Chapter 10
Gas-Phase Photodissociation of Transition Metal Ion Complexes and Clusters 1
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: November 23, 1987 | doi: 10.1021/bk-1987-0359.ch010
Robert L. Hettich and Ben S. Freiser Department of Chemistry, Purdue University, West Lafayette, IN 47907 H i g h l i g h t s are presented from our recent work on the p h o t o d i s s o c i a t i o n of three c a t e g o r i e s of t r a n s i t i o n metal ion s p e c i e s : (I) ML (L=ligand), (II) ML +, and MFe (M=3d metal). The r e s u l t s i n d i c a t e that these species absorb broadly i n the u l t r a v i o l e t and v i s i b l e s p e c t r a l regions. Because of t h i s broad absorption, p h o t o d i s s o c i a t i o n thresholds are a t t r i b u t e d to thermodynamic f a c t o r s and y i e l d absolute bond energies. Isomer d i f f e r e n t i a t i o n i s demonstrated by observing d i f f e r e n c e s i n cross s e c t i o n s , s p e c t r a l band p o s i t i o n s , and fragmentation pathways. I n t e r e s t i n g l y , product ions generated by p h o t o d i s s o c i a t i o n are found i n some cases to d i f f e r s i g n i f i c a n t l y from those produced by c o l l i s i o n - i n d u c e d d i s s o c i ation. S o p h i s t i c a t e d pulse techniques, which permit the multistep synthesis and i s o l a t i o n of a wide v a r i e t y of organometallic i o n s , together with the long ion storage times, make FTMS i d e a l l y suited for these s t u d i e s . +
+
2
Over t h e p a s t s e v e r a l y e a r s , t h e a r e a o f g a s - p h a s e t r a n s i t i o n m e t a l i o n c h e m i s t r y has been g a i n i n g i n c r e a s i n g a t t e n t i o n from t h e s c i e n t i f i c community [ 1 - 1 6 ] . I t s a p p e a l i s m a n i f o l d : f i r s t , i t has b r o a d i m p l i c a t i o n s t o a s p e c t r u m o f o t h e r a r e a s such as a t m o s p h e r i c chemistry, c o r r o s i o n chemistry, s o l u t i o n organometallic chemistry, and s u r f a c e c h e m i s t r y ; s e c o n d l y , an a r s e n a l o f gas phase t e c h n i q u e s a r e a v a i l a b l e to study the thermochemistry, k i n e t i c s , and mechanisms o f t h e s e " u n u s u a l " s p e c i e s i n t h e a b s e n c e o f s u c h c o m p l i c a t i o n s a s s o l v e n t and l i g a n d
Current address: Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, T N 37831
0097-6156/87/0359-0155506.00/0 © 1987 American Chemical Society
Buchanan; Fourier Transform Mass Spectrometry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
156
FOURIER TRANSFORM MASS SPECTROMETRY
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: November 23, 1987 | doi: 10.1021/bk-1987-0359.ch010
e f f e c t s ; and, t h i r d l y , t h e h i g h l y c o n t r o l l e d n a t u r e o f t h e s e gas phase e x p e r i m e n t s p e r m i t s t h e s t u d y o f s p e c i f i c l i g a n d e f f e c t s and p r o v i d e s d a t a f o r d i r e c t c o m p a r i s o n t o t h e o r y , as new t h e o r e t i c a l t r e a t m e n t s emerge. How does t h e g a s - p h a s e c h e m i s t r y o f a b a r e and, therefore, highly c o o r d i n a t i v e l y unsaturated t r a n s i t i o n m e t a l i o n compare t o i t s s o l u t i o n c o u n t e r p a r t ? As a r e p r e s e n t a t i v e example, Beauchamp and c o w o r k e r s p r o p o s e d Scheme I f o r t h e d e h y d r o g e n a t i o n o f b u t a n e by N i [ 2 ] . The mechanism shown has a n a l o g i e s t o s o l u t i o n o r g a n o Scheme I
,
Y >
r
t
\
. > Λ
"
.
>
+
ll-Ni -||
•
H,
y/ m e t a l l i c c h e m i s t r y , but i s u n u s u a l i n t h a t o x i d a t i v e a d d i t i o n of the metal c a t i o n i s proposed t o occur at the C-C bond as opposed t o t h e C-H bond, w h i c h i s t h e e x a c t o p p o s i t e o f what i s g e n e r a l l y o b s e r v e d i n s o l u t i o n studies. O x i d a t i v e a d d i t i o n o f F e , C o , and N i t o C-C bonds i n l o n g e r c h a i n a l k a n e s a p p e a r s t o be g e n e r a l [ 3 - 7 ] . In o r d e r t o p r o p o s e a mechanism such as t h a t shown i n Scheme I, i t i s e v i d e n t t h a t not o n l y must t h e p r o d u c t i o n m a s s - t o - c h a r g e r a t i o ( e m p i r i c a l f o r m u l a ) be d e t e r m i n e d , but a l s o t h e s t r u c t u r e o f t h e i o n must be elucidated. C l e a r l y , a d i f f e r e n t mechanism i n v o l v i n g C-H i n s e r t i o n m i g h t have been p r o p o s e d i f t h e N i C . H p r o d u c t had been N i - b u t e n e i n s t e a d o f Ni(ethéne) . S e v e r a l e f f e c t i v e s t r u c t u r a l probes are a v a i l a b l e to the gas-phase i o n chemist i n c l u d i n g c o l l i s i o n - i n d u c e d d i s s o c i a t i o n [ 3 1 4 a , 4 b ] , i o n - m o l e c u l e r e a c t i o n s ( f o r metal i o n complexes, l i g a n d exchange [ 1 - 3 ] and H/D exchange [5] are commonly e m p l o y e d ) , and use o f s p e c i f i c a l l y l a b e l l e d n e u t r a l compounds [ 2 , 6 , 7 ] . E a c h o f t h e s e methods was a p p l i e d t o t h e r e a c t i o n shown i n Scheme I and c o n f i r m t h e presence of N i ( e t h e n e ) . Another important c o n s i d e r a t i o n i n f o r m u l a t i n g a mechanism i s w h e t h e r each s t e p , as w e l l as t h e o v e r a l l process, i s thermodynamically feasible. In Scheme I t h e f i r s t s t e p i n v o l v e s c l e a v i n g t h e c e n t r a l C-C bond and f o r m i n g two N i * - C bonds. Thus, t h e d e t e r m i n a t i o n of m e t a l - l i g a n d bond e n e r g i e s i s c r i t i c a l l y important. A g a i n , s e v e r a l p o w e r f u l g a s - p h a s e t e c h n i q u e s can be a p p l i e d to t h i s problem. Among t h e s e , t h e d e t e r m i n a t i o n o f e n d o t h e r m i c r e a c t i o n t h r e s h o l d s from ion-beam e x p e r i ments has y i e l d e d t h e m a j o r i t y o f t h e a b s o l u t e v a l u e s c u r r e n t l y i n t h e l i t e r a t u r e today [ 1 , 8 , 9 ] . Ligand d i s +
+
+
+
g
+
+
2
+
2
Buchanan; Fourier Transform Mass Spectrometry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: November 23, 1987 | doi: 10.1021/bk-1987-0359.ch010
10.
