1
Thermodynamic Values for Desulfurization Processes LEO
BREWER
Downloaded by COLUMBIA UNIV on June 13, 2013 | http://pubs.acs.org Publication Date: July 1, 1982 | doi: 10.1021/bk-1982-0188.ch001
University of California, Department of Chemistry, and Lawrence Berkeley Laboratory, Materials and Molecular Research Division, Berkeley, C A 94720
The thermodynamic p r o p e r t i e s of gases, l i q u i d s , s o l i d s and aqueous s o l u t e s of i n t e r e s t f o r d e s u l f u r i z a t i o n processes are tabulated f o r temperatures from 298 Κ to temperatures as high as 1000 Κ when pos s i b l e . Major emphasis has been placed on aqueous lime o r limestone scrubbing, but the data can a l s o be used f o r high temperature gas processes and f o r NO processes. x
The e f f i c i e n t design of processes f o r removal of s u l f u r d i o x ide r e s u l t i n g from c o a l and o i l combustion r e q u i r e s thermodynamic and k i n e t i c data f o r the various m a t e r i a l s that might be used i n the processes. Examination of the a v a i l a b l e thermodynamic data f o r s u l f u r compounds i n d i c a t e s s e r i o u s u n c e r t a i n t i e s and the p r e sent review i s a step toward p r o v i d i n g the best s e t of i n t e r n a l l y c o n s i s t e n t values obtainable from the l i t e r a t u r e and from current experiments· Although the main emphasis i s on information needed f o r aque ous limestone or lime s l u r r y treatment, the data could a l s o be used f o r other processes covering a wider temperature range. Thus data are tabulated, when p o s s i b l e , f o r the range from room temperature t o at l e a s t 1000K. The present compilation covers most of the m a t e r i a l s that might play a r o l e i n SO2 e x t r a c t i o n processes and f o r which data were found.
0097-6156/82/018 8-0001 $ 10.75/0 © 1982 American Chemical Society In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
2
FLUE GAS DESULFURIZATION
A convenient s t a r t i n g p o i n t i s the l i s t of recommended values (1_) of the r e p o r t of the C0DATA Task Group on key values f o r t h e r modynamics, 1977. Some of these values were not considered up-to-date and, as discussed below, appropriate m o d i f i c a t i o n s and a d d i t i o n s were made to provide what i s considered the best set p r e s e n t l y a v a i l a b l e . The present report covers values of ΔΗ
S
H
H
a
n
d
C
a
t
2 9 8
1 5 κ
298> 298> 298~ Q> P · · Values of -(G°-H^ g)/RT are t a b u l a t e d to allow extension to higher temperatures. The values t a b u l a t e d have been d i v i d e d by R so that the data are i n proper form f o r immediate c a l c u l a t i o n of the e q u i l i b r i u m constants (2) by InK = -AG°/RT = -A(G°-H^ )/RT - (AH2 /R)/T. AS t h i s procedure removes the u n c e r t a i n t y due to R m c a l c u l a t i o n of heat c a p a c i t y and entropy values f o r gases, i t was p o s s i b l e to improve the accuracy f o r some of the atomic species (3-7). The f i r s t v e r s i o n of t h i s c o m p i l a t i o n was prepared f o r the FGD sympo sium h e l d at Morgantown, West V i r g i n i a on Nov. 6-7, 1980, and subsequently extended f o r p r e s e n t a t i o n at the FGD symposium of the American Chemical Society meeting i n A t l a n t a , Georgia, h e l d on March 30-31, 1981. In such a thermodynamic c o m p i l a t i o n , i t i s very important to maintain i n t e r n a l c o n s i s t e n c y . When o l d e r data are r e p l a c e d by more recent data as has been done here, one must ensure that a l l other values that depended upon the o l d data have been changed c o r r e s p o n d i n g l y . This i s d i f f i c u l t to do and the present compilation i s only one step i n an i t e r a t i v e process that must be c a r r i e d out continuously to i n c o r p o r a t e newer data. The N a t i o n a l Bureau of Standards i s uniquely equipped to c a r r y out such a process and i t i s hoped that the Bureau be able to con tinue the updating of the data that have been presented here. 9
Downloaded by COLUMBIA UNIV on June 13, 2013 | http://pubs.acs.org Publication Date: July 1, 1982 | doi: 10.1021/bk-1982-0188.ch001
9g
98
In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
9 548 0 -32 870
14 589 0 -11 103
13 457 3 718 -4 376
12 840 7 508 3 187
F(g) F (g) HF(g)
Cl(g) Cl (g) HCl(g)
Br(g) Br (g) HBr(g)
Kg) i (g) HI(g)
2
2
2
2
2
2
2
2
0H(g)
2
H(g) H (g)
H0 (g) H 0(g) H 0 (g)
29 970 0 17 100
200 1
±
±
±
±
±
2 10 15
15 13 20
±
± ±
16
1
80
40
±
±
±
±
+ 100 + 1000 + 5 ± 30
10
±
2 9 8 /R, Κ
26 219 0 4 700 250 -29 084 -16 340
03(g)
02(g)
0(g)
ΔΗ
y
298 R
± ± ± ± ± ±
0.001 0.004 0.005 0.01 0.005 0.02
21.730 ± 0.002 31.339 ± 0.008 24.834 ± 0.005
21.036 ± 0.002 29.509 ± 0.006 23.884 ± 0.004
19.854 ± 0.002 26.817 ± 0.005 22.465 ± 0.004
19.080 ± 0.002 24.378 ± 0.005 20.887 ± 0.004
13.784 15.704 22.086 27.54 22.698 28.193
19.357 ± 0.002 24.660 ± 0.004 28.733 ± 0.009
S
745.4 018.5 060 203 192 342
745.4 1 217 1 042.2
745.4 1 170 1 040.1
754.4 1 104 1 039.2
783.9 1 061.4 1 034.2
1 1 1 1 1
809.2 1 044.1 1 247
± ±
2.500 4.337 3.505
2.627 4.083 3.504
2.736 3.765 3.504
2.500 3.468 3.594 4.198 4.042 5.099
2.635 3.533 4.736
C°/R
2.500 4.437 3 3.507 0.7 Continued on next page.
