, J. A., Analyst 93, 383 (1968). (97) Crisan, I. Al., Pfeiffer, 11. M., Rev. Chim. 18, 109 (1967). (98) Criss, J . W., Birks, L. S., ANAL. CHEM.40,1080 (1968). (99) Cronhjort, B. T., Appl. Spectry. 21,232 (1967). (100) Danielqson, L., Jernkonorets Ann. 151.325 11967). (101) 'Danielsson, L., Ekstrom, T., Acta Chem. Scand. 20,2402 (1966). (102) Daslvkevich, E. \.., Zavodsk. Lab. 34,938 (1968). (103) DeAzeona, J. L., Alvarez-Arenas, E. A., Methods. Phys. Anal. 1967, 146. (104) DeBeer, Z., Creton, F., Met. Ital. 58,308 (1966). (105) Delaffolie, H., Arch. Eisenhuttenw. 38,535 (1967). (106) DeLaffolie, H., DEW-Tee Ber. 7, 115 (1967).

(107) De la Hidalga, S. G. M., Ensayos Invest. 1,20 (1966). (108) Zbid., 1,22 (1967). (109) DeLeo, E., Met. Ital. 58,299 (1966). (110) Demag-Thomson, Bander Bleche 1966,374. (111) Devlin, J. J., Anthony, B. La Conti, U. S. Govt. Res. Develop. Rept. 41, 100 (1966). (112) Devoe, J. R., Natl. Bur. Stand., Tech. Note 404 (1966). (113) Reference omitted in text. (114) Dickens, P., Konig, P., Schmitz, K . H., Jaensch, P,, Arch. Eisenhuttenw. 39,45 (1968). (115) Dickens, P., Konig, P., Schmitz, K . H., Zimmermann, K., Ibid., 38, 841 (1967). (116) Dickens, P., Kmig, P., Zimmermann, K., Ibid., 3P, 407 (1967). (117) DiPasqualF S., Corigliano, F., Am. Fac. E a n . Commer., Univ. Studi Messina 4, ?19 (1966). (118) Doerffel, K., Allam, G., Neue H w t t e 13. 378 11968). ~~. ~. (119) Donati, E., Ferrareei, M., Vautini, N., Met. Ital. 5. 76 (1967). (120) Doubek, L., Komar, K., Ibid., 22, 489 (1967). (121) Dowbak, L., Hutnicke Listy 20, 588 11965). (122) Dumitrescu, F., Pasarica, V., Dumitrescu, R., Popescu, T., Birhala, A., Metallurgia (Bucharest) 17, 355 (1965). (123) Dymov, A. >I., Korabel'nik, R. K., Izv. Vussh. Ucheb. Zaved. Chem. Met. 10,17g(1967). (124) Ebersbach, G., Bindig, H., Technik 22,73 (1967). (125) Eckhard, S., 2. Anal. Chem. 225, 174 (1967). (126) Eckhard, S., Marotz, R., Proc. Colloq. Spectrosc. Intern., l%h, 1965, 484. (127) Eckhard, S., Rlarotz, R., 2. Anal. Chem., 215,355 (1966). (128) Ibid., 225, 186 (1967). (129) Egorshina, T. T., RIaslinkov, S. B., Sb, Tr. Tsent. iVauch.-Issled. Inst. Chern.Met. 48,80 (1967). (130) Eisenkolle, J., Pflaume, E., Neue Huette 11,673 (1966). (131) Elinsori, S. V., Rlal'tseva, L. s., Zh. Anal. Khim. 22,79 (1967). (132) Endo, Y., Hata, T., Sakahara, Y., Janan Snalust 17.679 11968). (133j Endo, y . ,Ohata, H., Nakahara, Y., Ibid., 16,364 (1967). (134) Engelmann, C., Commis. Energ. At., Rapp. 1967, CEA-R 3307. (135) Erdey, L., Biizas, I., Vigh, K., Talanta 14,515 (1967). (136) Eremin, T.G., RIartyshova, T. I., Zavodsk. Lab. 33.552 11967). (137) Eremin, Y. 'G., Raevskaya, V. V., Romanov, P. N., Mater. n'auch. Konf. Sovnarkhoz Nazhzvevolzh Ekon, Raanoa, Volgograd.Polztekh. Inst. 2, 139 (1965). (138) Eremin, Y. G., Raevskaya, 5'. V., Romanov, P. N., Zh. Analit. Khim. 21, 1303 (1966). (139) Eremin, Y. G., Romanov, P. N., Mater. .Vauch. Konf. Sornarkhoz S i z hinevolzh. Ekon. Raiona, T'olgograd. Polzlekh. I&. Voolooarad 2. 145 (19651. (140) Eremin, Y. G.,"Romanov, P. N., Toropkova, G. T., Ibid., 2, 149 (1965). (141) Ersepke, Z.,' Sebestyenova, H., Hutnzcke Listu 21.412 119661. (142) Espanol, k.k., Afarafuschi, A. >I., J . Chromatog. 29,311 (1967). (143) Fedorov, A. A., Sb. Trud. Tsent. A'auchno-issled. Inst. Chern. Met. 49, 39 (1966). (144)'Filenko, A. I., Izv. Vyssh. Uckb Zavedenii Khim. khim. Tekhnol. 8 , 397 (1965). I