HETTICH AND FREISER
Photodissociation of Transition Metal Ions
157
p l a c e m e n t r e a c t i o n s and e q u i l i b r i u m measurements have y i e l d e d a c c u r a t e r e l a t i v e m e t a l i o n - l i g a n d bond e n e r g i e s f o r a v a r i e t y o f m e t a l c a t i o n s and l i g a n d s [10,11]. Observation of exothermic i o n - molecule r e a c t i o n s can p r o v i d e l i m i t s on t h e s e e n e r g i e s and, most r e c e n t l y , c o m p e t i t i v e l i g a n d l o s s by c o l l i s i o n - i n d u c e d d i s s o c i a t i o n has shown p r o m i s e b o t h f o r q u a l i t a t i v e and q u a n t i t a t i v e bond i n f o r m a t i o n [ 1 2 ] . D e s p i t e t h e s u c c e s s e s o f t h e above m e n t i o n e d t e c h n i q u e s f o r s t r u c t u r e and bond e n e r g y a n a l y s e s , i n h e r e n t u n c e r t a i n t i e s and l i m i t a t i o n s i n e a c h method make i t i m p o r t a n t t o d e v e l o p new and i n d e p e n d e n t t e s t s f o r comparison. I n t h i s r e g a r d our l a b o r a t o r y has i n i t i a t e d an i n t e n s i v e e f f o r t t o s t u d y t h e g a s - p h a s e p h o t o d i s s o c i a t i o n of t r a n s i t i o n metal c o n t a i n i n g i o n s [13-16]. A l t h o u g h a good d e a l o f i n f o r m a t i o n i s a v a i l a b l e on t h e p h o t o d i s s o c i a t i o n of o r g a n i c i o n s [ 1 7 l 8 ] , r e l a t i v e l y l i t t l e work has been done on o r g a n o m e t a l l i c i o n s [19>20]. FTMS i s i d e a l l y s u i t e d f o r t h e s e s t u d i e s b e c a u s e o f t h e wide v a r i e t y o f i n t e r e s t i n g i o n s t h a t can be g e n e r a t e d and b e c a u s e o f t h e l o n g s t o r a g e t i m e s w h i c h p e r m i t i r r a d i a t i o n o f the i o n s . I n t h i s p a p e r some o f t h e h i g h l i g h t s o f our work i s p r e s e n t e d t o g e t h e r w i t h a d e s c r i p t i o n o f t h e m e t h o d o l o g y and t h e t y p e s o f i n f o r m a t i o n t h a t can be o b t a i n e d from t h e s e s t u d i e s . f
Experimental Section The t h e o r y and i n s t r u m e n t a t i o n o f F o u r i e r t r a n s f o r m mass s p e c t r o m e t r y (FTMS) have been d i s c u s s e d e x t e n s i v e l y i n t h i s book and e l s e w h e r e [21-23]· A l l e x p e r i m e n t s were p e r f o r m e d on a N i c o l e t p r o t o t y p e FTMS-1000 F o u r i e r t r a n s f o r m mass s p e c t r o m e t e r p r e v i o u s l y d e s c r i b e d i n d e t a i l [24] and e q u i p p e d w i t h a 5.2 cm c u b i c t r a p p i n g c e l l s i t u a t e d between t h e p o l e s o f a V a r i a n 15 i n . e l e c t r o m a g n e t m a i n t a i n e d a t 0.85 T. The c e l l was c o n s t r u c t e d i n our l a b o r a t o r y and u t i l i z e s two 80$ t r a n s m i t t a n c e s t a i n l e s s s t e e l s c r e e n s as t h e t r a n s m i t t e r p l a t e s . This permits i r r a d i a t i o n w i t h a 2.5 kW Hg-Xe a r c lamp, used i n c o n j u n c t i o n w i t h a S c h o e f f e l 0.25 m monochromator s e t f o r 10 nm r e s o l u t i o n . M e t a l i o n s a r e g e n e r a t e d by f o c u s i n g t h e beam o f a Q u a n t a Ray Nd:YAG l a s e r ( e i t h e r t h e f u n d a m e n t a l l i n e a t 1064 nm o r t h e f r e q u e n c y d o u b l e d l i n e a t 532 nm) i n t o t h e c e n t e r - d r i l l e d h o l e (1 mm) of a h i g h p u r i t y r o d o f t h e a p p r o p r i a t e m e t a l s u p p o r t e d on t h e t r a n s m i t t e r s c r e e n n e a r e s t to the l a s e r . The l a s e r i o n i z a t i o n t e c h n i q u e f o r g e n e r a t i n g m e t a l i o n s has been o u t l i n e d elsewhere [25]. D e t a i l s of the c o l l i s i o n - i n d u c e d d i s s o c i a t i o n (CID) e x p e r i m e n t s have been d e s c r i b e d [ 2 6 ] . A r g o n was used as t h e c o l l i s i o n gas a t a t o t a l p r e s s u r e o f ~4 χ 10" torr. The c o l l i s i o n e n e r g y o f t h e i o n s can be v a r i e d ( t y p i c a l l y between 0 and 100 e V ) . A B a y a r d - A l p e r t i o n i z a t i o n gauge was used t o m o n i t o r s t a t i c p r e s s u r e s . Each o f t h e c h e m i c a l s was o b t a i n e d c o m m e r c i a l l y and used w i t h o u t f u r t h e r p u r i f i c a t i o n , e x c e p t f o r m u l t i p l e
Buchanan; Fourier Transform Mass Spectrometry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: November 23, 1987 | doi: 10.1021/bk-1987-0359.ch010
158
FOURIER TRANSFORM MASS SPECTROMETRY
freeze-pump-thaw c y c l e s t o remove n o n - c o n d e n s i b l e g a s e s . E l e c t r o n impact mass s p e c t r o m e t r y i n d i c a t e d no d e t e c t able i m p u r i t i e s . A l l samples were a d m i t t e d t o t h e c e l l t h r o u g h a G e n e r a l V a l v e Corp. S e r i e s 9 p u l s e d s o l e n o i d v a l v e [ 2 7 ] . The p u l s e d v a l v e , w h i c h was t r i g g e r e d con c u r r e n t l y w i t h t h e l a s e r p u l s e used t o g e n e r a t e t h e m e t a l i o n s , i n t r o d u c e d t h e r e a g e n t gas i n t o t h e vacuum chamber t o a maximum p r e s s u r e o f a p p r o x i m a t e l y 10 torr. A l t h o u g h t h e p u l s e d u r a t i o n o f t h e v a l v e was 2 ms, t h e h i g h p r e s s u r e o f t h e r e a g e n t gas had a r i s e time o f about 200 ms and was pumped away by a h i g h speed 5 i n . d i f f u s i o n pump i n a p p r o x i m a t e l y 400 ms. Swept d o u b l e r e s o n a n c e p u l s e s were t h e n used t o i s o l a t e t h e i o n o f i n t e r e s t , w h i c h was s u b s e q u e n t l y t r a p p e d f o r 3 - 6 s e c o n d s ( d e t e r m i n e d by t h e i o n ' s c r o s s s e c t i o n f o r p h o t o d i s s o c i a t i o n ) e i t h e r i n the presence or absence of r a d i a t i o n . For each i o n , two s e t s o f p h o t o d i s s o c i a t i o n s p e c t r a were t a k e n , one a t 2 χ 10 t o r r argon, t o permit c o l l i s i o n a l c o o l i n g , and a n o t h e r a t a b a c k g r o u n d p r e s s u r e o f "10" t o r r [ 2 8 ] . I n a l l c a s e s , d a t a from t h e c o l l i s i o n a l l y cooled ions are presented. P h o t o d i s s o c i a t i o n s p e c t r a were o b t a i n e d by m o n i t o r i n g t h e a p p e a r a n c e o f i o n i c p h o t o p r o d u c t s as a f u n c t i o n o f t h e wavelength of l i g h t . Shot-to-shot v a r i a t i o n of the l a s e r generated m e t a l p r e c u r s o r i o n s made m o n i t o r i n g t h e p h o t o disappearance of the parent i o n i m p r a c t i c a l . Assuming a o n e - p h o t o n p r o c e s s [ 1 7 , 2 9 ] , t h e p h o t o d i s s o c i a t i o n o f AB , eq. 1, can be d e s c r i b e d by f i r s t - o r d e r k i n e t i c s , eq. 2, where and are the a b s o l u t e c r o s s s e c t i o n s f o r f i
hv
+
d(AB )/dt
(1)
= -(σ
+
1
+ σ )Ι(ΑΒ )
(2)
2
r e
p r o d u c t i o n o f t h e p h o t o p r o d u c t s Ρ * and P?*' ~ s p e c t i v e l y , and I i s t h e p h o t o n f l u x . I n t e g r a t i n g eq. and s u b s t i t u t i n g (AB ) = (AB ) + (P ) ^ + +
+
h
p
1
+
( o )
t h e e x t e n t of p h o t o d i s s o c i a t i o n t o t h e 1. rrceilaait>eoss une c A ο c H υ u ι yu w u vu JL Ο Ο ν κ> λ. « . w λ. ν ** w ~ c r e s s s e cBtt i o n a t a g i v e n w a v e l e n g t h , eq. 3» where σ.
