Functional group analysis - Analytical Chemistry (ACS Publications)

Recent Developments of Derivative Spectrophotometry and Their Analytical Applications. Abdel-Aziz Y. EL-SAYED , Najeb A. EL-SALEM. Analytical Sciences...
0 downloads 0 Views 4MB Size
Anal. Chem. ISSO, 62, 155R-169R (103) MuelkK, K. A. New Dev. WcI. Mgn.Reeon. Magn. Reson. OUenrUn Elecdon., Spc. cdbp. AAoRERE, 7th; MmtIng Date 1985; Ursu, I., H a w , K. H., E&.; CIP Reas: Bucharest, 1985; pp 211-223. (104) K ~ ~ z w sC., P. Ekcirw, spk, R e e ~ n 1087, . 108, 1-38. (105) Donner, M.; M u k , S.; Stoltz, J. F. C h . Hemomed. 1087, 7 (I), 33-45. (108) Mason, R. P.; Stdte, K.; Morehouse. K. M. Br. J . Csncer Suppl. 1987, 55 (8). 183-171. (107) Roth. S.; Bleier, H. A&. RIP. 1987, 36 (4). 385-482. (108) BuIWX, N. J. J . C b m . E&. 1087, 64 (II), 907-914. (109) Kashhkvabara, H.; Shlmada, S.; Horl. Y.; Sakaguchl, M. A&. Pol)m. Sei. 1087, 82, 141-206. (110) Coulon, C.; Laversanne, R. NATO ASI Ser., Ser.B 1987. 155 (LowDlmna. Conduct. Super&.), 135-138. (I 11) Mehring, M. NATO ASI Ser. B 1987, 155 (LowDimens. Conduct. Su185-193.

m-.),

(112) Kamachi, M. A&. m m . Sei. 1987. 82, 207-275. (113) Austermann, R. L.; Denley, D. R.; Hart, D. W.; Hhnelfarb, P. B.; Irwln, R. M.; Narayana, M.; Tang, S. C.; Yeates, R. C. Anel. Chem. 1987, 59 (12), 68R-102R. (1 14) Robins, D. New Sci. 1988, 117, 49-52. (115) Ikeya, M. Magn. Reson. Rev. 1088, 13(2-3), 91-134. (118) Dougherty. 0. SdnBeporeJ. phys. 1088, 5(1). 107-128. (117) Tabner. B. J. Elecb.on Spin Reson. 1088, 11A, 1-54. (118) Lyubchenko, L. S.; Kozhushnef, M. A. Zh. Fk. f i l m . 1988. 62(9), 2308-2324. (119) Roth, H. K.; Leopold, D. M a k r m l . Chem.. Maeromd. S.y m . . 1988, 18. 219-240. (120) Turro, N. J. P o r n . Prepr. (Am. Chem. Soc.Dlv. Po&m. Chem) 1988, 29 (I), 500. (121) Ewert, U.; Herrling, T.; Schneider. W. Exp. Tech. Phys. 1988, 36 (4/5). 289-297.

Ultraviolet and Light Absorption Spectrometry J. A. Howell* Western Michigan University, Kalamazoo, Michigan 49008

L. G. Hargis University of New Orleans, New Orleans, Louisiana 70148 This review reports the developments in ultraviolet and light absorption spectrometry from January 1988 throu h December 1989,primarily as documented in the Ultravio et & Visible Spectroscopy section of CA Selects, and extends the series of reviews on these topics sponsored by Analytical Chemistr starting with Light Absorption Spectrometry in 1945 (1-3f followed b Ultraviolet Absorption Spectrometry in 1949 (4-8) and comgined Ultraviolet and Light Absorption S ectrometry in 1978 (9,10). This review follows the format ofits predecessors with the subject matter being divided into sections on Chemistry, Physics, and a lications. The applications section is comprised of Taiyes I and 11, which summarize the routine determinations of inorganic and organic substances, respectively. The literature on ultraviolet and light abspr tion spectrometry continues to be so extensive and varied'in scope that citations in this review are limited to those developments which the authors believe are of greatest interest to analytical chemists and those engaged in the chemical analysis of materials. As a result of t h s necessary selectivity, the authors wish to apologize in advance for any errors of j u d gent made in the omission of specific references. e number of review articles appearing yearly on specific aspects of molecular absorption spectrometry continues to increase. An IUPAC committee has reported its recommendations on the nomenclature, symbols, units, and their usage in molecular absorption spectrometry (11). Reviews of reagents used for the determination of a specific substance or oup of substances include those on thiazolylazo reagents (12~semicarbazonees and thiosemicarbazones (13),heterocyclic azo compounds based on thiazole and thiophene (14), and anionic crown ethers (15). A extensive review of the reagents used for the determination of lanthanides has appeared (16). The use of surface-active agents to increase the water solubility, sensitivity, and detection limit of metal com lexes is the topic of four reviews (17-20) and the much broaier to ic of the use of organic reagents in spectrometry is coverexin two others (21,22). Reviews of methods for determining the following particular substances have a peared lanthanides (23,24), inorganic ions (251, carotene &6), chlorophyll (27), estrogen in urine (%), purines and pyrimidines (29),steroids (30),sulfh dry1 compounds (311, surfactants (321, thiols (33), minerals &4), and red wine (35). A number of reviews dealing with s ectrometric techniques have been published, including the !eto instrumentation, and applications of derivative spectropXbtometry (36); simultaneous, multicomponent determinations ( 3 7 , s ) ; rapidscanning, multiwavelength spectrophotometry (39); picose-

P

cond, time-resolved, spectrometry (40); matrix-isolation spectrometry (41);and squeezed-light spectrophotometry (42). The design and analysis of kinetic experiments has been reviewed (43),as well as eneral kinetic methods for both catalyzed and uncatalyzet! reactions (441, kinetic methods utilizing diode-array detectors (45,46), and stopped-flowtime difference analysis (47). Thermooptical spectrometry has been the subject of several reviews including general techniques and applications (48,49), photothermal deflection s ectrometry (50), and thermal lens spectrometry (51-53). !?he general techniques (51) and analytical applications (53) of photoacoustic spectrometry have been reviewed, along with ita use in depth profiling (54). Reviews on the general techni ue of flow-injection analysis (551, ita use in the analysis off% and drugs (561, and the advantages of multiple-peak recordy (57) have been published. Both Fourier (58) and Hadamar (59, 60) transform spectrometry have been reviewed. The topics of other reviews include the determination of dru s in pharmaceuticals based on the formation of metal comdexes (61), the measurement of coatings and solids (62,63), micellar the use of spectrometry in quality assurance solubilization (64), of chemical reagents (65),recent advances in instrumentation and the synthesis of chromophores that have increased the the effects of temperature sensitivity of determinations (66), on equilibrium and its applications in abso tion spectrometry (67), analysis problems of high-purity su'gstances (681, and the applications of principal-component analysis in analytical chemistry (69). Three papers review the early historical development of ultraviolet and light absorption spectrometry (70-72), another discusses the progress realized by the introduction of microprocessors (731, and a fifth describes the development of analytical techniques for trace element determination in agricultural and environmental samples (74). A large number of reviews on fiber optics have appeared including general principles and techniques (75-78), specific applications as remote sensors (7941), use in multivariate analysis (82),use with immobilized indicators (83),and use for dissolved ionic substances (84). The use of detector tubes (85)and lasers (86) in the determinationof gaseous substances has been reviewed as has the use of charge-transfer devices as detectors (87). Detectors for liquid chromatography have been the subject of two reviews, one dealing with photoacoustic and thermal lens devices (88) and the other with photodiode arrays and charge-coupled devices (89). The applications of computers in signal processing (90, 91) and statistical calculation and optimization (92) have been discussed. The performance and

0003-2700/90/0362-155R$09.50~0 0 1990 American

Chemical Society

155 R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

quality of spectrophotometers have been discussed in terms of their basic operatin? components (93)and the general use of spectrophotometry in the stud of analytically important reactions has been reviewed and dwtrated with two examples (94). The effects of solvent (95)and addition of cationic surfactants (93)are the to ics of two extensive reviews. Other topics reviewed include t1e use of unstable reagents in flow systems (97),the molecular design of chromophores for postcolumn derivatization and detection in liquid chromatogra hy (98),methods for investigating the formation of metafcomplexes (991,and the use of ultraviolet absorption in dru analysis (100). A lecture demonstration illustrating light %sorption and fluorescence using octaethylporphyrin and chlorophyll a has been described (101).Finally, surveys of the instruments and componenta displayed at the 1988and 1989 Pittsburgh Conference on Analytical Chemistry and Ap lied Spectroscopy have been published (102-104). felatively few books, cha ters, and pamphlets have appeared since the last review. 8nly one book deals with general methods for metals, Methods for Spectral Analysis of Metals and Alloys (105),while two others describe recent advances, Systems (106)and Spectroscopy and light-absorption s ctrometry (108)and a textbook on pharmaceutical analysis, E t r u m e n t a l Pharmaceutical Analysis, contains a sizable section on spectrometric techniques (109). Two published proceedings have appeared: Analytical Applications of S ectrosco y (110)and Analytical Spectroscopy Library, &l. 2 Adances in Standards and Methodology in Spectrophotomet (111).Finally, a nice pamphlet entitled The Diode-Array Azantage in UVI Visible Spectroscopy is available (112).