1 0.5
0.4 1 0.5
± ± ±
± ±
0.5 0.5 0.5
0.4 2 2 1 4
0.4 0.5 2
± ± ±
± ±
+ +
+
±
+
+
^298 ^ ( Ρ ^ ' ^
Thermodynamic P r o p e r t i e s of Common Gases at 298.15K
TABLE I
Downloaded by COLUMBIA UNIV on June 13, 2013 | http://pubs.acs.org Publication Date: July 1, 1982 | doi: 10.1021/bk-1982-0188.ch001
FLUE GAS DESULFURIZATION
4
ON
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1 /-Ν
+1
Ο ο CM ο ο νΟ ο
v
N
/-s
Dû bOw
/—Ν
DO ^ - ^ OO
m vo /""s ^ ο ο ο bû bû bû CM CM CM
N-'N-'
s-x OO OO 0 0 CM CM CM
w CM CM bO CM CO O
00 ON
I
O O
vO m
m
CM
rH rH rH rH rH
O o o o O o m vO vO CM CM 0 0
rH rH
00
o
CM
+1
co 00
Ο
o m
+1
+1
r».
CM Ο Ο Ο Ο O Ο O CM CM CM CM £5
w
2 !3 2 2; ζ
2
o
s~\
bû Ο 55 55 55 25 - ' 55 CMO O O O O O v
-
PUPuPdPdpdPdPdPd
s~s b O ^ bû bû bû —^ bO ^-^ ^—' b O ^ CMw CO C M v
v O OWO W u
u u u u
In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
u
In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
4
Mg(g) Ca(g) Li(g) Na(g) K(g)
2
3
2
CH (g) CH OH(g) CH 0(g) HCOOH(g) (HCOOH) (g)
000 185 060 530 740
600 500 170 880 730
-9 -24 -13 -45 -98
17 21 19 12 10
t ± ± ± ±
+ + + +
+
150 150 50 50 25
40 50 100 75 300 17.865 18.615 16.678 18.475 19.271
22.389 28.83 26.30 29.93 40.01 ± ± ± ± ±
0.001 0.001 0.002 0.001 0.001
0.005 0.02 0.05 0.02 0.5
/R
± ± ± ± ±
8
TABLE I (continued)
745.4 745.4 745.4 745.4 745.4
202 375 205 314 360
± 2 ± 2 ± 10 ± 5 ± 100
,
^
2.500 2.500 2.500 2.500 2.500
4.247 5.30 4.26 5.494 11.56
C°,/R
References to Table I on next page.
1 1 1 1 2
^298~"^0^^
Downloaded by COLUMBIA UNIV on June 13, 2013 | http://pubs.acs.org Publication Date: July 1, 1982 | doi: 10.1021/bk-1982-0188.ch001
In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
H
P
H
2
P
2
2
2
2
P
2
P
3
p
2
2
2
2
8
2
3
2
P
2 9 8
2
P
P
0(g):(1) except C ( 8 ) ; 0 ( g ) : ( l , 8 ) ; 0 ( g ) : ( 8 ) ; H(g):AH(l), r e s t ( 3 ) ; H ( g ) ; ( l ) except C ( 8 ) ; 0H(g):(8,9); H0 (g):(8,9); H 0 ( g ) : ( l ) except C (8,9); H 0 (g):(8); F(g):(l,8); F ( g ) : ( l ) except C ( 8 ) ; HF(g): (1,8); C l ( g ) , C l ( g ) , and H C l ( g ) : ( l ) except Cp(87; Br(g); ΔΗ(10,11), r e s t ( 3 ) ; B r ( g ) and H B r ( g ) : ( l ) except C ( 8 ) ; Kg): ΔΗ(11), r e s t ( 3 ) ; I ( g ) : ( l ) except C ( 8 ) ; HI(g): (1,12) except C ( 8 ) ; S(g):ΔΗ(13,14), r e s t (1,8): S (g):ΔΗ(10), S (1,8,9), 298" 0 C ( 8 ) ; S ( g ) to S ( g ) : ( 8 ) . The c a l c u l a t e d S29g value (8) f o r Sy(g) u s i n g values f o r f i f t e e n v i b r a t i o n a l frequencies agrees c l o s e l y with the c a l c u l a t i o n (15) using new determinations of the v i b r a t i o n a l frequen c i e s . However Steudel and Schuster (15) point out that Second law treatment of mass s p e c t r o m e t r y data (16,17) y i e l d a higher entropy and they suggest a d d i t i o n of a c o n t r i b u t i o n from pseudorotation. Since the number of degrees of freedom beyond t r a n s l a t i o n and r o t a t i o n i s r e s t r i c t e d to f i f t e e n , a d d i t i o n of pseudorota t i o n terms would be o f f s e t by removal of v i b r a t i o n a l c o n t r i b u t i o n s . Although there would be a net i n c r e a s e i n entropy, the u n c e r t a i n t y of the temperature c o e f f i c i e n t s of the mass s p e c t r o m e t r y measurements i s comparable to the d i f ference between Second and T h i r d law values and no c o n s i d e r a t i o n s of pseudorotation c o n t r i b u t i o n s was considered warranted at t h i s time. HS(g), H S ( g ) , and S0(g):(8, 9); S 0 ( g ) : ( l )
References to Table I
P
2
4
2
2
2
2
2
2
2
2
P
2
2
2
2
3
2
2
2
2
2
4
2
2
2
4
2
2
2
2
2
2
3
4
2
2
2
3
2
2
2
2
3
3
2
2
p
3
2
4
4
except C ( 8 ) . The S0.93/R value f o r S 0 ( g ) as determined by high-temperature c e l l measurements (18) i s 1.0 lower than the CODATA value (1) and i s claimed (18) to be more r e l i a b l e . However the molecular constants of S 0 are a c c u r a t e l y known (19) and the value c a l c u l a t e d using s t a t i s t i c a l mechanics i s much more r e l i a b l e than the value from c e l l measurements. S 0 ( g ) : ( 8 ) ; S 0 ( g ) : estimate by (20); S 0 ( g ) : ( 8 ) ; H S 0 ( g ) : estimate by (20); H S 0 ( g ) : ( 8 , 9 ) ; H S0(g), H S 0 ( g ) , HS0(0H)(g), ( H 0 ) S ( g ) , HOS(g), H0S0 (g), H0S0 (g), H0S0 (g), (HO) S 0 (g), (HO) S 05(g), and ( H O ) S 0 è ( g ) : estimates from (20); N(g): ΔΗ(1), r e s t ( 3 ) ; N ( g ) ; ( l , 9 ) ; NH(g): (8,21); NH (g): ( 8 ) ; N H ( g ) : ( l ) except C ( 8 ) ; N0(g), N 0 ( g ) , N 0 ( g ) , N 0 ( g ) , N 0 ( g ) and N 05(g):(8); 0N0S0 (g): estimate by (20); HNO(g), H NN0 (g), H0N0(g), H0N0 (g), and HONH (g):(8); HO(S0 )NH (g), H0(S0 )0N0(g), and H0(S0 )0N0 (g): estimates by (20); C(g): (1,9); C0(g) and C 0 ( g ) : (1) except C ( 9 ) ; CS(g):(9) except r e v i s i o n of ΔΗ on b a s i s of (22); C0S(g):(9,23); C S ( g ) : (9,23); CH (g): (9,23) except ΔΗ from (24); CH 0H(g):(25); CH 0(g): (9) except ΔΗ from (24); HCOOH(g) and (HCOOH) :(26); Mg(g) and Ca(g):(3) with ΔΗ(10,27); L i ( g ) , Na(g), and K(g): (3) with ΔΗ(10).
