9
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
Computational Methods for Profile Resolution and Crystallite Size Evaluation in Fibrous Polymers 1
A. M. H I N D E L E H , D. J. JOHNSON, and P. E. M O N T A G U E Textile Physics Laboratory, Department of Textile Industries, University of Leeds, Leeds, LS2 9JT U.K.
X-ray diffraction patterns from fibres generally contain a few closely overlapping peaks, each broadened by the contributions of crystallite size, crystallite-size distribution, and lattice distortion. In order to achieve complete characterisation of a fibre by X-ray methods, it is f i r s t necessary to separate the individual peaks, and then to separate the various profile-broadening contributions. Subsequently, we can obtain measures of crystallite size, lattice distortion and peak area crystallinity, to add to estimates of other characteristics obtained i n complementary experiments. Four major computational steps are necessary to separate the individual peaks and the different profile-broadening components: (i) correction and normalisation of the diffraction data, (ii) resolution of the total peak scattering from the so-called background scatter, and resolution of crystallographic, paracrystalline, and amorphous peaks from each other, (iii) correction of the resolved profiles for instrumental broadening, (iv) separation of the corrected profiles into size and distortion components. In this paper we w i l l discuss these steps i n turn, but most attention w i l l be paid to the hitherto largely neglected step of profile resolution. Experimental A modified Hilger and Watts Y115 diffractometer mounted on a Hilger and Watts Y90 constant output X-ray generator, u t i l i z i n g either CuKa or MoKa radiation was used throughout. A l l specimens were mounted i n special holders at the centre of the specimen table; bundles of parallel fibres were examined i n the symmetrical transmission mode, powder specimens were examined i n the symmetrical reflection mode. Counting was usually carried out at 15 steps per degree, occasionally at 30 steps per degree 'Current address:
Department of Physics, University of Jordan, P.O. Box 13093> Amman, Jordan.
0-8412-0589-2/80/47-141-149$08.50/0 © 1980 American Chemical Society In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
150
FIBER
DIFFRACTION
METHODS
(two t h e t a ) . The d i f f r a c t o m e t e r t r a c e s were r e c o r d e d o n p u n c h e d paper tape v i a a s c i n t i l l a t i o n counter, p u l s e - h e i g h t a n a l y s e r , and t i m e r - s c a l e r s y s t e m . F o r s e t t i n g up p u r p o s e s , o u t p u t c a n b e d i r e c t e d t o a chart recorder v i a a ratemeter. A l l c o m p u t a t i o n was c a r r i e d o u t o n t h e U n i v e r s i t y o f L e e d s C o m p u t i n g S e r v i c e ' s I C L 1906A c o m p u t e r . The p r o g r a m s w e r e w r i t t e n i n ALGOL 6 0 .
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
Computational
Methods
( i ) C o r r e c t i o n and N o r m a l i s a t i o n The s t a n d a r d method f o r n o r m a l i s a t i o n o f d i f f r a c t e d i n t e n s i t y d a t a i n t o e l e c t r o n u n i t s , i s t o compute b o t h t h e mean s q u a r e a t o m i c s c a t t e r i n g f a c t o r a n d t h e mean i n c o h e r e n t s c a t t e r f o r t h e p a r t i c u l a r m o l e c u l a r r e p e a t o v e r a r a n g e o f h i g h two t h e t a v a l u e s ( s a y 40°-60°) w h e r e t h e i r t o t a l v a l u e c a n b e c o n s i d e r e d t o b e e q u i v a l e n t t o t h e a c t u a l d i f f r a c t i o n from t h e m o l e c u l a r system c o n c e r n e d . An a p p r o p r i a t e n o r m a l i s a t i o n f a c t o r i s t h e n a p p l i e d to the experimental i n t e n s i t y data a f t e r geometrical c o r r e c t i o n and, f i n a l l y , i n c o h e r e n t s c a t t e r i s s u b t r a c t e d ( i j . T h i s method, a l t h o u g h w e l l e s t a b l i s h e d , i s n o t e n t i r e l y s a t i s f a c t o r y , since the experimental s c a t t e r i s d i f f i c u l t t o m e a s u r e a c c u r a t e l y o v e r a s m a l l r a n g e o f t h e two t h e t a s c a l e . We p r e f e r t o u s e a n o r m a l i s a t i o n procedure based on V a i n s h t e i n ' s l a w of conservation o f intensity. This law states that t o t a l scatter over i d e n t i c a l r e g i o n s o f r e c i p r o c a l space w i l l be equal d e s p i t e d i f f e r e n t d e g r e e s o f l a t t i c e o r d e r (2). I n t e r m s o f a r a n d o m l y o r i e n t e d s p e c i m e n , f o r example a powder o r f i n e l y d i v i d e d f i b r e , we u s e t h e r e l a t i o n / 2 4 7 r l l ( s ) s ds
=
4irj
Jo
/
2 2 f s ds
Jo
and f o r e q u a t o r i a l t r a c e s f r o m a f i b r e b u n d l e w i t h symmetry we u s e t h e r e l a t i o n
2wl
l ( s ) s ds
=
27r/ f
2
cylindrical
s ds
where
ZN. i s t h e mean s q u a r e a t o m i c s c a t t e r i n g f a c t o r f o r X - r a y s o f t h e m o l e c u l e c o n c e r n e d . N i i s t h e number o f m o l e c u l e s o f t y p e i i n the m o l e c u l a r r e p e a t , and s i s t h e r e c i p r o c a l space v e c t o r , s = s i n 6 / X , where X i s t h e w a v e l e n g t h o f t h e r a d i a t i o n , a n d I i s the corrected i n t e n s i t y .
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
9.
HINDELEH
The a t o m i c expression
scattering factors
f (x) = A ±
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
151
Profile Resolution and Crystallite Size
ET AL.