CHEMISTRY This section deals with the chemistry involved in the devel0 ment of suitable rea ents, absorbing systems, and met ods of determination. $he shift away from papers devoted to inorganic constituents toward those devoted to organic constituents, especial1 those of interest in clinical and pharmaceutical chemistry, rlas continued during the review eriod. The availability of diode-array spectrometers and of ow-coat, high-power computers continues to stimulate interest in multiple-wavelength and derivative techniques. The number of determinations based on reaction-rate and flowinjection techniques changed very little since the preceding review period. Metals. Papers dealing with the properties of chromophores used in the determination of metals continue to be of ma’or interest in this category. 3-Phenyl-5-~-arabinotetrahydroxybuty1-3-thiezolidine has been synthesized and its reaction with 34 metal cations studied and compared with that of other thiazolidine-2-thiones (113).Conditions were described where the reagent was highly selective but not particularly sensitive for Cu(I1). Among 37 cations tested,only divalent Fe, Co, Cu, Ni, and Pd roduced colored complexes with newly s thesized di-2-pyri:yl ketone guanylhydrazone, and a rocegre for determining their total amount was reporte8 (114). Two new asymmetric derivatives of thiocarbohydrazide, 1-(2-pyridylrnethylideneamino)-3-(4hydroxybenzy1ideneamino)thiourea and 1-(2-pyridylmethylideneamino)-3-(2,4-dihydroxybenzylideneamino) thiourea, have been synthesized, characterized, and investigated as possible reagents for metal cations (115).A comprehensive study of lyox 1 bis(benzoylhydrazone)sshowed that glyoxal bis(4-hytfroxy~enzoylhydrazone) was a superior com lexing ligand, producing intensely colored complexes with Ea, Cu, and Cd that could be used for their determination (116). Sensitive ion pair, solvent extraction methods have been developed for the determination of Cu, Pd, Fe, and Co using l-nitroso-2-naphthol-6-sulfonicacid or 2-nitroso-1naphthol-6-sulfonic acid in the presence of zephiramine to form colored complexes (117). From a study of 8-(0hydroxyphenylazo)-7-hydroxy-4methylcoumarin with various metal ions, Drocedures were develoDed for the sDectroDhotometric determination and the phbtometric tihation with EDTA of V(IV), Co(II), Ni, Cu(II), and Zn (118). Molar abso tivities were in the range (1.7-2.4) X 1V and Beer’s law was %eyed up to 4.60, 2.72, 2.76, and 5.90 pg/mL for V, Co,

R

P

156R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

Ni, Cu and Zn, res ectively. Barbital forms bis complexes with Nb and Ta at &Yerent pH values (absorbancemaximum of 490 and 580 nm, respectively) and can be used to determine each metal in the presence of the other (119).The spectral characteristics of the complexes formed with di-Zpyridylmethanone-2-(5-nitropyridyl)hydrazone and eight metal ions are reported and the re ent appears to be promising for Pd and Co in terms of its sgctivity and for copper, nickel, zinc, and cadmium with respect to sensitivity (120).A procedure was developed for determining Pd with this reagent, based on extraction of the complex into 1,2-dichloroethane and measurement at 560 nm. A number of reagents have been investigated for the determination of lanthanides. Chlorophosphonazo-DBC forms stable, tris complexes in 1.4 M HCl with molar absorptivities in the range (1.0-1.2) X los at the absorbance maximum of 646 nm and a method is proposed for the determination of total lanthanides in the resence of large amounts of Al, Cu, Ni, and Zn (121).A simfar reagent, chlorophosphonazo-mK,produced similar results with Beer’s law being obeyed up to about 0.5 pg mL (122).In a stud of the reaction of lanthanides with c lorophosphonazo-mi it was demonstrated that both P-ty e mononuclear and binuclear chelates exist, with the 1atterLving the greater molar absorptivities, and procedures were proposed for the determination of the lighter lanthanides in the presence of the heavier ones (123).p-Methyldibromoarsenazo forms stable, bis complexes with lanthanides, with molar absorptivities above 1.0 X lo5 at the absorbance maximum at 635 nm, and was demonstrated as a rea ent for their determination in wheat and aluminum alloy 524). The solvent extraction of lanthanum, praseodymium, neodymium, and samarium with chloroform-containing N-phenylbenzohydroxamic acid has been studied and adapted to the determination of these metals (125). A study of lanthanides with p-aminophenylfluorone and cetyltrimethylammonium bromide reports the existence of two kinds of ternary complexes with absorbances of 534-540 nm and 585-597 nm and molar absorptivities of (0.75-1.22) X lo5and (1.32-1.65) X 105,respectively (126).Based on the ability of fluoride and EDTA to selectively mask certain lanthanides, methods were developed for determinin elements Sm through Lu without interference from La, !e, or Pr and for determining Ce in La. 3-Hydroxy-3-phenyl-0carboxyphenyltriazene has been reported to form 1:l complexes with all 10 lanthanides that are sufficiently stable and highly colored to enable their determination (127).The extraction of ion-pair complexes of halo and thiocyanato anions of platinum-group metals with cationic dyes such as Rhodamine 6G, Malachite Green, and Methylene Blue has been discussed as a means for increasing the sensitivity of determinations (128). A few papers comparing or studying several reagents for a specific metal or group of metals have been published. 4-[(5-Bromo-2-pyridyl)azo]resorcinol has been reported to compare well with 5,5’-[3-(2-pyridyl)-1,2,4-triazine-5,6-diyl]bis-z-furansulfonic acid, bathocupronine sulfonate, and 245bromo-2-pyrid lazo)-5-diethylamino henol for the determination of Fe, eu, and Zn in serum b29). The absorbance maximum was 510 nm and Beer’s law was obeyed for 25-500 pg/dL. In a study of eight substituted N-phenyl-2-furylacrylohydroxamic acids as extractants and eight pyridylazo com ounds as chromophores, N-p-methoxyphenyl-2-furylacryfohydroxamic acid and 5-iodo-5-(dimethylamino)-2-(2py-ridylazo)phenolproduced the best selectivity and sensitivity (t = 6.5 X 104 at 590 nm) for determinin Bi in environmental samples (130).Chrome Azurol B and eptonex were found M be the most suitable of several triphenylmethane dyes and cationic Surfactants, respectively, for the determination of uranium (131). /3-Cyclodextrin has been investigated as a sensitizing reagent for a number of color- roducing reactions, includin four pyridylazo-substituted pEenols or naphthols used to &termhe Zn,Cd, and H two pyridylazu-substituted aminobenzenes for Co, Ni, and & I ;diphen lcarbazide, pheChrome Azurol nylfluorone, and p-nitrophenylfluoronefor S and 8-quinolinol with AI; and 1,lO-phenanthroline for Fe (132).The spectra and concentration ranges for which Beer’s law is obeyed are listed. A few specific chemical systems have been studied, providing new insi ht into their use in spectrophotometric determinations. Eylenol Orange is reported to form four different complexes with Cu depending on the pH (133). The

i,

8

&;

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY Larry 0. Hargls Is a Professor of Chemisby Director 01 the Master of ARs in Science Teaching prDgram at lhe University of New Orleans. He graduated hom Wayne State University wlh a B.S. in 1961. an M.S. in 1963. and a Ph.D. in 1964, spent a year as a Postdoctoral Research Associate at PUrdUe University. and ioined the facuW at UNO in 1965. His pr&ent research interests include unraviolet and light absorption

'"'

.;....

