19 Corrosion Engineering in Reinforced Plastics
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch019
OTTO H. FENNER Monsanto Co., 800 N. L i n d b e r g h B l v d . , St. Louis, M o . 63166
Reinforced plastics provide the materials engineer with a solution to the economic dilemma arising from the current prohibitive cost of exotic alloy construction. They are serving in highly corrosive environments as materials for many major pieces of process equipment, auxiliaries, and structural members. The excellent chemical resistance properties of FRP, epoxy, furan, phenolic, and polyester resins make each a premium performer in specific services. "One-side" panel testing, along with changes in residual flexural strength of "dunk" test strips, appears to be the best way to evaluate the performance of plastics. Failures in laminated plastics are readily solved with the electron scanning microscope through plastographic analysis tech niques and infrared spectroscopy.
C u c c e s s f u l c o r r o s i o n e n g i n e e r i n g d e p e n d s to a great d e a l o n a n i n - d e p t h ^
knowledge
o f c h e m i s t r y a n d c h e m i c a l reactions.
T h e chemist or
process engineer e n g a g e d i n m a t e r i a l s selection f o r c o n s t r u c t i o n of e q u i p m e n t d e s t i n e d f o r use i n h i g h l y aggressive e n v i r o n m e n t s m u s t first b e w e l l f o u n d e d i n b o t h i n o r g a n i c a n d o r g a n i c c h e m i s t r y . T h i s is p a r t i c u l a r l y true w h e n i t becomes necessary
to u s e a n i n t u i t i v e c h o i c e of a
m a t e r i a l of c o n s t r u c t i o n f o r l a c k of specific c o r r o s i o n resistance d a t a . T h e c h e m i c a l resistance a n d p r o b a b l e p e r f o r m a n c e o f n o n - m e t a l l i c m a t e rials u n d e r s u c h c o n d i t i o n s m a y b e r e a d i l y a n d often a c c u r a t e l y p r e d i c t e d b y c o n s i d e r i n g t h e c h e m i c a l s t r u c t u r e of t h e c o m p o u n d s encountered
i n the environment.
I t is because of h i s extensive,
to b e spe-
c i a l i z e d t r a i n i n g i n the fields o f i n o r g a n i c , o r g a n i c , a n d p h y s i c a l c h e m i s t r y 195 In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
196
FILLERS A N D R E I N F O R C E M E N T S FOR PLASTICS
t h a t w e find the c h e m i s t is often successful i n i n d u s t r y as a c o r r o s i o n engineer. D u r i n g the past 20 years there has b e e n a t r e m e n d o u s g r o w t h i n the use of r e i n f o r c e d plastics for f a b r i c a t i n g process e q u i p m e n t .
T h e i r fine
p e r f o r m a n c e , w i t h i n the l i m i t s of t h e i r t e m p e r a t u r e a n d p h y s i c a l p r o p erties, has b e e n d e m o n s t r a t e d
repeatedly
in application.
Plastics
no
longer n e e d to be r e g a r d e d w i t h h e s i t a n c y or t r e p i d a t i o n w h e n c o n s i d e r e d w i t h respect to the costly exotic alloys a n d metals. T h e y h a v e e x p e r i e n c e d
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch019
e x t r e m e l y satisfactory service i n m a n y h i g h l y corrosive e n v i r o n m e n t s . T h r o u g h t h e i n g e n u i t y of the p o l y m e r chemist t h e p r o p e r t i e s
of
plastics c a n b e a l t e r e d t h r o u g h f o r m u l a t i o n a n d the i n c o r p o r a t i o n
of
specific
fillers
a n d reinforcements
to o b t a i n m o d i f i c a t i o n s
approaching
the s t r e n g t h of steel, the lightness of a l u m i n u m , a n d a c h e m i c a l resistance better t h a n some of the super alloys. T h i s is a p r i m e reason for t h e i r phenomenal acceptance i n chemical processing equipment. P l a s t i c m a t e r i a l s are h i g h l y i m p o r t a n t to the cost-conscious m a i n t e n a n c e a n d d e s i g n engineer.
G e n e r a l l y they h a v e r e l a t i v e l y l o w
initial
costs, are l i g h t w e i g h t a n d e a s i l y i n s t a l l e d i n h a r d - t o - r e a c h areas, a n d c a n often be r e p a i r e d i n p l a c e w i t h o u t the p r o h i b i t i v e costs of s h u t t i n g d o w n adjacent e q u i p m e n t .
I n most instances the expense of p o s t - f a b r i c a t i o n
stress-relieving heat treatments, often associated w i t h the c o n s t r u c t i o n of a l l o y e q u i p m e n t , is unnecessary. E x c e p t for s p e c i f i c a l l y f o r m u l a t e d a n d c o m p o u n d e d plastics or r e s i n systems, these materials d o n o t c o n d u c t e l e c t r i c a l current. T h u s , one of the c h i e f concerns of the c o r r o s i o n e n g i n e e r — g a l v a n i c a n d stray c u r r e n t c o r r o s i o n — i s non-existent w h e n s u c h m a t e r i a l s are u s e d . C o l o r p i g m e n t a t i o n d u r i n g the f a b r i c a t i o n of a r e i n f o r c e d p l a s t i c u n i t p e r m i t s a n extra aesthetic p r e m i u m not a v a i l a b l e i n m e t a l l i c s t r u c tures r e q u i r i n g p o s t - c o n s t r u c t i o n
painting.
Quite frequently metal-ion
c o n t a m i n a t i o n leads to serious color a n d taste p r o b l e m s d u r i n g t h e m a n u f a c t u r e of p h a r m a c e u t i c a l or f o o d g r a d e c o m p o u n d s i n m e t a l or a l l o y equipment.
T h i s is a v e r y m i l d type of attack r e f e r r e d to as " m i c r o - m i l "
c o r r o s i o n . Stainless steel alloys h a v e b e e n u s e d i n m a n y instances w h e r e s u c h c o n t a m i n a t i o n or q u a l i t y c o n t r o l is the p r o b l e m r a t h e r t h a n severe, p r o h i b i t i v e corrosion.
