4 Asbestos-Reinforced Rigid Poly(vinyl chloride) A. CRUGNOLA and A. M. LITMAN
1
Downloaded by EAST CAROLINA UNIV on January 4, 2018 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch004
L o w e l l Technological Institute, L o w e l l , Mass. 01854
Two rigid poly(vinyl chloride) polymers (a low and a high molecular weight sample) were reinforced at several concen trations with four chrysotile asbestos fibers of varying length and openness. Mechanical, thermal, and other physical tests were done on the resultant composites: load/elongation curves, impact, hardness, heat deflection temperature, and flammability. Complete analyses of the before and after processed polymers' molecular weight and molecular weight distribution were also done. X-ray radiographs of the com posites established fiber distribution in the molded speci mens; infrared analyses on the polymers showed possible changes in chemical structure. A new mixing technique incorporated the asbestos in the plastic. Resultant composite properties generally depended on four factors. In decreasing importance they are: (1) matrix polymer molecular weight, (2)fiberconcentration, (3) fiber "openness," (4) fiber length. T i t t l e r e s e a r c h has b e e n d o n e o n t h e r e i n f o r c i n g effects of asbestos o n rigid poly (vinyl chloride)
( P V C ) plastics ( I ) . T h i s c o m b i n a t i o n is
i n t e r e s t i n g because o f t h e i n h e r e n t p r o p e r t i e s of P V C a n d t h e u n i q u e characteristics o f asbestos fibers. R i g i d ( u n p l a s t i c i z e d ) P V C is a l o w cost, t o u g h t h e r m o p l a s t i c n o t e d f o r excellent c h e m i c a l a n d flame resistance a n d extensive p r o c e s s i n g v e r s a t i l i t y — p r o p e r t i e s w h i c h l e a d to countless a p p l i c a t i o n s i n b o t h t h e b u i l d i n g a n d t h e c h e m i c a l areas.
T w o such
p o l y m e r s w e r e u s e d i n this w o r k : a l o w m o l e c u l a r w e i g h t p r o d u c t of M
w
=
49,900 a n d a h i g h m o l e c u l a r w e i g h t p r o d u c t o f M
w
=
116,380.
Asbestos is a b r o a d t e r m a p p l i e d to a n u m b e r of n a t u r a l s i l i c a t e d m i n e r a l s that a r e i n c o m b u s t i b l e a n d c a n b e s e p a r a t e d either m e c h a n i c a l l y o r c h e m i c a l l y i n t o fibers o f v a r y i n g lengths a n d thicknesses.
L o w cost,
Present address: Army Materials and Mechanics Research Center, Watertown, Mass. 02172.
29 Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
30
FILLERS A N D R E I N F O R C E M E N T S FOR PLASTICS
excellent h e a t resistance, a n d e x c e p t i o n a l m e c h a n i c a l b e h a v i o r
account
f o r the g r o w i n g use of asbestos i n t h e r e i n f o r c e d plastics i n d u s t r y . T h e r e are t w o
d i s t i n c t m i n e r a l o g i c a l classifications of
asbestos:
those
from
serpentine r o c k f o r m a t i o n s a n d those f r o m a m p h i b o l e r o c k f o r m a t i o n s . Asbestos
Mineral
— I . Amphibole
Serpentine
Downloaded by EAST CAROLINA UNIV on January 4, 2018 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch004
Chrysotile
— I Anthophyllite
Amosite
Crocidolite
Tremolite
Actinolite
O f the six varieties c a t a l o g e d o n l y f o u r h a v e c o m m e r c i a l use as r e i n f o r c e m e n t s : c h r y s o t i l e , amosite, a n t h o p h y l i t e , a n d c r o c i d o l i t e .
T h e chrysotile
asbestos accounts for a b o u t 9 5 % of w o r l d p r o d u c t i o n a n d is the m o s t w i d e l y u s e d i n plastics. T h e advantages of this fiber as a r e i n f o r c e m e n t a r e : (1) h i g h e r strength a n d m o d u l u s vs. glass fibers, ( 2 ) a p o s i t i v e s u r face charge w h i c h promotes
fiber/matrix
w i d e r a n g e of lengths a n d d i a m e t e r s , ( 4 )
bonding, (3) a soft,
availability i n a
flexible
results i n m i n i m u m w e a r o n p r o c e s s i n g e q u i p m e n t .