conversion to phenylmercury diethyldithiocarhamate and extraction into trichloromethane with the absorbance measured at either 257 or 297 nm (141). Two procedures for determining nitrogen in sea water have heen proposed. Total nitrogen is determined by digesting the sample in an autoclave at 120 "C for 30 min and measuring the absorbance at 220 and 215 or 210 nm (142). The results were reported to compare well with the conventional method using N-(lnaphthy1)ethylenediamine. Nitrate and nitrite can he despectrometry. reaction-rate analyses. termined simply by measuring the absorbance at 224 and 231 heteropolymolyMate Chemistry. and on-line nm, with Fe interfering hut not Na, Ca, Mg, or CI (143). A computer applications to chemical probpair of papers describes the determination of antimony (144) lems. He has authored or coauthored nuand selenium (145)using sodium tetrahydroborate to form merous research moers. an instrumental ~. their volatile hydrides which were swept into a flow cell with analysis laboratory manual. an Intrcductory analyt#calchemistry textbook. and nitrogen gas and measurement of the absorbance at 198 and chapters in several monographs dealing with spectrophotometry Dr. Hargis holds membership in the American Chemical Society (Analytical and Educa220 nm, respectively. Calibration plots were linear for 3-440 tion divisions). Phi Lambda Upsilon. and Sigma Xi. pg/mL Sb and 5-75 pg/mL S e Organic Compounds. The interest in organic constituents, James A. Howell is a professor of Chemisespecially in pharmaceutical preparations and clinical samples, try at Western Michigan University and also remains high. Penicillins and cephalosporins can be detera science advisor for the Detroit District Laboratory 01 t h e Food and Drug mined as their 1:l and 2 1 complexes with chloranilic acid in Administration. He received his E.A. from dioxane and dioxane-dimethylformamide mixtures by Southern Illinois University in 1959. his M.S. measuring at 520 nm (146). The reagent, 3-methyl-2-benzofrom the University of liiinois in 1961. and thiazolinone hydrazone, has been used in conjunction with his Ph.D. in anawicai chemistry from Wayne various oxidizing agents such as ceric, ferric, and iodate ions State University in 1964. His particular to determine eight diuretics with a sensitivity superior to most fields 01 interest are in ultrsvl~letand Visible previously reported methods (147). Hydrocortisone acetate absorption spectrometry. flame emission and other 3-ketosteroids have heen determined with isatine and atomic absorption spectroscopy. and also computer applications to chemical inhydrazone in dioxane (148-150) and the indirect determination strumentation. H e is the auihor of a number of nine adrenergic drugs was performed by their reduction # of research papers and Chapters in books. of iron(II1) to iron(I1) and its subsequent reaction with Dr. Howell is a member of the ACS. SAS. and the Association of Analflical 2,4,6-tris(2-pyridyl)-s-triazineto form a violet complex with Chemists. an absorbance maximum at 595 nm (151). Several reagents for determining drugs containing amino groups have heen reported, including p-chloranilic acid in chloroform-dioxane (530 nm) (152),sodium 1,2-napbthoquinone-4-sulfonatein ethanol (480 nm) (153), dinitrobindone (1541, and 4-Nmethylaminophenol with 2-iodylhenzoate (525 nm) (155). In addition, sulfonamide drugs have been determined by using pH range, dominant species, wavelength of maximum ahphenothiazine with N-bromosuccinimide (605 nm) (156)and sorbance (nm). and molar ahsorDtivitv are 1.5-2.5. CuH.L. 3-methylbenzothiazolin-2-onehydrazone with ferric sulfate 520, 1.4 X 103; 4.5-5.5 Cu (H,C),2-, g78, 8.5 X Id. 11-12; (565-620 nm) (157). Two similar spectrophotometric methods CuHL", 400,9.8 X lo2.: and 13, CuL', 460, 1.2 X lo8, which have appeared, one for aliphatic thiols and the other for suggests that measuring the absorbance of Cu,(H2L),2- at 578 substituted hydrazines, based on their ability to reduce a nm may be preferred for the determination of Cu. In the copper(I1)-phenanthroline chelate to the corresponding colspectrophotometric determination of the 1:2 metal-ligand ored Cu(1) complex. The method for thiols used the 1,10formation constants of europium 4-(2-pyridylazo)resorcinol phenanthroline complex (158)while the method for hydrazines (PAR),the diffculties of competitive equilibria involving PAR used the 2,9-dimethyl-l,l0-phenanthrolinecomplex (159). can he managed by using low total metal/total ligand ratios 8-Quinolinoland three of its halogenated derivatives have been and ohserving comparative complexation at constant pH (234). determined on the basis of a color-forming reaction with Since PAR is a fairly nonspecific complexing agent, the proZn(OCI), in methanol (364-369 nm) (160). Primary and cedures should be applicable to other metals as well. A simple, secondary amines can be determined via their reaction with accurate normalization technique has been reported for the excess carbon disulfide in dimethylformamide to form alpreparation of calibration curves for determining lanthanides kylammonium alkyldithiocarbamates that combine with nickel with Ce as the standard (135). to form suitably absorbing complexes (161). New reagents and methods appearing since the last review Despite the large diversity of methods and techniques for include 2-(5-bromo-2-pyridylazo)-5-(N-propyl-N-sulfodetermining organic substances, comparative studies continue propy1amino)phenol for chromium (1361, 2-(nitroso-5-Nto he small in number. One such study concluded that, based propyl-N-sulfopropy1amino)phenolfor iron and cobalt (136), 2-(5,5-dimethyl-4,5,6,7-tetrahydrobenzothiazolyl-2-azo)-3,4- on accuracy, precision, and stability, the Coomassie Brilliant Blue G method for urine proteins is superior to the tungstodimethylphenol for copper (137), and thiosalicylic acid with phosphoric acid-biuret or 12.5% TCA methods (162). Other picolinic acid for mercury (295 nm; 8.6 X lo4) (138). A mixture studies reported little difference between the BrattomMarshall of eight lanthanum-group elements were determined by using method, modified versions of the Bratton-Marshalland Morris a novel spectral subtraction technique in which spectral data methods, and an HPLC method for determining sulfadiin a narrow wavelength range containing the most characmethoxine in plasma (163) and between gas chromatography, teristic or largest absorption peak for each component were fluorescence polarization, and ultraviolet spectrometry using used to simultaneously determine a single or small group of alcohol dehydrogenase and NADH for determining blood target constituents along with other constituents (139). This alcohol levels (164). The relative merits of several svectrowas followed by a subtraction step in which the absorbance scopic techniques for determining proteins have heen dikussed of the target component was subtracted from the total over (165). .~ the entire spectrum and was considered determined. SubA number of methods have been studied for the purpose sequent subtractions were performed until all the constituents of making improvements in either sensitivity. selectiwty. or were determined. A continuously regenerated anion-exchange analysis time. In the iron(lll~/Kl)TAphenol ternary system, fiber column has been used to convert ionic solutes eluted from phenols with an ortho hydroxy group were determined with a conventional ion-exchangecnlumn into their iodate or nitrate the greatest sensiri\,ity ( I f i f i ~ .The accuracy, sensitivity, and salts, which were detected by measuring their absorbance at sdertivity of determining organic disulfides were improvril 215 nm (140). Nonmetals. The number of investigations focusing on u,hm the sample was first treated with mercuric acetate iir inorganic nonmetals continues to be small. Aqueous bromide nitrate in the N.N-dimethyl-p-phenylenediamineFeCl,,method (167)a i d a mixture of sodium picratt: and s i h nitrate in the concentration range 0.3-5.0 pg/mL has heen determined indirectly by forming phenylmercury bromide followed by in the direct ahsorption method I I M J . 'l'he ultraviolet spectra