±
a r e e v a l u a t e d from t h e
2 expC-a^x ) + B
2 expt-b.jX ) + C
±
±
where x = s i n Q / X a n d t h e c o n s t a n t s A i , B ^ , C i , a i , b i , a r e g i v e n byL e e a n d P a k e s (4.). I t i s w o r t h n o t i n g t h a t A i + + = Z±, t h e a t o m i c number o f t h e atom o f t y p e i . The mean i n c o h e r e n t s c a t t e r C i s g i v e n b y C = 2 N.C. 1
1
2 N. 1
where C i i s t h e i n c o h e r e n t s c a t t e r f o r atoms o f t y p e i a n d N i i s a g a i n t h e number o f atoms o f t y p e i i n t h e m o l e c u l a r r e p e a t . V a l u e s o f C were o b t a i n e d from t a b l e s and b e s t - f i t t h i r d degree p o l y n o m i a l s computed f o r s u b s e q u e n t u s e i n t h e n o r m a l i s a t i o n program. I n p r a c t i c e we e v a l u a t e t h e t o t a l s c a t t e r i n t e r m s o f e i t h e r t h e a r e a A R 1 ( 1 ) o r t h e a r e a A R 1 ( 2 ) , where
_
r z— 2$
AR1(1) =/
2
(f
2e
r 2r—
+ C) s d s =/
(f
2
+ C) s i n e c o s 0 d ( 2 O ) X
f o r a p a r a l l e l bundle
A R 1 ( 2 ) =f
2
%
o ffibres,
2
+ C) s d s =f
specimen type ( 1 ) , and
(f
2
2
+ C) s i n 0 c o s 0 d ( 2 0 )
f o r powders o r f i n e l y d i v i d e d f i b r e s , specimen t y p e ( 2 ) . The a r r a y o f e x p e r i m e n t a l l y o b s e r v e d i n t e n s i t i e s I-j(20) must f i r s t be corrected f o r p o l a r i z a t i o n t o give
I
2
( 2 0 ) = I., ( 2 9 )
and f o r t h e L o r e n t z g e o m e t r i c 1^ or
factor to give
(20) = I ( 2 0 ) 2
2
2/ (1 + c o s 2 0 )
s i n 20
1^ (20) = I ( 2 0 ) 2 s i n 0cos0 2
specimen type ( 1 ) specimen type ( 2 )
C e l l a , L e e a n d Hughes have s t u d i e d t h e L o r e n t z c o r r e c t i o n f o r f i b r e s i n some d e t a i l ; they consider that the c o r r e c t i o n 2 s i n ^ 0 c o s 0 i s most a p p r o p r i a t e f o r t h e e q u a t o r i a l s c a t t e r f r o m a p a r a l l e l bundle o f f i b r e s .
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
152
FIBER DIFFRACTION
a r e a A R 2 ( l ) o r AR2(2) i s t h e n e v a l u a t e d ,
The
-I
METHODS
where
2d
AR2(1)
0
°l
20
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
AR2(2)
= /
U
d(20)
specimen type ( 1 )
s i n 9cos6 d(29)
specimen type ( 2 )
I-. (20) sin0cos0
2
5
X
2
o
I , (29) 5
x
3
so t h a t t h e n o r m a l i s a t i o n f a c t o r i s t h e n
AR2(1) AR1(1)
or
AR2 AR1
and i s a p p l i e d t o t h e a r r a y o f i n t e n s i t i e s 1^(20) t o g i v e t h e _ i n t e n s i t i e s 14(20) i n e l e c t r o n u n i t s . The i n c o h e r e n t s c a t t e r C computed e a r l i e r i s t h e n s u b t r a c t e d t o g i v e t h e a r r a y 1^(20). The s t a n d a r d v e r s i o n o f t h i s p r o g r a m i s i d e n t i f i e d a s STEPSCAN; v a r i a t i o n s a r e a v a i l a b l e f o r u s e w i t h d a t a o b t a i n e d from X-ray o r e l e c t r o n d i f f r a c t i o n photographs v i a a Joyce-Loebl a u t o d e n s i d a t e r , and c o n t a i n a p p r o p r i a t e c o r r e c t i o n s f o r o p t i c a l d e n s i t y . The i n p u t d a t a a r e u s u a l l y a v e r a g e d i n g r o u p s o f 3 o r 5 steps, s i n g l e step data being used l e s s f r e q u e n t l y . A c o r r e c t i o n f o r a i r s c a t t e r may b e c a r r i e d o u t , a n d t h e t r u e b a c k ground r a d i a t i o n , a s measured s e p a r a t e l y , i s s u b t r a c t e d . Because the c o r r e c t i o n f o r a b s o r p t i o n w i t h i n the specimen i s n e g l i g i b l e o v e r t h e r a n g e o f two t h e t a n o r m a l l y c o v e r e d , t h i s h a s b e e n omitted. E x p e c t e d peak p o s i t i o n s are a l s o i n p u t ( f o r peakr e s o l u t i o n p u r p o s e s ) t o g e t h e r w i t h g r a p h p l o t t i n g p a r a m e t e r s . The o u t p u t i s i n t h e f o r m o f a r r a y s f , C, I i ( 2 0 ) t o 1 5 ( 2 0 ) , t h e a r e a c a l c u l a t i o n s , e s t i m a t e s o f peak h e i g h t and w i d t h , and a graph o f t h e t y p e shown i n F i g u r e 1. A p p r o p r i a t e d a t a a r e h e l d i n a f i l e f o r subsequent p r o f i l e r e s o l u t i o n . 2
Results. T y p i c a l normalised e q u a t o r i a l X-ray d i f f r a c t i o n t r a c e s f r o m t h e same p o l y ( e t h y l e n e t e r e p h t h a l a t e ) ( P E T ) s p e c i m e n axe shown i n F i g u r e s 1 a n d 2. The_mean s q u a r e a t o m i c s c a t t e r i n g f a c t o r f 2 , t h e i n c o h e r e n t s c a t t e r C, a n d t h e t o t a l s c a t t e r t , a x e a l s o i n c l u d e d . The c o r r e c t e d i n t e n s i t y d a t a a x e e v i d e n t l y d e p e n d e n t o n t h e method o f n o r m a l i s a t i o n e m p l o y e d . F i g u r e 1 was o b t a i n e d w i t h two t h e t a l i m i t s o f 5° a n d 40°, F i g u r e 2 h a s l i m i t s 30° a n d 40°; i t i s e v i d e n t i n t h i s c a s e t h a t f i t t i n g t o t h e c o h e r e n t s c a t t e r o v e r a h i g h two t h e t a r a n g e g i v e s a l m o s t d o u b l e t h e i n t e n s i t y compared w i t h f i t t i n g t o t h e t o t a l s c a t t e r w i t h i n the range covered. The e f f e c t o f t h e L o r e n t z c o r r e c t i o n i s i l l u s t r a t e d i n F i g u r e 3. Here the e q u a t o r i a l t r a c e o f a v i s c o s e rayon specimen i s shown u n c o r r e c t e d (LOR 0 ) , c o r r e c t e d i n t h e n o r m a l way f o r f i b r e s (LOR 1 ) , a n d f o r p o w d e r s (LOR 2 ) . T a b l e I shows t h e r e s u l t s o f p r o f i l e a n a l y s i s on the v i s c o s e r a y o n specimen u s i n g the d i f f e r e n t
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
9.
HINDELEH
ET
AL.
Profile Resolution and Crystallite Size
153
Figure 1. Corrected equatorial trace in electron units for a PET specimen normalized over the full two theta range (f mean-square atomic scattering factor; C incoherent scatter; t total scatter) 2
Figure 2. Corrected equatorial trace in electron units for the same PET specimen as Figure 1, normalized over the two theta range 30°^40° (J mean-square atomic scattering factor; U incoherent scatter; t total scatter) 2
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
154
FIBER
TWO
DIFFRACTION
METHODS
THETA
Figure 3. Equatorial trace for viscose rayon, normalized over full two theta range (uncorrected (LOR 0); corrected as normal forfibers(LOR 1); and corrected as normal for powders (LOR 2))
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
HINDELEH ET AL.
9.