\ - - - - I

(145) Filenko, A. I., Ukr. Khim. Zh. 33, 632 (1967). (146) Filenko. A. I.. Zavodsk. Lab. 32. ' 287 (1966). ' (147) Filipov, D. C., Natchev, I. R., Compt. Rend. Acad. Bulgare Sci. 20, 109 (1967). (148) Filipov, D., Natchev, I., Nachev, K., Mashinostroene 16,56 (1967). (149) Finch, L., J. Metals 19, 55 (1967). (150) Fisches, W. A., Ackiemann, W., Arch. Eisenhuttenw. 37,697 (1966). (151) Fitterer, G. R., J. Metals, 19, 92 (1967). (152) Florestan,. J.,. Method. Phw. Anal. . 1967,80. (153) Foerster, W., Zieger, M., Ruediger, H.. Neue Huette 12.150 (1967). ,~ (154j Franklin, A. C., BISRA Rept. SM/B/108/67 (1967). (155) Franklin, J. C., Griffin, E. B., AEC Accession Xo. 33158, Rept. Y-1543 (1966). (156) French Patent 1,464,425 (1966). (157) Frohberg, M. 'G., ' Gerhardt; A., Kraus, T., 2.Anal. Chem., 227, (158) Fujii, I., Muto, H., Anal. Chim. Acta 39.329 (1967). . . (159) Fukushi, N., Kakita, Y., Japan Analyst 15,553 (1966). (160) Furuva, K., Kamada,. H... Ibid., 14,540 (f965). ' (161) Ibid., 14,544 (1965). (162) Furuya, K., Okuyama, S., Tachikawa, T., Kamada, H., Talanta 15, 327 (1968). (163) Gagliardi, E., Wolf, E., Mikrochim. Acta 1967, 104. (164) Galitskii, Y. P., Bogdanchenko, G. G., Ivanov, G. T'., Tseribegh, L. L., Barlit, V. M., Zavodsk. Lab. 34, 113 (1968). (165) Ganago, L. I., Buzina, N. I., Koltashkina, S. F., Izv. Vyssh. Ucheb. Zavednii, Khim, Khim. Teknnol. 10, 861 (1967). (166) Garlerah, B. W., Whitley, J. E., ANAL.CHEM.39,345 (1967). (167) Giamei, A. F., Freise, E. J., Trans. Met. SOC.AIME239,1676 (1967). (168) Gielezewska, H., Kleezynska, M., Lukaszewicz-Buzs, A. Pr. Inst. Mech. Precyz. 15,36 (1967). (169) Gijlesls, R., Speecke, A., Hoste, J., Anal. Chim. Acta43,183 (1968). (170) Golova, T. A,, Tr. Gos. NauchnoIssled. Proekt. Inst. neft. Mashinostr. 4,187 (1967). (171) Gol'tsberg, I. M.,Koval', G. L., Klemeshov, G. A., Sb. Trud. ukr. nauchno-issled. Inst. Metall. 11, 387 (1965). (172) Gomez-Coeda, A., Jiminez Seco, J. L., Rev. Met. 1,423 (1965). (173) Ibid., 3.454 (1967). w (174) Zbid.; 4; 316 (1968). (175) Goossens, H., Hoepfner, G., Giesserei 54,29 (1967). (176) Goto, H., Atsuya, I., 2. Anal. Chem. 240,102 (1968). (177) Ibid., 234,333 (1968). (178) Reference omitted in text. (179) Goto, H., Ikeda, S., Hirokawa, K., Suzuki, M., 2. Anal. Chem. 228, 180 (1967). (180) Goto, H., Ikeda, S., Saito, A., Ibid., 220,95 (1966). Suzuki, M., (181) Goto, H., Kakita, Y., Makatee, K., Japan Anal& 14,244 (1965). (182) Goto, H., Namiki, SI., Nippon Kinzoku Gakk 31.5 (1967). (183) Goto, H., Saito, A., j a p a n Analyst 17, 194 (1968). (184) Gray, A. L., hfetcalf, A., AEC Accession No. 34160. ReDt. AEDConf-65-040-33 (1965). (185) Gregorczyk, S., Hutnik 34, 19 (1967). ~