quality w h i c h
T h e four chrysotile
fibers u s e d i n this s t u d y are d e s c r i b e d i n T a b l e I. Table I. Fiber
Asbestos Fibers Used"
Size, inch
7RS7
1/32
Paperbestos N o . 5
3/64
Paperbestos N o . 1
1/4
P l a s t i b e s t N o . 20
1/8-3/16
α
Description s h o r t s t a n d a r d fiber used i n t h e r m o p l a s t i c systems shorter v e r s i o n of Paperbestos No. 1 c l e a n , w e l l opened fiber of good length clean, m e d i u m l e n g t h fiber n o t opened v e r y m u c h
Fibers supplied by Johns Manville Co. and classification/descriptions are theirs.
Experimental Specimen Fabrication. A m e a s u r e d a m o u n t of P V C w a s p l a c e d i n a H e n c h e l m i x e r a n d m i x e d at m a x i m u m s p e e d ( 3600 r p m ) u n t i l the b a t c h t e m p e r a t u r e r e a c h e d 2 0 0 ° F . A t this t e m p e r a t u r e the s t a b i l i z e r w a s a d d e d ( 2 p p h b y w e i g h t of A d v a n c e s ' T - 3 6 0 , a s u l f u r - c o n t a i n i n g o r g a n o t i n c o m p o u n d ) , a n d m i x i n g c o n t i n u e d u n t i l the t e m p e r a t u r e r e a c h e d 2 5 0 ° F ; at this t i m e the m a t e r i a l w a s d i s c h a r g e d i n t o a r i b b o n b l e n d e r for c o o l i n g (approximately 5 m i n ) .
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by EAST CAROLINA UNIV on January 4, 2018 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch004
4.
CRUGNOLA A N D L i T M A N
Asbestos-Reinforced
PVC
31
Figure 1. Impact fracture surfaces (notched Izod). Top: Paperbestos No. 5/PVC; bottom: Plastibest No. 20/PVC. T h e asbestos w a s d r i e d i n a n o n - c i r c u l a t i n g a i r o v e n at 250° F f o r 24 hrs t o r e m o v e m o i s t u r e that o t h e r w i s e m i g h t p r e v e n t the fiber b u n d l e s f r o m s e p a r a t i n g i n the p r e m i x i n g o p e r a t i o n . T h e b r e a k u p o f t h e asbestos c l u m p s a n d the d r y - b l e n d i n g w i t h the stabilized polymer were done i n a specially designed m i x i n g device consisting o f a glass jar, a b a l l m i l l , a n d a n i t r o g e n source. T h e m i x i n g jar was e q u i p p e d w i t h a p e r f o r a t e d shaft r u n n i n g d o w n i t s l e n g t h w h i c h p e r m i t t e d the n i t r o g e n i n t r o d u c e d u n d e r a n o m i n a l pressure t o b e u n i f o r m l y d i r e c t e d t h r o u g h o u t the jar. A T e f l o n b e a r i n g seated at the center of the jar c o v e r p e r m i t t e d the b o t t l e to t u r n o n t h e b a l l m i l l i n d e p e n d e n t of the shaft. T h e P V C / a s b e s t o s mixtures obtained b y dry-blending were m i l l e d o n a F a r r e l l t w o r o l l m i l l a t 360° ± 5 ° F . S m a l l q u a n t i t i e s ( a p p r o x i m a t e l y 200 grams at the t i m e ) w e r e fluxed o n the 1 5 - i n c h l o n g rolls to
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by EAST CAROLINA UNIV on January 4, 2018 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch004
32
FILLERS A N D R E I N F O R C E M E N T S FOR PLASTICS