155
Profile Resolution and Crystallite Size
TABLE I
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
Resolved parameters f o r an u n t r e a t e d viscose with different Lorentz corrections
Parameters
LOR 0 No c o r r e c t i o n
LOR 2
LOR 1 (sin20)""
rayon
1
(sin20sin9)""
f 101
0.2
0.6
0.7
A 101
14.5
8.0
4.4
2.3
2.1
2.1
12.0
12.1
12.1
-0.2
0.0
0.2
32.1
30.0
26.1
2.4
2.3
2.2
20.0
20.0
20.1
0.7
0.5
0.3
25.6
30.6
33.8
1.8
1.9
1.9
21.7
21.8
21.8
%k
48.6
47.1
46.1
%B
51.4
52.9
53.9
I
A
W
101
r
101
I
101
A
-
w
ioT
p
ioT
f
002
A
002
W
002
P 002
f - p r o f i l e f u n c t i o n parameter, A - peak h e i g h t ( e u ) , W - peak w i d t h (two t h e t a ) , P - peak p o s i t i o n (two t h e t a ) %k - p e r c e n t a g e a r e a u n d e r t h e p e a k s , %B - p e r c e n t a g e a r e a under t h e background.
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
1
156
FIBER DIFFRACTION
METHODS
Lorentz corrections. As c a n be seen, t h e r e a r e s i g n i f i c a n t changes i n t h e r e s o l v e d p a r a m e t e r s , p a r t i c u l a r l y t h e peak p o s i t i o n s and peak h e i g h t s ; t h e e f f e c t on peak w i d t h i s l e s s m a r k e d . The s t a n d a r d f i b r e c o r r e c t i o n (LOR 1) g i v e s t h e most r e a s o n a b l e r e s u l t s , t h e c o r r e c t i o n (LOR 2 ) , s u g g e s t e d f o r t h e e q u a t o r i a l t r a c e o f a f i b r e specimen, i s n o t c o n s i d e r e d t o be realistic.
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
(ii)
Resolution
Our s t a n d a r d r e s o l u t i o n p r o g r a m RESOLVE f i n d s t h e optimum f i t o f t s e p a r a t e peaks and a p o l y n o m i a l background t o t h e c o r r e c t e d a n d n o r m a l i s e d i n t e n s i t y t r a c e (6). E a c h p e a k p r o f i l e i s c o n s i d e r e d t o have t h e form f G t
t
(1 - f C )
+
t
t
where G, i s t h e G a u s s i a n f u n c t i o n
A
t
exp ) - I n 2 \
and Cj. i s t h e C a u c h y
2(X - P ) t
L
—w;
function
A
t
/ | l
+[2(X-P )/W ]'} t
t
The p e a k s a r e d e f i n e d b y t h e p a r a m e t e r s A-t t h e p e a k h e i g h t , W-fc t h e w i d t h o f t h e p e a k a t h a l f h e i g h t , a n d P-^ t h e p e a k p o s i t i o n ; f-t i s t h e p r o f i l e f u n c t i o n p a r a m e t e r , w h i c h c a n v a r y between - 0 . 5 and 1.0 f o r s e n s i b l e p r o f i l e s and e f f e c t i v e l y d e s c r i b e s t h e t a i l r e g i o n o f t h e p r o f i l e (j). The s c a t t e r f r o m d i s o r d e r e d m o l e c u l e s i n t h e f i b r e i s c o n s i d e r e d t o have t h e p o l y n o m i a l form a + bX + c X
2
+ dX
5
and c o r r e s p o n d s t o t h e s o - c a l l e d b a c k g r o u n d s c a t t e r . X may b e e i t h e r t h e two t h e t a o r t h e s s c a l e . The f u n c t i o n t o b e minimised i n terms o f these parameters i s S =
E
^
2
v
(1/ - If \.) (calc)i (norm;I 1
v
7
I n p u t i s i n t h e f o r m o f a r r a y s o f two t h e t a a n d I c , e x p e c t e d p e a k p o s i t i o n s , p e a k h e i g h t s a n d w i d t h s e s t i m a t e d b y STEPSCAN, and a p p r o p r i a t e b a c k g r o u n d p a r a m e t e r s . The l a t t e r may a l l s t a r t a t z e r o , a l t e r n a t i v e l y t h e y may b e f o u n d t o a f i r s t a p p r o x i m a t i o n b y p u t t i n g a s m a l l number o f p o i n t s ( f r o m a n assumed b a c k g r o u n d ) i n
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
9.
HINDELEH
ET AL.
Profile Resolution and Crystallite Size
157
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
a s u b s i d i a r y p r o g r a m BASELINE. O u t p u t i s i n t h e f o r m o f p a r a m e t e r l i s t s , t h e a r e a s and c o o r d i n a t e s o f t h e r e s o l v e d p e a k s , t h e t o t a l a r e a u n d e r t h e p e a k s , and t h e a r e a u n d e r t h e b a c k ground. O p t i m i z a t i o n . We h a v e r e c e n t l y t r i e d s e v e r a l methods o f o p t i m i z a t i o n , b u t f o r many y e a r s made s a t i s f a c t o r y u s e o f t h e m i n i m i z a t i o n p r o c e d u r e due t o P o w e l l ( 8 ) , w h i c h e m p l o y s t h e method o f c o n j u g a t e d i r e c t i o n s and e n s u r e s e f f i c i e n t c o n v e r g e n c e i n most c a s e s . A l t h o u g h n o b o u n d s c a n b e p u t o n t h e p a r a m e t e r s , i t i s p o s s i b l e t o c o n s t r a i n any o f t h e p a r a m e t e r s e t s d u r i n g a single optimization cycle by appropriate ordering of the parameter l i s t . T h i s p r o c e d u r e (POWELL 64) h a s r e c e n t l y b e e n w i t h d r a w n f r o m t h e NAG l i b r a r y o f a l g o r i t h m s and we h a v e s e a r c h e d for a s u i t a b l e a l t e r n a t i v e although r e t a i n i n g the procedure i n our own p r o g r a m . The n e a r e s t e q u i v a l e n t (E04CEA) e m p l o y s a quasi-Newton approach w i t h d i f f e r e n c e a p p r o x i m a t i o n s t o t h e gradient. A g a i n n o b o u n d s a r e p o s s i b l e , and c o n s t r a i n t d e p e n d s upon t h e parameter l i s t . A n o t h e r u s e f u l p r o g r a m (E04HAA) p r o v i d e s c o n s t r a i n e d o p t i m i z a t i o n w i t h bounds f o r each parameter u s i n g a s e q u e n t i a l p e n a l t y f u n c t i o n t e c h n i q u e , which e f f e c t i v e l y o p e r a t e s around unconstrained minimization cycles. V e r s i o n s o f RESOLVE w h i c h u s e e i t h e