O f t e n even stainless steel is i n a d e q u a t e , a n d r e -
i n f o r c e d plastics h a v e b e e n r e q u i r e d as substitutes. B e c a u s e of the serious q u a l i t y p r o b l e m s a r i s i n g f r o m this m i n i s c u l e a m o u n t of c o r r o s i o n , the m a t e r i a l s or c o r r o s i o n engineer often is c a l l e d u p o n to assist the p r o d u c t i o n s u p e r v i s o r i n r e c o m m e n d i n g a n a l t e r n a t i v e m a t e r i a l of
construction.
A l t h o u g h this m i n u t e attack w i l l
introduce
m e t a l ions i n parts p e r m i l l i o n i n t o the p r o d u c t , this is f r e q u e n t l y s i g nificant e n o u g h to i m p a r t adverse color effects or u n d e s i r a b l e tastes to
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
19.
Corrosion
FENNER
197
Engineering
not o n l y t h e m a i n c o m p o u n d b u t subsequent p r o d u c t s .
T h e use of r e -
i n f o r c e d plastics often has s o l v e d the p r o b l e m . I n m a n y instances no m e t a l o r a l l o y is either p r a c t i c a l or e c o n o m i c a l to use f o r f a b r i c a t i n g a c u s t o m - b u i l t p i e c e of e q u i p m e n t w h i c h w i l l b e exposed to a h i g h l y c o r r o s i v e e n v i r o n m e n t .
T h i s is c e r t a i n l y true i n
m a n y a p p l i c a t i o n s d e a l i n g w i t h strong o x i d i z i n g acids, w i d e ranges of p H , a n d a c i d i c salt solutions. I n these a p p l i c a t i o n s , specific r e i n f o r c e d plastics are i n v a l u a b l e . B y u s i n g p l a s t i c structures w i t h a h i g h d e g r e e of t r a n s l u c e n c y , safer Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch019
a n d easier operations are e n c o u n t e r e d , as w e l l as savings of
thousands
of dollars for l i q u i d l e v e l - m e a s u r i n g auxilliaries. T h e a b i l i t y to d e t e r m i n e v i s u a l l y the h e i g h t of a l i q u i d i n a t a n k at a glance lessens the h a z a r d of spillovers i n t o a n o p e r a t i n g area. O n e p r o p e r t y of p l a s t i c m a t e r i a l s of c o n s t r u c t i o n w h i c h m u s t
be
c o n s i d e r e d f r o m a safety v i e w p o i n t is t h e i r a b i l i t y to b u i l d u p a static charge.
R a p i d bleed-off
around
flammable
procedures
and sparking can be
particularly hazardous
l i q u i d s or d r y dust e n v i r o n m e n t s .
Suitable grounding
or n e u t r a l i z i n g m e d i a m u s t b e u s e d i n these situations to
guarantee safe w o r k i n g c o n d i t i o n s . resins w i l l b u r n ,
fire-retardant
S i n c e m a n y plastics a n d r e i n f o r c e d
steps are necessary w h e n e v e r the q u e s t i o n
of safety arises f r o m this source.
G e n e r a l l y the s o l u t i o n is s i m p l y t h e
m o d i f i c a t i o n of the r e s i n f o r m u l a t i o n b y the a d d i t i o n of
fire-retardant
c o m p o u n d s or b y the i n t e r n a l m o d i f i c a t i o n of the r e s i n m o l e c u l e itself. F r o m a n e n g i n e e r i n g s t a n d p o i n t , the most i m p o r t a n t d e s i g n c o n s i d eration is the s t r u c t u r a l soundness
of t h e u n i t .
T h i s means
that the
l a y - u p a n d thickness of the l a m i n a t e m u s t b e e v a l u a t e d to m a k e c e r t a i n that not o n l y w i l l the s t r u c t u r e w i t h s t a n d a l l of the h y d r a u l i c or static l o a d pressure i m p r e s s e d u p o n i t b u t also t h a t a n y p r o p o s e d v a c u u m or pressure service conditions w i l l b e c o n s i d e r e d .
T h e u n i t should be f a b r i -
c a t e d to w i t h s t a n d a n y v i b r a t i o n a l f a t i g u e a r i s i n g f r o m a g i t a t i o n of
fluids
or h e a v y slurries w i t h i n the tank. A n y a g i t a t o r d r i v e a s s e m b l y m u s t b e t a k e n i n t o c o n s i d e r a t i o n . T h i s s h o u l d b e externally s e l f - s u p p o r t e d w h e n the t a n k w a l l s are not sufficiendy s t r o n g a n d t h i c k e n o u g h to
support
the a d d e d w e i g h t . I n the m a j o r i t y of cases, f a i l u r e s i n glass fiber r e i n f o r c e d plastics are physical-mechanical i n nature.