and

~~

~~~~~

r

~

_ ~

~

~

~

~

~

~

ANALYTICAL CHEMISTRY, VOL. 62. NO. 12. JUNE IS. 1990 * 157R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

Table I. Spectrophotometric Methods for Inorganic Substances constituent Ag

Ce CN-

material steel

cu

serum

Fe

biol biol steel

Gd

Ir lanthanides

st. steel

Mo N,Ni

alloys

NO;

drinking water

Sn Ti

Y

alloys alloys alloys steel

Yb Zn biol a

ref

sulfochlorophenolazorhodanine [500 (diff);0.2-601 tribromochlorophosphonazo [642-650;1.17 X 10s; 0-0.651 Hg-EDTA complex, FIA [250;0.5-521 Nitroso-R salt [0.5-281 1-(2-pyridylazo)-2-naphthol, 2nd deriv I0.5-3.01 l-quinolyl-3-(9-anthracenyl)-5-phenylformazan, sulfosalicylic acid, CC14 extn. [0-0.8] l-quinolyl-3-(9-anthracenyl)-5-phenylformazan, sulfosalicylic acid, CCl, extn. [&8] tribromochlorophosphonazo [642-650;1.20 X lo6] sulfochlorophenolazorhodanine [500 (diff);1-1501 Arsenazo I11 [650;0.024.801 dihydroxycarboxychromenol, cetylpyridinium [520-550;(4.2-7.9)X lo'; 0.2-1.91 maleic anhydride-vinyl chloride copolymer in DMF [562;0-421 1-(2-pyridylazo)-2-naphthol, 2nd deriv [0.2-2.01 direct abs measd with ionic strength adjustment [210] maleic anhydride-vinyl chloride copolymer in DMF [562;0-621

453 454 455 456 457 458 458 454 453 459 460 461 457 462 461 463 463 464 453 453 460 465 460 454 466 457 458

NH4SCN,SnC12,extn chrom with TBP NH4SCN,SnC12,extn chrom with TBP 4-methoxybenzenedithiocarboxylicacid, CHC13extn [48& 7.00 X lo4; 0.10-4.01 sulfochlorophenolazorhodanine[500 (diff);1-1501

Pd Pt Rh

method or reagent [wavelength, nm; molar absorptivity; concentration range, fig/mLo]

sulfochlorophenolazorhodanineI500 (diff); 1-1501 dihydroxycarboxychromenol, cetylpyridinium [520-550;(4.2-7.9)X lo4;0.02-1.91 diantipyrylmethane, ascorbic acid [389or 470; O.Ol-O.l%] dihydroxycarboxychromenol, cetylpyridinium [520-550;(4.2-7.9)X lo'; 0.02-1.91 tribromochlorophosphonazo[642-650;1.10 X 1051 l-phenyl-3-methyl-4-(2-hydroxy-5-methylphenylhydrazo)-5-pyrazolone [MO] 1-(2-pyridylaz0)-2-naphthol, 2nd deriv [0.5-3.01 l-quinolyl-3-(9-anthracenyl)-5-phenylformazan, sulfosalicylic acid, CC14 extn [0-0.5]

Unless otherwise mecified.

of 31 flavonoid sulfates were examined before and after treatment with arylsulfatase reagents and the bathochromic shifts associated with certain substitutions were used to identify specific compounds (169).The effects of glucose in the determination of creatinine by the Jaffe method (1701, of certain dicarboxylic acids in the determination of fumaric acid by direct ultraviolet absorption (171),of electrolytes on the colloidal pro erties and analytical characteristics of Chrome Azurol 8-aluminum-nonionic surfactant ternary complex (172),and of solvents on the ultraviolet absorbance of sunscreens (173)have been investigated. In a collaborative study by five laboratories of the determination of hydralazine hydrochloride by conversion to tetrazolo[5,1-a]phthalazine and measurement at 274 nm, the mean assay values and standard deviations were sufficiently good for the method to acquire official first action status with the Association of Official Analytical Chemists (174). The interference of hemoglobin in the determination of cytochromes in human liver can be eliminated by keeping it in the carbon monoxide form throughout the determination rocedure (175). In a study of henothiazines, it was estabished that oxidation with hyfrogen peroxide in acetic acid and comparison of the resulting spectra with those of parent drugs and sulfoxides atly improves the accuracy of identificationand subsequent (176). The molar absorptivity of intermediate %&mination oxygenated hemoglobin is 1% less than that of the fully oxy enated species and produces a 3% nonlinearity effect on a!sorbance measurements taken at the absorbance maximum (414 nm) of fully oxygenated hemoglobin (177). In other studies, the time between color development and absorbance messurement was determined to be a critical factor in the HC1, HCN, CTAB, NaOH, and NaHCO methods of determination (178)and the Harboe correction !ormula was found to give acceptable results for hemoglobin in nonicteric, nonturbid plasma using absorbance data collected with a wavelength scanning instrument (179). Raisin the sample incubation tem rature to 50 "C in the diphen$amine method for DNA enal%s the absorbance to be measured as early as 3 h after initiation of the reaction and lowers the detection limit of the method (180). It has been demonstrated that bilirubin oxidase can be used to eliminate the interference of bilirubin in the determination of uric acid by the uricase-peroxidase method (181). Two papers describing the same research on the determination of amino acids using ninh drin suggest that better sensitivity is obtained if amino aciis are measured at 404 rather than 570 nm and the total amino plus imino acids are 158R

ANALYTICAL CHEMISTRY, VOL. 62. NO. 12, JUNE 15,

1990

measured at 290 rather than 520 nm (182,183).New ty es of s ecific interactions between some amino acids and nucLic acifs have been discovered by usin precise ultraviolet absorbance-difference spectrometry 7184). The Coomassie Brilliant Blue G method for determining proteins has been the subject of numerous studies, including its application to plant proteins (I#), acid-solubleproteins (186),and thermdly denatured, insoluble roteins (187). In other studies, it is reported that the ad8tion of nonionic surfactants such as Triton X-100increases the sensitivity (188,189).There appears to be some disagreement about the efficacy of addin sodium dodecylsulfate, with one paper reporting a decrease8 sensitivity but improved accuracy (190) and another paper suggesting both sensitivity and accuracy are decreased (191). Potential interferences from a number of zwitterion buffers, surfactants, sugars,salts, chelating agents, and reducing agents on two modified Lowry methods for proteins have been investigated (192)and a new modification has been proposed, using dithiothreitol to accelerate the color-forming reaction (193).Some of the variables and interferences that affect the reaction kinetics of proteins with bicinchoninic acid have been studied and interferences attributed to glucose, ascorbic acid, and uric acid may be reduced significantly b performing a two-point assay and includin borate ions in t i e buffer (194). another study reports that pienols interfere more in the bicinchoninic method than the Lowry or Coomassie Brilliant Blue G methods (195).The sensitivity of the biuret method for determining fibrinogen is reported to be improved by measuring the absorbance at 750 rather than 540 nm (196). Nonprotein components of urine, including creatinine, uric acid, and sodium chloride, have been shown to interfere in the determination of urinary albumin using bromophenol blue (197). Although it roduces linear calibration lots and is precise, the thiobariituric acid method reporte8y underestimates the concentration of glycated albumin in serum (198). Detailed studies of the accuracy, precision, sensitivity, and selectivity have been reported for the CTAB method for UTinary glycosaminoglycans (199)and the PAP method for uric acid (200). Five new additions to a long series of pa ers summarizing the s ectral properties of heterocyclic an anthracene compounc%,including the effect of substituents and solvent, have a peared (201-205).Finally, a laboratory experiment base! on the thiobarbituric acid method for determining sialic acid has been described that illustrates many of the important features and limitations of spectrophotometry (206).

B

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

New methods published since the last review include determination of proteins by a modified Lowry method that does not require the addition of surfactanta (660nm) (207) and by measuring the change in absorbance at 590 nm on the addition of colloidal gold (208)and glycdylated roteins in serum with Nitro Blue Tetrazolium in alkaline sofution (530 nm) (209) and by differential reduction of free and bound glucose by sodium borohydride (210),proteins with bicinchroninic acid (211), and proteinase inhibitors by their effect on the rate of acid hydrolysis of ~-Phe-Pro-Arg-5-amino-2-nitrobenzoic isopropylamide catalyzed by a-thrombin (405 nm) (212). Automated versions of the Lowry method for determinin proteins have been developed, using a robotics system (2137 and the Cobas-Biocentrifugalanalyzer (214). The colorimetric bicinchoninic acid protein assay kit of Pierce Chemical Co. (Rockford, IL) has been modified so that samples could be analyzed with a microtiter plate reader (49G540 nm)at a rate of 1000 samples h (215) and the addition of sodium dodec lsulfate to t e Coomassie Brilliant Blue G re ent has enailed the development of an automated metho for determining roteins in cerebros inal fluid (216). A new reagent, 5-naphthy~ene-2-azo-4-(dimet~ylamino)benzenesulfonic acid, has been synthesized and used to determine amino acids (217). New enzymatic methods include the determination of serum triglycerides using lip0 rotein lipase, glycerokinase, ATP, glycerol hos hate oxi ase, peroxidase, 4-aminoantipyrine, and 4-ch orop enol (500 nm) (218) and decarboxylases using phosphoenol yruvate, phos hoenolpyruvate carboxylase, malate dehylrogenase, and fiADH (340 nm) (219). An ingenious system is reported that enables local and long-term spectrophotometric assa in brain tiasuea of live animals using a miniature optical pro e comprised of a multibarrel micropipet for reagent injections and optical fibers for light absorption measurements (220). New methods for determining pharmaceuticals include 8-lactam antibiotics on the basis of their ability to reduce the paramolybdate anion to molybdenum blue (221); chlorpromazine, thiamin, lincomycin, ofloxacin, and the0 hylline as ternar complexes with eosin and palladium(I1) E45 nm; 3.5 X 10P-6.7 X 10‘) (222); thioridazine, methotrime razine, perazine, chlorpromazine, and promazine with 3-me&ylbenzothiazolin-2-oneh drazone and iron(II1) salts (700-740 nm; 2.0 X 10‘-4.0 X 10‘7 (223); adrenaline and isoprenaline by oxidation in the presence of silver oxide (490 nm; 5-80 pg/mL) (224); amine-containin drugs with triethyl orthoformate plus an acid catal st (2257; penicillins and cephalosporins with haematoxyh plus chloramine-T (555 nm) (226); amine drugs, such as atro ine and diethylaminoethanol, with tetraiodophenolsulfonp thalein (422.5 nm) (227); acetamino hen (243 nm), acetanilide (238 nm), and phenacetin (243 m y by direct ultraviolet absorption in mixed solvents (228); and thiols usin 2,2’-bis(2-h droxyl-naphthy1azo)diphenyl disulfide (2297. A proce&re for nitrosamines has been developed on the basis of their photolysis in slightly acidic solution and subsequent diazotization of sulfanilamide with the liberated nitrous acid and cou ling to N-(l-naphthy1)ethylenediamine(230). Peracids haveken determined in the presence of a 1000-foldexcess of hydrogen peroxide by taking advantage of its much greater rate of reaction with iodide (231). Last1 , the spot test reagent, o-aminodiphenylacetic acid, has een used to determine quantitatively the concentration of pentose phos hate esters b measuring the absorbance at 650 nm where alloses do not agsorb (232). Simultaneous and Multiwavelength Determinations. The reversed matrix representation of the Beer-Lambert law (The CPA matrix method) has been applied to the simultaneous determination of Mo, W, and Ti as their ternary complexes with salicylfluorone and cetyltrimethylammonium bromide using wavelengths of 510,512,514,516,518, and 520 nm (233); Nb and Ta as their ternary complexes with the same reagents using six wavelengths between 500 and 530 nm (234); Zr and Hf as their ternary complexes with m-nitrophenylfluorone plus cetyltrimethylammonium bromide (235); and Co, Ni, Cu, and Zn with 2-(5-bromo-2-ppid lazo)-B(diethylamino)phenol(236). A modified factor an&& method has been applied to the determination of Ge, Mo, W, and Sn as their ternary complexes with -nitrophenylfluorone and cetyltrimethylammonium bromig (237). Six lanthanides or groups of lanthanides have been determined simultaneously as chlorophosphonazo-DBC complexes using measurements