r POWELL 64 (NUSOLVE G ) , E04CEA (NUSOLVE E ) o r E04HAA (NUSOLVE P ) , and g r a p h p l o t t i n g versions are a v a i l a b l e . I t i s also possible to deal with a s y m m e t r i c p r o f i l e s (£). I n t h i s c a s e , two s e p a r a t e p a r a m e t e r s f o r e a c h o f f ^ and W-t a r e e v a l u a t e d , one f o r t h e l e f t - h a n d s i d e o f t h e p r o f i l e , t h e o t h e r f o r t h e r i g h t - h a n d s i d e . We h a v e a l s o t r i e d t h e P e a r s o n V I I f u n c t i o n s u g g e s t e d b y H u e v a l , H u i s m a n and L i n d (10) i n p l a c e o f o u r c o m b i n e d G a u s s i a n - C a u c h y f u n c t i o n . U n f o r t u n a t e l y , because the t a i l - f i t t i n g parameter m tends t o i n f i n i t y f o r a G a u s s i a n f u n c t i o n , we h a v e e x p e r i e n c e d c o m p u t a t i o n a l d i f f i c u l t i e s where p r o f i l e s a p p r o x i m a t e d t o a G a u s s i a n f o r m . However, i n a l l c a s e s w h e r e r e s o l u t i o n was s u c c e s s f u l , t h e f i n a l peak p a r a m e t e r s were i d e n t i c a l i n terms o f b o t h G a u s s i a n - C a u c h y and P e a r s o n V I I f u n c t i o n s . R e s u l t s . Where X - r a y d i f f r a c t i o n p e a k s a r e s h a r p and r e l a t i v e l y w e l l d e f i n e d , and where t h e r e i s no a m b i g u i t y i n t h e number o f p e a k s , t h e r e a r e few p r o b l e m s i n a c h i e v i n g s a t i s f a c t o r y r e s o l u t i o n w i t h any o f t h e t h r e e p r o g r a m s d i s c u s s e d above. T y p i c a l r e s u l t s achieved with the c r y s t a l l i n e c e l l u l o s e I f i b r e , Ramie, and w i t h t h e c r y s t a l l i n e c e l l u l o s e I I f i b r e F o r t i s a n , a r e i l l u s t r a t e d i n F i g u r e s 4 and 5- T h e 101, 101 and 002 p r o f i l e s r e s o l v e d b y NUSOLVE G a r e g i v e n , t o g e t h e r w i t h t h e b e s t - f i t p o l y n o m i a l b a c k g r o u n d . The p a r a m e t e r s a r e l i s t e d i n T a b l e I I , t o g e t h e r w i t h t h e t o t a l peak a r e a e x p r e s s e d a s a p e r c e n t a g e . T h i s l a t t e r parameter can be considered as the peak-area c r y s t a l l i n i t y w i t h i n t h e two t h e t a l i m i t s e m p l o y e d .
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
158
FIBER
DIFFRACTION
METHODS
t 70A
i
£ 40-
0 0 2
RAnie
so-
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
•o101
30-
/
101
A A // V A\V
2010-
f
9
11
IS
IS
17
/ J/ 19
21
TWO THETA
Figure 4. Smoothed equatorial trace for Ramie (Cellulose I)fiberswith resolved 101, lOT, and 002 profiles, and best-fit background
TVO THETA
Figure 5.
Smoothed equatorial trace for Fortisan (Cellulose II)fiberswith resolved 101,10T, and 002 profiles, and best-fit background
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
9.
HINDELEH
ET AL.
Profile Resolution and Crystallite Size
159
TABLE I I R e s o l v e d p a r a m e t e r s f o r Ramie ( C e l l u l o s e I ) and F o r t i s a n ( C e l l u l o s e I I ) Parameters
f Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
Fortisan
0.4
0
20
8.9
101
1.6
1.9
101
14.6
11.6
0.3
0.2
18
40
1.5
1.9
16.3
19.4
0.7
0.6
62
37
101 A
101
W
r
Ramie
x
101
A
ioT
W
101
r
101
f
002
A
002
W
002
1.7
1.8
002
22.4
21.5
r
a b
1.45 -0.5
c
0.068
d
-0.0018
%B
-0.84 0.5 -0.021 0.0003
77
75
23
25
f - p r o f i l e f u n c t i o n parameter, A - peak h e i g h t ( e u ) W - peak w i d t h (two t h e t a ) , P - peak p o s i t i o n (two t h e t a ) , %k - p e r c e n t a g e a r e a u n d e r t h e p e a k s , %B - p e r c e n t a g e area under t h e background.
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
160
FIBER
DIFFRACTION
METHODS
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
We w i l l now c o n s i d e r t h r e e c a s e s where s a t i s f a c t o r y p e a k r e s o l u t i o n was much more d i f f i c u l t t o a c h i e v e . Case ( a ) , a s p e c i m e n o f PET f i b r e u s e d f o r t e x t u r i s i n g , h a v i n g p o o r l y d e f i n e d c r y s t a l l i n e p e a k s and p o s s i b l y a n a d d i t i o n a l p e a k due t o a n i n t e r m e d i a t e phase (11); case ( b ) , a specimen from a range o f PET f i b r e s w i t h d i f f e r e n t s h r i n k a g e s ( 1 2 ) , a g a i n a n a d d i t i o n a l i n t e r m e d i a t e p h a s e p e a k was a p o s s i b i l i t y ; c a s e ( c ) , c o l d drawn p o l y p r o p y l e n e f i b r e s (15)» a n a d d i t i o n a l p a r a c r y s t a l l i n e p e a k was most l i k e l y h e r e . C a s e ( a ) . When t h e i n p u t p a r a m e t e r s were i l l c h o s e n , s e e Table I I I , i n p u t ( 1 ) , p a r t i c u l a r l y w i t h background parameters z e r o , t h e v e r s i o n s o f NUSOLVE b a s e d o n POWELL 64 a n d E04CEA (NUSOLVE G a n d NUSOLVE E ) , w h i c h h a v e no p a r a m e t e r c o n s t r a i n t s , g a v e i d e n t i c a l r e s u l t s . However, t h e p r o f i l e f u n c t i o n p a r a m e t e r o f t h e 101 p e a k i s - 1 . 