Downloaded by COLUMBIA UNIV on June 13, 2013 | http://pubs.acs.org Publication Date: July 1, 1982 | doi: 10.1021/bk-1982-0188.ch001
FLUE GAS DESULFURIZATION
vO CM 0 0 m Ο
ON ON
•
m rH CM CM O o O
/-s C0
rû θ ο 43
rH o
rH
1
ο •Η
m 00
rH rH COM CoM
rH
O CM ON O N O N CM CM O co CM CO +1 +1 +1
•
O CM
• ON
+1 +1 +!
CM o CO m
ON
00 rH vO rH rH rH CM
00
vO vO ·vO vO• O
00
o
rH CM
00
ON OCM
m o o
o
S~\ S~\
CO CO
w w O O CM
CM
00
rH
CO
CO C0 V
—^ —'
N
w O O O
CM CM
35 33 ^ CM 35 33 cocovo333vor^ ^ w · · w · · · w en en ro cj>
In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
2
2
3
2
2
2
2
Li(s) LiOH(s) LiOH*H 0(s) LiF(s) LiCl(s) Li S04(s)
3
3
3
2
2
3
3
2
2
3
3
2
2
2
50 100 200
-144 920 ± -179 830 ± -356 200 ±
-58 -95 -74 -49 -172
0 625 030 360 155 790
± ± ± ± ±
+ +
+ +
25 25 40 25 45
100 50 130 170 140
± ± ± ±
CaC0 (calcite) CaC0 *H 0(s) CaC0 *6H 0(s)
2
CaS 0 «4H 0(s)
2
CaS04«2H 0(s)
2
2
CaS04(sol. 3) CaS04*l/2H 0(a) CaS04«l/2H 0(3)
+ +
+
+
520 840 330 200 530
-89 -112 -185 -220 -256
2
CaS04(anhydride) CaS04(sol. a)
3
Ca(N0 ) (s) Ca(N0 ) (s) Ca(N0 ) «2H 0(s) Ca(N0 ) *3H 0(s) Ca(N0 )o/4H 0(s)
3
350 500 300 40 50 50 50 50 40 500
+ + +
900 400 400 500 430 900 650 400 280 430
-57 -139 -157 -172 -171 -170 -189 -189 -243 -348
CaS(s) CaS0 (s) CaS0 -l/2H 0(s)
AH^gg/R, K.
0.1 0.1 0.1 0.07
± 0.5 0.09 1.5 2 2.5
± ± ± ±
± ± ± ±
+ 0.07 + 0.1
+ 0.15 + 0.15 + 0.2
3.50 5.15 8.61 4.32 7.11 13.71
± ± ± ± ± ± 0.02 0.06 0.06 0.07 0.06 0.07
10.03 ± 0.04 15.807 ± 0.03 40.214 ± 0.07
(19.8) 23.25 32.7 37.7 42.8
6.81 12.18 (14.7) 12.82 13.03 13.03 15.70 16.15 23.33
S293/R
TABLE I I (continued)
082 + 940 + 300) + 070 + 096 + 091 + 480 + 544 + 750 + 15 20 100 20 20 20 15 15 20
557 892 1 461 778 1 119 2 240
±
+ +
±
+
3 3 5
5 4
1 740 + 10
3 420 + 35
1 1 (2 2 2 2 2 2 3
^^e^O^^' ^
Downloaded by COLUMBIA UNIV on June 13, 2013 | http://pubs.acs.org Publication Date: July 1, 1982 | doi: 10.1021/bk-1982-0188.ch001
2.978 5.965 9.56 5.03 5.776 14.145
10.04
17.97
5.71 10.93 (14.0) 11.987 12.05 11.91 14.36 14.93 22.3
C°,/R
In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
2
-68 -140 -52 -172 -215 -59
Na C0 »H 0(s) Na C0 *7H 0(s) NaHC0 (s) NaCH0 (s)
K(s) KF(s) KF-2H 0(s) KCl(s) K S0 (s) K S 0 (s) KN0 (s)
2
2
3
4
4
6
2
2
3
3
3
2
2
2
2
2
Na C03(s)
3
NaN0 (s)
± ± ± ± ±
± ± ± ± ± ±
0 520 245 473 900 900 395
±
240 820 960 700 130 160
40 40 20 50 600 30
30 30 30 50 25 50
0.02 0.06 0.06 0.07 0.06
0.06 0.1 0.1 0.2 0.15 0.1 0.02 0.07 0.2 0.06 0.07 0.04 0.06
± ± ± ± ± ± ± ± ± ± ± ± ±
7.78 8.00 18.6 9.97 21.12 37.244 16.00
± 2 ± 0.06 ± 0.06
± ± ± ± ±
13.97 16.23 20.22 51.3 12.33 12.48
11.6 17.99 71.15
± ± ±
-44 000 ± 1500 40 -166 930 ± 40 -520 560 ±
+
6.17 7.79 11.93 6.16 8.66
0 232 370 345 470 20 25 40 20
-51 -88 -69 -49
-56 -135 -171 -384 -114 -80
2
2
Na S04(s) Na SO4*10H O(s)
2
Na S(s)
2
Na(s) NaOH(s) NaOH«H 0(s) NaF(s) NaCl(s)
S^gg/R
777 260 875 021 276 +
±
+ +
+
±
+
±
3 5 5 4
^
6.17 15.98 27.76 11.58
3.558 5.90
10.54 9.94
11.19 13.29 17.51
9.96 15.308 69.09
3.397 7.16 10.844 5.635 6.075
References to Table I I on next
364 059 266 258
2 5
852 + 1 203 + 1 3 5 2
4 5
5 5 5
4
2 4 5 5 4
1 917 + 1 896 +
2 071 + 2 503 + 3 168 +
2 790 ±
1 1 1 1
^298~^0^^>
Downloaded by COLUMBIA UNIV on June 13, 2013 | http://pubs.acs.org Publication Date: July 1, 1982 | doi: 10.1021/bk-1982-0188.ch001
In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
P
2
2
2
3
4
3
2
2
2
2
2
2 9 8
2
3
2
2
p
P
2
3
2
2
2
2
0
3
P
4
4
P
3
2
3
2
2
2
2
P
2
2
2
3
1
2
2
3
2
2
3
3
P
2
3
3
2
4
2
3
4
2
3
2
3