ensure t h o r o u g h f u s i o n a n d m i x i n g i n a short t i m e . T h e m i x i n g / f l u x i n g times d e p e n d e d s o m e w h a t o n fiber t y p e a n d content a n d v a r i e d b e t w e e n IV2 a n d 2 m i n . D e s p i t e the short times u s e d , t h e r e w a s n o e v i d e n c e of i n c o m p l e t e f u s i o n e i t h e r d u r i n g f l u x i n g or o n v i e w i n g t h e i m p a c t f r a c t u r e surfaces. T h i s is n o t to say t h a t e v e r y fiber w a s w e t w i t h p o l y m e r w h i c h w e t t i n g i n s t e a d d e p e n d e d o n the d e g r e e of fiber openness. T h i s is v i v i d l y d e m o n s t r a t e d i n the p h o t o g r a p h s of F i g u r e 1. F i n a l l y t h e c o m p o s i t e panels w e r e c o m p r e s s i o n m o l d e d i n a W a b a s h press at 2000 p s i . S e v e r a l sheets f r o m the m i l l i n g o p e r a t i o n w e r e crossp l i e d , p l a c e d i n a n o p e n f r a m e m o l d a n d b r o u g h t to t e m p e r a t u r e ( 3 5 5 ° ± 5 ° F for the h i g h m o l e c u l a r w e i g h t m a t r i x a n d 330° ± 5 ° F for the l o w m o l e c u l a r w e i g h t m a t r i x ) b e f o r e a p p l y i n g pressure. T h e pressure w a s m a i n t a i n e d for 1 m i n hot, t h e n the f r a m e w a s t r a n s f e r r e d to a c o l d press a n d the m a t e r i a l c o o l e d u n d e r the same pressure ( 2000 p s i ). C o m p o s i t e s of e a c h of the f o u r asbestos fibers w e r e f a b r i c a t e d at 15, 30, a n d 4 5 % fiber content i n e a c h of the t w o p o l y ( v i n y l c h l o r i d e ) plastics. Specimen Testing. T h e composites w e r e m e c h a n i c a l l y tested for tensile m o d u l u s , b r e a k i n g e l o n g a t i o n , b r e a k i n g s t r e n g t h , i m p a c t , h a r d ness, a n d heat deflection. A S T M flammability e v a l u a t i o n s w e r e also p e r f o r m e d . T h e effectiveness of t h e s p e c i m e n p r e p a r a t i o n t e c h n i q u e w i t h r e g a r d to the d i s t r i b u t i o n of the fibers w i t h i n t h e c o m p o s i t e w a s estab l i s h e d b y x - r a y r a d i o g r a p h s of selected samples. T h e p o l y m e r / m a t r i x m a t e r i a l s w e r e s t u d i e d b y ( 1 ) g e l p e r m e a t i o n c h r o m a t o g r a p h y to f o l l o w changes i n m o l e c u l a r w e i g h t a n d m o l e c u l a r w e i g h t d i s t r i b u t i o n c a u s e d b y t h e p r o c e s s i n g of the fiber/plastic m i x t u r e s into t h e composites a n d ( 2 ) i n f r a r e d analysis i n a n a t t e m p t to p i c k u p p o s s i b l e changes i n the c h e m i c a l s t r u c t u r e of the p o l y m e r s . Table II. 7RS7 Molecular
Weight
% Asbestos
α
High
Low
— 5.58 6.75 8.25
4.24 5.27 7.82 8.03
High
Low
— 5.47 6.65 8.07
4.24 6.46 6.70 7.28
Fiber
0 15 30 45 6
Tensile Modulus No. δ
6
Strain rate 4 . 5 % / m i n ; variation in values used to obtain average value = =fc 4%. Χ 10+ psi. 6
Results and
Discussion
T h e results of the t e s t i n g d o n e o n the composites
and their com
ponents are p r e s e n t e d i n T a b l e s I I , I I I , I V , V , a n d V I a n d i n F i g u r e s 2, 3, 4, a n d 5. T h e findings are s u m m a r i z e d b e l o w . Tensile Modulus.
I n t r o d u c t i o n of asbestos fiber r a i s e d the m o d u l i
of the P V C plastics. T h e increase g e n e r a l l y i n c r e a s e d w i t h fiber c o n t e n t a n d was as m u c h as 1 0 0 %
at 4 5 % r e i n f o r c e m e n t .
Usually the higher
m o l e c u l a r m a t r i x plastics e x h i b i t e d h i g h e r m o d u l i t h a n the c o r r e s p o n d i n g l o w m o l e c u l a r w e i g h t m a t e r i a l s a l t h o u g h this effect was n o t consistent.