3 w h i c h g a v e a d i s t o r t e d p r o f i l e . The c o n s t r a i n e d p a r a m e t e r v e r s i o n NUSOLVE F, b e i n g u n a b l e t o d i s t o r t t h e 010 p e a k , d o e s n o t f i n d a v e r y good s o l u t i o n (S=67.7) w i t h i n t h e l i m i t s i m p o s e d . A r e a s o n a b l e f i t was o n l y f o u n d when t h e b a c k g r o u n d p a r a m e t e r s w e r e i n i t i a l l y w e l l c h o s e n , i . e . t h e y were f o u n d f r o m t h e s u b s i d i a r y p r o g r a m BASELINE. T h e n , i n p u t ( 2 ) , T a b l e I I I , a l l t h r e e v e r s i o n s o f NUSOLVE g a v e s i m i l a r o u t p u t p a r a m e t e r s (S=7.2 t o 7-7) a n d r e a l i s t i c p r o f i l e s , F i g u r e 6. A l t h o u g h t h e r e i s some s a v i n g i n c p u t i m e w i t h E04CEA o v e r POWELL 64 when i l l - c h o s e n p a r a m e t e r s were i n p u t , t h e o u t p u t p a r a m e t e r s were i d e n t i c a l . The c p u t i m e s r e q u i r e d w i t h w e l l c h o s e n i n p u t p a r a m e t e r s were a l m o s t i d e n t i c a l f o r t h e t h r e e programs. Because o f t h e p o s s i b i l i t y t h a t an i n t e r m e d i a t e phase e x i s t s i n PET, s e e C a s e ( b ) , t h e r e s o l u t i o n was c a r r i e d o u t w i t h f o u r peaks and zero background p a r a m e t e r s . E v e n t u a l l y , and o n l y a f t e r s e v e r a l a t t e m p t s , a g o o d f i t was f o u n d w i t h t h r e e c r y s t a l l i n e p e a k s , one v e r y b r o a d n o n c r y s t a l l i n e p e a k , a n d a p o l y n o m i a l b a c k g r o u n d . On a d d i n g t h e b r o a d p e a k t o t h e new b a c k g r o u n d , a n i d e n t i c a l r e s u l t t o t h a t o f F i g u r e 6 ( T a b l e I I I ) was o b t a i n e d , c a s t i n g doubt on t h e e x i s t e n c e o f a t r u e i n t e r m e d i a t e phase. C a s e ( b ) . The p o l y e s t e r s p e c i m e n PET06 was r e s o l v e d i n t o three c r y s t a l l i n e peaks w i t h almost i d e n t i c a l r e s u l t s u s i n g a l l t h r e e NUSOLVE p r o g r a m s , b o t h when i n p u t p a r a m e t e r s f o r t h e b a c k g r o u n d were z e r o , o r when b a c k g r o u n d p a r a m e t e r s f r o m BASELINE w e r e u s e d , s e e F i g u r e 7* However, b e c a u s e o f t h e s u s p e c t e d p r e s e n c e o f a n a d d i t i o n a l p e a k , f u r t h e r a t t e m p t s were made t o r e s o l v e t h e t r a c e i n t o f o u r p e a k s . When t h e a d d i t i o n a l p e a k p a r a m e t e r s w e r e i l l - c h o s e n ( a l l z e r o ) , i t was i m p o s s i b l e t o achieve sensible r e s o l u t i o n without constrained o p t i m i z a t i o n ; h o w e v e r , when t h e i n p u t p a r a m e t e r s f o r t h e a d d i t i o n a l p e a k were w e l l - c h o s e n , a l l programs e v e n t u a l l y gave s i m i l a r r e s u l t s , see F i g u r e 8 and T a b l e I V . The u s e o f c o n s t r a i n e d o p t i m i z a t i o n decreased t h e time r e q u i r e d t o f i n d a s a t i s f a c t o r y s o l u t i o n .
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
9.
HINDELEH ET AL.
Profile Resolution and Crystallite Size
161
Figure 6. Good resolution with well-chosen background parameters. Corrected and smoothed equatorial trace for PET feed yarn resolved into realistic 010 profile, together with 110,100 profiles, and new best-fit background.
Figure 7. Crystalline peak resolution. Corrected and smoothed equatorial trace of a PET fiber specimen resolved into three crystalline peaks, 010, 110, 100, and the best-fit background.
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
162
FIBER
DIFFRACTION
METHODS
TABLE I I I R e s o l v e d p a r a m e t e r s f o r PET f e e d y a r n w i t h b a c k g r o u n d i n p u t p a r a m e t e r s (1) a l l z e r o , (2) f i t t e d b y BASELINE, f o r t h r e e r e s o l u t i o n p r o g r a m s , NUSOLVE E , NUSOLVE G w i t h o u t c o n s t r a i n t s , NUSOLVE F w i t h c o n s t r a i n t s Input(l)
Output NUSOLVE G
E04CEA E
0
-1.3
-1.3
0.3
19.42
18.2
18.2
8.7
5.0
3.7
3.7
2.2
0
0.2
0.2
0
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
POWELL64 Parameters f
010
A
010
W
010
f
110
A 110
(1)
25.75
17.1
17.1
E04HAA
F
19.0
A
5.0
2.6
2.6
2.2
0
0.2
0.2
0.6
38.94
39.1
39.1
35.2
5.0
3.1
3.1
2.9
0
33.9
33.9
4.97
b
0
-3.89
-3.89
0.81
c
0
d
0
w
iTo
f
100
A
100
w 100 a w
0.161
0.161
-0.022
-0.0021
-0.0021
17.50
17.82
17.82
17.87
p 110
22.50
22.88
22.88
22.88
p 100 s
25.86
25.89
25.89
25.89
5904
7.56
7.56
67.7
268
183
163
r
010
r
0.000004
r
cpu s f W P cpu
p r o f i l e f u n c t i o n p a r a m e t e r , A - peak h e i g h t ( e u ) , peak w i d t h (two t h e t a ) ,a,b,c,d - background p a r a m e t e r s , p e a k p o s i t i o n ( t w o t h e t a ) , S - l e a s t sum o f s q u a r e s , s - computing time.
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
HINDELEH ET AL.
Profile Resolution and Crystallite Size
TABLE I I I ( c o n t i n u e d )
Output (2)
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
Input(2) POWELL64 NUSOLVE G
E04CEA E
E04HAA P
0.2
0.5
0.7
0.6
10.0
10.3
9.6
10.0
1.8
1.9
1.9
1.9
0.6
0.2
0.2
0.2
15.0
16.7
16.1
16.4
iTo
2.4
2.6
2.5
2.6
f
100
0.5
0.3
0.3
0.3
A
100
37.0
56.2
36.5
36.5
2.9
2.9
2.9
2.9
Parameters f
010
A
010
W
010
f 110 A -
A
w
110
w 100 a
-14.95
-10.20
-21.09
-16.42
b
3.41
5.08
4.69
4.02
c
-0.125
-0.150
-0.202
-0.173
d
0.00124
0.0016
0.0026
0.0022
P
17.80
17.82
17.82
17.82
110
22.85
22.86
22.86
22.86
p 100
25.89
25.90
25.90
25.90
s
50.26
7.71
7.19
7.28
148
134
151
r
010
P r
-
r
cpu s f W P cpu
p r o f i l e f u n c t i o n p a r a m e t e r , A - peak h e i g h t ( e u ) , peak w i d t h (two t h e t a ) , a,b,c,d - b a c k g r o u n d paramet peak p o s i t i o n ( t w o t h e t a ) , S - l e a s t sum o f s q u a r e s , s - computing time.