H 0(il):(JL) except C ( 9 ) ; B r ( £ ) and I ( s ) : (1) except Cp(8); S(orthorhombic) : (_1) except C ( 8 , 9 ) ; H S04(Jl): ΔΗ and S(28), r e s t (9,27,29); HN0 (JO:(23,27); NH N0 (s):(8,30); N H C l ( s ) and (NH4) S0 (s):AH, S(30), r e s t (27); NH S0 OH(s):(31); C ( g r a p h i t e ) : (1,9,23); S i ( s ) : (1) except C (23,27^); S i 0 ( a quartz) :(1) except C (9^,27); S i 0 ( c r i s t o b a l i t e ) : ΔΗ(32) , r e s t (33); M g ( s ) : ( l ) except C ( 1 0 ) ; Mg0(s):(l) except C (9,27); Mg(0H) (s):(27,29); MgF (s): (1,9); M g C l ( s ) : ΔΗ (34), r e s t (27,9); MgCl»6H 0(s) and Mg(0H)Cl(s): (27); MgS(s): (9^,35); MgS0 (s), MgS0 -3H 0(s) and MgS0 «6H 0(s):(27); aMgS04(s) and MgS04«H 0(s):(27^,3(5); MgS04«6H 0(s) and MgS0 *7H 0:(27). MgC0 (s), MgC0 *3H 0(s), and MgC0 «5H 0(s):(27^,37); M g / C a / 4 C 0 (s):(37); Ca(s) and CaO(s): (1,9) ; C a 0 ( s ) and Ca0 «8H 0(s):(27); C a ( 0 H ) ( s ) : ΔΗ and S (28), r e s t ( 9 ) ; C a F ( s ) , C a C l ( s ) and i t s hydrates, CaC10H(s), and CaS(s):(27); CaS0 :(38) except H - H ( 2 7 ) ; C a S 0 * l / 2 H 0 ( s ) : ( 3 9 ) ; CaS04 and i t s hydrates :(40); C a S 0 ·4Η 0(β) and C a ( N 0 ) ( s ) : (27); C a ( N 0 ) ( s ) : ΔΗ and S(28), r e s t (27); Ca(N03)2 hydrates: (27) w i t h a d d i t i o n of 68K to ΔΗ/R values to be c o n s i s t e n t with Table I I I ; C a C 0 ( c a l c i t e ) : ΔΗ(28), r e s t (41); CaC0 hydrates :(27 ) with a d d i t i o n of 233K to ΔΗ/R values to be c o n s i s t e n t with c a l c i t e value; L i ( s ) : ( l ) except C ( 1 0 ) ; LiOH(s), LiOH»H 0(s), L i F ( s ) and L i C l ( s ) : ΔΗ and
References to Table I I
P
2
2
2 9 8
3
3
2
0
2
2
2
2
3
6
2
2
p
2
4
2
2
2
P
2
2
3
3
3
p
S (30), r e s t ( 9 ) ; L i S 0 ( s ) : ΔΗ, S(28) r e s t ( 9 ) ; N a ( s ) : ( l ) except C ( 4 2 ) ; NaOH(s) NaOH«H 0(s), NaF(s), and NaCl(s):(30) except H - H and C from (9) ; Na S:C9); Na S04(s) and Na S04«10H 0(s):AH, S(30) with r e s t (2,43); NaN0 (s):AH,S (30), r e s t (35,42); N a C 0 ( s ) : ΔΗ, S(28,44) , r e s t (9_,43) ; N a C 0 ( s ) -H 0(s):(44); N a C 0 * 7 H 0 ( s ) : (42) c o r r e c t e d t o agree w i t h (28) and (44_) f o r the other carbonates; NaHC0 (s):(44) except C ( 3 5 ) ; NaCH0 (s):(42); K ( s ) : ( l ) except C ( 3 5 , 42); KF(s):(9,30,42); KF«H 0(s):(28); K C l ( s ) and K S 0 4 ( s ) : ΔΗ and S(30), r e s t (9,43); K S 4 0 ( s ) : ( 3 9 ) ; KN0 (s):(30,35,42).
Downloaded by COLUMBIA UNIV on June 13, 2013 | http://pubs.acs.org Publication Date: July 1, 1982 | doi: 10.1021/bk-1982-0188.ch001
In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
2
2
=
2
2
H S(aq) HS" S H S (aq)
h
2
Br"" I (aq) I"
2
2
°2 OH(aq) 0" F~ Cl (aq) CI" Br (aq)
2
H0 (aq)
of
2
0H~ H 0 (aq) HOÔ
2
2
H(aq) H (aq) 0 (aq) 03(aq) Η|0(λ)
298
/R, Κ
600 700 830 300
-4 600 -1 800 4 000 (-6 :300)
-14 2 -6 -6
9.95 16.4 12.80 28.5 15.3 8.5 -11 (20)
± 120 ± 120 ± 2000 ± 1500
R
0.02 0.03 0.5 5 2 4 1 2 0.10 1 0.02 0.2
± ± ± ± ± ± ± ± ± ± ± ±
± 0.4 ± 0.5 ± 5 ± 3
± 0.02 ± 0.2 ± 0.02 ± 0.2
0.3 0.1 1 0.01
± ± ± ±
+ 1
298^
4.5 6.9 13.1 17.8 8.413 0 -1.305 17.51 2.87 (-5) 17 5 7.8 -2 -1.67 16 6.81 15.7
S
20 50 10 50
± ± ± ±
25 800 + 300 -486 + 100 25 -1 460 + 15 100 ± 300 -34 378 ± 5 0 -27 666 ± 5 -22 990 ± 10 -19 280 ± 200 (-4 500) ± 1500 -4 400 ± 900 -4 400 ± 1000 -600 ± 300 4 500 ± 1000 80 -40 334 ± -2 500 ± 500 10 -20 095 ± -260 ± 100
ΔΗ
0.5 4 0.5 5
3 0.5 5 0.5
± 1 ± 3
± ± ± ±
± ± ± ±
0.4
3 3 6
Continued on ι
24 -10
-15.9 35 -14.5 0
(-14) -14.1 -10 -15.1
+ 21 ± 27 (28) ± 9.056 0 -16.9 ±
/R
TABLE I I I Thermodynamic P r o p e r t i e s of Aqueous Species at 298.15K (m/kg f o r a l l s p e c i e s )
Downloaded by COLUMBIA UNIV on June 13, 2013 | http://pubs.acs.org Publication Date: July 1, 1982 | doi: 10.1021/bk-1982-0188.ch001
page.