σ- + 1
-
i ss t h e t o t a l c r o s s s e c t i o n i + +• ln|1 + l * 2 oI t
σ d
0
['
P
and t i s t h e (3)
P
t
AB
+
J
i r r a d i a t i o n time. S o l v i n g eq. 3 f o r a and p l o t t i n g t h a t v a l u e as a f u n c t i o n o f w a v e l e n g t h , a p p r o p r i a t e l y c o r r e c t i n g f o r b l a n k s (no l i g h t ) , y i e l d s t h e p h o t o d i s s o c i a t i o n spectrum of the i o n ( i . e . , r e l a t i v e a vs. wavelength). C l e a r l y , the c o r r e c t spectrum r e q u i r e s t h a t a l l of the p h o t o d i s s o c i a t i o n p r o d u c t s be d e t e c t e d . Photoappearance c u r v e s f o r t h e i n d i v i d u a l p h o t o p r o d u c t s can be o b t a i n e d , f c
fc
Buchanan; Fourier Transform Mass Spectrometry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
10.
HETTICH AND FREISER
Photodissociation of Transition Metal Ions
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: November 23, 1987 | doi: 10.1021/bk-1987-0359.ch010
f o r example, by s o l v i n g eq. 4 f o r σ and p l o t t i n g a f u n c t i o n o f wavelength. Each s p e c t r u m r e p o r t e d
159
i t as i s an
average o f s e v e r a l t r i a l s . The r e p r o d u c i b i l i t y o f t h e peak i n t e n s i t i e s i s ± k0% and peak l o c a t i o n s i s ± 10 nm. P h o t o d i s s o c i a t i o n t h r e s h o l d s were c o n f i r m e d by u s i n g c u t off f i l t e r s . To o b t a i n a b s o l u t e v a l u e s f o r t h e c r o s s s e c t i o n s o f t h e i o n s b e i n g examined, t h e p h o t o d i s s o c i a t i o n o f C H g ( f r o m t o l u e n e a t 20 eV) a t 410 nm [σ(410 nm) = 0.05 A ] [ 3 0 ] was compared t o t h e p h o t o d i s s o c i a t i o n of a given i o n a t i t s b o t h t a k e n under s i m i l a r experimental conditions. A l l cross s e c t i o n s determined i n t h i s manner have an e s t i m a t e d u n c e r t a i n t y o f ± 50% due t o i n s t r u m e n t a l v a r i a b l e s . +
λ
Μ
χ
ί
R e s u l t s and D i s c u s s i o n on
C h e m i c a l Systems As l i s t e d below, o u r i n i t i a l s t u d i e s have f o c u s s e d three general c a t e g o r i e s o f metal c o n t a i n i n g i o n s : I.
II. III.
MFe
+
(M = 3d S e r i e s )
P h o t o d i s s o c i a t i o n o f simple metal i o n - l i g a n d s p e c i e s ( I ) can p r o v i d e i n f o r m a t i o n on t h e i r a b s o r p t i o n c h a r a c t e r i s t i c s (e.g., i s the a b s o r p t i o n o f l i g h t metal or l i g a n d l o c a l i z e d or o f a charge t r a n s f e r n a t u r e ? ) , s t r u c t u r e ( p a r t i c u l a r l y i n t h e c a s e o f i s o m e r s ) , and bond e n e r g y , as d i s c u s s e d i n g r e a t e r d e p t h below. The a d d i t i o n o f a s e c o n d l i g a n d ( I I ) a l l o w s one t o s t u d y t h e e f f e c t o f t h a t l i g a n d on t h e bond e n e r g y o f t h e f i r s t ( i . e . , a r e t h e r e any s y n e r g i s t i c a f f e c t s ? ) , as w e l l as i t s e f f e c t on t h e shape and c r o s s s e c t i o n o f t h e p h o t o d i s s o c i a t i o n s p e c t r a . As shown i n Scheme I , o x i d a t i v e a d d i t i o n o f a m e t a l i o n r e s u l t s i n f o r m a t i o n o f two new bonds t o t h e m e t a l c e n t e r . In f o r m u l a t i n g a s i m p l e e n e r g y d i a g r a m f o r such a p r o c e s s , i t i s g e n e r a l l y assumed t h a t t h e t o t a l l i g a n d b o n d i n g e n e r g y i s t h e sum o f t h e two i n d i v i d u a l m e t a l i o n - l i g a n d bond e n e r g i e s . W h i l e some i n f o r m a t i o n i s a v a i l a b l e on m u l t i p l e l i g a n d s y s t e m s [ 1 0 ] , i t i s q u i t e r a r e , and p h o t o d i s s o c i a t i o n holds promise f o r g r e a t l y expanding t h e d a t a base on t h i s q u e s t i o n . F i n a l l y , t h e a r e a o f c l u s t e r s i s a r a p i d l y g r o w i n g one. Our e f f o r t i n t h i s a r e a has been t o d e v e l o p a method f o r s y n t h e s i z i n g JLû s i t u a wide v a r i e t y o f d i m e r ( I I I ) [31-33] and t r i m e r i o n s [ 3 4 ] o f known c o m p o s i t i o n and s t u d y t h e i r g a s - p h a s e c h e m i s t r y .