VOL. 41, NO. 5, APRIL 1969

97R

(186) Gregorezyk, S., Mrozinski, J., Zbid., 33,426 (1966). (187) Gualandi, G., Alorisi, G., Ann. Ist. Sup. Sanita 3,589 (1967). (188) Guiraldeng, P., Sabot, AI., Chim. Anal. 49,633 (1967). (189) Haerdi, W., hlonnier, D., Proc. Conf. Appl. Phys. Chem. Methods Chem. Anal. Budapest 2,316 (1966). (190) Hall, G. D., Scholss, P. H., BISRA Rept. Mg/D/460/67. (191) Hamaguchi, T., Tachibana, Y., Chujo, S., Japan Analyst 23,226 (1965). (192) Hanin, hl., Villenuivi, D., Chim. Anal. 48,442 (1966). (193) Hans, A,, T ~ O LP., I , Lacomble, hl., Collete, F., Centre Kat. Rech. Met. 1967, 37. (194) Harrison, T. S., J . Iron Steel Inst. (London)204,1022 (1966). (195) Harvey, 11. C., Wynian, B., Mater. Prot. 7,30 (1968). (196) Hayami, T., Honjo, K., Japan Analyst 15,816 (1966). (197) Haya-hi, Kenjiro, Ogata, T., Zbid., 15, 1120 (1966). (198) Headridge, J. B., Hubbard, D. P., Anal. Chim. Acta 37, 131 (1967). (199) Headridge, J . B., Lambert, A. K., Analyst 93,211 (1968). (200) Hedley, A,, Ibid., 93, p. 289 (1968). (201) Henriet. D.. Chzm. Anal. 49. 456 ' (1667). ' ' (202) Herberg, G., Hoeller, P., KoesterPelugmacher, A., Spectrochim. Acta 23, 101 (1967). (203) Ibid., p. 363. (204) Hines. C. R.. Hurwitz. J. K.. ' Appl. Specfry.21,277 (1967). ' (203) Hirokawa, K., Goto, H., Sci. Rept. Res. Inst. Tohoku Univ. Ser. A 18, (1966). (206) Hirokawa, K., Goto, H., 2. Anal. Chenk.,240,311 (1968). (207) Ibid., p. 340. (208) Hoeller, P., Arch. Eisenhuttenw. 37.483 11966). (209j Hoefier, P., Slickers, K., Ibid., 38, 831 (1967). (210) Ibid., 39, 129 (196s). (211) Hofmann, E., Nartin, E., Kuepper, H., Stahl Eisen 88.809 11968). (212j Hoste, J., LjeSocte, Ij., Speecke, A., Communante Eur. Energy At. EUR-3565e (1967). (213) Hoste, J., Speecke, A,, DeSocte, D., Centre 'Vat. Rech. Net. 1967, S o . 13, p 29. (214) Inglot, J., Kawecks, AI., Kucharczyk, J., Prace Inst. Hutniczych 19, 189 (1967). (215) Inokuma, S., Tsuchiya, T., Isomura, S., Japan Analyst 15, 1378 (1966). (216) Iordanov, X., Antonova, N., Daier, C., Talanta 13,1459 (1966). (217) Isa, S., Iwai, H., hove, I., Tsujno, S., Tefsu To Hngane 51, 821 (1963). (218) IParai, R., Adachi, T., Denki-Seiko 38,66 (1967). (219) Ishii, D,, JIori, H., Hirose, Y., Japan Analyst 16, 1370 (1967). (220) Ito, H., Sugimohara, Y., Hunitake, S., Sippon Kogyo Kaishi 83, 825 ( 1967). (221) Iwanoto, N., Adachi, A., Tech. Itept. Osaka Univ. 17, 329 (1967). (222) Izmanova, T. A., Chistyakova, E. XI., Bessmertnaya, A. Y., Sb. Tr. Tsenfr. A-auchnii-Issled. Inst. Chern. Met. 49, 89 (1966). (223) Janosikova, V., Met. Ital. 59, 621 (1967). (224) Jaskotska, H., Minezewski, J., Chem.Anal. (Warsaw)12,697 (1967). (22.7) Jasovsky, A., Hutnicke Listy 22, 417 (1967). (226) Jaudon, E., Rev. Met. 63, 1025 (1966). (227) Jimenez Seco, J. L., Comez Caedo, A., Ibid., 2,286 (1966). 98 R