I n the c o n s t r u c t i o n of s u c h e q u i p m e n t ,
the f o l l o w i n g cause the most f r e q u e n t p r o b l e m s : ( 1 ) I n a d e q u a t e w e t t i n g of the glass fibers b y the r e s i n , r e s u l t i n g i n d r y spots a n d d e l a m i n a t i o n s ( 2 ) E n t r a p p e d a i r , r e s u l t i n g i n subsurface air b u b b l e s a n d blisters or craters ( 3 ) N o n - u n i f o r m i t y of l a m i n a i c o n s t r u c t i o n , s u c h as fold-overs a n d i r r e g u l a r i t i e s of l a m i n a l thickness
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
198
FILLERS
AND
REINFORCEMENTS FOR
PLASTICS
( 4 ) P r o h i b i t i v e p o r o s i t y a n d crevices at junctures of nozzles a n d tank w a l l (5)
I n a d e q u a t e r e i n f o r c e m e n t a n d / o r s u p p o r t of nozzles a n d t a n k
walls ( 6 ) E x p o s e d glass fibers of the r e i n f o r c i n g m a t to the e n v i r o n m e n t b e c a u s e of m i s s i n g s u r f a c i n g w a l l (7)
corrosive
Insufficient thickness i n p r o t e c t i v e surface g e l coat
( 8 ) A p p l i c a t i o n of g e l c o a t i n g over a p a r a f f i n - w a x e d surface, r e sulting i n poor adhesion
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch019
( 9 ) E x c e s s i v e l y r i c h r e s i n areas w h i c h p r o d u c e s h r i n k a g e cracks, a n d h i g h t e m p e r a t u r e exotherms
b r i t t l e sections,
( 10 ) I n t e r n a l stress c r a c k i n g (11)
U n f i n i s h e d sections, u n r e i n f o r c e d areas, a n d careless w o r k m a n -
ship (12) tortion
Prohibitively thin
flanges,
l e a d i n g to w a r p e d faces a n d d i s -
( 1 3 ) C o n t a m i n a t i o n f r o m f o r e i g n m a t e r i a l s i n the w o r k i n g area, e m b e d d i n g w i t h i n or u p o n surface of r e s i n I n a d d i t i o n to the a b o v e , the c u r i n g p r o c e d u r e m u s t b e s t u d i e d to d e t e r m i n e w h e t h e r i t is a d e q u a t e or not. A n i m p r o p e r l y c u r e d u n i t c a n g i v e disastrous results i n service. Reinforced
Plastics
Epoxy. T h e r e a c t i o n p r o d u c t s of b i s p h e n o l A a n d e p i c h l o r o h y d r i n , k n o w n as e p o x y resins, h a v e excellent a d h e s i v e q u a l i t i e s a n d e x h i b i t g o o d c h e m i c a l resistance.
T h e y c a n b e r e a d i l y c u r e d b y catalysts a n d a c c e l -
erators at a m b i e n t temperatures, w h i c h m a k e s t h e m e x t r e m e l y w o r t h w h i l e i n p a t c h i n g process e q u i p m e n t or r e i n f o r c i n g f r a g i l e m a t e r i a l s . G e n e r a l l y r e i n f o r c e d w i t h glass fibers, the epoxies s h o w v e r y g o o d r e sistance to w a t e r , sour c r u d e s , salt w a t e r , strong a l k a l i n e solutions, n o n o x i d i z i n g a c i d s , jet fuels, a l i p h a t i c s , a n d some a r o m a t i c c o m p o u n d s . generally recommended 250°F.
H o w e v e r , g o o d results h a v e b e e n e x p e r i e n c e d
fiber-reinforced
The
t e m p e r a t u r e for m a x i m u m operations is a b o u t w i t h the glass
e p o x y as h i g h as 350° F i n a c i d i c v a p o r s of p H 3.
T h e epoxies h a v e b e e n u s e d for glass
fiber-reinforced
storage tanks,
receivers, f e e d t a n k s , c o l u m n s , scrubbers, a n d ducts f o r h a n d l i n g h i g h l y corrosive l i q u i d s a n d v a p o r s ; p r o t e c t i o n of f r a g i l e m a t e r i a l s s u c h as glass p i p i n g , c e r a m i c s , stoneware, c a r b o n , a n d g r a p h i t e f r o m b r e a k a g e u n d e r tensile stresses t h r o u g h a r m o u r i n g w i t h glass t a p e a n d e p o x y r e s i n a d h e s i v e o v e r l a y ; p r o t e c t i v e coatings a n d l i n i n g s for tanks, storage b i n s , h o p p e r s , a n d c h u t e - h a n d l i n g w e t crystals a n d d r y p o w d e r s ;
monolithic
floor t o p p i n g s to p r o m o t e acid-resistant floors a n d m o r t a r s for a c i d - p r o o f brick
floor.
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
19.
Corrosion
FENNER
199
Engineering
F u r a n . T h e f u l l y c u r e d f u r a n resins h a v e excellent c h e m i c a l resistance to strong acids, c o n c e n t r a t e d
alkalies, c h l o r i n a t e d solvents,
and
m o i s t u r e . T h e y are not resistant to s u c h o x i d i z i n g agents as n i t r i c a c i d , chromic
a c i d , concentrated
sulfuric acid, chlorine, and
T h e i r h i g h degree of c h e m i c a l resistance to c h l o r i n a t e d s u c h as c h l o r o f o r m ,
chlorobenzene,
hypochlorites. hydrocarbons
and dinitrochlorobenze
has
the furans a p r e m i u m m a t e r i a l for p r o t e c t i o n of e q u i p m e n t w h e r e other materials are unaffected.
A l t h o u g h the r e c o m m e n d e d
o p e r a t i n g t e m p e r a t u r e for the glass
fiber-reinforced
few
continuous
furans is 2 8 0 ° F ,
successful a p p l i c a t i o n s as h i g h as 350° F h a v e b e e n r e p o r t e d . Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch019
made
The furan
resins h a v e b e e n u s e d extensively for t h e m a n u f a c t u r e of p i p e s , ducts, valves, p u m p s , b l o w e r s , jets, exhaust a n d v e n t stacks, s c r u b b i n g towers, receivers,
distillation
exchangers,
filters,
towers,
tanks, mist e l i m i n a t o r s , absorbers,
heat
presses, pressure filter tanks, t a n k l i n i n g s , a n d a c i d -
proof b r i c k mortars. Phenolics.
T h e p h e n o l i c s h a v e b e e n p e r f o r m i n g y e o m a n chores i n
p r o t e c t i n g c h e m i c a l e q u i p m e n t for n e a r l y 50 years.
These
heat-cured
resins are i n s o l u b l e i n most solvents. T h e y h a v e h i g h a c i d resistance a n d are i n e r t to most of the c o m m o n c h e m i c a l s . T h e i r resistance to m o i s t u r e is v e r y g o o d . I n g e n e r a l , the u n m o d i f i e d p h e n o l i c s e x h i b i t p o o r resistance to a l k a l i n e m e d i a as w e l l as to s t r o n g o x i d i z i n g agents.