h

P R

?

a

r

R

B

at 25 wavelengths (238). Organic compounds that have been determined simultaneously by direct absorbance measurementa include p-aminosalicylic acid and its ma’or degradation product, rn-aminophenol(239); mepivacaine (‘a local anesthetic) and its stabilizer, p-hydroxybenzoic acid methyl e+er (240); and thiamine, riboflavin, pyridoxine, and nicotinamide in vitamin B injections using wavelengths in the range 222-290 nm (241). A novel use of doublet peaks in flow-injection analysis,occurring when the center of the sample zone remains unmixed, was used to determine Ni and Fe at a single wavelength of 395 nm (242). Nickel was determined by direct measurement at the center of the sample zone and iron was oxidized, treated with thiocyanate, and measured at the peak maximum correspondin? to the trailing ed e of the sample zone. After determination of the total U&I) and Th(1V) concentration as their Arsenazo I11 complexes, U(V1) can be determined in the mixture by a temperature-jump method (243). Absorbance difference techniques have been used to determine various substances in the presence of constant-absorbing backgrounds, including the protein content of milk (210 and 220 nm) (244), proteins in solution (235 and 280 nm) (245),hemoglobin using the alkaline hematin reaction (577 and 633 nm) (246), eugenol in ointment creams (280 and 290 nm) (247), caffeine in herbs (272 and 292.5 nm) (248), chlohexidine acetate in suppositories (259 and 354.8 nm) (249), and tartrazine (a food dye) and hemoglobin in blood (250). Derivative Determinations. The use of derivative techniques seems to be increasing steadily, presumably because of the availability of spectrophotometers with inte rated computers and the accompanying software for pro ucing derivative spectra. Metals determined by using fiit-derivative spectra include Cu as its EDTA complex (0.5-25.0 p mL) (251) and Nd as its Tiron complex (578 nm) (252). gobalt and nickel have been determined simultaneously by using the first-derivative spectra of their colored chelates with benzyl 2-pyridyl ketone 2-quinolyhydrazone (253). A number of methods for determining lanthanides either alone or simultaneously in mixtures have been reported, including Gd (direct, second order at 275.9 nm) (254); Pr and Nd (direct, third order) (255); Nd, Eb, and Ho (direct, third order) (256); Pr, Nd, Eu, Ho, Er, and Tm (with 2-thenoyltrifluoracetone2,6-dimethylpyridine,second order) (257); three-component mixtures of La, Pr, Nd, Sm, Eu, Ho, or Er (with trieth lenetetraaminehexaacetic acid, third order) (258);and Sm anBEu (with oxalic acid plus EDTA, fourth order) (259). Second-order derivative spectra have been used for the determination of borate ion in water using Azomethine H with no interferences due to the color of natural waters (260) and nitrate ion in sewage effluent by direct measurement at 224 nm after decomposition of nitrite ion with sulfamic acid (261). Drugs that have reportedly been determined by their first-derivative spectra include prenylamine lactate, fendiline, debrisoquine sulfate, prenoxdiazine, and primidone (262); ten benzodiazepines in various solvents (263); p-coumaric and ferulic acids (264); chlorpheniramine maleate, phenylpropanolamine hydrochloride, and pseudoephedrine hydrochloride (265); amidopyrine and caffeine (274.9-296.3 nm) (266);paracetamol and caffeine (220-310 nm) (267); hydrocortisone, dexamethasone,prednisolone, and prednisone (268); methaqualone in blood after extraction with cyclohexane (230-250 nm) (269); and thiamin mononitrate, riboflavin phosphate, nicotinamide, pyridoxine hydrochloride, and ascorbic acid (270). In addition, seven dyes-azorubin, amaranth-5, erythrosin, indigotin, ponso-4R, tetrasin, and chinolin yellow, in the concentration range 5-50 pg/mL (271); stano20101 (272); and ei ht mixtures of purines and yrimidines (273)-have been ietermined by their first- anfsecond-derivative spectra. An equally large number of papers re rt the determination of various drugs using their second- erivative spectra, including lecithin in antiaging capsules (230-260 nm) (274); thiamphenicol glycinate salts (275); hydrochlorthiazide and amiloride, alone or simultaneously, in tablets (264-278 and 365-381 nm, respectively) (276); naphthazoline and oxprenolol across full-thickness human skin in vitro (277); homotro ine methyl bromide and fenproporex (278); and pseudoephdine hydrochloride, chlorpheniramine maleate, and dextromethorphan hydrobromide simultaneously in mixtures (279). A nondestructive method for determining the adenine and

d

r

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

159R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

Table 11. Spectrophotometric Methods for Organic Substances constituent adrenergics

material

method or reagent [wavelength, nm; molar absorptivity; concentration range, fig/mL"]

p-aminophenol [640; 10-120 for isoxsuprine & nylidrin; 600; 2-15 for noradrenaline] pharmac Fast Green FCF [630], or Orange I1 [495] pharmac 3-methylbenzothiazolin-2-onehydrazone, (NH4)4Ce(S04)4.2H20 [5101 pharmac diazotize with sulfanilamide [410-450; 1-1001 alcohols dissoln in HOAc-heptane, nitrosation with H2S04-KN02,extn with aq ammonia [358] aldehydes, arom sodium pentacyanoammineferroate, H2S [590; 5.50 X 103; 0.05-0.06 mM] alkaloids lupines extn with TCA, KI-KI03 [500; 0.2-2.21 amides prim aliph Br,, KI, phenol red [590] amines, prim & sec aliph derivitize to dithiocarbamate in CS,-aq NaOH [250 & 280; 0.2-61 amines, arom p-benzoquinone (490-510; ElCm1% = 90-3801 antihistamines pharmac haematoxylin, chloramine T [4-321 L-ascorbic acid juices diff abs with & without Cu(II), pH 6 [267; 25-100 pg] 1,4-benzoquinone 3-ethylrhodanine [680; 0.1-201 benzothiadiazine diuretics drugs 7,7,8,8-tetracyanoquinodimethane,NaOAc [578; 0.7-6.01 busulfan drugs FIA with 4-(4-nitrobenzyl)pyridine[5801 caffeine tablets 1st deriv [263.8; 0-40.71 carboquone drugs FIA, 4-(4-nitrobenzyl)pyridine[580] cephalosporins pharmac molybdophosphoric acid [(2.93, 2.48, 7.66, 3.23, 9.05, 7.16, 6.20) X 10s for cephalexin, cephradine, cephazolin, cefaclor, cefoxitin, cephamandol nafate, & cefotaxime, respectively] chromotropic acid diazotized sulfanilic acid, pH 7.0 [510; 1.41-30.71 cyclophosphamide pharmac FIA, 4-(4-nitrobenzyl)pyridine[580] desoximetasone p-acetylaminobenzaldehyde semithiocarbazone [345; 0.01-1.0 mM] pharmac desoxycorticosterone pharmac p-acetylaminobenzaldehyde semithiocarbazone [352; 0.01-1.0 mM] dexamethasone pharmac p-acetylaminobenzaldehydethiosemicarbazone [500;0.01-1.0 mM] dimethylamine maleic anhydride-vinyl chloride copolymer in DMF [0-451 2,6-dinitro-o-cresol air fibrous filter, aq NaOH [320; 20.03 mg/m3 of air] diphenhydramine nasal drops 0.1 M HCl, 2nd deriv [10-501 dobutamine hydrochloride 2,2-diphenyl-l-picrylhydrazyl[520; 0.5-2.51 ephedrine alkaloids CT band in CHCl, [293, 253; (0.74-2.84) x IO4] ephedrine nasal drops dir abs meas [256.5; 100-1100] ergosterol yeast sapon in alk MeOH, Et ether extn [282.5; 0-501 ethionamide pharmac p-phenylenediamine, Zn, Fe(1II) [600] folic acid pharmac p-dimethylaminocinnamaldehyde,MeOH/perchloric acid [ 520; 0-5.51 pharmac 0.1 M NaOH, dir abs meas [283; 5-17.51 halogenated organics 1,5-bis(6-methyl-4-pyrimidyl)carbazone [0.355-3.55 C1-, 0.799-7.99 pharmac Br-, 1.27-12.7 I-] hemoglobin plasma phenothiazine [4-5001 hydrocarbons, arom tetracyanoethylene in CH3CN [5-60] hydrocarbons, polycyclic arom petroleum dir abs meas [385; 0.003-0.185 as benz(a)pyrene] hydrocortisone pharmac p-acetylaminobenzaldehydesemithiocarbazone [344; 0.01-1.0 mM] hydroperoxides biological I- in MeOH-HOAc, C ~ ( O A C[358; ) ~ 2.97 X IO4] isoprenaline pharmac 2,2-diphenyl-l-picrylhydrazyl[520; 0.5-51 menadione pharmac 3-ethylrhodanine [700; 0.5-1001 methaqualone blood 1st and 2nd deriv [0-IO] methyldopa 2,2-diphenyl-l-picrylhydrazyl [520; 0.1-1.0] drugs methylprednisolone p-acetylaminobenzaldehydethiosemicarbazone [535; 0.01-0.5 mM] pharmac monosaccharides thymol in concd H,SO [490; (0-8.3 D-arabinose), (0-4.5 D-xylose), (0-15.3 Dgalacturonic acid], [509; (0-11.0 D-glucose), (0-17.3 D-g&CbSe), (0-12.5 D-mannOSe)], [504; 0-12.9 ~-rhamose] 1-morpholinomethyltetrahydro-2( 1H)-pyrimidinone drugs hypochlorite, KI, acetylsalicylic acid [575; 5-40] naphazoline nasal drops 0.1 M HC1, 2nd deriv [I-51 oxytetracycline hydrochloride pharmac HCl, dir abs meas [353; 2-20] penicillins pharmac ammonium molybdate, H2S04 [670; 35-90] penicillin G pharmac chloranil [560; 100-700] phenols dissoln in HOAc-heptane, nitrosation with H2S04-KNOz,aq NH3 extn [420] fish 4-aminoantipyrine, ammonium persulfate, n-hexanol extn [490] phenothiazines pharmac KI04 in H,S04/H,P04 [525,568 (chloropromazine, aminopromazine fumarate); 20-1201, [515; 30-100 levomepromazine maleate], [640;30-170 thioridazine] piperazine pharmac phenothiazine, N-bromosuccinimide in aq MeOH [595; 0.5-31 prednisolone pharmac p-acetylaminobenzaldehyde semithiocarbazone [336; 0.01-1.0 mM] propyphenazone 1st deriv [308.2; 0-90.1) tablets protein urine Coomassie Brilliant Blue [595; 0.1-1001 pyrimidine nucleosides pharmac phloroglucinol [435-450; 40-1401 sulfacetamide eye drops phosphate buffer (pH 5.8), dir abs meas [257] sulfanilamides 1,2-naphthoquinone-4-sulfonate [485] pharmac sulfathiourea pharmac HCL, p-phenylenediamine, Zn, Fe(II1) [600] sulfonic acid dihydrazides HCl diazotize with Rivanol [508] l6OR

pharmac

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

ref 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 481 483 484 481 485 485 486 460 487 488 489 490 491 492 493 494 495 496 497 498 499 485 500 489 479 501 489 486 502 503 488 504 505 506

471 507 508 509 485 482 510 511 512 513 493 514

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

Table I1 (Continued) constituent

material

tetracyclines tetracycline derivatives theophylline thiopentone thioxanthenes Unless otherwise specified.

method or reagent [wavelength, nm; molar absorptivity; concentration range, pg/mLa]

ref