ANALYTICAL CHEMISTRY

(228) Jirkovsky, R., Ind. Chim. Belge 32, 663 (1967). (229) Johnson, M. P., Beeley, P. R., Nutting, J., J . Iron Steel Inst. (London) 205,32 (1967). (230) Jurezyk, J., Hutnick 32,394 (1965). (231) Jurezyk, J., Neue Huette 13, 58 (1968). (232) Kainz, G., Wachlerger, E., Mikrochim. Acta 1968,591. (233) Kajiyama, R., Watanabe, M., Yamaguchie, K., Japan Analyst 16, 1156 (1967). (234) Kajiyama, R., Yamaguchi, K., Ibid., 16, p. 908 (1967). (236) Kakita, Y., Goto, H., Talanta 14, 543 (1967). (236) Kamada, H., Ui, T., Kimoto, S., Sata, &I., Japan Analyst 16, Sa2 (1967). (237) Kammori, O., Tetsu To Hagane 54, 69 (1968). (238) Kammori, O., Hiyama, Y., Hotta, W., Trans. Japan. Inst. Met. 8 , 56 (1967). (239) Kammori, O., Inamoto, I., Japan Analyst 16, 1324 (1967). (240) Kammori, I., Kawashima, I., Tokiwa, K., Tetsu To Hagane 53, 1356 (1967). (241) Kammori, O., Kawasi, H., Inamoto, I., Ibid., 14, 1030 (1965). (242) Ibid.. 15. 1219 11966). (243) Kammoi.i, O., Kawasi, H., Kiyama, Y., Ibid., 15, 1258 (1966). (244) Kammori, O., Ono, A., Okubo, S., Japan Analyst 15,1260 (1966). (245) Kammori, O., Suzuki, K., Zbid., 15,1374 (1966). (246) Kammori, O., Taguchi, I., Zbid., 15, 1223 (1966). (247) Kammori, O., Taguchi, I., Komiya, R., Ibid.,14,106 (1965). (248) Kammori, O., Taguchi, I., Ono, A., Nippon Kznzoku Gakk 32,55 (1968). (249) Kammori, O., Taguchi, I., Shiguro, T., Japan Analust 15. 1376 (1966). ' (250) Reference imitted in text. (251j Kammori, O., Taguchi, I., Yoshikawa, K., Japan Analyst 15,458 (1966). (252) Kammori, O., Taguchi, I., Yoshikawa, K., Tetsu To Hagane 53, 857 (1967). (253) Ibid.., I_). 1532. (264) Kammori, O., Yamaguchi, N., Kanni, H., Nippon Kinzoku Gakk 31, 679 (1967). (255) Kammori, O., Yamaguchi, N., Sato, K., Kurosawa, F., Ibid., 32, 779 (1968'1.

(256) Karp, H. S., Bandi, W. R., Melnick, L. bl., Talanta 13, 1679 (1966). (257) Karu. Karp, H. S...Buvok. S., Buyok, E. G.. G., Bandi. Bandi, W. R., *ifelnick, W: Melnick, L. L: hi., hl., ~ Mater. a t ' e r . RRes. ~S: Bull. 2, 311 (1967). (2.58) Kashima, J., Funahaski, T., Waseda Univ.Xes. Lab. Prearint, No. 17 (1966). (239) Kashima, J., Kubota, M,, Bunko Kenkyu 16,119 (1967). (260) Ibid., p. 207. (261) Kashima, J., Kubota, hl., Waseda Cniv. Res. Lab. Preprint, No. 17, (1966). (262) Kashima, J.. Yamazaki. T.. Bull. . Chem. SOC.Japan 39, 1453 (1466).' (263) Kawaguchi, T., Kudo, Y., Tokuda, T., Nippon Kinzoku Gakk 28, 759 (1964). (2641 Kawamura, K., Watanabe, S., Otsubo, T., Goto, S.,Japan Analyst 17, 637 11968). (265) Kawamura, K., Watanabe, S., Sasaki, H., S ? p p o n Kinroku Gakk 32, 676 (1968). (266) Kawamura, K., Watanabe, T., Watanabe, S., Morita, X., Furukawa, T.. Bunko Kenkuu 16.225 (19681. (267) Kawashima,-I., l k d . , 15, 4 3 (1966). (268) Zbid., 14,219 (1966). ~

(269) Kawashima, I., Miyazaki, T., Ibid., 14 ,188 (1966). (270) Kawashima, I., hfiyazaki, T., Tanaka, I., Ibid., 16,68 ,1967). (271) Kawashima, I., Miyazaki, T., Tawaka, I., Tokiwa,' K., Zbid., 16, 14 (1967). (272) Kawashima, I., Tanaka, I., Zbid., 14,90 (1967). (273) Kawashima, I., Tokiwa, K., N i p pon Kinroku Gakk 29,1201 (1965). (274) Ibid., 31,213 (1967). (275) Keelik, V., Kral, S., Hutnicke Listy 20,739 (1965). (276) Keeiie, B. J., Talanta 13, 1443 (1966). (277) Kekedy, L., Makkay, F., Studia Univ. Babes-Bolyai, Ser. Chem. 11, 31 (1966). (278) Kelzu, E. A., Kirkes, W. L., I+-idiams, E. B., J . Metals 19, 50 (1967). (279) Kemp, N., 2. Anal. Chem. 240, 303 11968). (280) Kharlamov, I. P., Korobova, Z. P., Zh. Analtt. Khzm. 22,278 (1967). (2881) Kim, B., Siemens Rev. 32, 63 (1965). (282) Kimoto, S.,Hert, W., Mik:rochim. Acta 1966,108. (283) Kirkbright, G. F., West, T. S., Woodward., C.., Talanta 13. 1645 (1966). (284) Kirker, W. L., J . Metals 19, 53 (1867). (283) Kitayama, RI., Iwamoto, M.,Nisikawa, N., Tetsu To Hagane 54, 514 (1968). (286) Kizyk, A., Repub. Soc. Rom. Corn. Geod. Stud. Teh. Econ. Ser. B. 44, 9 (19661. '