Buchanan; Fourier Transform Mass Spectrometry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
160
FOURIER TRANSFORM MASS SPECTROMETRY
Once a g a i n , p h o t o d i s s o c i a t i o n s t u d i e s can p r o v i d e complementary i n f o r m a t i o n on t h e s e c h e m i c a l l y important species.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: November 23, 1987 | doi: 10.1021/bk-1987-0359.ch010
Specific
ion
Synthesis
The u n i q u e f e a t u r e o f FTMS t o c o n t r o l b o t h t h e i o n and n e u t r a l p o p u l a t i o n s by u s i n g programmable p u l s e s e q u e n c e s makes i t an e x t r e m e l y p o w e r f u l t o o l f o r g e n e r a t ing i n a stepwise f a s h i o n s p e c i f i c o r g a n o m e t a l l i c fragment i o n s f o r s u b s e q u e n t c h e m i c a l and p h o t o c h e m i c a l studies. F i g u r e 1 shows a t y p i c a l p u l s e s e q u e n c e w h i c h b e g i n s w i t h an i o n i z a t i o n p u l s e . C o n c u r r e n t l y w i t h the l a s e r p u l s e , a p u l s e d v a l v e f i r e s t o admit a b u r s t of r e a g e n t gas. The m e t a l i o n s r e a c t w i t h t h e r e a g e n t gas t o f o r m t h e i o n o f i n t e r e s t , e i t h e r d i r e c t l y i n a primary or secondary r e a c t i o n , o r by a s u b s e q u e n t s t e p s u c h as c o l l i s i o n - i n d u c e d dissociation. F o r example, CoOH can be made by a d i r e c t primary r e a c t i o n of Co w i t h CH 0N0 ( r e a c t i o n 5) [ 1 3 ] , w h i l e m e t a l d i m e r s o f t h e f o r m M F e can be s y n t h e s i z e d +
+
+
Co
+
+
CH 0N0
>
3
CoOH
+
+
CH N0 2
(5)
i n a s t e p w i s e f a s h i o n from Fe(CO) by f i r s t g e n e r a t i n g MFe(CO) f o l l o w e d by c o l l i s i o n - i n d u c e d d i s s o c i a t i o n t o g e n e r a t e t h e b a r e M F e , r e a c t i o n s 6 and 7 [ 3 1 - 3 3 ] . Next, a s e r i e s o f i o n e j e c t i o n p u l s e s a r e used t o i s o l a t e t h e +
M
+
+
MFe(C0)
Fe(C0) + c
>
5
C
v
I
D
+
MFe(C0) _ +
> MFe
5
+
+
x
XCO
(5 -X)C0
(6) (7)
ion of i n t e r e s t . By t h i s t i m e t h e r e a g e n t gas has been pumped away, p e r m i t t i n g t h e i o n s t o be s t o r e d e f f i c i e n t l y f o r t h e r e l a t i v e l y l o n g t r a p p i n g t i m e s used f o r p h o t o dissociation. F o l l o w i n g an a p p r o p i a t e d e l a y p e r i o d ( w i t h o r w i t h o u t l i g h t ) , d e t e c t i o n y i e l d s t h e f u l l mass s p e c t r u m , and f i n a l l y a quench p u l s e e l i m i n a t e s a l l o f t h e i o n s from t h e c e l l and t h e whole s e q u e n c e i s r e p e a t e d .
Information
from
Photodisgocjatjon
I n o r d e r t o o b s e r v e p h o t o d i s s o c i a t i o n p r o c e s s 1, t h r e e c r i t e r i a must be met: f i r s t , t h e i o n must a b s o r b a p h o t o n ; s e c o n d , t h e p h o t o n must have s u f f i c i e n t e n e r g y t o c a u s e f r a g m e n t a t i o n ; and t h i r d , t h e quantum y i e l d f o r p h o t o d i s s o c i a t i o n must be n o n - z e r o . Figure 2 i s useful in u n d e r s t a n d i n g the i n f o r m a t i o n i n h e r e n t i n a photod i s s o c i a t i o n experiment. I f the f i r s t allowed e l e c t r o n i c s t a t e o f AB l i e s a t an e n e r g y above t h a t r e q u i r e d t o generate the p r o d u c t s P * and P * ( l e f t s i d e of F i g u r e 2 ) , the observed p h o t o d i s s o c i a t i o n onset i s s p e c t r o s c o p i c a l l y d e t e r m i n e d and y i e l d s o n l y an upper e n e r g y l i m i t f o r t h e p r o c e s s e s i n r e a c t i o n 1. In o t h e r words, even i f t h e r e i s s u f f i c i e n t e n e r g y i n t h e p h o t o n to c a u s e i o n f r a g m e n t a t i o n , c l e a r l y t h e p r o c e s s w i l l not o c c u r i f t h e i o n does not a b s o r b t h e p h o t o n . Alter+
Buchanan; Fourier Transform Mass Spectrometry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
10.
HETTICH AND FREISER
Photodissociation of Transition Metal Ions
161
\Reagent Gas Pulse
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: November 23, 1987 | doi: 10.1021/bk-1987-0359.ch010
/Ionization Synthesis
CID Excitation
Ion Ejection Separations
Detection
Quench
Product jAnalysis Structure J ' Determination,
• Reaction Time
F i g u r e 1.
P u l s e sequence used to s y n t h e s i z e , i s o l a t e , and s p e c i f i c metal-containing ions.
AB
+
•
— P.\ P
?
+
- AB
F i g u r e 2.
study
+
Energy l e v e l diagram d e p i c t i n g cases where photod i s s o c i a t i o n t h r e s h o l d s a r e d e t e r m i n e d by s p e c t r o s c o p i c f a c t o r s ( l e f t s i d e ) and thermodynamic f a c t o r s (right side).
Buchanan; Fourier Transform Mass Spectrometry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: November 23, 1987 | doi: 10.1021/bk-1987-0359.ch010
162
FOURIER TRANSFORM MASS SPECTROMETRY
n a t i v e l y , i f an a l l o w e d e l e c t r o n i c s t a t e f o r t u i t o u s l y l i e s a t t h e same e n e r g y as t h e l o w e s t e n e r g y p r o c e s s o r , as shown i n F i g u r e 2 ( r i g h t s i d e ) , t h e r e i s a h i g h d e n s i t y o f allowed s t a t e s having energies i n the v i c i n i t y of the thermodynamic t h r e s h o l d , t h e o b s e r v e d p h o t o d i s s o c i a t i o n o n s e t s h o u l d a c c u r a t e l y r e f l e c t t h e d i s s o c i a t i o n energy f o r p r o c e s s 1 p r o v i d e d t h e quantum y i e l d i s n o n - z e r o . Ons e t s f o r h i g h e r energy p r o d u c t s w i l l a l s o r e f l e c t t h e thermochemistry i f rapid i n t e r n a l conversion to a v i b r a t i o n a l l y e x c i t e d ground s t a t e o c c u r s r a n d o m i z i n g t h e energy. Thus, i f an i o n a b s o r b s l i g h t o v e r a broad r a n g e , say from t h e i r t o t h e uv, t h e n p h o t o d i s s o c i a t i o n c a n b e g i n t o o c c u r when t h e p h o t o n e n e r g y i s s u f f i c i e n t t o cause f r a g m e n t a t i o n . I n any e v e n t , t h e p h o t o d i s s o c i a t i o n s p e c t r u m i s an i n d i r e c t measure o f t h e t r u e g a s - p h a s e a b s o r p t i o n s p e c t r u m and, as such, p r o v i d e s a " f i n g e r p r i n t " of the ground s t a t e s t r u c t u r e o f t h e i o n . In g e n e r a l , t h e s t a t e d i a g r a m on t h e l e f t i n F i g u r e 2 i s a good d e s c r i p t i o n f o r o r g a n i c i o n s . As an example, t h e p h o t o d i s s o c i a t i o n s p e c t r u m o f b e n z o y l c a t i o n o b t a i n e d by m o n i t o r i n g p r o c e s s 8 has two maxima a t 260 nm and 310 nm C H CO 6
5
+
+ hv
C
H
> 6 5
+
+
0
0
(
8
)