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
164
FIBER
DIFFRACTION
METHODS
TABLE I V R e s o l u t i o n o f p o l y e s t e r s p e c i m e n PET 06 i n t o t h r e e c r y s t a l l i n e p e a k s , and t h r e e c r y s t a l l i n e peaks and a p a r a c r y s t a l l i n e peak
Peak
f
A
P
010
0.2
28
17.5
1.3
7.3
9.8
110
0.0
37
22.6
1.9
4.9
20.6
100
0.1
84
25.7
1.9
4.7
46.4
W
L
hko
%Area
010
0.3
27
17.5
1.3
7.2
9.2
110
0.3
31
22.6
1.7
5-5
14.5
100
0.2
83
25.7
1.9
4.7
44.8
-1.0
9.2
26.7
5-3
—
14.7
Para
Total area
Background area
76.8
23.2
83.2
16.8
f - p r o f i l e f u n c t i o n p a r a m e t e r , A - peak h e i g h t ( e u ) , P - p e a k p o s i t i o n (two t h e t a ) , W - p e a k w i d t h ( t w o t h e t a ) L , , - c r y s t a l l i t e s i z e normal t o (hk0)(nm). n
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
9.
HINDELEH E T A L .
Profile Resolution and Crystallite Size
165
100
PCT06 4 PEAKS
A 80o 2 |
60C
40-
//*
1 1
/ V/i
010 A
'
1
//•' \
A
/U'v V
20-
15
20
25
30
35 TVO THETA
Figure 8. Paraerystailine peak resolution. Corrected and smoothed equatorial trace of a PET fiber specimen resolved into three crystalline peaks, 010, 110, 100, a paraery stailine peak and the new best-fit background.
INTENSITY
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
110
«• POLYPROPYLENE 10
«•« *• M-
«• tits-
/
\
\j
c a , c
-
It-
s'
io
is""
20
25
30 TVO THETA
Figure 9. Unrealistic resolution with unconstrained optimization. Corrected equatorial trace of a polypropylene fiber specimen cold drawn X-5-5. Total theoretical trace comprised of unrealistic profiles.
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
166
FIBER DIFFRACTION
METHODS
Case ( c ) . A t t e m p t s t o r e s o l v e t h e e q u a t o r i a l t r a c e o f a p o l y p r o p y l e n e s p e c i m e n ( c o l d drawn x10) i n t o c r y s t a l l i n e peaks and a b a c k g r o u n d were u n s u c c e s s f u l , d e s p i t e a v a r i e t y o f i n p u t parameters. Without parameter c o n s t r a i n t , nonsensical p r o f i l e s w e r e o b t a i n e d ( F i g u r e 9). The p r o f i l e r e s o l u t i o n c o u l d n o t b e i m p r o v e d e v e n b y t h e u s e o f BASELINE. E v e n w i t h c o n s t r a i n t s , r e s o l u t i o n was c l e a r l y w r o n g ( F i g u r e 10), a l t h o u g h i t p r o d u c e d t h e b e s t - f i t m a t h e m a t i c a l l y p o s s i b l e . Good r e s o l u t i o n was f i n a l l y a c h i e v e d when a n a d d i t i o n a l p e a k was i n t r o d u c e d , b u t o n l y w i t h c o n s t r a i n e d o p t i m i z a t i o n ( F i g u r e 11). With another polyp r o p y l e n e s p e c i m e n ( c o l d d r a w n x5), r e s o l u t i o n i n t o f o u r c r y s t a l l i n e p e a k s a n d a b a c k g r o u n d was r e l a t i v e l y s t r a i g h t f o r w a r d ( F i g u r e 12). E v i d e n t l y t h e f i t i s good except i n t h e r e g i o n 15-16°; as might be a n t i c i p a t e d , t h e a d d i t i o n o f a f i f t h p a r a c r y s t a l l i n e peak gave an e x c e l l e n t f i t throughout ( F i g u r e 13). D e t a i l s o f s a t i s f a c t o r y r e s o l u t i o n o f t h e s e two p o l y p r o p y l e n e s p e c i m e n s a r e g i v e n i n T a b l e V. The t h r e e c a s e s t u d i e s o u t l i n e d h e r e g i v e some i n d i c a t i o n o f the w o r s t d i f f i c u l t i e s t h a t have been e x p e r i e n c e d w i t h peak r e s o l u t i o n , a n d h a v e one f a c t o r i n common; t h e p r e s e n c e o f a n a d d i t i o n a l amorphous o r p a r a c r y s t a l l i n e p e a k was s u s p e c t e d i n e a c h c a s e . A l l t h r e e o p t i m i z a t i o n p r o g r a m s w o r k e d w e l l when t h e i n p u t p a r a m e t e r s w e r e w e l l c h o s e n , b u t c o n s t r a i n t s were n e c e s s a r y i n t h e more d i f f i c u l t c a s e s and when b r o a d p e a k s w e r e p r e s e n t . J u d i c i o u s c h o i c e o f i n p u t parameters always speeds t h e u l t i m a t e s o l u t i o n a n d t h e u s e o f BASELINE i s most h e l p f u l . E r r o r A n a l y s i s . The d i f f i c u l t i e s e n c o u n t e r e d i n r e s o l v i n g p e a k p r o f i l e s f r o m e a c h o t h e r , a n d a t t h e same t i m e d e t e r m i n i n g the background s c a t t e r , c a l l t o question the extent o f t h e e r r o r involved i n t h i s type o f a n a l y s i s , given that the f i n a l r e s o l u t i o n a p p e a r s r e a l i s t i c i n t h e l i g h t o f known i n f o r m a t i o n a b o u t t h e s t r u c t u r e o f t h e m a t e r i a l . The p r o b l e m o f e r r o r i n p r o f i l e r e s o l u t i o n h a s b e e n c o n s i d e r e d (14) i n terms o f t h e e q u a t o r i a l t r a c e o f a v i s c o s e rayon f i b r e specimen which i s s i m i l a r t o F o r t i s a n , F i g u r e 5* When random e r r o r s o f a v e r a g e m a g n i t u d e v a r y i n g b e t w e e n 1 and 8%, a c c o r d i n g t o t h e r e g i o n o f two t h e t a , were added t o 106 d a t a p o i n t s , t h e r e s o l u t i o n g a v e p a r a m e t e r s w i t h e r r o r s a s shown i n Table VI. T e s t s made o n t r a c e s t a k e n o n t h e same s p e c i m e n a t w i d e l y s e p a r a t e d i n t e r v a l s o f t i m e show d i f f e r e n c e s v e r y s i m i l a r t o t h o s e i n t h e t r i a l r e s o l u t i o n w i t h random e r r o r . The a v e r a g e e r r o r margins from t h i s e x e r c i s e a r e g i v e n i n T a b l e V I I and r e p r e s e n t an assessment o f t h e experimental c o n d i t i o n s f o r v i s c o s e r a y o n s p e c i m e n s a t t h e t i m e when t h e w o r k was c a r r i e d o u t . F o r o u r a p p a r a t u s , and f o r s i m i l a r p a r a m e t e r s i n o t h e r s p e c i m e n s , the e r r o r margins w i l l be comparable.
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
9.
HINDELEH
ETAL.
Profile Resolution and Crystallite Size
167
4S-
INT ENS:
Ail
POLYPROPYLENE 10
«oIS-
M-
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
S'
A lexp.
20IS-
A
J-iJcalc.