(3Q7\

(261j-Kobyak, G. G., Istomina, V. A., Uch. Zap. Perm. Gos. Univ. 141, 269 (1966). (292) Koch, K. H., Becker, G., 2. Anal. Chem. 231, 173 (1967). (293) Koch, K. H., Ohls, K., Spectrochim. Acta 23,427 (1968). (294) Koch, K. H., Ohls, K., Riemer, G., 2. Anal. Chem. 237, 167 (1968). (295) Koch, O., Arch. Eisenhzittenw. 39, 135 (19681. (296) Koch; W., Dittmann, J., Picard, K., 2.Anal. Chem. 225,196 (1967). (297) Koch. W.. Lemm. H..' Arch Eisenh4ttenw. 38, 8di (i967j. (298) Kolaski, H., Siewiersski, J., Krajowe Symp. Zastosow Izotop. Tech. Srd, 1966. (299) Konkin, V. D., Koval, G. L., Sb. Tr. Ukr. Nauchnii-Issled. Inst. Metal 12,4.51 (1966). (300) Konkin, V. I)., Kvichko, L. A., Zavodsk. Lab. 32,806 (1966). (301) Korchemkina, A. S., Podchainova, V. N., Meduedeva, G. A., Ibid., 32, 324 (1966). (302) Kostowicz, J., Hutnik33,369 (1966). (303) Kotik, F. I., Kocherezhkina, E. I., Zavodsk. Lab. 32, 1481 (1966). (304) Kraft, G., Dosch, H., Z. Anal. Chem.222,319 (1966). (305) Kramer, L., hIobiue, G., HasinEelder, E., Jena Rev.1967, 55. (306) Krath, E., Arch. Eiscnhiittenw. 39, 49 (1968). (307) Krishnaiah, K. S. R., Alurty, G. V.L. X., Tisco 13,111 (1966). (308) Ibid., 15, 61 (1968). (309) Kusaka, Y . , Tsuji, H., J . Chem. SOC.Japan (Pure Chcm. Sect.) 86, 733 (1965). (310) Kuskula, K., Kovarik, M., Hutnicke Listy 21,794 (1966). ~

(311) Lacomble, AI., Collette, F., Hanes, A.. Tvou. P., Centre Nut. Rech. Met. 1967,33. ’ ’ (312) Lalich, &J., I.hlcCluhan, T. K., Trans. Am. Foundrymen’s SOC. 1967, 649. (313) Lassner, E., 2. Erzbergbau Metallhiittenw 20,420 (1967). (314) Ibid 19,526 (1966). (315) Lavyic, T., Rudarsko Met Zbornik. 1966,575. (316) Lazareva, V. I., Lazarev, A. I., Zh. Analit. Khim. 21,172 (1966). (317) Leblond, A. hl., Boulin, R., Chim. Anal. 50,171 (1968). (318) Leontoviteh, N., Ibid., 47, 458 (1965). (319) Lesnikova, E. N., Shavrin, A. hl., Uch. Zap. Perm. Gos. Univ. 141, 163 Khim. khin (321) Levi. L. I.. Bori Zavodsk.‘Lab.32,414 (1966). ‘ (322) Li, A. H., Clair, E. G., Cam. Spectr. 12, 55 (1967). (323) Likussar, W. Beyer, W., Wawschinek, O., Mikrochim. Acta 1968, ~