1 1 1 a t t r i b u t e d to the t r a n s i t i o n s A^ 1u 1 2 . r e s p e c t i v e l y , and an o n s e t for p h o t o d i s s o c f a t i o n a t 350 nm o r 3.5 eV [ 1 8 ] . The o n s e t i s c o n s i d e r a b l y h i g h e r t h a n t h e a c t u a l e n t h a l p y o f 2.3 eV r e q u i r e d t o decarbonylate the benzoyl i o n . In c o n t r a s t t o t h e o r g a n i c i o n s , a l l o f o u r work t o d a t e on t h e c h e m i c a l s y s t e m s I, I I , and I I I , s u g g e s t t h a t t h e s e m e t a l c o m p l e x e s have a h i g h d e n s i t y o f low l y i n g e l e c t r o n i c s t a t e s and, t h e r e f o r e , a b s o r b b r o a d l y y i e l d i n g p h o t o d i s s o c i a t i o n o n s e t s w h i c h r e f l e c t t h e thermochemistry. I n p a r t i c u l a r , v a l u e s o b t a i n e d by o b s e r v i n g p h o t o d i s s o c i a t i o n o n s e t s a r e f o u n d i n g e n e r a l t o be i n good agreement w i t h t h o s e o b t a i n e d by o t h e r t e c h n i q u e s [15]. C e r t a i n l y , e x c e p t i o n s t o t h i s w i l l be f o u n d . F i n a l l y , a l t h o u g h the i n f o r m a t i o n c o n t e n t o f these photod i s s o c i a t i o n spectra i s great with regard to i o n s t r u c t u r e and t h e r m o c h e m i s t r y , t h e h i g h d e n s i t y o f low l y i n g e l e c t r o n i c s t a t e s makes band a s s i g n m e n t s v i r t u a l l y i m p o s s i b l e a t t h i s t i m e . I n f a c t such an i n t e r p r e t a t i o n w i l l p r o v i d e a r e a l c h a l l e n g e t o t h e o r i s t s f o r y e a r s t o come. B
a
n
d
A
B
(I)
P h o t o d i s s o c i a t i o n o f ML* One o f t h e f i r s t examples from o u r l a b o r a t o r y [13] which suggested t h a t p h o t o d i s s o c i a t i o n t h r e s h o l d s c o u l d y i e l d q u a n t i t a t i v e m e t a l - l i g a n d bond e n e r g i e s was from a c o m p a r i s o n o f t h e p h o t o d i s s o c i a t i o n s p e c t r a o f FeOH and F e C 0 o b t a i n e d by m o n i t o r i n g r e a c t i o n s 9 and 10, r e s p e c t i v e l y , and shown i n F i g u r e 3. The two s p e c t r a a r e r e m a r k a b l y s i m i l a r w i t h two a b s o r p t i o n maxima o b s e r v e d +
Buchanan; Fourier Transform Mass Spectrometry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
10.
HETTICH AND FREISER
163
Energy (eV)
(a)
5.0
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: November 23, 1987 | doi: 10.1021/bk-1987-0359.ch010
Photodissociation of Transition Metal Ions
4.0
3.0
2Ό
Wavelength (nm) (b)
Energy (eV)
5.0
4.0
3.0
20
Wavelength (nm)
Figure
3.
+
( a ) P h o t o d i s s o c i a t i o n spectrum o f FeOH o b t a i n e d by m o n i t o r i n g r e a c t i o n 9 as a f u n c t i o n o f wavelength. No p h o t o d i s s o c i a t i o n i s observed a t wavelengths greater than 390 nm. (b) P h o t o d i s s o c i a t i o n spectrum o f F e C 0 g e n e r a t e d by e l e c t r o n i m p a c t on Fe(CO) . The o b s e r v a t i o n o f p h o t o d i s s s o c i a t i o n a t w a v e l e n g t h s g r e a t e r t h a n 660 nm was c o n f i r m e d by u s i n g a c u t o f f f i l t e r . (Reproduced from r e f . 13. C o p y r i g h t 1984 American Chemical S o c i e t y . ) +
Buchanan; Fourier Transform Mass Spectrometry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
164
FOURIER TRANSFORM MASS SPECTROMETRY
FeOH
+
+
hv
->
Fe
+
+
OH
(9)
FeCO
+
+
hv
>
Fe
+
+
CO
(10)
n e a r 290 nm and 335 nm, s u g g e s t i n g t h a t t h e t r a n s i t i o n s are metal l o c a l i z e d . The F e O H s p e c t r u m , however, has a p h o t o d i s s o c i a t i o n t h r e s h o l d o f 390 ± 1 0 nm, w h i l e F e C 0 i s o b s e r v e d t o have a low i n t e n s i t y l o n g w a v e l e n g t h a b s o r p t i o n t a i l from about 400 t o 700 nm. The c u t o f f o b s e r v e d a t 390 nm f o r F e O H y i e l d s an a b s o l u t e bond e n e r g y D ° ( F e - 0 H ) = 73±3 k c a l / m o l , w h i c h i s i n e x c e l l e n t agreement w i t h a v a l u e o f 76±5 k c a l / m o l o b t a i n e d by m e a s u r i n g t h e i o n i z a t i o n p o t e n t i a l o f FeOH [35] and a v a l u e o f 77±8 k c a l / m o l o b t a i n e d by b r a c k e t i n g t h e p r o t o n a f f i n i t y o f FeO [13]· A p p e a r a n c e p o t e n t i a l measurements on FeCO* from F e ( C 0 ) were i n t e r p r e t e d t o y i e l d D ( F e - C 0 ) s 60 k ? a l / m o l [ 3 6 ] . T h e s e same r e s u l t s , however, were l a t e r r e i n t e r p r e t e d t o y i e l d D ° ( F e - C 0 ) = 38 k c a l / m o l [ 3 7 ] . Observation of photodissociation re a c t i o n 10 a t "700 nm o r 41 k c a l / m o l p r o v i d e s a d d i t i o n a l support f o r the lower value. As shown i n T a b l e I , t h e e v i d e n c e i s m o u n t i n g t h a t p h o t o d i s s o c i a t i o n t h r e s h o l d s do i n f a c t y i e l d a c c u r a t e m e t a l - 1 i g a n d bond e n e r g i e s . I f there i s a disagreement between t h e p h o t o d i s s o c i a t i o n v a l u e and t h e v a l u e from an a l t e r n a t i v e technique, t h e p h o t o d i s s o c i a t i o n value tends to be l o w e r i n c o n t r a s t , f o r example, t o t h e b e n z o y l c a t i o n case d i s c u s s e d above. A r r i v i n g a t a l o w e r v a l u e by p h o t o d i s s o c i a t i o n suggests the p o s s i b i l i t y that the p r e c u r s o r i o n may be g e n e r a t e d w i t h e x c e s s i n t e r n a l energy [4b,38]. To c i r c u m v e n t t h i s p r o b l e m , once formed t h e p r e c u r s o r i o n s a r e p e r m i t t e d t o undergo t h e r m a l i z i n g c o l l i s i o n s w i t h a r g o n ( s e e e x p e r i m e n t a l s e c t i o n ) and t h e e f f e c t on t h e t h r e s h o l d , i f any, i s n o t e d . In addition, whenever p o s s i b l e , t h e p r e c u r s o r i o n o f i n t e r e s t was g e n e r a t e d from more t h a n one n e u t r a l s o u r c e . For the m a j o r i t y o f t h e s y s t e m s s t u d i e d , however, n e i t h e r t h e c o l l i s i o n a l c o o l i n g s t e p n o r t h e s y n t h e s i s from d i f f e r e n t n e u t r a l p r e c u r s o r s had a m e a s u r e a b l e e f f e c t on t h e threshold. One n o t a b l e a c c e p t i o n i s F e C H as d i s c u s s e d below. T r a n s i t i o n - m e t a l m e t h y l i d e n e s have been i m p l i c a t e d a s intermediates i n a v a r i e t y c f important c a t a l y t i c t r a n s f o r m a t i o n s i n c l u d i n g o l e f i n m e t a t h e s i s , t h e Ζiegler-Natta p o l y m e r i z a t i o n o f o l e f i n s , o l e f i n homologation, and t h e heterogeneous F i s c h e r - T r o p s c h process. Likewise, the i n c r e a s i n g l i t e r a t u r e on b a r e M C H * i n t h e g a s phase h a s shown t h e s e s p e c i e s t o have I n t e r e s t i n g p h y s i c a l and chemical p r o p e r t i e s [39-42]. I t i s perhaps not s u r p r i s ing, t h e r e f o r e , that the photochemistry of these s p e c i e s has p r o v e n t o be among t h e most i n t e r e s t i n g . Our i n i t i a l work on M C H * was f o r M = Fe and Co [14], b u t t h e s e s t u d i e s have r e c e n t l y been expanded t o i n c l u d e M = Rh, Nb, and L a [ 1 6 ] . The m e t h y l i d e n e s c a n be +
+
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: November 23, 1987 | doi: 10.1021/bk-1987-0359.ch010
+
+
+
+
+
2
Buchanan; Fourier Transform Mass Spectrometry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
10.