In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
3
2
5
2
3
3
2°3
2
S
S
S
S
s
S
4°6 5°6
3°6
0
H—
Ζ.
? fi 2°7 2°8-
4
2
s o "
S
2
2
H S 0 (aq) HS 23
SO4
2°5~ sof
S
HSO3
2
H S0 (aq)
S0 (aq)
5 4'
S
4 H S (aq)
S
H2S4(aq) HS^
sf
2
2 H S (aq) HSÔ
S
-38 670 -73 050 -76 000 -118 200 -76 640 -106 560 -109 380 -73 150 -76 300 -79 300 -90 630 -144 100 -168 500 -161 700 -144 300 -148 700 -148 700 ± ± ± ± ± ±
± ± ±
± ± ± ± ± ±
±
±
± ± ±
±
+
2000
800
2000 2000 2000 1000 2000
60 450 400 360
200
150 600 450
100 100
400 400 500 500 500 500
+ 1500 + 1500 + 400
+ 1500 + 1500 + 1500
2 9 8 /R, Κ
(-2 950) 3 600 (-4 800) (-1 950) 3 100 -4 200 -1 650 2 600 -3 450 -1 100 2 750 2 850
ΔΗ
31.3
(33)
(30)
29.4
(24)
13.4
4 11
(30) (18)
2.2
16.2
-4.2
15
14.4
3
±
± ± ± ± ± ±
± ± ±
3 3 1 2 3 3 2 3 0.2 3
± 0.5 ± 2 ± 1.5 ± 0.15 ± 0.1 ±
0.4 0.4
± 2 ± 5 ± 5
2
± 3 ± 5 ±
3
± 3 ± 5 ±
3
± 5 ±
±
28.5 ±
20.1
(22)
(32) (24) 17
(20) 12.4
(4)
(28)
(24) (16)
(12) (-2)
s
TABLE I I I (continued) ςΟ 298;/R
Downloaded by COLUMBIA UNIV on June 13, 2013 | http://pubs.acs.org Publication Date: July 1, 1982 | doi: 10.1021/bk-1982-0188.ch001
± 5
±
±
1
1
-6.1 ± 1
-13
-30
-10 ± 6 -33.4 ± 0
-40
2 22.7 ± 2 (0) ± 4 13.6 ±
C°/R
In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
3
2
H
4
2
+
2
2
2
-49 -84 -82 -81 -14
2
C0 (aq) H C03(aq) HCOÔ COÔ CO(aq)
2
-10 12 18 -18 -17 11 9
2
25 25 20 30 60
± ± ± ± ± ± ± ± ± ± ±
704 080 980 210 630
100 25 25 30 400 400 20 100 100 100 50 400 800 800 300 300 150 100 100 200 70 300 300
±
± ± ± ± ± ± ± ± ± ± ± ± ± ±
+
+
660 880 110 800 550 150 190
255 780 160 030 800 070 130 •910 -14 300 -12 590 -24 880 -7 700 -6 250 -2 070 7 200 9 550
-1 -9 -44 -16 -11 -16 4
CH4(aq) HCN(aq) CN" HCNO(aq) CNO" HCNS(aq) CNS~
2
2
2
H N 0 (aq) HN 0 N OÔ N 0(aq) NO(aq)
2
NO3"
2 5 HN0 (aq) N0
N
3
2
NH OH(aq) NH OH N H (aq)
2
N (aq) NH (aq) NHAOH(aq)
2
AH gg/R, Κ 2 9 8
14.36 22.77 11.84 -6.01 12.3
10.25 15.3 11.6 16.1 12.28 (22) 17.36
11.5 13.0 21.80 13.37 19.5 18.6 (16.6) 18 16.3 14.8 17.63 26 17 3 14.1 14.3
S
± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±
0.07 0.07 0.07 0.1 0.2
0.4 0.3 0.3 1 0.5 1 0.2
0.3 0.1 0.1 0.05 1 0.8 1 1 1 0.5 0.05 1 1 2 1 1
/R
Downloaded by COLUMBIA UNIV on June 13, 2013 | http://pubs.acs.org Publication Date: July 1, 1982 | doi: 10.1021/bk-1982-0188.ch001
+ 0.5
± 0.4
+ 3 + 0.4
± 3
± 5 ± 5
25.5 ± 34.5 ± -6.5 ± -32.9 ± 27 ± Continued
2 2 0.5 0.5 3 on next page.
-4.8 ± 2
29
22 26
+ 3 -11 -8.7 ± 0.5
8.45 ± 2
29.6 9.0 18.1 8.3
:/R
0'
I'
K.
Ο -*
s s f
W
w M
In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
2
2
2
4
++
+
Li+ Na K+
Mg
Fe
-1-
4
4
4
2
2
2
Μη** Μη** Fe"H-H-+
2
2
2
2
2
2°4 (CH ) (CH ) (CH ) (CH ) (CH ) (CH )
C
2
2
2
2
2
2
2
(COOH) (aq) (COO) H~ (COO) ~ (COOH) (aq) (COO) H" (COO) ~
2
(COOH) (aq) C 0 H
CH3COOH Cqq) CH3COO"
2
2
H CO(aq) H C(OH) (aq) H COOH~ HCOOH(aq) HCOO"
-26 (-14 -10 -5 -56 -65 -33 -28 -30
-17 -55 -47 -51 -51 -58 -58 -98 -98 -99 -109 -109 -109 -104 -104 -104
± ± ± ± ± ± ± ± ± ± ±
+
±
150 900 100 100 130 400 10 10 10
50 50 50 50 100 100 100 10 20 20 1000 1000 1000
+ 700 + 700 + 1500
600 ± 000)± 700 ± 840 ± 100 ± 270 ± 498 ± 912 ± 322 ±
300 200 600 200 220 410 454 040 440 250 665 260 200 000 200 520
29
^H g/R, Κ
ο 298
-16.6 -38 -16.6 -6.74 1.48 7.03 12.17
-8.15 ± ± ± ± ± ± ±
13.3 ± 17.7 + + 11. 19.7 + 11.0 ± 21.5 ± 10.4 + 22.5 ± 18.0 ± 5.49 ± ± (30) (21.65) ± (8.8) ± ± (38) (27.15) ± (13.6) ±
ς b
TABLE I I I (continued)
0.3 0.5 0.2 0.1 0.1 0.02 0.02
2 2 3 0.5 0.5 0.3 0.3 0.3 0.3 0.3 2 2 2 2 2 2
Downloaded by COLUMBIA UNIV on June 13, 2013 | http://pubs.acs.org Publication Date: July 1, 1982 | doi: 10.1021/bk-1982-0188.ch001
± 0.3 ± 0.3
+ 4 + 1
-1.9 -3.6 7.3 5.1 1.6
± ± ± ± ±
1 1 0.5 0.5 0.5
-0.5 ± 4
-1.3 ± 0.4
40.4 ± 1
27.1 ± 0.5
10 -10.6 20.4 3.2
2
Η δ
Ϊ
D w GO C r c
w
In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
to Table I I I
2
2
?