These materials
h a v e b e e n u s e d at temperatures as h i g h as 3 5 0 ° F for p r o l o n g e d p e r i o d s . T h e i r d i m e n s i o n a l s t a b i l i t y r e m a i n s q u i t e h i g h over a w i d e t e m p e r a t u r e range.
T h e p h e n o l i c s are classified as n o n - f l a m m a b l e materials.
T h e r e i n f o r c e d p h e n o l i c s m a y use c a r b o n or g r a p h i t e , asbestos, glass fiber, or n a t u r a l a n d s y n t h e t i c fibers. T h e y are u s e d to f a b r i c a t e process p i p i n g , valves, p u m p s , b l o w e r s , a n d tanks. T h e i r a p p l i c a t i o n s i n c l u d e asbestos-filled p h e n o l i c r e s i n c r y s t a l l i z e r s , quenchers, b o i l i n g t u b s , h o l d tubs, storage a n d f e e d b i n s , h o p p e r s , stacks, a n d d u c t i n g ; p h e n o l i c r e s i n i m p r e g n a t e d g r a p h i t e valves, p u m p s , jets, heat-exchangers, (bubble-cap
or
packed)
columns,
and
split-flow
distillation
controllers;
filters,
presses, c o a t e d t r a y a n d shelf v a c u u m d r y e r s , r o t a r y d r y e r s , a n d pressure and vacuum
filter
t a n k s ; f u m e a n d a c i d v a p o r s s c r u b b i n g towers
and
exhaust jets. Polyesters. T h e c h e m i c a l - r e s i s t a n t polyesters i n c l u d e the w e l l k n o w n p r o p o x y l a t e d b i s p h e n o l A — f u m a r a t e r e s i n ; one b a s e d u p o n h y d r o g e n a t e d b i s p h e n o l A a n d f u m a r i c a c i d ; the isophthalates; a n d polyesters
made
w i t h c h l o r e n d i c a n h y d r i d e o r t e t r a c h l o r o p h t h a l i c a n h y d r i d e . T h e s e resins h a v e g o o d c h e m i c a l resistance to n o n - o x i d i z i n g a c i d s , corrosive salts, a l i p h a t i c solvents, a r o m a t i c c o m p o u n d s , a n d c h l o r i n a t e d solvents.
They
e x h i b i t f a i r resistance to w e a k bases a n d esters b u t are severely a t t a c k e d b y s t r o n g o x i d i z i n g acids a n d strong bases.
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
200
FILLERS
AND
REINFORCEMENTS FOR
PLASTICS
T h e polyesters are g e n e r a l l y r e i n f o r c e d w i t h glass c l o t h , m a t , r o v ings, c h o p p e d
fibers,
essing e q u i p m e n t . usually employed
or glass flakes i n the f a b r i c a t i o n of c h e m i c a l p r o c A l t h o u g h the glass
fiber-reinforced
polyesters
at c o n t i n u o u s o p e r a t i o n t e m p e r a t u r e s b e l o w
t h e y h a v e b e e n successfully a p p l i e d i n s t r o n g l y c o r r o s i v e
are
212 ° F ,
environments
as h i g h as 250 ° F .
S p e c i a l modifications w i t h r e a c t i v e d i l u e n t s or cross-
linking monomers
s u c h as t r i a l l y l c y a n u r a t e have b e e n r e p o r t e d
with
heat s t a b i l i t y at temperatures as h i g h as 500 ° F . T h e glass
fiber-reinforced
polyesters h a v e e x h i b i t e d a v e r s a t i l i t y of
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch019
use w h i c h ranges f r o m parts of the l u n a r e x c u r s i o n m o d u l e
to
mine
sweepers i n V i e t n a m waters. T h e i r a p p l i c a t i o n i n the c h e m i c a l i n d u s t r y i n c l u d e s reactors, storage tanks, c a t c h tanks, b o i l i n g tubs, g r o u n d tanks, receivers, a n d separators; r e c l a i m e d w a t e r sumps, funnels,
laboratory
sinks; ducts, hoods, a n d v e n t stacks; d i p p i p e s , process p i p i n g , sewers; dry powder troughs,
b i n s , feeders,
conveyor
covers;
chutes, carts; w e t c a k e h o p p e r s , chlorine
absorbers,
off-gas
screw-feed
scrubbers,
mist
e l i m i n a t o r s , a n d c o l u m n s ; doors, w i n d o w s , canopies, p a n e l i n g , s t r u c t u r a l m e m b e r s ; e q u i p m e n t safety shields, m o t o r covers; fans, b l o w e r s , eductors, jets, exhausters; filter press frames, s l i d e blast gates, c h e c k v a l v e s ; waste d i s p o s a l troughs, s e t t l i n g basins, c o o l i n g towers, g u t t e r i n g , d o w n s p o u t s ; c h o p p e d fiber s p r a y a n d glass flake l i n i n g s for i n - p l a c e r e h a b i l i t a t i o n of process e q u i p m e n t . Testing T h e testing of glass
fiber-reinforced
plastics either i n t h e l a b o r a t o r y
or u n d e r a c t u a l p l a n t operations b y the s i m p l e i m m e r s i o n m e t h o d is often sufficient to d e t e r m i n e a c c e p t a b i l i t y b y t h e e n v i r o n m e n t .
T h i s is p a r -
t i c u l a r l y true w h e n the p l a s t i c is r e a d i l y a t t a c k e d b y the test s o l u t i o n . H o w e v e r , w h e n there is little v i s i b l e change i n the test s a m p l e , determ i n a t i o n of its c o m p a t i b i l i t y w i t h the p a r t i c u l a r e n v i r o n m e n t b e c o m e s s o m e w h a t m o r e difficult. It is possible, for a n e x a m p l e , that u n d e s i r a b l e trace c o n t a m i n a n t s present i n the process s t r e a m m a y b e a b s o r b e d
over
a p e r i o d of t i m e or p e r m e a t e the r e s i n w i t h no i m m e d i a t e v i s i b l e e v i d e n c e of h a r m f u l effects.