sodium tungstate [386] alk CuC1, [395-410; 0-201 dir abs meas [267; 0-401 p-phenylenediamine, Zn Fe(1II) [600] 12 [360 & 275; 1-20]

515 516 517 493 518

pharmac pharmac plasma pharmac

pharmac

thymine content of DNA has been reported, based on second-derivative,ultraviolet spectra (280). Phenothiaziies, alone or in two-component mixtures, have been determined by using differences between their zero-, second-, and fourth-derivative spectra (281) and 13 penicillins and five cephalosporins can be identified ualitatively by comparison of their first-, second., and thiriderivative spectra (282). The fourth-derivative spectrum, obtained after five smoothing o erations, has been used to characterize pol t ene (283) anzthe critical micelle a s been measured from a sudden concentration of bile s& r decrease in the second-derivativeabsorbance at 400 nm along with an increase a t 470 nm and a sharp chan e in the fourth-derivative absorbance a t 375 and 395 nm f284) Reaction Rate Determinations. The catalytic effect of thyroxine and triiodothyronine on the rate of reduction of Ce(1V) by As(II1) in a stopped-flow system (285) and of 4substituted thiobenzamides on the rate of oxidation of azide by iodine (350 nm) using a fixed-time method (286)has been used for their determination. Four papers have appeared reporting the determination of organic substances by an enzyme-catalysis system: diaminobenzoic acids with 2,2'-azin o - d i ( 3 - e t h y l b e n z o t o ~ e - ~ s ~acid) o ~ cdiammonium salt in the presence of laccase (287);D-mannOSe in the presence of D-mannose isomerase by measuring the Dfructose formed with pfructose dehydrogenase and potassium ferricyanide at 660 nm (288);amino acid decarboxylases using the coupled reaction with phosphoenolpyruvate carboxylase and malate dehydrogenase (289);and serum guanase activity by enzymic coupling to xanthine oxidase and measurement of the rate of uric acid formation at 300 nm (290). As little as 10 pg/mL of albumin rotein can be determined by its enzymelike romotion o??hydrolysisof ester bonds in fatty acid aryl esters 7291). Flow-Injection Determinations. The interest in flowinjection techniques, which was responsible for the introduction of this section in the last review, remains high. When reported, the analysis frequency is given in parenthesis. Copper has been determined, on the basis of its catalysis of the iron(II1)-thiosulfate reaction (525 nm; 40 h-l) (292),as well as boron in lants, on the basis of its reaction with azomethine-H (60 l?l) (293). Arsenazo I11 is reported to be superior to 4-(2-pyrid lazo)resorcinol, 5-bromo-2-(2-pyridylazo)-5-diethylaminop enol, or Chrome Azurol S plus cet 1trimethylammonium or cetyl yridinium bromide for the i e termination of total lanthanigs at 660 nm (294). Rep0.a on the determination of inorganic nonmetals include nitrites in food or soil by reaction with sulfanilamide (0.05-2 a/d) and N-(1-naphthy1)ethylenediamine and nitrate (0.5-20 pg[mL) in the same sample after reduction with cadmium (45 h- ) (295);chlorine and sulfite by reactions with iodide and iodine (296); and periodate, chromate, vanadate, and hexacyanoferrate(II1) in a variety of samples on the basis of their oxidation of thionine blue (670 nm) (297). A composite manifold comprised of a flow cell with four ion-selective electrodes and two photometric transducer flow cells has been developed and applied to the determination of potassium, calcium, ammonium, chloride, nitrate, and phosphate ions in lant nutrient solutions (298). The flow-injection technique as been applied to the determination of numerous drugs, including carboxylic acids, after ion- air extraction with gentian violet into chloroform (299p and with 2-nitrohenylh drazine (100 h-9 (300);N-nitroso compounds on the of genitrosation and reaction of the liberated nitrite with Griess rea ent (25 h-l) (301);l,4-benzodiazepines in harmaceuticaf formulations and human urine by direct a isorbance measurements (120 h-l) (302,303);sulfonamides (2-20 rg/mL) in serum, urine, and formulations using the Brat-

K

B

Lis

ton-Marshall reaction (72 h-l) (304);and azintamide in tablets (5-50 p /mL; 150 h-l) (305). In addition, procedures are reporkiffor the determination of proteins on the basis of their reaction with Folin-Ciocalteus reagent with l , l - d i t h i o - ~ , ~ threitol added to accelerate color formation (20 h-l) (306), amino acids using chloranil (80 h-l) (307), and aromatic primary amines using 4-N-methylaminophenol and dichromate (530 nm; 0.05-20 pg/mL; 120 h-l) (308). Lastly, the use of several flow programs (stopped flow, oscillating flow, and variable flow) with small enzyme reactors has been shown to improve the efficiency of enzymic conversion and was evaluated with the determination of glucose with glucose oxidase and horseradish peroxidase immobilized on controlled-pore glass in the same reactor (309). Photoacoustic and Thermal-Lens Determinations. These techni ues have been sufficiently well characterized that they arefeginning to be applied to various analytical problems without extensive discussion of the physics involved. Formaldehyde as a minority component in gas mixtures (310) and methaphyllin plus lactose in powder form and acrinol plus zinc oxide in ointment have been determined by photoacoustic spectroscopy (311). Thermal-lens spectrometry has been successfully applied to the determination of uranium and neodymium as their carbonates (448 nm; detection limit of 5 X 10%M) (312) and a variety of metal ions after extraction with dithizone in carbon tetrachloride (514.5 nm; detection limits -2 ng/mL) (313).

PHYSICS Topics related primarily to the principles of measurin radiant energy, treatment of data, and instrumentation used in acquiring data are included in this section of the review. Optimization and Calculation of Results. Mathematical equations for determining concentration have been derived or studied for use with the method of absorbance ratios (314) and methods for simultaneous determinations using overlapping spectral data (315-321). Also, a generalized equation is reported using data from the calibration curve to determine the optimum concentration range (322). A simple mathematical treatment of the instantaneous acid-base equilibria prevailing at the peak maximum when indicators are used for flow-in'ection determinations of acids and bases can be used to establish the criteria for choosing the reagent/indicator combination most likely to yield h e a r calibration plots (323). A number of papers have appeared that discuss methods of selecting the optimum measurement wavelengths in simultaneous multicomponent determinations (324-329). Some new methods for improving the characteristics of mono- and polychromators have been reported (330) and the resolving power of polychromators is said to be about 2.8 times that of a single monochromator (331). The common technique of ensemble averagin of repetitive waveforms to increase signal-to-noise ratios as been im roved b using a closed-loop feedback control system in whic1 forwadand reverse spectral scans are co-added (332). Strate ies for improving detection limits in flow-injection analysis reducin base-line noise have been discussed and ap liedT to the dletermination of chloride ion (333) and the protlem of establishing detection limits in photon counting systems has been examined by looking at both the intensity and the shape of the spectral line instead of only the background under the line (334). A simple subtraction (or addition) technique reportedly can produce derivative spectra without the introduction of significant noise (335). Errors. A least-squares statistical method is reputed to be effective in predicting the lowest possible error in the determination of drugs in mixtures by derivative spectro-

k

f

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

161 R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

photometry (336). Absorbance errors of dye solutions due to adsorption on the glass container have been studied and a correlation was shown to exist between the amount of adso tion and the degree of association of the dye (337). Error an error propagation have been discussed in single and multicomponent determinations (338);a weighted regression method can be used to detect systematic errors, even if the random error cannot be neglected (339),and an interactive computer program has been developed that simulates absorption spectro hotometry and permits studies to select parameters and o%serve trends in errors (340). A new theory of error pro agation has been described and used to develop equations or estimating the errors in the concentrations predicted from a multivariate mathematical model for multicomponent determinations based on arrays of nonselective sensors or overlapping spectra (341) and an extensive discussion of noise and detection limits in signal-integrating methods has appeared (342). Precision, Accuracy, and Selectivity. The photometric accuracy and repeatability of ei ht spectrophotometers at five locations, each designed for re ectance measurements, were found to be quite com arable except a t higher values and longer time intervals getween measurements (343). The precision of determining K2Cr207and KMn04 by using a dual-wavelength method with a single-wavelengthinstrument was satisfactory when the proper wavelength pairs were selected and the absorbance values were in the range 0.4-1.0 (344). The transmittance-concentration relation in both high-precision and low-absorbance methods has been shown to obey a fourth de ee polynomial equation, and a com utational procedure or calculating concentration was appied to the determination of nitrite ion in water (345). Standards and Calibration. The activities undertaken since 1969 by the Center for Analytical Chemistry of the National Institute for Standards and Testing, especially in regard to standard reference material developed for checking the proper functioning of spectrophotometers, has been reviewed (346). A europium- and neodymium-doped bariumlead-phosphate glass with numerous absorption peaks between 300 and 1600 nm has been proposed as a wavelengthscale calibration standard for UV, visible, and near-IR spectrophotometers (347) and Eu(II1) and Tb(III), with their narrow well-defined absorption bands throughout the ultraviolet and visible, have been used to test the wavelength accuracy of liquid chromatography detectors (348). A procedure has been described for simultaneouslydeterminin the slope of the calibration curve and the coefficient K in tfualwavelength spectrophotometry (349). Inserting the sample between two different standard solutions used as carrier streams in flow-injection analysis is reported to be a simple, effective method for continuous recalibration in process control (350). In a paper stressing the importance of knowledge of the performance of one's spectrophotometer, cobalt chloride or oxyhemoglobin for checking wavelength accuracy, cupric sulfate for checking photometric accuracy, and sodium nitrate for adjusting for stray light were recommended, although it would seem a wiser choice to use the standard materials recommended by the National Institute for Standards and Testing (351). Stoichiometry and Physical Constants. Simple methods have been developed for determining simultaneously the ionization constants of a tetraprotic acid from absorbance versus pH data (352)and of a diprotic acid from the difference in absorbance at two wavelengths (353). The acid ionization constants of 1,5-diphenylformazan and six of its derivatives have been determined in 40% (v v) ethanolic solutions (354) and molar absorptivities for H a t 11wavelengths and for HO2- at 10 wavelengths have been measured (355). Instrumental Techniques. The simultaneous determination of pairs of metal ions has been illustrated with dual-wavelength measurements on two absorbing systems of each pair of ions and this new approach is said to increase both sensitivity and selectivity (356,357). A numerical simulation method based on pairs of overlapping Gaussian bands has been used to determine the necessary criteria for the zero crossing technique of first- and second-derivative spectrophotometry a plied to the determination of lanthanides in mixtures (3587. The application of diode-array detectors in flow-injection determinations is the subject of two papers (359,360)and the