799

(3ii)u‘Lipinski, W., Baj, ll., Hutnick 35, 45 (1968). (325) Luedemann, K. F., Zimmermann, R., Wemmer, H., Neue Huette 11, 755, (1966). (326) Lugovoi, S. V., Ryazanov, I. P., Zavodsk. Lab. 33,688 (1967). (327) Luke, C. L., Anal. Chim. Acta 37, 97 (1967). (328) Zbid., p. 267. (329) Zbid., 39,447 (1967). (330) Lvle, S. J., Maghzian, R., Talanta 14, 1021 (1967). (331) AIcPherson. G. L.. At. Absorption AY&xletter4, 186 (1965). (332) llaekawa, S., Kato, K., Japan Analyst 16,354 (1967). (333) Zbzd., p. 422. (334) Zbzd., p. 483. (335) Ibzd., 17,70 (1968). (336) Ibzd., p. 597. (337) Zbzd., 14,433 (19653. (338) Ibid.. D. 424. (339j Ibid.: is, 477 (1966). (340) hlaekawa, S., Suzuki, T., Bunko Kenkyu 15, 131 (1967). (341) llaekawa, S., Yonezawa, Y., hlorinapa. H.. Janan Analust 16.455 (1967). (342riIagda, K.,Paksi, L., h f a g y . Kem. Folyoz’rat 73,350 (1967). (343) AIal’tsev. T’. F., Luk’vanenko, L. P., Zh. Analit. Khim. 20.394”(1965). (344) llalt’sev, V. F‘., Pashehenko, E. KO., J’olkova, N. P., Zbid., 21, 205 (1966). (346) llalvano, R., Rossi, F., Atti Notiz. Assoc. Ztal. Netall. 21, 35 (1966). (346) llandl, AI., Kase, hI., Hutnicke Listy22,231 (1967). 1347) AIanesrhi. S.. Vantini. N.. Chim. ’ Znh.48,839 (1966). (348) hlaneschi, S., Vantini, N., J . Polar. SOC.12,44 (1966). (349) llarcse, hl. I-., Kinson, K., Belcher, B., Anal. Cham. Acta 41, 447 (1968). (3.50) lIatano, N., Fujiwara, J., iYippon Kinzoku Gakk 32, 533 (1968). (351) Matano, N., Ono, K., Seno, H., Japan Analyst 16,175 (1967). (3.52) Ibzd., p. 299. (352) llathur, P. K., T’enkatiswarhe, C . , 2ndzun.J.Chem. 5,521 (1967). (334) ;\layer, T’., Kovarik, ll., Ermis, Fr., Fierla, Ii, T. T:, Nauch. Soobshch: Inst. Gorn. Dela 29,106 (1965). (417) Pohl, H., Material Prtijung 9, 302 (lQfi?). ,- - - . ,. (418) Poljakova, K., Hutnicke Listy 22, 492 (1967). (419) Zbid.,.p. 569. (420) Pribil, R., T’ssely, V., Chemist Analust 55. 68 119661. (421) Price, iTi. J., Cioke, P. A,, Spectroviszon 18,2 (1967). (422) Price. W. J.. Roos. T. J. H.. Analwst 93; 709 (1968). ‘ (423) Prince, L. A., Ellgren, A. J., DeGlopper, T. J., Appl. Spectry. 20, 372 (1966). (424) Pruveheva, K.,Ninov, E., Ganev, P., 2. Anal. Chem., 239,307 (1968). (423) Rabovskaya, S. l‘l., Moiseev, A. S., Soboleva, N. A., Sb. Rub. Khim. Istochnzkam Toka 1966.266. (426) Radmacher, k. W., DeSwardt, hl. C., J . S. Afr. Inst. Mining Met., 67,454 (1967). (427) Ramirez-Mlunoz, J., Flame Notes, Beckman 2.77 (1967). (428) Rasziliier, ‘T’., ketallurgia (Bucharest) 18,6 (1966). (429) Ibid.. v. 468. (430j Ray”. N., Biswas, S. S., Ray, S., Z. Anal. Chem. 228,114 (1967). (431) Razygraev, T’, P., Khakhlova, N. V.,Zavodsk. Lab. 32,514 (1966). (432) Reed, D. J., Can. Spectry. 12, 6 (1967). (433) Rentsch, M., Rentsch, S., Kinze, D., Z. Chem. (Leipzig).6,274 (1966). (434) Revel, G., Chaudron, T., Delerun, J. L., Albert, P., Compt. Rend. Ser. C, 266,322 (1968). (435) Reznik, B. E., Ganzburg, G. M., Milovanova, Y. F., Zavodsk. Lab. 33, 18 (1967). (436)‘Rhodes, J. R., U . 8. At. Energy Comm. ORO-2980-17 (1967). (437) Rhodes, J. R.. Packer. T. W.. Boyce, I. ’ S., Radioisotope‘ Instrum: I - - -