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
Asbestos-Reinforced
CRUGNOLA AND L I T M A N
33
PVC
N o clear effects of either fiber l e n g t h o r fiber openness w e r e a p p a r e n t i n the results. Tensile Strength. A n increase i n tensile s t r e n g t h w a s g e n e r a l l y n o t e d u p o n the i n i t i a l i n t r o d u c t i o n of asbestos
fibers
i n P V C plastics.
increase p e a k e d , a n d t h e n the s t r e n g t h decreased
This
at t h e h i g h e r
fiber
content levels to the p o i n t w h e r e the r e i n f o r c e d samples e x h i b i t e d b r e a k i n g stresses l o w e r t h a n those of the n o n r e i n f o r c e d m a t e r i a l s . U s u a l l y the h i g h e r m o l e c u l a r w e i g h t m a t r i x composites
showed
somewhat
higher
strengths t h a n d i d the c o r r e s p o n d i n g l o w m o l e c u l a r w e i g h t s p e c i m e n .
Downloaded by EAST CAROLINA UNIV on January 4, 2018 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch004
T h e reason for the u n e x p e c t e d l o w e r i n g at h i g h e r fiber contents is not c l e a r unless the h i g h e r fiber concentrations b r o u g h t w i t h t h e m a h i g h e r c o n c e n t r a t i o n of i n t e r n a l stress c o n c e n t r a t i n g flaws i n the
compression
m o l d e d sheets. Breaking Strain. A l t h o u g h the n o n r e i n f o r c e d plastics at this strain rate ( 4 . 5 % fibers
p e r m i n u t e ) w e r e p r o n e to n e c k i n g a n d d r a w i n g , o n c e the
w e r e i n t r o d u c e d the b r e a k i n g strains f e l l to a b o u t 2 %
(for
15%
fiber ). F u r t h e r increases i n fiber content f u r t h e r decreased t h e e l o n g a t i o n to b r e a k to levels of the o r d e r of 1 % .
N o c l e a r effect of fiber l e n g t h or
fiber openness w a s seen. I n g e n e r a l , u p to 3 0 % fiber content, the h i g h e r m o l e c u l a r w e i g h t samples e x h i b i t e d s o m e w h a t h i g h e r b r e a k i n g strains. Impact Strength. T h e m o s t i m p o r t a n t f a c t o r i n f l u e n c i n g the i m p a c t strength was the extent to w h i c h the asbestos fibers w e r e o p e n e d . of P V C Asbestos Composites" No. 1
No.
The
20
High
Low
High
Low
— 6.65 6.86 5.57
4.24 5.94 5.54 6.52
— 5.80 6.37 7.53
4.24 5.15 6.20 7.66
c l o s e d fiber structures a l w a y s gave h i g h e r i m p a c t strengths.
Somewhat
h i g h e r strengths w e r e associated w i t h the h i g h e r m o l e c u l a r w e i g h t m a t r i x p l a s t i c , the greater
fiber
concentrations, a n d the l o n g e r
fiber
lengths.
P h o t o g r a p h s of the f r a c t u r e surfaces of a c l o s e d fiber a n d a n o p e n
fiber
r e i n f o r c e d P V C a p p e a r i n F i g u r e 1. T h e s e , w e b e l i e v e , r e v e a l the m e c h a n i s m b y w h i c h t h e n o n - o p e n e d fibers e n h a n c e the i m p a c t s t r e n g t h of the composite.
Considerable energy must be i n v o l v e d i n p u l l i n g apart the
asbestos fibers d u r i n g the i m p a c t — e n e r g y u s e d i n o v e r c o m i n g f r i c t i o n a l forces, i.e., forces r e q u i r e d to p u l l i n d i v i d u a l fibers a w a y a n d past others. O n e m i g h t v i s u a l i z e these forces i n a m o d e l w h e r e a fasces s t r u c t u r e is p u l l e d a p a r t b y g r a s p i n g some of the rods o n one e n d a n d s o m e o n t h e i r
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
34
FILLERS AND REINFORCEMENTS
Table III.
Tensile Breaking Stress
7RS7 Molecular
Weight
% Asbestos
High
a
Downloaded by EAST CAROLINA UNIV on January 4, 2018 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch004
No. δ Low
High
Low
4,656 5,251 4,726 4,679
6,256 6,978 7,270 5,734
4,656 5,572 5,889 5,435
Fiber
0 15 30 45 6
6,256 5,756 6,347 5,787
6
Strain rate 4.5%/min; variation in values used to obtain average value = ± Psi.
Table IV.
Molecular
Weight,
% Asbestos 0 15 30 45 α
High
4%.
Tensile Breaking Strain
7RS7
6
FOR PLASTICS
No. δ Low
High
Low
187 2.6 1.8 0.8
67 1.7 1.2 0.9
Fiber 187» 1.2 1.4 0.9
67 2.0 1.2 0.9
Strain rate 4.5%/min. Percent strain.