2
2
2
2
2
2
p
2
2
2
2
2
p
3
a
2
2
2
2
p
2
H(aq):(45); H ( a q ) , 0 ( a q ) , and 0 ( a q ) : (46); Η 0(£):(1) except C ( 9 ) ; 0 H ~ : Δ Η ( 1 ) S(28), C (47,48); H 0 ( a q ) and H0 ~(23) ; 0 ": The Branch and C a l v i n equation (49) was used to c a l c u l a t e the i o n i z a t i o n constant of H0 and the entropy of i o n i z a t i o n was estimated. H 0 ( a q ) , 0?, OH(aq) and 0 : Baxendale, Ward, and Wardman (50) have reviewed e a r l i e r measurements of the i o n i z a t i o n constants of H0 and OH and have c a r r i e d out measurements over a range of tempera ture to o b t a i n the e n t h a l p i e s and e n t r o p i e s of i o n i z a t i o n . They suggested that the e n t h a l p i e s and e n t r o p i e s of s o l u t i o n would be c l o s e l y the same f o r H 0 ( g ) and H0 (g) and a l s o f o r H 0(g) and 0H(g). T h e i r suggested procedure was used with the data from Tables I and I I I and more recent data reviewed by Schwartz (45) to c a l c u l a t e the values tabulated i n Table I I I f o r H0 (aq) and OH(aq). T h e i r i o n i z a t i o n data were then used to o b t a i n the values f o r 0 and 0". T h e i r AG° and ΔΗ° values f o r the i o n i z a t i o n of OH were s h i f t e d s l i g h t l y to i n c r e a s e S°/R of 0 from -3 to -2 to b e t t e r match the value f o r F~. The s o l v a t i o n e n t h a l p i e s of 0" and F~ are almost the same and C f o r 0~ was was approximated by the value f o r F~. F"":AH(1), S(28), C ( 5 1 ) ; C l ^ a q ) : (46) ; C l ~ : ΔΗ( 1 ) , S(28j, Cp(48,52); B r ( a q ) : Wu e_t a l . (53) t r e a t e d the s o l u b i l i t y of B r ( £ ) i n water as a func t i o n of temperature with a c o r r e c t i o n f o r d e v i a t i o n from Henry's law to o b t a i n thermodynamic
References
β Γ
3
p
2
29
2
2
Br
2
2
2
β Γ
2
T
h
e
Γ
2
2
8
2
29g
values f o r B r ( a q ) . T h e i r values combined with the l a t e r e v a l u a t i o n of V a s i l ' e v jet a l . (54) corresponds to In γ = -(0.689+735/Tjm or γ =0.5 f o r m = 0.22M at 298K which seems to be too r a p i d a d e v i a t i o n from Henry's law. The d e v i a t i o n was reduced to In Υ β = -0.4m y i e l d i n g AH g/R = -260 ± 100K and AS Q /R = -2.6 ± 0.2 f o r Br (Jt) = Bro(aq). Br~:(28) except C ( 5 5 ) ; I ( a q ) : (53,56) ; I ~ : (12) and (28) except Cp(51); 1^: Ramette and Sandford (56) have shown that Ic and l£ formation causes e r r o r s i n the e v a l u a t i o n of thermodynamic values f o r I ^ " using e i t h e r I~ s o l u b i l i t y i n l " ~ s o l u t i o n s or c a l o r i m e t r i c data with s u b s t a n t i a l I and I " a c t i v i t i e s . Johnson (12) has confirmed t h i s e f f e c t by demonstrating that the molal enthalpy of s o l u t i o n of I i n HI(aq) v a r i e s with the amount of I added. The s o l u b i l i t y , c a l o r i m e t r i c , and s p e c t r a l measurements have been weighed with regard to i n f l u e n c e of I5" and l£ to o b t a i n the values of Table I I I . H S ( a q ) : There have been a number of recent reviews of the s o l u b i l i t y of H S i n water as a f u n c t i o n of temperature (46^2Z_> · CODATA review (59) has a l s o used c a l o r i m e t r i c data to o b t a i n recommended thermodynamic v a l u e s , but t h e i r values y i e l d s o l u b i l i t i e s as much as 13% low between 40 and 260°C. I f AH /R f o r s o l u t i o n of H S i s made 200K more p o s i t i v e , a good f i t i s obtained but t h i s appears to be too l a r g e a s h i f t from the c a l o r i m e t r i c determinations Continued on next page.