/A f
\ X\ \
1
JOS' 10
T5
20
25
30 TVO
THETA
Figure 10. Improved but still unrealistic resolution with constrained optimization. Corrected equatorial trace of a polypropylenefiberspecimen cold drawn Total theoretical trace still comprised of unrealistic profiles. Compare with Figure 9.
Figure 11. Good resolution with constrained optimization and addition of a paracrystailine peak. Corrected equatorial trace of a polypropylenefiberspecimen cold drawn X-5.5. Total theoretical trace now comprised of realistic crystalline peaks 110, 040, 130, 111, 131, 041, and paracrystailine peak at 15.5°. Compare with Figures 9 and 10.
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
168
FIBER
DIFFRACTION
METHODS
POLYPROPYLENE 5
10
20
-15
25
30 TVO THETA
Figure 12. Good resolution with constrained optimization except in 15° region. Corrected equatorial trace of a polypropylenefiberspecimen cold drawn X2.75. Total theoretical trace comprised of realistic peaks 110, 040, 130, 111, 131, 041, 060, but poorfitin 15° region.
POLYPROPYLENE 5
£40 HENS]
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
040
040
-30j
110
20-
l \ Jl 10-
10
15
L
060
20
25
30 TVO THETA
Figure 13. Good resolution with constrained optimization and addition of a paracrystalline peak. Corrected equatorial trace of a polypropylenefiberspecimen cold drawn X2.75. Total theoretical trace comprised of realistic crystalline peaks and a paracrystalline peak at 15.5°. Compare with Figure 12.
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
9.
HINDELEH ET AL.
169
Profile Resolution and Crystallite Size
TABLE V
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
R e s o l u t i o n o f c o l d drawn p o l y p r o p y l e n e specimens i n t o c r y s t a l l i n e and p a r a c r y s t a l l i n e peaks
Peak
f
A
P
W
L, , 1
?6Area
11.9
Total area
Background area
X10
110
0.1
15
14.0
1.2
7.5
040
0.3
11
16.9
1.0
9.3
8.6
130
0.1
14
18.4
6.6
10.2
111,131, 041
0.0
12
21.3
1.4 2.0
3.0
12.8
Para
0.5
7.0
15.5
2.5
-
14.6
110
0.1
18
14.1
0.6
17
7.2
040
0.3
28
16.9
0.6
18
10.4
130
0.0
13
18.6
0.9
11
7.9
111,131, 041
0.2
7
21.4
1.8
5.0
7.5
060
0.4
4.6
25.5
0.7
16
1.7
0.7
4.0
15.6
2.5
-
5.0
Para
39.7
60.3
f - p r o f i l e f u n c t i o n parameter, A - peak h e i g h t ( e u ) , P - p e a k p o s i t i o n (two t h e t a ) , W - p e a k w i d t h ( t w o t h e t a ) , L,, - c r y s t a l l i t e s i z e normal t o ( h k l ) ( n m ) . n
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
170
FIBER DIFFRACTION
METHODS
TABLE V I Known p a r a m e t e r s a f t e r
Parameters
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
f
Starting values
Known values
resolution Final values
Error
0.0
0.0
0.05
+0.05
101 A
101
6.5
6.0
5.81
-3.3/0
W
101
4.5
4.0
3.90
-2.596
0.0
0.1
0.04
-0.06
14.0
12.0
11.00
-8%
f
101
A
ioT
w
ioT
f
002
A
002
W
002
4.0
3.25
3.06
-6%
0.0
0.5
0.51
+0.01
17.0
15.0
15.83
+5.5°/o
4.0
3.25
3.30
+1.996
96A
100%
64.9%
62.9%
-5.796
%B
0%
35.196
37.196
+5.7°/o
12.2
12.15
12.145
-0.005
20.1
20.0
19.89
-0.11
21.9
22.0
21.92
-0.08
3.720
3.304
P 101 p _ 101 r
r
p 002 S
442.96
f - p r o f i l e f u n c t i o n parameter, A - peak h e i g h t ( e u ) , W - peak w i d t h (two t h e t a ) , P - peak p o s i t i o n (two t h e t a ) , S - sum o f l e a s t s q u a r e s , %k - p e r c e n t a g e a r e a u n d e r t h e p e a k s , %B - p e r c e n t a g e a r e a u n d e r t h e b a c k g r o u n d .
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
9.
HINDELEH ET A L .
Profile Resolution and Crystallite Size
171
TABLE V I I Error
Margins
Margin
Parameter
±0.15
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
f A
101,101
A
002
W
101
W
101,002 ±6°/
Pr
- -r P
±0.1
p
- p
r
(iii)
+6%
%A, %B
101
f W %k %B -
±5?6
002
0
101
±0.05
-
101
p r o f i l e f u n c t i o n parameter, A - peak h e i g h t (eu) peak w i d t h (two t h e t a ) , P - peak p o s i t i o n (two t h e t a ) , percentage a r e a under t h e peaks, percentage a r e a under t h e background. Instrumental Broadening C o r r e c t i o n
The two most common m e t h o d s u s e d t o c o r r e c t r e s o l v e d p e a k p r o f i l e s f o r t h e b r o a d e n i n g imposed b y t h e f i n i t e w i d t h o f t h e X - r a y beam i n t h e d i f f r a c t o m e t e r , a r e d u e t o J o n e s (15) a n d S t o k e s (16). B o t h a r e e s s e n t i a l l y u n f o l d i n g o r d e c o n v o l u t i o n methods, b u t t h e J o n e s method d e f i n e s s p e c i f i c f u n c t i o n s f o r b o t h t h e u n c o r r e c t e d and t h e i n s t r u m e n t a l b r o a d e n i n g p r o f i l e . I f t h e uncorrected p r o f i l e i s Gaussian, then
and i f t h e u n c o r r e c t e d p r o f i l e i s C a u c h y ,
then
(3 = B - b where p i s t h e c o r r e c t e d b r e a d t h , B t h e o b s e r v e d b r e a d t h , a n d b the instrumental breadth. The a p p r o x i m a t i o n s due t o J o n e s a r e b a s e d o n i n t e g r a l b r e a d t h s a l t h o u g h many i n v e s t i g a t o r s u s e h a l f widths instead. S i n c e we a r e d e a l i n g w i t h G a u s s i a n / C a u c h y f u n c t i o n s , we h a v e made u s e o f t h e c o r r e c t i o n
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
172
FIBER
P = f(B - b ) 2
2
2
DIFFRACTION
METHODS
+ (1 - f ) ( B - b )
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