Table V . Polymer SCC—686* Ο—H—O 1—H—30 7—H—30 b
e
d
Molecular Weight before and after Processing/Molding M
N
56,570 52,730 58,630 46,140
M
w
116,380 129,500 125,700 125,100
M /M W
N
1.98 2.46 2.14 2.71
° Polymer before processing (non-reinforced). Polymer extracted after processing/molding (non-reinforced).
b
Table V I . Polymer SCC—600 Ο—L—Ο 1—L—30 7—L—30 6
e
d
α
Molecular Weight before and after Processing/Molding M
N
23,500 20,320 21,880 22,640
M
w
49,900 48,200 50,340 48,190
M /M W
2.11 2.38 2.30 2.13
° Polymer before processing (non-reinforced). Polymer extracted after processing/molding (non-reinforced).
6
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
N
4.
Asbestos-Reinforced
CRUGNOLA A N D L i T M A N
of PVC/Asbestos Composites
Downloaded by EAST CAROLINA UNIV on January 4, 2018 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch004
No. 20
High
Low
6,256 7,343 5,315 3,709
4,656 5,406 4,349 3,748
of P V C Asbestos Composites
High
Low
6,256 6,319 6,423 3,618
4,656 5,508 3,876 4,719
α
No. 1
187 2.4 1.6 0.8
35
0
No. 1
High
PVC
No. 20 Low 67 1.6 1.0 0.7
High
Low
187 2.2 2.1 0.7
67 1.7 1.2 0.9
with Chrysotile Asbestos Fibers for H i g h Molecular Weight P V C M
z
186,600 234,200 219,600 238,300
Mz/Mw 1.61 1.81 1.75 1.91
Mz+i 249,100 350,800 325,000 370,000
Mz+i/Mz 1.30 1.30 1.48 1.56
Polymer extracted after processing/molding reinforced with No. 1 asbestos fibers— 30% fiber content. Polymer extracted after processing/molding reinforced with 7RS7 asbestos fibers— 30% fiber content c
d
with Chrysotile Asbestos Fibers for L o w Molecular Weight P V C Mz 94,120 93,100 94,920 86,620
Mz/Mw 1.88 1.93 1.89 1.79
Mz+i 159,200 148,800 149,800 133,700
Mz+i/Mz 1.69 1.59 1.58 1.54
Polymer extracted after processing/molding reinforced with No. 1 asbestos fibers— 30% fiber content Polymer extracted after processing/molding reinforced with 7RS7 asbestos fibers— 30% fiber content c
d
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by EAST CAROLINA UNIV on January 4, 2018 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch004
36
FILLERS A N D R E I N F O R C E M E N T S FOR PLASTICS
Figure 2.
Variation of impact strength with fiber content (reinforced rigid
other e n d .
T h e extent of this m e c h a n i s m a p p a r e n t l y d e p e n d s
PVC)
o n the
asbestos fiber b u n d l e s not b e i n g t h o r o u g h l y w e t out b y t h e m a t r i x since the better w e t o p e n asbestos fibers are f r a c t u r e d at t h e f r a c t u r e surface of the p o l y m e r . Heat Deflection Temperature.
I n a l l cases the heat deflection t e m -
p e r a t u r e w a s r a i s e d b y the i n t r o d u c t i o n of the asbestos
(6°-12°C
for
the h i g h m o l e c u l a r w e i g h t p l a s t i c a n d 2 ° - 8 ° C for the l o w m o l e c u l a r w e i g h t m a t e r i a l ) . T h i s t e m p e r a t u r e i n c r e a s e d w i t h i n c r e a s i n g fiber c o n -
Figure 3.