\ - -

I



VOL. 41, NO. 5, APRIL 1969

99R

Znst. Geophys. Proc. Sump., Warsaw 1, 127 (1965). (438) Rinaldi, F., Aguzzi, P., Met. Znd. 59,655 (1967). (439) Itomanova, V. S., Shishkina, N. I., Tr. Ural. hTauch.-Issled. Znst. Chern. Met. 4,208 (1966). (440) Rosotte, R., Chim. Anal. 49, 512 (1967). (441) RudnevskiI, N. K., Tumanova, A. N., Kokareva, G. A., Zavodsk. Lab. 32, 1347 (1966). (442) Rudnevskir, N. K., Tumanova, A. M., Kobareva, G. A., Zh. Pribl. Speht. 8,571 (1968). (443) Runge, E. F., Bonfiglio, S., Bryan, F. R., Spectrochim.Acta 22, 1678 (1966). (444) Sajo, I., Sipos, B., ilIikrochim. Acta2,248 (1967). (445) Sajo, I , Sipos, B., 2. Anal. Chem. 222,23 (1966). (446) Sakaki, T., h’ippon Kinzoku Gakk 30, 1086 (1966). (447) Ibid., 27,445 (1967). (448) Ibid., 32,790 (1968). (449) Sauer, L. H., Eckhard, S., 2. Anal. Chem. 221,274 (1966). (450) Savvin, S. R., Dedkov, Y. M., Romanov, P. N., Zh. Analit. Khzm. 22, 65 (1967). (451) Savvin, S. R., Romanov, P. N., Eremin, Y. G., Ibid., 21, 1423 (1966). (452) Schluenz, M.,Kocstir-Pfiegmachis, A., 2. Anal. Chem. 240,188 (1968). (453) Schmaiderman, S., Knyazeva, E. N., Zh. Analit. Khim. 21, 419 (1966). (454) Schoeffmann, E., Stahl Eisen 86, 1534 (1966). (455) Scholes, P. H., Analyst 93, 197 (1968). (456) Scholes, P. H., BISRA Rept. Mg/D/329/65 f1965). (457) Reference omittrd in text. (458) Scholes, P. H., Williams, R. T., BISRA Rept. Ma/D/302/66 (1966). (459) Schramel, P,: Oesterr. Akad. Wiss., Math-Satuswiss. Kl., Sotzungsbu. Abt. I I . 174.335 (1963). (46oj Schramel, P.’, Muenzer, H., Acta Phys. 23,266 (1966). (461) Serdyuk, L. S., Smirnaya, T’. S., Zzv. Vyssh. Ucleb. Zaved., Khim. Khim. Tekhnol. 10,509 (1967). (462) Sermin, D. F., BISRA Rept. Me/D/201/62 (1966). (463r’Serres, ’ A., ‘Ilewyspelaere, AI., Hilger J . 10, 16 (1967). (464) Seweryn, Z., Prace Inst. Odlewinictwa 12.245 (1964). (466) Shaherbov, 8.P., Perminova, D. N., Zavodsk. Lab. 33,921 (1967). (466) Shashkin, 11.A., Zh. Analit. Khim. 21,376 (1966). (467) Sheinesson, A. S., Kopylets, K. N., Dyukov, A. L., Sb. Tr. Aspir. Soiskatelei, Man. Vyssh. Stedn Spets. Obraza. Kat. SSR, Mat. Fiz. 2, 204 (1966). (468) Shimanrtki, T., japan Analyst 16, 1136 (1967). (469) Ibid., 16, 1141 (1967). (470) Ibid., 17,928 (1968). (471) Shiraiwa, T., Fujino, N., Japan J . Appl. Phys. 5,886 (1966). (472) Shiraiwa, T., Fujino, N., Sumitomo Kanzoku 18.76 (1966). (473) Ibid.. a: 509. (474j Shudtova, 31. B., Skilikhina, E. I., Zavodsk-Lab. 33,810 (1967). (475) Shvaiger, RI. I., Popov, T’. A., Zbid., 32,23 (1966). (476) Sie, S. T., Blevmer, J. P., Rijnders, G. W. A., Scpar. Sei. 2,645 (1967). (477) Siekierska, J., Piotrowski, A., Chem. Anal. (Warsaw)11,843 (1966). (478) Silaeva, E. V.,’Kryuchkova, L. XI., Fr. Vses. ;Vauch.-Issled. Inst. Stand. Obsaztsov Spektr. Etalanov 2, 88 (1965). (479) Simek, AI., Hutnzcke Lzsty 20, 424 (1965). 100 R

ANALYTICAL CHEMISTRY

(480) Simek, AI., Spisy Prirodoved. Fak. Univ. Brne476,293 (1966). (481) Sluwecko, J., Kukrila, F., Simkova, RI., Rept. Atom. Energy Comm. Czechoslovakia UFV-1468 (1966). (482) Songina, 0. A., Daushiva, 11.1. R., Zavodsk. Lab. 32,910 (1966). (483) Sorokina, N. N., Fedorov, A. A., Golubeva, T’. AI., Chernyakhovskaya, F. Y.,Sb. Trud. Tsent. Xauchno-Issled. Inst. Chern. Metall. 49, 84 (1966). (484) Sorokina, N. N., Kondrat’ev, P. A,, Ibid.,49,77 (1966). (485) Spariszus, S., Spanier, H., Proc. Conf. A p p l . Phys.-Chem. Methods Chem. Anal. Budapest 2,511 (1966). (486) Specker, H., Graffmann, G., Z. Anal. Chem. 228.401 11967). (487) Spicet, G. S., Rept. U . K . Atom. Energy Auth. AERE-AM104,1967. (488) Srinivasaw, N. V., Indian J . Technol. 5,401 (1967). (489) Staats,. G... 2. Anal. Chem. 230, 184 (1967). (490) Staats, G., Brueck, H., Ibid., 223, 183 11966). (491) Staats, G., Brueck, H., Ibid., 230, 271 (1967). (492) Stefkin, F. S., Rybkina, A. A., Sevost’yanova, &I. V., Karel’skaya, G. F.. Uch. Zav. Norodovsk. Gos. Univ. 46.40 (1965). ’ (493)’ Stevens,’ L. G., Res. Develop. 18, 24 (1967). (494) Stoll, S., Wagner, A., Gocdert, L., Eur. 4 t . Energy Communaty EURATOM EUR-3 I6 1f (1966). (493) Stoyanova, N., Ivanova, R., Rudodobiv. N e t . 2, 24 (1966). (496) Suarez, A., Alvarez de Perito, J. LI., Revta, Metal. 3,371 (1967). (497) Sucha, L., Chemicky Prum. 17, 324 (1967). (498) Sirdo, E., Okochi, H., Japan Analyst 17,338 (1968). (499) Sukhenko, K. A., Noiseeva, K. A,, Zh. Przk!. Sppktrosk. 8,782 (1968). (500) Suzuki, K., Maekawa, S., Nakagawa, Y., Imono 38,25 (1966). (501) Suzuki, T., Japan Analyst 16, 1224 (1967). (502) Suzuki, T., Kamabara, T., Bull. Chem. SOC. Japan, 41,119 (1968). (503) Suauki, Y., Denki Sczko 37, 166 (1966). (504) Svet, V.I., Kozlova, I. K., Zavodsk. Lab. 33, 71.5 (1967). (503) Syeh, S’., Miroshnickenko, N. A., Ibid., 33, 31 (1967). (506) Syly, A., Dean, J., Anal. Lett. 1, 241 (1968). (507) Szebehyi, I., Repas, P., Period. Polytech., Chem. Eng. (Budapest) 11, 337 (1967). (508) Teranchi, Y., Sumitomo Kinzoku 18,71 (1966). (509) Terenteva, E. P., Eremin, Y. G., Izv. Vzissh. Ccheb. Zaved.. Khim. Khim. Z’cchn&. 8. 902 (1963). (510) Theakston,‘ H. hI., Bandi, W. R., ANAL.CHIX.38, 1764 (1966). (511) Thomich, W., Arch. Eisenhuttenw. 29,449 (1968). (512) Tietz, Pi., Hutnicke Listv- 21.. 131 (1966). (513) Traill, R. J., Lachance, G. R., Can. Spectry. 11,63 (1966). (514) Trapeznikov, L. Y., Kurapina, L. AI., Zh. Analzt. Khim. 20, 209 (1965). (515) Trapeznikov, L. V.) Kurapina, L. ll.,Karpova, G. A., Sb. Tr. Donets. IYauch.-Iss!cd. Inst. Chern. M e t . 4, 295 ilc)66l.