HETTICH AND FREISER
Table
I.
Bond Energy
Photodissociation of Transition Metal Ions
165
Determinations +
D°(A -B)(kcal/mol) photodissociation
A+-B +
Fe -CH Fe -CH Fe -C Co -CH Co -CIT Co -C Nb -CH Nb -CH Nb -C Rh -CH Rh -CIT Rh -C La -CH La -CH La -C Fe -CH Co -CH^ Fe -0 Fe -S Co -S Ni -S V -C H +
+
+
+
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: November 23, 1987 | doi: 10.1021/bk-1987-0359.ch010
+
+
+
+
+
+
+
98 112
r
+
+
+
+
+
3
+
+
+
+
r
+
Co -C*H* SC -FI Ti -Fe V -Fe Cr -Fe Fe -Fe Co -Fe Ni -Fe Cu -Fe Nb -Fe Ta -Fe +
96±5 (b) 115±20 ( c ) 89 (c) 85±7 (d)
82±5( ' a) 101±5CoC H 2
+
8
a
(23)
H
5 10
+
The p h o t o d i s s o c i a t i o n s p e c t r u m o f C o - p e n t e n e . 320 nm. F i g u r e 5, i n d i c a t e s peak maxima a t 320 nm (σ = 0.02 A ) and 370 nm. A l l f i v e photoproducts are observed at w a v e l e n g t h s out t o a t l e a s t 430 nm. I f the photoappearance of Co i s due s o l e l y t o r e a c t i o n 23, t h e n o b s e r v a t i o n of Co a t 430 nm w o u l d i m p l y D°(Co -C H J < 66 k c a l / m o l . T h i s v a l u e must be e x p r e s s e d w i t h c a u t i o n , however, s i n c e t h e p r i m a r y p h o t o p r o d u c t s can a l s o f u r t h e r d i s s o c i a t e to give Co . +
+
1
+
II.
Photodissociation
of
ML^
The i o n o f s t r u c t u r e I I can be made p r e s u m a b l y by r e a c t i o n 24 [ 3 ] . The h i g h s t a t i c p r e s s u r e o f a r g o n
(24)
s t a b i l i z e s the c o n d e n s a t i o n of C o n t o CoC-Hg . P h o t o d i s s o c i a t i o n o f CoC H * frOm r e a c t i o n 24 ( F i g u r e 6) y i e l d s o n l y tnrèe p h o t o p r o d u c t s , r e a c t i o n s 25-27, w h i c h a r e a l l o b s e r v e d a t l e a s t out t o 430 nm. The r e l a t i v e a b u n d a n c e s o f t h e s e p h o t o p r o d u c t s were t a k e n a t
61* C H 2
4
(25)
->C0C H < 3
hv
6
15*
C
H
3 6
(26)
—> COC H/ -> Co (27) 5 10> 24* .2 L . = 320 nm(a= 0.05 k ) · No CoC.Hg o r CoC H« are o U s e r v e d , s u p p o r t i n g t h e f a c t t h a t t h i s i o n e x i s t s as s t r u c t u r e I I . The s p e c t r a o f t h e s e two i s o m e r s I and I I a r e a r e s i m i l a r , but t h e 370 nm peak o b s e r v e d i n t h e s p e c t r u m o f C o - p e n t e n e i s a b s e n t i n t h e s p e c t r u m o f Co (propene) ( e t h y l e n e ) . The enhanced p h o t o d i s s o c i a t i o n 2
( C
H
Y
+
+
Buchanan; Fourier Transform Mass Spectrometry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
•
HETTICH AND FREISER
Photodissociation of Transition Metal Ions 169
Energy (Kcal/mol) 90
80
70
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: November 23, 1987 | doi: 10.1021/bk-1987-0359.ch010
Effect of Pressure on FeCH£
Wavelength (nm) F i g u r e 4.
Long wavelength t h r e s h o l d r e g i o n f o r Fed^" d i s s o c i a t i n g to F e at various pressures.
1-
photo-
+
ENERGY (Kcol/mol) 110 ~i—ι
250
90 1
300
1
350
70 1
400
Γ
450
WAVELENGTH (nm) F i g u r e 5. P h o t o d i s s o c i a t i o n spectrum o f C0C5H-LQ r e a c t i o n 18.
g e n e r a t e d from
Buchanan; Fourier Transform Mass Spectrometry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
170
FOURIER TRANSFORM MASS SPECTROMETRY
c r o s s s e c t i o n o b s e r v e d f o r s t r u c t u r e I I ( i e . 0.05 A*) i s t y p i c a l o f a t r e n d we have o b s e r v e d t h a t p h o t o d i s s o c i a t i o n c r o s s s e c t i o n tends to i n c r e a s e w i t h the a d d i t i o n of a second l i g a n d [15]. The d i f f e r e n c e i n c r o s s s e c t i o n s a l o n e , however, would not be s u f f i c i e n t t o d i s t i n g u i s h t h e two i s o m e r s , A photoappearance t h r e s h o l d f o r Co , r e a c t i o n 27, c o u l d not be o b t a i n e d due t o t h e s e c o n d a r y d i s s o c i a t i o n o f CoC H / and CoC^H.."" t o y i e l d Co . R e c e n t l y we r e p o r t e d t h a t N i ( C H . ) c o u l d a l s o be d i s t i n g u i s h e d from t h r e e o t h e r i s o m e r s f N i - b u t e n e , Ni i s o b u t e n e , n i c k e l a c y c l o p e n t a n e c a t i o n ) on t h e b a s i s o f i t s u n i q u e p h o t o d i s s o c i a t i o n s p e c t r u m and p h o t o p r o d u c t s [15]· In p a r t i c u l a r N i i C - H j . ) * p h o t o d i s s o c i a t e s t o g i v e two p r o d u c t s o f about e q u a l abundance (by l o s s o f C H^ and C.Hg). Continuous e j e c t i o n of Ni -C H . allows r e a c t i o n 28 t o be m o n i t o r e d . As shown i n F i g u r e 7 , +
1
+
+
2
J
2
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: November 23, 1987 | doi: 10.1021/bk-1987-0359.ch010
+
+
2
+
2
||-
N i * -||
+
hv
> Ni
+
+
2
i
C H 2
(28)
4
,
r e a c t i o n 28 i s o b s e r v e d f o r < 370 nm i m p l y i n g D°(Ni* "-2 p i i ) = 77±5 k c a l / m o l . The f a c t t h a t t h i s v a l u e i s net s i g n i f i c a n t l y d i f f e r e n t t h a n t w i c e D ° ( N i - C H ) = 37±2 k c a l / m o l s u g g e s t s t h a t s y n e r g i s t i c e f f e c t s a r e not very pronounced i n t h i s i o n . W h i l e t h i s may p r o v e t o be t y p i c a l , i t i s not e x p e c t e d t o be t h e r u l e . F o r example, p r e l i m i n a r y s t u d i e s on t h e b i s - b e n z e n e i o n s , ( 5 6)o ' suggest a n e g l i g i b l e s y n e r g i s t i c e f f e c t f o r M = V [l5J and Sc [ 4 4 1 , a n e g a t i v e e f f e c t f o r L a ( i . e . , D°(La* -C.H ) > D ( L a C H . - C.H.), and a p o s i t i v e e f f e c t f o r Cu ? i . e. , B°t C u - C . H, ) < D°( CuC. H."* - C H ) [44]. c
H
+
2
M
4
C
H
+
+
+
fi
A
+
+
6
6
III.