A g r a d u a l d e g r a d a t i o n of t h e p h y s i c a l a n d m e c h a n i -
c a l properties of the p l a s t i c m a y b e d e v e l o p i n g a w e a k e n e d structure. U n d e r those c o n d i t i o n s of n o a p p a r e n t v i s i b l e change, i t is g e n e r a l l y best to m a k e c e r t a i n that no i n s i d i o u s or adverse c o n d i t i o n i n g of the p l a s t i c is o c c u r r i n g w h i c h c o u l d p r o m o t e f u t u r e difficulties. T h u s , p e r f o r m a n c e d a t a b a s e d u p o n changes i n p h y s i c a l a n d m e c h a n i c a l properties are v e r y meaningful
(I).
I n i t i a l l y , testing t e c h n i q u e s s i m i l a r to those u s e d i n e v a l u a t i n g the c o r r o s i o n resistance of metals a n d alloys m a y be u s e d for the glass
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
fiber-
19.
Corrosion
FENNER
201
Engineering
r e i n f o r c e d resins. T h e specific test coupons are exposed to the e n v i r o n m e n t either i n the l a b o r a t o r y u n d e r as n e a r l y as possible s i m u l a t e d p l a n t c o n d i t i o n s or u n d e r a c t u a l field operations i n the process stream.
The
c o u p o n s are u s u a l l y p o s i t i o n e d to p r o v i d e b o t h l i q u i d - a n d v a p o r - p h a s e environmental
exposures.
W h e n exposure is
finished,
the test coupons are r e m o v e d a n d ex-
a m i n e d for changes i n w e i g h t , d i m e n s i o n , a p p e a r a n c e , hardness, d e l a m i n a t i o n , p h y s i c a l a n d / o r m e c h a n i c a l properties, a n d a c t u a l d i s s o l u t i o n of the p l a s t i c .
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch019
Incompatibility
of
a reinforced
plastic w i t h
the
environment
is
v i s u a l l y a p p a r e n t b y s u c h occurrences as those d e s c r i b e d b e l o w . Abnormal Surface Changes.
T h e s e m a y be i d e n t i f i e d b y c h a r r i n g ,
c h a l k i n g , b l i s t e r i n g , c r a c k i n g , a n d c r a z i n g , a l l of w h i c h c a n result i n a weakened
s t r u c t u r e a n d p r o h i b i t the e x t e n d e d
use i n the p a r t i c u l a r
service. Color Changes. W h i l e i n d i c a t i n g some i n t e r a c t i o n of the p l a s t i c a n d the e n v i r o n m e n t , s u c h changes do not necessarily p r o h i b i t t h e use of the plastic. M a n y times this color c h a n g e is l i m i t e d either to the i m m e d i a t e surface or at worst to a f e w m i l s p e n e t r a t i o n . causes the d e v e l o p m e n t
Permeation
sometimes
of a color c h a n g e t h r o u g h o u t t h e b o d y of the
p l a s t i c . H o w e v e r , often the d i s c o l o r e d p l a s t i c w i l l n o t h a v e
experienced
a n y significant d e g r a d a t i o n i n its p h y s i c a l or m e c h a n i c a l properties a n d is e n t i r e l y a c c e p t a b l e i n the p r o p o s e d service. Dimensional Changes.
If s w e l l i n g or s h r i n k a g e is m i n o r , it is no
reason for rejection p r o v i d e d s u c h d i m e n s i o n a l changes do not p r o h i b i t the p l a s t i c f r o m p e r f o r m i n g its f u n c t i o n .
M i n o r s w e l l i n g i n the p l a s t i c
l i n i n g of a t a n k is not sufficient cause for a l a r m or r e p l a c e m e n t as l o n g as its a d h e s i o n to the t a n k w a l l is unaffected.
S w e l l i n g to the same extent
w i t h i n the v o l u t e of a p u m p , b o d y of a v a l v e , or t h r o a t of a flow m e t e r i n g d e v i c e m i g h t b e q u i t e unsatisfactory. P r o h i b i t i v e s w e l l i n g is often o n l y i n t h e eyes of the evaluator a n d q u i t e difficult to define i n terms percentage
g r o w t h as to rejection or acceptance.
of
O n the other h a n d
excessive s h r i n k a g e is m o r e easily defined b y s h r i n k i n g , c r a c k i n g , d i s t o r t i o n , or loss i n a d h e s i v e q u a l i t i e s . Hardness Changes.
T h e s e are not u n c o m m o n .
S o f t e n i n g or h a r d e n -
i n g of a p l a s t i c or r e s i n system exposed to a p a r t i c u l a r e n v i r o n m e n t m a y or m a y not b e e v i d e n c e of p r o h i b i t i v e attack.
Softening, i n m a n y i n -
stances, is solely the result of t h e p e r m e a t i o n of a solvent into the r e s i n w i t h some attendent p l a s t i c i z i n g . U p o n r e m o v a l f r o m exposure to the e n v i r o n m e n t , the solvent m a y evaporate a n d the p l a s t i c m a y r e s u m e its o r i g i n a l hardness. T a c k i n e s s a c c o m p a n y i n g a softening of the r e s i n system g e n e r a l l y denotes its u n a c c e p t a b i l i t y . H o w e v e r , this m a y be o n l y a surface phenomenon
a n d a reasonable, p r a c t i c a l l i f e c o u l d b e e x p e r i e n c e d
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
by
202
FILLERS
AND
REINFORCEMENTS FOR
PLASTICS
the m a t e r i a l i n the e n v i r o n m e n t . B r i t t l e n e s s a n d losses i n tensile or
flex-
u r a l s t r e n g t h often are associated w i t h surface h a r d e n i n g of t h e p l a s t i c . C e r t a i n m e d i a , s u c h as s t r o n g a c i d s , m a y increase the surface hardness of c a t a l y t i c a l l y c u r e d resins w i t h o u t d e t r i m e n t a l effects. Laminai W a l l A t t a c k .