T

P

B

P

d

l62R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

modification of a single-beam photoacoustic spectrometer to permit simultaneous detection of photoacoustic amplitudes and phase angles is reported in another (361). A computerassisted technique of thermomodulated difference spectrometry has been developed for identifying mixtures of dru s, based on temperature-related changes in the width and focation of absorption bands (362). The fixed-time,integrating, rate meter method for determining the rate of a reaction at a single time is reported to be valid at any time during the reaction and the precision of the determined rate can be temporally optimized (363). Instrument Components. A com uter-controlled tunable dye laser capable of delivering ragation of 260-300 and 400-600 nm with a 0.1-nm band width has been examined as a spectral source (364). The errors associated with cell ine and positioning are reportedly decreased by fixing a flow-t rough cell in the sample compartment of a spectrophotometer (365). Several papers have focused on the development of new or modified cells, including two variablepathlength cells, one of fiied thickness with no moving parta (366)and the other with flow-through capability (367);a cell for examining or anometallic complexes in inert atmospheres (368);a cell capatle of withstanding pressures u to 200 MPa (369);a versatile stopped-flow mixing module 670);a cylindrical, brass, resonance photoacoustic cell operated in the azimuthal mode (371);and a photoacoustic cell desi ed for controlled-temperature operation up to 500 OC ( 3 7 2 r A significant improvement in the dynamic range of photodiodearray detectors has been achieved by collecting spectra under computer-controlled operating conditions at varied integration times and selecting the optimum inte ation time individually for each absorbin analyte (373). T E general current state of detector technofogy has been summarized (374),along with the use of solid-state devices in flow-injection analysis (375) and the properties and applications of charge-coupled array detectors in spectrometry (376). The spectral sensitivity of broad-band, mixed-alkali-metal photocathodes in the wavelength range 160-900 nm has been determined (377) and a new method has been reported for measuring absolute spectral responsivity of photodetectors in the wavelength range of 400-900 nm (378). An automated system for mixing reagents, filling absorption cells, and ac uiring data with a diode-array spectrometer has been descrged and applied to the determination of Michaelis-Menten parameters, Ki,and pH profiles for several enzymes (379). The use of a fiber-opticabsorbance probe in a bulk electrochemical cell is reported to have certain advantages over conventional transparent thin-layer cells in terms of solute concentration and solvent vapor ressure (380). A cryogenic attachment has been developed t at is suitable for measurements from 200 nm to 200 pm at 10-300 K with the possibility of various angles of incident radiation (381). Lastly, a variablegain frequen mode integrator built around an Intel 8254 chip has been %;eloped for use with photomultiplier tubes (382). Spectrophotometers. Several reviews of the ultraviolet and li ht absorption instruments exhibited at the 1988 and 1989 Bittsburgh Conference have been published (102,103). While no major innovations in commercial instruments have appeared, significant improvements in speed, versatility, and data processing continue to be common. Acton Research announced its SpectroPro-500, a 0.5-m, interchangeable, triple-gratin instrument for the ultraviolet, visible, and near-infrarei (383). The model 300 UV-vis-near-IR from Guided Wave is a rapid-scanning, sin le- or dual-beam, fiber-optic instrument designed mainly k r on-line monitorin (384). Two new instruments from Hach have been marketecf the DR/ 100, a battery operated hand-held colorimeter for use with precalibrated test kits, and the DR/2000, a microprocessor-controlled prism instrument for the wavelen h range 400-900 nm (385). Hitachi has added the Model 8 3 1 1 0 to its 3000-line (386).It is a mid-priced, double-beam, scanning, UV-vis instrument featuring a 12-in. CRT with graphics, built-in printer/plotter, and a 3.5-in. floppy disk drive for parameter storage and recall. ColorQuest, an instrument for measuring appearance charaderistic such as color, gloss, haze, and opacity, has been introduced by HunterLab (387). Jasco has announced the development of two new UV-vis instruments (388). The Model 7800 is a low-cost, double-beam instrument using a silicon photocell detector for the entire wavelength range of 200-1100 nm. The Model 7850 is a

terchana

K

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

research- ade, double-beam,double-monochromatorinstrument wit extremely low stray light using an R928 photomultiplier detector. A variety of hardware units and software packages are available for either instrument. The UVIKON 930 from Kontron is a sin le-monochromator,double-beam, UV-vis instrument with ive scan speeds up to 2000 nm m and the usual data storage and manipulation ca abilities (3 l9). Pharmacia LKB Biotechnology has u a d e l two of its instruments (390). The Novaspec I1 visi operates between 325 and 900 nm than 6 nm and can display absorbance, percent transmittance, and concentration. It would ap ear to be quite suitable for many teachin laboratories. {he Ultrospec Plus is a research-grade V-vis instrument with built-in programs for standard curves, multi le-wavelength and reaction-rate measurements, and wave ength scanning. A complete line of accessories is available for both instruments. LT Industries has introduced the Quantum 12001, an industrial version of its general-purpose model (391). The performance characteristics are virtually the same but the industrial. version is capable of operating in a variety of hazardous enwronments. Two new instruments from Milton Roy have been introduced (392). The Spectronic 1201 is a scanning, double-beam,UVvis instrument that uses optical feedback to achieve a high degree of stability and incorporates a large number of programmed functions and tests. The Spectronic 3000 Array is also a scanning, double-beam, W-vis instrument but employs a photodiode array detector. This model is sup lied with a built-in IBM 286/287-com atible computer and)VGA color monitor. The Spectrogard If, available from Pacific Scientific, is a versatile scanning spectrophotometer designed mainly for color analysis (393). The company also has introduced its Model 6250 research-grade, near-IR instrument featuring a grating monochromator, sample pathlengths of 0.5-30.0 nm, an external fiber-optic probe accessory, and extensive software including four types of regression, Fourier transformation, spectral librar and spectral searches. Perkin-Elmer has extended its &vis line with the Lambda 6, a double-beam, ratio-recording instrument with selectable bandwidths from 0.25 to 4 nm (394). A high-performance version comes equipped with a premonochromator which reduces stray radiation to very low levels. Philips (formerly Pye Unicam) has expanded their 8600 line to include the PU8630 (UV-visnear-IR) and PUS680 (vis only), both designed for kinetics determination (395). The company has also introduced a new line of UV-vis spectrophotometers,the 8700 series, comprised of four models: 8720, 8725, 8740, and 8745. The first two models have fixed, 2-nm bandwidths and differ in that the 8725 is supplied with a color rather than monochrome monitor. The last two have selectable bandwidths from 0.2 to 2.0 nm and the 8745 has the color monitor. A variety of software extension PROM's plug into the accesmry interface board and provide ca abilities such as multicom onent determinations, multiwave ength measurements, and [inetics measurements. Two new instruments from Secomam are available (3%). The S.500.1 is an inexpensive, single-beam, visible spectrophotometer with wavelength scanning and base-line subtraction. The S.1OOO is a microprocessor-controlled, scanning instrument for the wavelength range 200-1000 nm. Sequoia-Turner has upgraded its line of spectrophotometers with the introduction of the Model 690, a microprocessor-controlled instrument using a solid-state photodector for the wavelength ran e of 330-1000 nm (397). Push-button selection of mode antwavelength is indicated on a digital readout and the instrument automatically sets wavelengths, inserts proper stray light filters, establishes the blank, and calibrates itself. Two new spectrophotometer from Shimadzu have been introduced: the UV 2100, a microcomputer-controlled, hi hresolution, double-beam instrument with an integral co or video display, dual 3.5-in. floppy disk drives, and a six-color X /Y plotter for the UV-vis region and the UV 3100, which is similar but employs two monochromators, each with three hologra hic gratings, and is designed for the 190-3200-nm region 8'98). Several software pac es and hardware modules have been marketed for Beckman U instruments, including a data communications package (Data Comm); two automatic on-line sample delivery, data ac uisition, and data printout modules (Dissolution Soft Pac); a l a t a acqusition, storage, and retrieval system (Data Logger); a data manipulation package (MPG

f

!

d

P

P

f

%