6
6
6
6
P h o t o d i s s o c i a t i o n o f MFe+
E x a m i n a t i o n o f t h e b o n d i n g and e n e r g e t i c s o f s m a l l b a r e c l u s t e r s has become a t o p i c o f c o n s i d e r a b l e i n t e r e s t in recent years. An e x c i t i n g a r r a y o f methods has been d e v e l o p e d t o g e n e r a t e c l u s t e r s o f v a r y i n g s i z e s and c o m p o s i t i o n f o r s t u d y i n t h e gas phase. Some of t h e s e new methods i n c l u d e s p u t t e r i n g t e c h n i q u e s [ 4 5 ] , gas e v a p o r a t i o n techniques [46], supersonic expansion techniques w i t h oven [47] and p u l s e d l a s e r s o u r c e s [ 4 8 ] , and m u l t i p h o t o n d i s s o c i a t i o n o f m u l t l n u c l e a r o r g a n o m e t a l l i c compounds [ 4 9 ] . As d e s c r i b e d above, our l a b o r a t o r y dem o n s t r a t e d t h e s y n t h e s i s o f s m a l l h o m o n u c l e a r and h e t e r o n u c l e a r t r a n s i t i o n m e t a l c l u s t e r i o n s ±n _s_i£_u. by u s i n g FTMS [ 3 1 - 3 3 ] . F o r example, r e a c t i o n s 6 and 7 have been used t o s y n t h e s i z e a wide v a r i e t y o f M F e s p e c i e s . The c l e a r a d v a n t a g e s o f t h i s method a r e t h a t not o n l y i s there a great deal of s e l e c t i v i t y i n generating s p e c i f i c c l u s t e r s , but once formed t h e f u l l power o f FTMS can be a p p l i e d t o s t u d y the c h e m i s t r y and p h o t o c h e m i s t r y o f t h e s e species in d e t a i l . T h i s a p p r o a c h i s t y p i f i e d by ext e n s i v e s t u d i e s on t h e r e a c t i v i t i e s o f C o F e [ 3 2 ] and VFe [33] with alkenes. I n a soon t o be p u b l i s h e d +
+
+
Buchanan; Fourier Transform Mass Spectrometry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: November 23, 1987 | doi: 10.1021/bk-1987-0359.ch010
10. HETTICH AND FREISER
Photodissociation of Transition Metal Ions
ENERGY 110
100
171
( KCAL/MOL )
90
80
70
IK-II
6
hv.
Ni
0
+
Ο BLANK i
—-
—
e
Γ ι ι ι ι I 300
250
ι
ι
JL
ο · οι
350
ι
I
ι
ι
ι I ι
J
150
100
WAVELENGTH ( NM ) Figure
7.
T h r e s h o l d r e g i o n f o r N i ( C H J photod i s s o c i a t i n g t o N i . I n t h sie x p e r i m e n t , was c o n t i n u o u s l y e j e c t e d . Ν10 Η 2
+
-
Ί
2
4
Buchanan; Fourier Transform Mass Spectrometry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
L
172
FOURIER TRANSFORM MASS SPECTROMETRY
paper [ 1 6 ] , we expand on t h i s work by r e p o r t i n g on t h e p h o t o d i s s o c i a t i o n o f MFe (M = Se, T i , V, C r , Fe, Co, N i , Cu^ Nb, T a ) . To summarize t h o s e r e s u l t s , b o t h M and Fe a r e o b s e r v e d as p h o t o p r o d u c t s , w i t h t h e m e t a l h a v i n g t h e l o w e s t i o n i z a t i o n p o t e n t i a l p r e d o m i n a t i n g . The p h o t o d i s s o c i a t i o n s p e c t r a r e v e a l broad a b s o r p t i o n i n t h e u l t r a v i o l e t and v i s i b l e r e g i o n s w i t h a range o f c r o s s s e c t i o n s from 0.06 A f o r VFe t o 0.62 A f o r f o r CrFe . Bond e n e r g i e s o b t a i n e d by o b s e r v i n g p h o t o a p p e a r a n c e ons e t s a r e i n t h e range o f 48 k c a l / m o l f o r S c F e t o 75 kcal/mol f o r VFe ( s e e T a b l e I ) . T h e s e s t u d i e s c a n be r e a d i l y e x t e n d e d t o o t h e r d i m e r s e r i e s , s u c h as MV , M C r , and MCo g e n e r a t e d i n a n a l o g y t o r e a c t i o n s 6 and 7 from V ( C 0 ) , C r ( C 0 ) , and C o ( C 0 ) N 0 , r e s p e c t i v e l y , as w e l l as t o t r i m e r s [ 3 4 ] and n i g h e r o r d e r clusters. C l e a r l y , t h e s u r f a c e has j u s t been s c r a t c h e d ! +
+
+
+
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: November 23, 1987 | doi: 10.1021/bk-1987-0359.ch010
+
+
+
+
6
6
3
Acknowledgment i s made t o t h e D i v i s i o n o f C h e m i c a l S c i e n c e s i n t h e O f f i c e o f B a s i c Energy S c i e n c e s i n t h e u n i t e d S t a t e s Department o f Energy (DE-AC02-80ER10689) f o r s u p p o r t i n g t h i s r e s e a r c h and t o t h e N a t i o n a l S c i e n c e F o u n d a t i o n ( C H E - 8 3 1 0 0 3 9 ) f o r c o n t i n u e d s u p p o r t o f FTMS methodology. The a u t h o r s a l s o w i s h t o thank M i c h e l l e Buchanan f o r h e r i n v i t a t i o n t o c o n t r i b u t e t o t h i s symposium.
References 1.
2. 3. 4.
5. 6. 7. 8. 9. 10. 11.
For a comprehensive review on gas-phase metal ion chemistry see: Allison, J . in Progress in Inorganic Chemistry, Ed. Lippard, S. J., Wiley - Interscience, New York, Vol. 34, 628, 1986. Halle, L.F.; Houriet, R.; Kappes, M.; Staley, R.H.; Beauchamp, J . L . J . Am. Chem. Soc. 1982, 104, 6293. Jacobson, D.B.; Freiser, B.S.; J. Am. Chem. Soc. 1983, 105, 5197. (a) Larsen, B.S.; Ridge, D.P. J . Am. Chem. Soc. 1984, 106, 1912. (b) Freas, R.B.; Ridge, D.P. J . Am. Chem, Soc., 1980, 102, 7129. (c) Armentrout, P.B.; Beauchamp, J.L.; J. Am. Chem. Soc., 1980, 102, 1736. Jacobson, D.B.; Freiser, B.S. J . Am. Chem. Soc. 1985, 107, 72. Houriet, R.; Halle, L.F.; Beauchamp, J . L . Organonetallics 1983, 2, 1818. Allison, J.; Freas, R.B.; Ridge, D.P., J. Am. Chem. Soc., 1979, 101, 1332. Armentrout, P.B.; Beauchamp, J . L . J . Am. Chem. Soc. 1981, 103, 784. Aristov, N.; Armentrout, P.B. J . Am. Chem. Soc 1984, 106, 4065. Jones, R.W.; Staley, R.H. J. Am. Chem. Soc. 1982, 104, 2296. Uppal, J . S . ; Staley, R.H. J . Am. Chem. Soc. 1982, 104, 1235.