Variation of HOT with fiber content (reinforced rigid PVC)
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
Asbestos-Reinforced
CRUGNOLA A N D L i T M A N
37
PVC
c e n t r a t i o n a n d / o r d e c r e a s i n g fiber openness. T h e m o l e c u l a r w e i g h t o f the s t a r t i n g plastics p r o v e d most i m p o r t a n t i n e s t a b l i s h i n g t h e a m o u n t o f i m p r o v e m e n t i n H D T . W h e r e a s the n o n - r e i n f o r c e d m a t e r i a l s differed b y o n l y 1 ° C the r e i n f o r c e d m a t e r i a l s d i f f e r e d b y as m u c h as 9 ° C . Hardness. T h e asbestos composites consistently s h o w e d l o w e r values of hardness t h a n d i d the n o n - r e i n f o r c e d plastics. T h e l o w e r i n g w a s greater the greater t h e c o n c e n t r a t i o n o f fiber. T h e s o m e w h a t h i g h e r hardness of the s t a r t i n g h i g h e r m o l e c u l a r w e i g h t m a t e r i a l a p p e a r e d t o b e reflected
Downloaded by EAST CAROLINA UNIV on January 4, 2018 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch004
i n the s o m e w h a t h i g h e r hardness o f t h e h i g h e r m o l e c u l a r w e i g h t c o m -
Figure 4.
Variation of hardness with fiber content (reinforced rigid PVC)
posites. T h e l o w e r i n g o f the hardness w i t h the a d d i t i o n o f asbestos
fibers
m i g h t be e x p l a i n e d o n the basis o f the l o w stiffness o f these fibers. D e s p i t e the f a c t that the fiber has a v e r y h i g h m o d u l u s (ca. 20 X 1 0 p s i vs. 6
10 X 1 0 p s i f o r g l a s s ) , c h r y s o t i l e is also a n asbestos o f finest d i a m e t e r 6
7 Χ 10" i n c h vs. 2.6 Χ 10" i n c h f o r glass. T h e hardness test p r o b a b l y 7
4
subjects the fibers t o b e n d i n g , a n d as s u c h the stiffness ( E I ) d e p e n d s o n the fiber d i a m e t e r as w e l l as the m o d u l u s .
Since t h e asbestos is l o w e r
i n d i a m e t e r b y three orders o f m a g n i t u d e w h i l e o n l y h i g h e r b y a factor of 2 i n m o d u l u s , o n e w o u l d expect to observe l o w e r values o f b e n d i n g stiffness a n d l o w e r hardness. T h e densities o f t w o o f the 3 0 % composites w e r e d e t e r m i n e d , a n d values o f 1.65 a n d 1.58 g r a m s / c m
3
w e r e o b s e r v e d f o r samples 2 0 - H - 3 0
a n d 7-H-30, respectively. These compare favorably w i t h a theoretically c a l c u l a t e d 1.66 g r a m s / c m
3
f o r this fiber content a n d suggest t h a t t h e
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by EAST CAROLINA UNIV on January 4, 2018 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch004
38
FILLERS AND REINFORCEMENTS
Figure
5.
Radiographs
of non-reinforced PVC
and
FOR PLASTICS
reinforced
e n t r a p m e n t of a i r i n the c o m p o s i t e is not a significant factor i n the o b s e r v e d hardness l o w e r i n g . Flammability. A l l t h e composites w e r e classified as n o n - b u r n i n g acc o r d i n g to A S T M 635. Fiber Distribution. A s s h o w n b y F i g u r e 5 the a i r m i x i n g t e c h n i q u e w e u s e d r e s u l t e d i n a u n i f o r m d i s p e r s i o n of the fibers i n the plastics. T h i s
Figure 6. Infrared spectra of polymer before and after processing with asbestos. Solid line: stabilized low molecular weight polymer before processing; dashed line: stabilized low molecular weight polymer after processing with No. 1 asbestos.
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
CRUGNOLA A N D L i T M A N
Asbestos-Reinforced
39
PVC
w a s d o n e w i t h o u t affecting the r e l a t i v e degree of fiber openness
and/or
d a m a g i n g the fiber l e n g t h . Effect of Processing on the Asbestos Fibers. T h e N o . 1 fiber c o m posites w e r e e x a m i n e d f o r fiber d e g r a d a t i o n , a n d fibers d i d not a p p e a r to b e s i g n i f i c a n t l y s h o r t e n e d b y processing.