(516j -T;ukamoto, A., Shimizu, I., Ohata, AI., Bunko Kenkyu 16, 142 (1967). (517) Tsukamoto, il., Shimizir, I., Ohata, AI., .Yippon Kznzoku Gakk 32, 473 (1968). (518) Tsukamoto, A., Tamari, H., Okuyama, K., Bunko Kenkyu 16, 7 (1967).

(519) Zbid., 15,139 (1967). (520) Tsukhara, I., Japan Analyst 16, 583 (1967). ~

-

-

1

-

-

-

-

,

(521) Tsukiyama H., Iwamoto, I., Zbid., 16, 1291 (1967). (522) Tulepova, I. V., Karakuls, M. V., Zavodsk. Lab. 33,808 (1967). (523) Twitty, B. L., Fritz, K. M., AEC Accession No. S S l B L. R e. d NLCO-9799 (1966). (524) Twitty, B. L., Fritz, K. M., ANAL. C H E M . 39,527 (1967). (525) Uenaka, S., Actachi, T., Ita, M., Denki Seiko 36,265 (1963). (526) Usatenko, Y. I., Arishkevich, A. M.. Dyachenko, L. F.; Zavodsk. Lab. 33; 550 (1967). (527) T’aclavinek, J., Hutnik 31, 356 (1964). (528) S’alot, H., Double Laisa 136, 1553 (1966). (529) Toudoever, S., Jansse, L., Duym, C. P. A., Woasdorg, A., Rapp. Cent. A’atn. Rech. Metall. 7,35 (1966). (530) Tan Grieken, R., Gqbels, R., Speecke, A., Hoste, J., Anal. Chim. Acta, 43,199 (1968). (531) Ibid., p. 381. (532) Tecera, Z., Bieber, B., Hutnicke Listy 20,888 (1965). (533) Verbitskaya, V. A., Stepin, V. V., Onorina, I. A., Studenskaya, L. S., TT. Vses. Nauch.-Issled. Inst. Stand. Obraztsov Spektr. Etalanov. 2, 52 (1965). (534) Yidal, G., Galmard, P., Lanusse, P., Ofice Nut. Etud. Rech. Aerospatzales, Tech. -Vote, 125 (1968). (53.5) Villowe, I., Fonderia Ztal. 13, 332 (1964). (536) Vilnat, J., Liodec, N., DelerasGuedon, J., Bull. SOC.Fr. Crram. 74. 21, (1967). (537) S’ilnat, J., Liodec, N., DebrasGuedon, J., Colloquium Spectroscopy International, ilth, Exeter, England, 196.5. (538) S7sapaa, A,, K n . Teollisuus 24, 401 (1967). (539) Titol, E. N., Eksp. Tekh. Melody Vysokotemp.Zz-mib., Akad. Nauk SSSR, Inst. Met. 1966, 135. (540) Vlastnik, J., Hutnicke Listy 21, 730 (1966). (341) lbid., 22,261 (1967). (342) S‘olke, G., Giessereitechnik 12, 277 (1966). (543) Ibtd., 14, 186 (1968). (544) Yolkova, L. P., Pakhomova, K. Y., Zavodsk. Lab. 33,414 (1967). (543) I‘oronov, B. G., Samoilova, A. A., Zh. Prickl. Svektrosk. 6.3 (1967). (546) Tossen, ‘P. G. T:, ANAL. CHEM. 40,632 (1968). (547) U‘aelawik. Z., Przeal. Odlew 17, ’ 2