T h i s is suffered b y
fiber-reinforced
resin
structures i n e n v i r o n m e n t s i n w h i c h the r e s i n is u n a c c e p t a b l e ( J ) .
How-
ever, s h o u l d the r e s i n system not h a v e b e e n p r o p e r l y c u r e d p r i o r to exposure, failures m i g h t o c c u r i n a n o t h e r w i s e a c c e p t a b l e
environment.
I n other instances, d e l a m i n a t i o n occurs because there is i n a d e q u a t e w e t -
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch019
t i n g of the glass, r e s u l t i n g i n p o o r a d h e s i o n . paraffin w a x f r o m the s u r f a c e of a glass
T h e f a i l u r e to
fiber-reinforced
remove
polyester l a m i n a t e
p r i o r to the a d d i t i o n of a n y o v e r l a y c a n cause d e l a m i n a t i o n too.
Expo-
sure of glass fibers to e n v i r o n m e n t s s u c h as strong bases or h y d r o f l u o r i c a c i d w h i c h are i n c o m p a t i b l e w i t h glass c a n cause r a p i d d e t e r i o r a t i o n of the glass r e i n f o r c e m e n t a n d d e l a m i n a t i o n . Weight Changes. T h e s e are u s e d b y m a n y laboratories i n r e p o r t i n g the p e r f o r m a n c e of plastics. T h e s e w e i g h t changes r e s u l t f r o m the a b s o r p t i o n of l i q u i d s , p r o d u c t i o n of c o r r o s i o n p r o d u c t s , l e a c h i n g of r e s i n , erosion, c o r r o s i o n , or other m e c h a n i c a l effects, d e t e r i o r a t i o n of r e i n f o r c i n g fiber t h r o u g h c h e m i c a l attack, o r a c o m b i n a t i o n of these. O f t e n a single w e i g h t m e a s u r e m e n t at the e n d of the exposure p e r i o d is sufficient for e v a l u a t i n g the p l a s t i c f o r the specified e n v i r o n m e n t . H o w e v e r , false or q u e s t i o n a b l e conclusions or inferences m a y result f r o m r e l y i n g solely o n s u c h measurements. T o a v o i d this, a series of p h y s i c a l / m e c h a n i c a l p r o p e r t y tests a n d w e i g h t c h a n g e evaluations s h o u l d be m a d e o n e a c h p l a s t i c at definite t i m e i n t e r v a l d u r i n g the exposure p e r i o d .
These
measure-
ments are p l o t t e d so t h a t a p r o j e c t e d p e r f o r m a n c e l i f e m a y b e p r e d i c t e d f r o m the curves.
A f a i r l y satisfactory t e c h n i q u e plots t h e a c c u m u l a t e d
p e r c e n t a g e w e i g h t c h a n g e f r o m i n i t i a l w e i g h t a l o n g w i t h the d i f f e r e n t i a l percentage w e i g h t c h a n g e b e t w e e n successive w e i g h i n g s . T h i s c o m b i n a t i o n w i l l i n d i c a t e w h e t h e r t h e rate of c h a n g e is i n c r e a s i n g , d e c r e a s i n g , o r r e m a i n i n g constant for a n y i n c r e m e n t of t i m e d u r i n g exposure to the aggressive e n v i r o n m e n t . Residual Physical Properties Method.
T h i s is p r o b a b l y the
i m p o r t a n t c o n s i d e r a t i o n i n t h e e v a l u a t i o n of glass
fiber-reinforced
most
plastic
l a m i n a t e s w h i c h h a v e b e e n s u b j e c t e d to severely c o r r o s i v e e n v i r o n m e n t s . W h e t h e r t h e y h a v e r e t a i n e d sufficient amounts of t h e i r o r i g i n a l pressive,
flexural,
com-
a n d tensile strengths to p r o v i d e a s t r u c t u r a l l y s o u n d
u n i t over a reasonable service l i f e is of p a r a m o u n t i m p o r t a n c e . R e v i e w of m a n y test exposures of glass
fiber-reinforced
r e s i n samples
discloses that b o t h i n i t i a l loss or g a i n i n w e i g h t , or e v e n a decrease i n flexural
s t r e n g t h or m o d u l u s is o n l y p a r t of the p e r f o r m a n c e
picture.
R a t e of c h a n g e or e v e n s t a b i l i t y of these w i t h a d d i t i o n a l exposure is
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
19.
Corrosion
FENNER
203
Engineering
m u c h m o r e a c r i t e r i o n for acceptance.
M a n y investigations d i s c l o s e d
r a p i d loss i n p h y s i c a l properties the first f e w hours or days of exposure, w i t h a subsequent
flattening
out of the curves w h i c h i n d i c a t e n o a p p r e -
c i a b l e f u r t h e r l o w e r i n g of the s t r e n g t h of the l a m i n a t e . T h e s e studies l e a d to the c o n c l u s i o n t h a t changes i n flexural s t r e n g t h and
flexural
m o d u l u s are the best c r i t e r i a for e v a l u a t i n g the c h e m i c a l
resistance of glass t o r y exposures.