The microscopic view r e -
v e a l e d that the asbestos b u n d l e s h a d b e e n sheared so as to give rise t o somewhat
t h i n n e r b u n d l e s o f a p p r o x i m a t e l y t h e same
l e n g t h as t h e
original. and Molecular Weight Distribution. M o d i f i c a -
Molecular Weight
Downloaded by EAST CAROLINA UNIV on January 4, 2018 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch004
tions i n average m o l c u l a r w e i g h t a n d m o l e c u l a r w e i g h t d i s t r i b u t i o n w e r e a c o n s e q u e n c e o f the m i x i n g / p r o c e s s i n g / m o l d i n g c y c l e o f the
asbestos
r e i n f o r c e d P V C plastics. T h e s e modifications w e r e m o r e a p p a r e n t i n the h i g h m o l e c u l a r w e i g h t m a t r i x m a t e r i a l t h a n i n the l o w . I n g e n e r a l , t h e y w e r e n o t m a r k e d l y different w h e n t h e plastics w e r e subjected
to t h e
p r o c e s s i n g / m o l d i n g c y c l e w i t h o u t the i n c l u s i o n o f the asbestos. A s a r u l e , the n u m b e r average m o l e c u l a r w e i g h t i n c r e a s e d , a n d t h e h i g h e r m o l e c u l a r w e i g h t averages i n c r e a s e d . T h i s o f course r e s u l t e d i n a significant increase i n t h e p o l y d i s p e r s i t y o r the broadness o f the m o l e c u l a r w e i g h t d i s t r i b u t i o n . F i n a l l y , a l t h o u g h f u r t h e r c o n f i r m a t i o n is c a l l e d for, t h e results also suggest that t h e N o . 1 fiber ( d e s c r i b e d as c l e a n ) m i n i m i z e s the changes i n m o l e c u l a r w e i g h t a n d m o l e c u l a r w e i g h t d i s t r i b u t i o n u n d e r g o n e b y t i i e p o l y m e r s (see T a b l e s V a n d V I ) . Table VII.
Glass vs. Asbestos-Reinforced Rigid P V C Glass Reinforced 20%
Property Impact strength, f t - l b s / i n notch H e a t deflection t e m p e r a t u r e , °F Density, grams/cm Flammability Tensile strength, psi U l t i m a t e elongation, % R o c k w e l l hardness, M C o s t of fiber 3
1.0-1.6
Asbestos
Reinforced 80%o
15% 1.2
1.4
170-180 176 1.49-1.58 non-burning non-burning 10,000 7,500 1.5-4.0 2.0-1.5 M80-88 M71-93 4.5(é/lb 55-60^/lb
—
176 1.62 7,500
Changes i n Chemical Structure. T h e i n f r a r e d s p e c t r a ( F i g u r e 6 ) s h o w e d several changes i n the p o l y m e r / s t a b i l i z e r c o m b i n a t i o n as a c o n sequence o f p r o c e s s i n g . cm"
1
O n e o f these, the loss o f a n a b s o r p t i o n a t 1550
w a s t i e d to alterations i n the s t a b i l i z e r m o l e c u l e .
i n v o l v e d t h e a p p e a r a n c e o f a b a n d at 1030 c m " . 1
Another change
This would
suggest
reactions l e a d i n g t o the o x i d a t i o n o f the S i n the s u l f u r c o n t a i n i n g o r g a n o t i n s t a b i l i z e r . P l a u s i b l e reactions (2) a r e :
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
40
FILLERS A N D R E I N F O R C E M E N T S FOR PLASTICS
0 R S S n —> R S 0 H 3
Ο Sn S R + — C
Ι
ci
>SnCl +
—C
I
> — Ο
I
s
o=s=o
R
R
I
I
T h e p r o p e r t i e s o b t a i n e d i n this s t u d y w e r e c o m p a r e d w i t h those i n
Downloaded by EAST CAROLINA UNIV on January 4, 2018 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch004
t h e l i t e r a t u r e for glass r e i n f o r c e d r i g i d P V C (3)
(see
Table V I I ) .
The
m e c h a n i c a l a n d t h e r m a l p r o p e r t i e s o b t a i n e d b y r e i n f o r c i n g w i t h the 4.50 asbestos are f u l l y c o m p a r a b l e w i t h those o b t a i n e d w i t h c h o p p e d
glass
fibers. Literature
Cited
1. Cameron, A. B., Heron, G . F., Wicker, G . L., "Asbestos Reinforced Thermo plastics," 28th Ann. Tech. Conf. Reinforced Plastics/Composites, Institute S.P.I. 1973 section 11-B, p. 1. 2. Deanin, R. D . , L o w e l l Technological Institute, private communication. 3. Owens-Corning Fiberglass C o r p . , C o m p o u n d Selector, Jan. 1970. R E C E I V E D October 11,
1973.
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.