Downloaded by COLUMBIA UNIV on June 13, 2013 | http://pubs.acs.org Publication Date: July 1, 1982 | doi: 10.1021/bk-1982-0188.ch001
In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
to Table I I I (continued)
=
2
298
=
=
2
2
2
2
2
and the CODATA AH^g/R value was made only 95K more p o s i t i v e to o b t a i n the values of Table I I I . HS~: In a d d i t i o n to the data considered by CODATA (59), the determination of the f i r s t i o n i z a t i o n constant of H2S up to 150°C by Tsonopoulos e_t a l . (60) and the c a l o r i m e t r i c measure ments by Jordan (61) were used. As noted below i n the S d i s c u s s i o n , the t e n t a t i v e second i o n i z a t i o n constant accepted by CODATA i s b e l i e v e d to be too l a r g e by s e v e r a l orders of magnitude and the c o r r e c t i o n they a p p l i e d t o c a l o r i m e t r i c data f o r h y d r o l y s i s of HS~ to S would be too l a r g e . The t e n t a t i v e CODATA values y i e l d f o r 0H~ + H S(g) = HS" + H 0, A H / R = -6250K. Jordan (61) has measured the enthalpy of s o l u t i o n o f H S(g) i n 0.1M NaOH and i n 0.2M ammonia b u f f e r s o l u t i o n s and has obtained values corresponding to the OH" r e a c t i o n between -5890 and -5850K. The d i l u t i o n c o r r e c t i o n should be s m a l l f o r t h i s r e a c t i o n . These values would appear to confirm that the CODATA values f o r the enthalpy of s o l u t i o n of H S and f o r the f i r s t i o n i z a t i o n of H S should be more p o s i t i v e . As noted above, the CODATA value f o r the e n t h a l py of s o l u t i o n was made 95K more p o s i t i v e . The i o n i z a t i o n enthalpy was made more p o s i t i v e by 110K r e s u l t i n g i n a compromise between the J o r dan and CODATA values of -6040 ± 120K. S : The CODATA review (59) notes that reported values of the second i o n i z a t i o n constant of H S range almost e i g h t orders of magnitude. They s e l e c t e d
References
2
=
2
u
2
2
2
2
=
2
2
2
2
Continued on next page.
2
a t e n t a t i v e value of l o g K = -13. However, Giggenbach (62) has c l e a r l y shown that the ready o x i d a t i o n of HS~ s o l u t i o n s to p o l y s u l f i d e spe c i e s has i n v a l i d a t e d previous measurements; he demonstrated that l o g K i s at l e a s t 1.2 more negative than l o g Κ f o r the i o n i z a t i o n of water at a l l temperatures and i s of the order of -17 at 25°C. Tsonopoulos e_t a l . (60) report i d e n t i c a l pH t i t r a t i o n curves f o r 0.1M HC1 with 0.28M Na S or with NaOH. Thus the h y d r o l y s i s of S" must be very complete. They suggest K = 2xlO"~16, b t with the S c o n c e n t r a t i o n so s m a l l , they can only s e t a l i m i t . An a d d i t i o n a l c o n f i r m a t i o n of the value s e l e c t e d f o r K of H S i s given by the recent work of Meyer and Peter (63)· They examined the Raman spectrum of HS~ i n oxygen-free 1M NaOH and i n a s o l u t i o n saturated with s o l i d NaOH. Equal amounts of Na S had been added to each s o l u t i o n . The HS" i n t e n s i t y was the same w i t h i n experimental e r r o r i n both s o l u t i o n s i n d i c a t i n g complete h y d r o l y s i s even i n a s a t u r a t e d NaOH s o l u t i o n and con f i r m i n g a pK of at l e a s t 17. A value of l o g K = -17 ± 2 i s used f o r Table I I I . The enthalpy and entropy values suggested by Giggenbach were made somewhat more p o s i t i v e . I t should be noted that changes i n K j K or changes i n AG° and ΔΗ° of S can be d i s a s t r o u s i n c a l c u l a t i n g the s o l u b i l i t i e s of metal s u l f i d e s i f the Kgp values are not made c o n s i s t e n t with the value of K^K s e l e c t e d . Whenever K^K i s
Downloaded by COLUMBIA UNIV on June 13, 2013 | http://pubs.acs.org Publication Date: July 1, 1982 | doi: 10.1021/bk-1982-0188.ch001
In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
2
to Table I I I (continued)
2
p
2
3
2
2
3
=
2
2
4
3
3
3
2
4
3
4 ±
p
5
3
increased by a f a c t o r q, the o l d value of K g must be d i v i d e d by q to maintain the same e q u i l i b r i u m constant or AG° f o r MS(s) + 2H = M + H S(g). The AH values given by the NBS (23) f o r S and S were accepted. They are presumably based on the work of Maronny (64)· The NBS entropies f o r S and S5 were a l s o accepted. The remainder of the entropy and enthalpy of formation values were estimated to be c o n s i s t e n t with the e q u i l i b r i u m measurements of Schwarzenbach and F i s c h e r (65) f o r HS ~, HS ~, and t h e i r ions and with t h e i r estimates f o r HS , HS ~, and t h e i r ions and the measurements of Boulegue and Michard (66) on S S^, and S^. The ΔΗ values f o r S and S were given l a r g e u n c e r t a i n t y as_Schwarzenbach and F i s c h e r report that S and S are not d e t e c t a b l e i n i n s o l u t i o n and they d i s c r e d i t the c e l l measurements of Maronny. S 0 ( a q ) , H S 0 ( a q ) : (58); HSOj: Measure ments or the i o n i z a t i o n constant of s u l f u r o u s a c i d have grouped around 0.017 and 0.013. On the b a s i s of the work of Huss and E c k e r t (67), 0.014 ± 0.001 was accepted and the thermo dynamic values given by Cobble e_t a l . (39) have been r e v i s e d . Various estimates of Cp of HS0 ~" vary from negative to p o s i t i v e ; C /R = 0 ± 4 seems to be the best estimate a v a i l a b l e at the moment. S 05:(68); S 0 ( 3 9 ) , the c a l o r i m e t r i c determination of the enthalpy of formation
References
s
v
p
2
2
p
2
2
4
2
S
2
2
2
2
2
4
:
3
2
p
2
2
p
2
4
2
5
a
3
2
2
p
2
4
3
2
p
3
2
3
2
2
2 9 8
2
2
g
4
3
2
4
2
2
p
2
4
+
4
2
2
2 g 8
Continued
3
+
2
2
2
on next page.