Buchanan; Fourier Transform Mass Spectrometry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
10. HETTICH AND FREISER
12. 13. 14. 15.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: November 23, 1987 | doi: 10.1021/bk-1987-0359.ch010
16. 17. 18. 19. 20. 21. 22. 23. 24. 25.
26. 27. 28.
29. 30. 31. 32. 33. 34. 35. 36. 37.
Photodissociation of Transition Metal Ions 173
McLuckey, S.A., Schoen, A.E.; Cooks, R.G. J. Am. Chem. Soc. 1982, 104, 848. Cassady, C . J . ; Freiser, B.S. J . Am. Chem. Soc. 1984, 106, 6176. Hettich, R . L . ; Freiser, B.S. J . Am. Chem. Soc. 1986, 108, 2537. Hettich, R . L . ; Jackson, T . C . ; Stanko, E . M . ; Freiser, B.S. J . Am. Chem. Soc. 1986, 108, 5086. Hettich, R . L . ; Freiser, B.S. J. Am. Chem. Soc., in press. Dunbar, R.C. "Gas Phase Ion Chemistry;" Bowers, M.T., E d . ; Academic Press, Inc.; New York, 1984; Vol. 3, Chap. 20. Freiser, B.S.; Beauchamp, J . L. J . Am. Chem. Soc. 1976, 98, 3136. Dunbar, R.C.; Hutchinson, B.B. J . Am. Chem. Soc. 1974, 96, 3816. Burnier, R.C.; Freiser, B.S. Inorg. Chem. 1979, 18, 906. Comisarow, M.B. Adv. Mass Spec. 1980, 8, 1698. Gross, M . L . ; Rempel, D.L. Science 1984, 226, 261. Lande, Jr.,D.A.; Johlman, C . L . ; Brown, R.S.; Weil, D.A.; Wilkins, C.L. Mass Spec. Rev. 1986, 5, 107. Cody, R.B.; Burnier, R.C.; Freiser, B.S. Anal. Chem. 1982, 54, 96. Cody, R.B.; Burnier, R.C.; Reents, Jr., W.D.; Carlin, T.J.; McCrery, D.A.; Lengal, R.K.; Freiser, B.S. Int. J . Mass Spec. Ion Phys. 1980, 33, 37. Cody, R.B.; Burnier, R.C.; Freiser, B.S. Anal. Chem. 1982, 54, 96. Carlin, T.J.; Freiser, B.S. Anal. Chem. 1983, 55, 571. The photodissociation spectra of a l l of the ions showed no pressure dependence, except for slight quenching of the low energy t a i l region, indicating that photodissociation in these cases is probably due to one-photon excitation and that the precursor ions do not have substantial internal energy. Freiser, B . S . ; Beauchamp, J . L . Chem. Phys. Lett. 1975, 35, 35. Dunbar, R.C. Chem. Phys. Lett. 1975, 32, 508. Jacobson, D.B.; Freiser, B.S. J . Am. Chem. Soc. 1984, 106, 4623. Jacobson, D.B.; Freiser, B.S. J . Am. Chem. Soc. 1985, 107, 1581. Hettich, R . L . ; Freiser, B.S. J . Am. Chem. Soc. 1985, 107, 6222. Jacobson, D.B.; Freiser, B.S. J . Am. Chem. Soc. 1984, 106, 5351. Murad, E. J . Chem. Phys. 1980, 73, 1381. Distefano, G.J. Res. Natl. Bur. Stand, Sect. A. 1970, 74A, 233. Halle, L.F.; Armentrout, P.B.; Beauchamp, J . L . Organometallics 1982, 1, 963. Buchanan; Fourier Transform Mass Spectrometry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
174
38.
39.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: November 23, 1987 | doi: 10.1021/bk-1987-0359.ch010
40. 41. 42. 43.
44. 45.
46.
47.
48.
49.
FOURIER TRANSFORM MASS SPECTROMETRY
Metal ions can be made with excess internal and/or kinetic energy. See, for example, (a) Kang, H . ; Beauchamp, J . L . J . Phys. Chem. 1985, 89, 3364. (b) Halle, L.F.; Armentrout, P.B.; Beauchamp, J . L . J . Am Chem. Soc., 103, 962 (1981). (a) Stevens, A . E . ; Beauchamp, J . L . J . Am. Chem. Soc. 1980, 100, 2584. (b) Stevens, A . E . ; Beauchamp, J . L . J . Am. Chem. Soc. 1979, 101, 6449. Armentrout, P.B.; Halle, L.F.; Beauchamp. J . L . J . Am. Chem. Soc. 1981, 103, 6501. (a) Jacobson, D.B.; Freiser, B.S. J . Am. Chem. Soc. 1985, 107, 2605. (b) Jacobson, D.B.; Freiser, B.S. J . Am. Chem. Soc. 1985, 107, 4375. (a) Carter, A . E . ; Goddard III, W.A. J . Am. Chem. Soc. 1986, 108, 2180. (b) Shim, I . ; Gingerich, K.A. J . Chem. Phys. 1982, 76, 3833. A l l heats of formation (and other supplementary values) are taaken from: Rosenstock, H.M.; Draxl, K.; Steiner, B.W.; Herron, J . T . J . Phys. Chem. Ref. Data. Suppl. 1 1977, 6. Lech, L . M . ; Tews, E . C . ; Huang, Y . ; Freiser, B.S. unpublished results. (a) Katakuse, I . ; Ichihara, T . ; F u j j i t a , Y . ; Matsuo, T . ; Sakurai, T . ; Matsuda, H. Int. J . Mas Spec. Ion Proc. 1985, 67, 229. (b) Freas, R.B.; Campana, J . E . J . Am. Chem. Soc. 1985, 107, 6202. (a) Sattler, K . ; Muhlbach, J.; Recknagel, E. Phys. Rev. Lett. 1980, 45, 821. (b) Abe, H.; Schulze, W.; Tesche, B. Chem. Phys. 1980, 47, 95. (c) Godenfeld, I . ; Frank, F . ; Schulze, W.; Winter, B. Int. J . Mass Spec. Ion Proc. 1986, 71, 103. (a) Riley, S . J . ; Parks, E . K . ; Mao, C.R.; Poppo, L . G . ; Wexler, S. J . Phys. Chem. 1982, 86, 3911. (b) Bowles, R.S.; Park, S.B.; Otsuka, N.; Andres, R.P. J. Mol. Catal. 1983, 20, 279. (a) Bondybey, V . E . ; English, J . H . J . Chem. Phys. 1982, 74, 6978. (b) Morse, M.D.; Hansen, G.P.; Langridge-Smith, P.R.R.; Zheng, L . S . ; Geusic, M . E . ; Michalopoulos, D . L . ; Smalley, R.E. J . Chem. Phys. 1984, 80, 5400. (c) Smalley, R.E. Laser Chem. 1983, 2, 167. Leopold, D.G.; Vaida, V. J . Am. Chem. Soc. 1983, 105, 6809.
RECEIVED May 12,
1987
Buchanan; Fourier Transform Mass Spectrometry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.