The S t o k e s method i s e s s e n t i a l l y a F o u r i e r t r a n s f o r m method m a k i n g use o f t h e e n t i r e p r o f i l e , and i s a r e a s o n a b l y s t r a i g h t f o r w a r d c o m p u t a t i o n , a l t h o u g h l i m i t s have t o be a p p l i e d t o t h e p r o f i l e i n t r a n s f o r m s p a c e t o a c h i e v e c o r r e c t r e s u l t s . The m a i n p e a k f r o m h e x a m e t h y l e n e t e t r a m i n e c r y s t a l s c o m p a c t e d a t 85°C (17) h a s b e e n used as o u r s t a n d a r d f o r t h e i n s t r u m e n t a l b r o a d e n i n g peak. R e s u l t s . We h a v e made a d e t a i l e d s t u d y o f t h e e f f e c t o f u s i n g b o t h t h e Jones and t h e Stokes c o r r e c t i o n s on c r y s t a l l i t e s i z e measurements o b t a i n e d f r o m t h e most c r y s t a l l i n e s a m p l e s o f c e l l u l o s e I a n d I I , Ramie a n d F o r t i s a n (.18). Our c o n c l u s i o n was t h a t t h e J o n e s c o r r e c t i o n s were a l w a y s w i t h i n J>% o f t h e S t o k e s c o r r e c t i o n s f o r b o t h h a l f - w i d t h and i n t e g r a l b r e a d t h . C u r r e n t p r a c t i s e i s always t o use a Stokes d e c o n v o l u t i o n procedure f o r t h e c o r r e c t i o n o f a l l r e s o l v e d peak p r o f i l e s , e v a l u a t i n g an apparent c r y s t a l l i t e s i z e I^JJ^J terms o f t h e r e l a t i o n s h i p i
n
L/,, , \ — K — K = K X ^ p ds cos0d(29) n K 1 )
where d s a n d d ( 2 0 ) r e p r e s e n t t h e i n t e g r a l b r e a d t h s ( o r h a l f w i d t h s ) i n u n i t s o f s o r two t h e t a . The S c h e r r e r p a r a m e t e r , K, i s u s u a l l y t a k e n a s 1 f o r i n t e g r a l b r e a d t h s a n d 0.89 f o r h a l f w i d t h s . F i g u r e 14 i l l u s t r a t e s t h e d e c o n v o l u t i o n o p e r a t i o n f o r a PET 100 p e a k ; T a b l e V I I I l i s t s t h e a p p r o p r i a t e p a r a m e t e r s o f t h e o b s e r v e d , i n s t r u m e n t a l , and c o r r e c t e d peaks, w i t h t h e c r y s t a l l i t e s i z e e v a l u a t e d a s above and b y t h e a p p r o p r i a t e J o n e s f a c t o r . A g a i n , t h e v a l u e s a r e w i t h i n y/o. Apparent c r y s t a l l i t e s i z e v a l u e s f o r v a r i o u s s p e c i m e n s , e v a l u a t e d f r o m t h e above e q u a t i o n w i t h K = 1, a r e g i v e n i n T a b l e s I V a n d V. ( i v ) S e p a r a t i o n o f t h e r e s o l v e d and c o r r e c t e d p r o f i l e s
into
s i z e a n d d i s t o r t i o n components The methods i n g e n e r a l u s e f o r s e p a r a t i n g t h e s i z e a n d d i s t o r t i o n b r o a d e n i n g components o f t h e r e s o l v e d a n d c o r r e c t e d p e a k p r o f i l e s c a n b e s e p a r a t e d i n t o two g r o u p s , n o n - t r a n s f o r m and t r a n s f o r m methods. The n o n - t r a n s f o r m methods a r e e s s e n t i a l l y s i m i l a r t o t h e J o n e s method, b e i n g a p p r o x i m a t i o n s t o a c o n v o l u t i o n . The t r a n s f o r m method d i s c u s s e d h e r e makes u s e o f the F o u r i e r c o e f f i c i e n t s found a f t e r t h e Stokes c o r r e c t i o n . N o n - t r a n s f o r m m e t h o d s . The n o n - t r a n s f o r m methods make u s e of Jones type r e l a t i o n s ; t h u s , i f Pg and PD a r e t h e i n t e g r a l b r e a d t h s due t o s i z e a n d d i s t o r t i o n r e s p e c t i v e l y , t h e n , t h e observed p r o f i l e p i s g i v e n by
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
9.
HINDELEH
Figure 14.
Profile Resolution and Crystallite Size
ET AL.
173
Deconvolution correction for instrumental broadening—simulation. Profile b unfolded from Profile a to give Profile c.
TABLE V I I I C o r r e c t i o n o f 100 peak o f PET 06 specimen f o r i n s t r u m e n t a l broadening by Stokes method and b y Jones method Profile
f
A
W
P
IB
P
Uncorrected
0.2
83
1.9
25.7
2.74
0.0478
0.303
-3.3
Instrumental
0.5
89
0.2
25.7
0.30
0.0052
0.033
30
Corrected
0.2
75
1.8
25.7
2.56
0.0447
0.282
3.5
As
L
f - p r o f i l e f u n c t i o n parameter, A - peak h e i g h t ( e u ) , W - peak w i d t h (two t h e t a ) , P - peak p o s i t i o n (two t h e t a ) , IB - i n t e g r a l b r e a d t h ( t w o ^ t h e t a ) , p - i n t e g r a l b r e a d t h ( r a d ) , As - i n t e g r a l b r e a d t h (run" ) , L - c r y s t a l l i t e s i z e (nm) Stokes, L , - c r y s t a l l i t e s i z e (nm) Jones. g
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
s
L
J
3.6
174
FIBER
2
2
0
h
-
DIFFRACTION
METHODS
2 +
P
D
i f b o t h components h a v e G a u s s i a n p r o f i l e s , a n d b y P
P
=
s
h
+
Downloaded by UNIV MASSACHUSETTS AMHERST on September 29, 2014 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch009
i f b o t h components h a v e C a u c h y p r o f i l e s . (3g a n d 3^ a r e u s u a l l y d e f i n e d i n u n i t s o f s b y As
=
g
K L
(hkl)
A s ^ = 2 e s = 4e s i n 9
and
X where K i s t h e S c h e r r e r p a r a m e t e r , t y p i c a l l y 1.0 f o r i n t e g r a l b r e a d t h a n d 0.89 f o r h a l f w i d t h , L / ^ i ) i s t h e a p p a r e n t c r y s t a l l i t e s i z e n o r m a l t o t h e p l a n e s ( h k l ) , a n d e = Ad/d i s a m e a s u r e o f t h e maximum d i s t o r t i o n Ad i n t h e l a t t i c e o f s p a c i n g d . I t i s more a p p r o p r i a t e t o t h i n k o f e a s a l a t t i c e s t r a i n . I n o r d e r t o o b t a i n a measure o f t r u e c r y s t a l l i t e s i z e , we c a n make use o f t h e r e l a t i o n K = true c r y s t a l l i t e size apparent c r y s t a l l i t e s i z e p r o v i d e d t h a t we h a v e a u s e f u l v a l u e o f K. The above e q u a t i o n s y i e l d t h e f o l l o w i n g s e r i e s o f r e f l e c t i o n s (001 f o r e x a m p l e ) : (As)
2
As where a
±
= s l and s Q
Q
= (K/L = K/L
=
( 0 Q 1 )
( 0 Q 1 )
)
2
+ 4 e
+ 2 e
S
relationships
2
fora
(1)
2 S l
(2)
l
V