fiber-reinforced
changes i n flexural strength or w i t h respect to t i m e . Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch019
polyesters b o t h i n p l a n t a n d i n l a b o r a -
B r i e f l y , the test p r o c e d u r e is b a s e d o n the e v a l u a t i o n of fluxural
m o d u l u s of the exposed
samples
T h e s e d e t e r m i n a t i o n s are u s e d as the s t a n d a r d
reference b e t w e e n p e r f o r m a n c e of glass
fiber-reinforced
polyesters since
changes i n these p r o p e r t i e s a p p e a r to b e t h e most i n d i c a t i v e c h e c k o n the p h y s i c a l b e h a v i o r of these m a t e r i a l s . D e f l e c t r o n T e s t C e l l . It has b e c o m e q u i t e a p p a r e n t to m a n y r e s e a r c h chemists a n d m a t e r i a l s engineers that the s t a n d a r d " d u n k " test i n t r o d u c e s difficulties i n i n t e r p r e t a t i o n w h e n a t t e m p t i n g to use the d a t a for engineering design.
good
I n c o n s i d e r i n g the effects of c o l d w a l l s u p o n the
p e r f o r m a n c e of m a t e r i a l s , a l m o s t s i m u l t a n e o u s l y , m a n y c o m p a n i e s
Figure 1.
and
Open end test cell
p e r s o n n e l i n t e r e s t e d i n this field h a v e a r r i v e d at the d e c i s i o n t h a t " o n e s i d e " testing of the glass
fiber-reinforced
plastic panel under conditions
s i m u l a t i n g the i n n e r w a l l of a t a n k or d u c t is m o r e d e s i r a b l e . M o n s a n t o C o r p o r a t e E n g i n e e r i n g uses t h e D e f l e c t r o n o p e n e n d test c e l l ( D e f l e c t r o n C o . , St. L o u i s , M o . ) to o b t a i n r e a l i s t i c exposure d a t a i n t h e e v a l u a t i o n of glass
fiber-reinforced
polyesters a n d other sheet plastics.
T h e test a p p a r a t u s ( F i g u r e 1 ) consists of a 4 " - d i a m e t e r X 1 0 " - l o n g glass c y l i n d e r w i t h s e v e r a l ground-glass joint o p e n i n g s p l a c e d i n l i n e p e r p e n -
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
204
FILLERS
AND
REINFORCEMENTS
FOR
PLASTICS
d i c u l a r to the axis of the c y l i n d e r . T h e ends of t h e glass c y l i n d e r are c l o s e d off w i t h t h e r e s i n glass l a m i n a t e to b e tested a n d sealed
with
s u i t a b l e gaskets, a l l o w i n g one-side exposure o n l y to the p a r t i c u l a r e n v i r o n m e n t . T h e c e l l is h a l f - f i l l e d w i t h the test s o l u t i o n w h i c h p r o v i d e s a n e q u a l l i q u i d p h a s e - v a p o r p h a s e exposure area u p o n e a c h e n d test p a n e l . T h e u n i t c a n be
fitted
w i t h the d e s i r e d a u x i l i a r y e q u i p m e n t s u c h as
reflux condenser, t h e r m o m e t e r , t h e r m o s t a t i c c o n t r o l , a n d agitator.
The
e n v i r o n m e n t a l c e l l is h e a t e d w i t h a n e l e c t r i c h e a t i n g m a n t l e to m a i n t a i n the r e q u i r e d t e m p e r a t u r e .
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch019
I n a d d i t i o n to the 6 " χ %"
X 3y2"
the l i q u i d .
X
6" X
V s ^ - t h i c k side test p a n e l , g e n e r a l l y
y 8 " - t h i c k sealed e d g e " d u n k " test strips are i m m e r s e d i n
O n e of these is r e m o v e d after 1, 3, 7, 14, 30, 60, 90, a n d 120
days to o b s e r v e a n y v i s i b l e a t t a c k over t h e p e r i o d of i m m e r s i o n . C h a n g e s i n B a r c o l hardness are d e t e r m i n e d , a n d t h e n r e s i d u a l and
flexural
flexural
modulus
s t r e n g t h d e t e r m i n a t i o n s are m a d e o n e a c h test strip u p o n
its r e m o v a l , a c c o r d i n g to A S T M
D - 7 9 0 , S t a n d a r d M e t h o d for T e s t for
F l e x u r a l P r o p e r t i e s of P l a s t i c s . U p o n c o m p l e t i o n of t h e t e s t i n g p e r i o d , u s u a l l y a 120-day the u n i t is d i s m a n t l e d , a n d t w o % " - w i d e X
exposure,
6 " - l o n g test strips are c u t
f r o m the l i q u i d phase, a n d t w o test strips are c u t f r o m the v a p o r p h a s e of the p a n e l . A s i n g l e y2"-wide X
6 " - l o n g c o n t r o l s a m p l e is c u t f r o m
the u n e x p o s e d p o r t i o n of the p a n e l . T h e s e are t h e n b r o k e n o n a n I n s t r o n i n s t r u m e n t ( I n s t r o n C o r p . , C a n t o n , M a s s . ) to d e t e r m i n e t h e i r r e s i d u a l flexural
modulus and
flexural
strengths.
T h e b r o k e n test strips are r e
a s s e m b l e d i n t o t h e i r f o r m e r p o s i t i o n i n the test p a n e l for f u t u r e reference. T h e fact t h a t c o n t r o l p a n e l s of a specific l a m i n a t e d p l a s t i c s t r u c t u r e m a y b e u s e d w i t h a n u m b e r of D e f l e c t r o n test cells to c o m p a r e c h e m i c a l resistance w i t h those of other r e s i n l a m i n a t e systems is a d e c i d e d a d v a n tage. T h e v a r i a t i o n i n c h e m i c a l resistance t h r o u g h differences i n t r o d u c e d b y v a r i o u s r e i n f o r c i n g fibers s u c h as asbestos, c e r a m i c , n y l o n , a c r y l i c s , polyesters, o r other synthetics is often of i m p o r t a n c e a n d has b e e n e v a l u a t e d b y this t e c h n i q u e . Plastographic Analysis Techniques. tional performance
P r o c e d u r e s for o b t a i n i n g a d d i
d a t a after p l a s t i c m a t e r i a l s h a v e b e e n s u b j e c t e d
aggressive e n v i r o n m e n t s , t e r m e d p l a s t o g r a p h i c analysis t e c h n i q u e s
to (2),
are often used. T h e t e c h n i q u e has b e e n e x t r e m e l y h e l p f u l i n p e r f o r m a n c e a n d f a i l u r e analyses studies w h i c h h a v e l e d to the d e v e l o p m e n t of b e t t e r e n g i n e e r i n g m a t e r i a l s of c o n s t r u c t i o n a n d d e s i g n considerations for p l a s t i c a n d r e i n f o r c e d m a t e r i a l s of c o n s t r u c t i o n . I n this p r o c e d u r e
p l a s t i c samples a n d glass
fiber-reinforced
resin
l a m i n a t e s are p r e p a r e d a n d s u b j e c t e d to " k n o w n c o n d i t i o n s " of exposure. W e h a v e u s e d i t most f r e q u e n t l y i n the p e r m a n e n c e studies w i t h
fiber-
r e i n f o r c e d r e s i n m a t e r i a l s . I n these studies t y p i c a l " k n o w n c o n d i t i o n "
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
19.