3
of SOo was g i v e n preference to the temperature c o e f f i c i e n t of the i o n i z a t i o n constant between 5 and 50°C (70); HS0Â, S07: U,28,6>9) except C (51,71,72,73). H S 0 ( a q ) , H S 0 : I o n i z a t i o n constants (74) were combined with S 0o~ value of Cobble et a l . (39); C of S 0 ô (71). S 0 , S 0 £ , 2°8-i 3 ° 6 ( 4 % ) ; C of S 0 ( 7 1 ) . S^O^": (39) except f o r c o r r e c t i o n of a r i t h m e t i c a l e r r o r i n ΔΗ c a l c u l a t i o n . 8c07: (23,42). N ( a q ) : ( 4 6 ) ; NH (aq), NH 0H(aq), and NH : New measurements and reviews of e a r l i e r values have been presented r e c e n t l y (75-78). The values i n Table I I I are based on the CODATA se l e c t i o n s U,28) f o r A H and S of N H (52,75») ; NH 0H(aq) and Ν Η ο Ο Η : (23,79,80) ; N H ( a q ) and N H : (23,79). HN0 (aq) and N0 : (23,42); N0 ": ΔΗ(1,28), S(28), C ( 5 2 ) ; H N 0 Taq), Η Ν 0 , N 0 ~:T42,79) ; N 0(aq) and N0(aq):(46); CH taq):(46); HCN(aq),CN~,HCN0 (aq), and CN0":(27_); HCNS(aq) and CNS" (23,-42). C 0 ( a q ) , H C0 (aq):(44,46); HC0 :(28,44, 81) except C ( 5 1 ) ; C0 (28,44,82) except C (5l); CO(aq):(46); H C0(aq):(23,83); H C ( O H ) (aq): (23,28,83); H C00H~:(83); HCOOH(aq) : (23^,27, 84,85); HCOO :(23,27); CH C00H(aq): ΔΗ and AS based on i o n i z a t i o n data t a b u l a t e d by C h r i s tens en et a l . (84), C ( 7 5 ) ; CH C00":(42) except C ( 5 1 , 7 5 ) ; ( C O O H ^ a q ) ^ Based on i o n i z a t i o n data (84); C 0 H and C 0 :(42). ( C H ) ( C O O H ) ( a q ) :
Downloaded by COLUMBIA UNIV on June 13, 2013 | http://pubs.acs.org Publication Date: July 1, 1982 | doi: 10.1021/bk-1982-0188.ch001
In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
p
Ρ
1-
2
4
2
4
2
2
2
2
p
2
2
?
=
p
+
Z
(86,87); ( C H ) ( C O O ) H ~ and ( C H ) ( C 0 0 ) : ( 8 4 ) ; (CH ) (COOH) (ag):(86,87,88); (CH-)A(COO)TËT and ( C H ) ( C 0 0 ) : ( 8 4 ) . Mn^: (81,90,91,92); Mn+++:(79); Fe"^ and Fe" ^: (93,94); M ^ : ΔΗ(95) , S(29), 0 (51,91,96Τ; Ca^":(28), C p O U , 9 Γ , 9 6 ) ; L i : ( 2 8 ) , C ( 5 1 ) ; NT":(28), C (48,52) ; Κ+7(28), C ( 5 2 ) 7
References to Table I I I (continued)
Downloaded by COLUMBIA UNIV on June 13, 2013 | http://pubs.acs.org Publication Date: July 1, 1982 | doi: 10.1021/bk-1982-0188.ch001
Ο 21
Η
Cl r
w ο
In Flue Gas Desulfurization; Hudson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982. 5
2
8
3
-11
τ'
5
5
ζ
z
8
8
J
J
J
i z
L
Î
-5
_5
-3
5
2
2
_8
8
3
3
- 1 2
5
5
2
2
2
-8
-8
3
3
3
- 1 2
1 2
3
2
_
-5
5
2
2
-8
_8
8
8
3
3
_ 1 2
- 1 2
1 2
-8
3
- 1 2
1 2
4
4
4
4
4
4
4
4
4
4
2
2
5
5
2
2
8
3
8
3
1 2
-11
4
19.230+2.5[298.15/Τ - 1η(298.15/Τ)] 32.718-1.2287χ10" Τ+3.4019χ10" Τ -3.0998χ10" Τ +1.0176χ10 Τ 26.090-1.0922x10~ Τ+2.9862x10" Τ -2.7574x10~ Τ +9.204 χ 1 0 " Τ Continued on next
2
3
21.801-6.842 χ 1 0 Τ + 1 . 8 9 9 χ 1 0 5 τ - 1 . 7 3 4 1 χ 1 0 Τ + 5 . 7 0 3 χ 1 0 Τ 30.867-1.2101χ10~ Τ+3.3458χ10" Τ -3.0435χ10~ Τ +9.978 χ 1 0 " Τ 24.950-9.534 χ 1 0 ~ Τ + 2 . 6 4 3 4 χ 1 0 Τ - 2 . 4 0 7 χ 1 0 Τ + 7 . 9 1 4 χ 1 0 Τ
-3
_3
2
20.695-7.4565χ10~ Τ+2.0567χ10~5τ -1.8693χ10 Τ +6.117 χ 1 0 Τ 28.130-1.1633χ10~ Τ+3.2008χ10~ Τ -2.8973χ10~ Τ +9.465 χ 1 0 ~ Τ 23.535-9.568 χ 1 0 Τ + 2 . 6 5 4 1 χ 1 0 - Τ - 2 . 4 2 1 χ 1 0 Τ + 7 . 9 6 8 χ 1 0 Τ
3
2
1 2
19.906-7.426 χ 1 0 Τ + 2 . 0 7 0 χ 1 0 Τ - 1 . 9 0 1 χ 1 0 Τ + 6 . 2 6 9 χ 1 0 Τ 25.601-1.0796x10"2Τ+2.9565x10~ Τ -2.658 χ 1 0 ~ Τ + 8 . 6 5 1 χ 1 0 ~ Τ 21.961-9.604 χ 1 0 Τ + 2 . 6 6 5 4 x 1 0 Τ - 2 . 4 3 4 4 x 1 0 Τ + 8 . 0 0 8 χ 1 0 " Τ
-3
29.901-1.490 xl0~ T+4.0313xl0~ T -3.5592xl0~ T +1.148 X10~ " T '
2
3
11.284+2.5[298.15/Τ - 1η(298.15/Τ)] « , ,, 16.784-9.639 χ10~ Τ+2.6701x10 Τ - 2 . 4 3 6 xl0~ T +8.007 x l 0 ~ T '
2
30.370-1.4222x10~ T+3.8373x10~ Τ -3.385 χ 1 0 ~ Τ + 1 . 0 8 8 5 x 1 0
8
Equations f o r -(G°-H°q )/RT f o r 298.15K to Τ, max
TABLE IV
Downloaded by COLUMBIA UNIV on June 13, 2013 | http://pubs.acs.org Publication Date: July 1, 1982 | doi: 10.1021/bk-1982-0188.ch001
(3) (8) (8) page.
(8) (8) (8)
(8) (8) (8)
(8) (8) (8)
(3) (8,9) (8) (8,9) (9) (8)
(8,9) (8,9) (8)
Réf.
FLUE GAS DESULFURIZATION
22
< + <
co en c o coco c o c o c o H H HH H H H H OOOOONONOOOOOOOO ιι Iι I 1 I • 1 1 ιι Iι I I O rH O rH O rH o rH X rH CM m 1^
CMCMmc0 4-J 4-J 4-> 4-> 4-1 •M 4-1 CM CO CM CM CM CO CM CO CO