FENNER
samples
Corrosion
for c o m p a r i s o n
205
Engineering against S P I s t a n d a r d c o n t r o l l a m i n a t e s
were
p r e p a r e d b y the f o l l o w i n g m e t h o d s : ( a ) P h y s i c a l fractures of the S P I s t a n d a r d c o n t r o l l a m i n a t e t h r o u g h f o l d - o v e r , t o r s i o n a l b r e a k a g e , flexural f a t i g u e c r a c k i n g , a n d h y d r o s t a t i c rupture ( b ) U n d e r c u r e d l a m i n a t e s a r i s i n g f r o m insufficient a d d i t i o n s of catalysts or accelerators, excessively l o w c u r e t e m p e r a t u r e s , air i n h i b i t i o n , or h i g h h u m i d i t y c o n d i t i o n s
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch019
( c ) O v e r c u r e d laminates r e s u l t i n g f r o m excessive a d d i t i o n s of catalyst or accelerator, p o o r heat d i s s i p a t i o n , h i g h e x o t h e r m i c c o n d i t i o n s ( d ) I m p r o p e r l y r e s i n - w e t t e d l a m i n a t e s p r o d u c e d as a c o n s e q u e n c e of insufficient m e c h a n i c a l i m p r e g n a t i o n , i n c o m p a t i b i l i t y of s i z i n g a n d fibers, or p r e s e n c e of r e s i n - p h o b i c c o n t a m i n a n t s (e) C h e m i c a l l y degraded S P I standard control laminates i n w h i c h the r e s i n m a t r i x , glass fibers, or b o t h h a v e b e e n a t t a c k e d b y selective solvents, o x i d i z i n g agents, a c i d s , or c a u s t i c c o m p o u n d s . T h e s e a n d s i m i l a r l y p r e p a r e d s p e c i a l samples w e r e t h e n e x a m i n e d under
the
stereomicroscope,
metallographic
s c a n n i n g electron m i c r o s c o p e .
optical
microscope,
A p p r o p r i a t e photographs
were
and
prepared
of e a c h t y p e of f a i l u r e or attack to serve as a set of " k n o w n c o n d i t i o n " c o n t r o l laminates. C o m p a r i s o n w i t h u n k n o w n exposure laminates ferrets out causes for t h e i r q u e s t i o n a b l e or unsatisfactory p e r f o r m a n c e s .
The
e x a m i n a t i o n of these test l a m i n a t e s is d o n e u n d e r magnifications i n the r a n g e of 100-13,000 X a n d h a v e p r o v e d e x t r e m e l y v a l u a b l e i n d e t e r m i n i n g t h e r e s i s t i v i t y of fiber reinforcements a n d the p a r t i c u l a r r e s i n system t o w a r d s the specific e n v i r o n m e n t u n d e r c o n s i d e r a t i o n . I n f r a r e d Spectroscopy.
I d e n t i f i c a t i o n of p l a s t i c materials o f
con-
s t r u c t i o n as to g e n e r i c f a m i l y a n d , w h e r e v e r possible, as to c o m m e r c i a l l y a v a i l a b l e resins or p r o p r i e t a r y plastics is a necessary a d j u n c t to p l a s t i c testing a n d p l a s t o g r a p h i c analysis. It assists i n d e t e r m i n i n g the cause of poor performance
i n f a i l u r e analysis studies, as a n a i d i n e s t a b l i s h i n g
g o o d standards, a n d p r o m o t e s the d e s i g n of better
corrosion-resistant
c h e m i c a l p r o c e s s i n g e q u i p m e n t a n d structures. It is possible b y i n f r a r e d s p e c t r o s c o p y to use a v e r y s m a l l segment of the p l a s t i c or r e s i n m a t e r i a l to i d e n t i f y r a p i d l y a n d a c c u r a t e l y specific p o l y m e r s i n the u n i t u n d e r examination. Conclusion It is necessary
to use i n g e n u i t y i n s e l e c t i n g or d e v i s i n g tests
to
d e t e r m i n e the c h e m i c a l r e s i s t i v i t y of a p a r t i c u l a r p l a s t i c or r e s i n e x p o s e d to a specific e n v i r o n m e n t . T h e a p p l i c a t i o n s dictate the testing p r o c e d u r e n e e d e d to guarantee that the e n d results w i l l g i v e m e a n i n g f u l , safe, a n d useful engineering design data.
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
206
FILLERS AND REINFORCEMENTS FOR PLASTICS
Literature Cited 1. Cass, R. Α., Fenner, Ο. H., "Evaluating the Performance of Fiberglass Laminates," Ind. Eng. Chem. (1964) 56, 29-34. 2. Fenner, Ο. H., "Plastographic Analysis Techniques in the Evaluation of FRP Structures and Equipment," SAMPE Quart. (1970) 1 (3) 26-31.
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch019
RECEIVED October 11, 1973.
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.