Software); and software to capture and display data in real time in various graphical formats on an external IBM PC (Data Leader) (399). Gilford has marketed a single cell holder, a thermoelectric cell holder, a water-heated cell holder, and a rapid sampler for use with its response instruments (400). A low-noise UV detector (Model 115 UV) with a sensitivity range of 0.001-1.0 AUFS and a 1% to-peaknoise of 0.001 AUFS has been develo ed by Gi son to fit into their and others' HPLC systems 801). Groton has introduced a photodiode array detector (Model PF1/386) with the Intel 386 data system featuring 16-MHz 32-bit architecture with Mb of RAM, a 40-Mb hard disk, and a 1.2-Mb floppy disk drive (402). The SFA-11 universal stopped-flowkinetics accessory is available from Hi-Tech and is reported to be applicable for use with all spectrophotometers(403). A cry0 enically cooled CCD array detector from Princeton Applied esearch is caable of recording extremely low light levels because thermal gackground noise is virtually eliminated (404). A few noncommercial spectrophotometers have been developed for specific applications, including measuring liquid attenuation lengths of 1-30 m (405) and remote sensin with an external optical fiber and diode array detector (4M7. Instruments based on new principles that are not yet commercially developed include an instrument using a multiperiod undulator and computer in place of a monochromator (407); a Fourier transform, visible spectrometer (408); dual-wavel e n h , thermal-lens spectrometersfor trace gas analysis (409) an for simultaneous measurements a t two different wavelengths (410); a dual-wavelength, photothermal-refraction spectrometer for small-volume samples (411);an ultrasensitive, photothermal-deflection spectrometer using an analyzer etalon (412);and a differential, dual-beam photothermal-deflection instrument using a single-position sensor (413). Specialized Instruments and Aocessories. Optical and fiber-optic sensors for determining the concentration of vapors of polar solvents have been developed, based on the reversible decoloration of the blue thermal printer paper used in gra hic plotters (414). Evaluations of the performances of t ree specialized commercial instruments have been reported the Du Pont diode array analyzer for one or two components in as or liquid streams (4151,the Hitachi 704 automatic analyzer 416), and the Radiometer OSM3 six-wavelength photometer for measurement of hemoglobin derivatives (417). The design and en ineering of a fiber-optic spectrophotometer for use as a liquifchromatoflaphy detedor of amino acids as derivatives of ninhydrin (418) and a high-sensitivit ,low-volume ultraviolet absorption detector for HPLC &19) have been described. The procedures by which the linearity of an LC detector may be evaluated have been discussed along with appropriate ways of handling signals from nonlinear detectors

P-

s

B

R

7

(420).

Accessories and instruments for flow-injection determinations have been the subject of several papers, including the hardware interface configuration for an automated flow-injection system (421), design criteria for manifolds in terms of the effect on sensitivity and certain types of noise (4221, and pulsed-flow reagent introduction via a pneumatically pressurized reagent reservoir and high-speed on-off flow valve (423). Two papers have dealt with the develo ment and performance characteristics of high-resolution, {iode-array detectors (424, 425). The number of devices taking advantage of the unique features of optical fibers is clearly rowing. Optical-fiber sensors in biomedical analysis have %een reviewed (426); a sensor has been developed for simultaneous measurement of the absorbance or fluorescence of several substances, allowing for their mutual influence on each signal and correcting the measured values (427);two fiber-optic probes were constructed and tested with fluorescence and chemiluminescence systems (428);a fiber-o tic interferometer employing an optoacoustic modulator to sfift the frequency of counter-propagatinglight beams was develo ed and used to measure the wavelength of light sources (429E the unique advantages and limitations of optical waveguides in remote-sensing, process control situations (430) and their integration into commercial instruments (431) have been discussed; and a portable, double-beam, fiber-optic comparator has been constructed and evaluated (432).

An absorption spectrometer in which the sample is placed in one beam of a parametric oscillator has been described ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

163R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

(433). The sensitivity with this instnunent was not shot-noise limited and could be im roved by operating the oscillator close to its threshold value. novel instrument using diode arrays mounted to spectrographs was shown to be capable of measuring absorbance and fluorescence or chemiluminescence simultaneously (434).Optical multiplexing with multiple light beams in optical fibers has been applied to simultaneous, remote sensing of transient concentrations of several species in a chemical reactor (435) and a semiautomatic system for performing up to 96 enzyme assays has been developed by aa S w e l l platereader to a s ophotometer (436). ee instruments based on t e photoacousticeffect (437-439) and one on Fourier transform transmission in the visible and ultraviolet region (440)have been constructed and evaluated. Software. Algorithms for calculating the concentration of analytes with overlapping spectra (441-444) and for calculating the concentration of multiple components in flow streams (445) have been written. The generalized, simulated annealing method has been proposed as an excellent global o timum location technique in simplex optimization algoritkms, mainly due to the ability of the algorithm to walk out of local optima and converge upon the global optimum (446). The determination of the composition of different complexes formed in the presence of excess li and or metal has been accomplished wth an algorithm based on the effect of dilution of dissociation of the complexes (447). High-pass andtheban -pass digital filtering with peak-to-trough meaOn surement has been compared to the Savitzky-Golaymethod for determination of harmaceuticals using derivative spectra and found to yield Eetter precision and provide for easier calibration (448). A h’ hly interactive computer program that simulates the Milton goy Spectronic 20 colorimeter has been described for teaching elements of spectro hotometry (449). Three papers have appeared that descrige algorithms for library searching of spectral data (450-452).

1

!Y

der

LITERATURE CITED (1) MeHon, M. (3. Anal. Chem. 1945, 77. 81; 1949. 27, 3: 1950, 22, 2; 1951, 23, 2 1052, 2 4 , 2 1064, 26, 2. (2) Mellon, M. 0.; Bdh, D. F. Anal. Chem. 1958, 28, 559R; 1958, 30, 554R; 1080, 32, 194R; 1982, 34, 232R. (3) Bok. D. F.; Mellon, M. G. Anal. Chem. 1964, 36, 258R; 1988, 38, 317R 1968, 40. 255R; 1970, 42, 152R; 1972, 44, 300R; 1974, 46, 227R; 1978, 48, 218R. (4) Rosenbaum E. J. J . Anal. Chem. 1949, 2 7 , 16; 1950, 22, 1 4 1951, 23. 1 2 1OSd. 24, 14; 1954, 26, 20. (5) Hirt, R. C. Anal. Chem. 1968, 28, 579R; 1958, 30, 589R; 1980, 32, 255R 1982, 34,276R. (8) Crummett, W. B. Anal. Chem. 1988, 38, 404R. (7) Crummett, W. B.; Hummel, R. A. Anal. Chem. 1988, 40, 330R; 1970,

- --

12 . , 23OR -...

(8) l-b’Wnel,R. A.; Kaufman, D. C. Anal. Chem. 1972, 4 4 , 535R; 1974, 46, 354R; 1978, 48. 288R. (9) Howdl, J. A.; Hargls, L. 0. Anal. Chem. 1978, 50, 234R; 1982, 54, 171R-183R 1988, 58, 108R-124R. (10) Hargls, L. G.; Howell, J. A. Anal. Chem. 1980, 52, 30213; 1984, 56, 225R-241R 1908. 60. 131R-146R. (11) Laqua, K:; Melhuish; W. H.; Zander, M. Pure Appl. Chem. 1988, 60, 1449-80. (12) Zhang, Quang; Zhang, Xlaollng FenxlSNyanshil988, 7, 35-46 Chem. Abstr. 1989, 7 1 7 , 186232n. (13) Cierg, B. S.; Jaln. V. K. Mlcrochem. J . 1968, 38, 144-69. (14) Putnins, J. La&. PSR Zlnat. Akad, Vestis, Kim. Ser. 1987, 589-600; Chom. Abstr. 1988, 708, 88892a. (15) Katayama, YoshM Takagi, Makoto Sentyo to Yakuhln 1988, 33, 6577; Chem. Abstr. 1988, 109. 141554q. (16) Vacha, Pavel; Vrbsky, Jaromlr Sb. Vys. Sk. Chem.-Te&ml. Raze, Anal. Chom. 1989, H23, 35-51; Chem. Abstr. 1989, 7 7 7 , 108083d. (17) Jarosz, Mackf R . Nauk.-pokyech. Warsz., Chem. 1988, 45, 3-54 Chem. Abstr. 1989, 7 1 7 , 125785b. (18) Li, zhllhng Huaxue Shy/ 1088, 70, 96-103; Chem. Abstr. 1988, 709, 141588v. (19) Liu, YMng; Yu. Rugin FenxlM~ax~e 1987, 75, 1047-52; Chem. Abstr. 1988, 108, 197333~. (20) Xla, Xinlong; Shao. Guan@ Fenxl Shlyenshl 1988, 7 , 41-50; Chem. Abstr. 1989, 1 7 7 , 145795h. (21) &Win, S. B.; Dedkova, V. P.; Malyutina, T. M. Probl. Anal. Khlm. 1987, 7, 158-86 Chem. Abstr. 1988. 708, 142212t. (22) Wada, Hiroko Bunsekl 1987, 355-40 Chem. Abstr. 1988, 708, 30793b. (23) Kantlpuly, Chiran J.; Westland, Alan D. Ta/anta 1988, 35, 1-13. (24) Shmanenkova, G. I.; Merisov, Yu. I. Frob/. Anal. KMm. 1987. 7, 23659; Chem. Abstr. 1988, 708, 142214~. (25) Eross-Kiss, K. period. Pdytech., Civ. Eng. 1987, 37, 243-302. (26) Tim. Rodice; Pascu. Elena; Sumedrea, Daniela; Urmosi, Ioan; Felecan, Florea; Voina, Ecaterina Bul. Miv. Brasov, Ser. C 1988, 30, 93-8; Chem. Abstr. 1989, 1 7 7 , 130050n.

164R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

(27) Tica, Rodice; Voina, Emterina; Pam,Elena; Felecan, Fbrea BCJ. &/v. 8rawv, Ser. C 1968, 30,87-92: Chem. Abstr. 1080, 117. 130049~. (28) Kamada, Shusaku; Kubota, Toshiro; Nlshi, Nozomu; Saito, Motd Sanka to FuJnka 1987, 45, 1988-92 Chem. Abstr. 1988. 708, 143507e. (29) Valentine, Willlam N.; Paglia. Donald E. Methods &mato/. 1988, 16, 28-50. (30) Kochakian, Charles D. Trends Bkchem. Sci. (Pen?. Ed.) 1988, 73, 359-82. (31) Rwso. Angeio; Bump, Edward A. Methods Bloahem. Anal. 1988, 33, 165-241. (32) Subbotina, E. I.; Dedkov, Yu. M. Zavod. Lab. 1987, 53, 12-18; Chem. Abstr. 1988, 708. 30789e. (33) Jocelyn. Peter C. Melhods Emymol. 1987, 743, 44-87. (34) Rossman. Oeorge R. Rev. h#mral. 1088, 78, 207-54. (35) Kampis. Anna 8orgazdasag 1988, 36, 8-12; Chem. Abstr. 1988, 709, 147861j. (36) Sanchez Robs, F.; Bosch Ojeda, C.; Can0 Pavon, J. M. Talenta 1988, 35, 753-61. (37) Blanco, M.; Coelb J.; Iturriaga, H.; Maspoch, S. Tec. Lab. 1088, 7 7 , 198-209 Chem. Abstr. 1988, 709, 211439~. (38) James, G. E. Analusk 1987. 75, LXIV. LXVII-LXX: Chem. Abstr. 1988, 708, 155272. (39) Xu, Jia liang Yaowu FenxiZazhl 1988, 8 , 374-6 Chem. Abstr. 1989. 770, 1416191;. (40) Shlchkle, Yoshinorl; Yoshirawa, Toru Bunko Kenkyu 1987, 36, 423-41; Chem. Abstr. 1988, 708, 127793q. (41) Wehry, E. L.; Mamantov, Gleb Rog. Anal. Spctrosc. 1987, 70, 507-27. (42) Cunningham, Don Anal. Chem. 1988, 60, 343A-344A. 348A. (43) Wannowius. Klaus Juergen GITFachz. Lab. 1987, 37, 1051-2, 1056, 1058-60; Chem. Abstr. 1988, 708, 119726e. (44) Pantel, Siegbert Anal. Chiin. Acta 1987, 799, 1-14. OSC 1987. . 2 , 303-24. (45) Burgess, C. A M / . S ~ ~ C ~ ~Llbr. (46) €&ass, H.; Kiink, T.; Owen, A. J. Lebensm.-Bbtechnd. 1989, 6, 26-8; Chem. Abstr. 1080, 7 7 7 , 3001x. (47) Hiroml, Keitaro; Karaya, Kenlchiro Anal. Scl. 1988, 4 , 445-54. (48) Dovichi, Norman J. CRC &If. Rev. Anal. Chem. 1987, 77, 357-423. (49) Dovichi, Norman J. Rog. Anal. Sp8ctrosc. 1988, 7 1 , 179-207. (50) Nonomura, Shuichi; Hayashi, Hisanori; Takagi, Ryouichi; Nitta, Shojl Kotai Butscwi 1988, 23, 249-55; Chem. Ab&. 1988, 709, 118281g. (51) Frackowiak, Danuta; Szurkowski, Janusz Zesl. Naauk. Unlw. Jag&+ Ion., R . Bld. Mol. 1988, 77,4548; Chem. Abstr. 1980, 770,65764m. (52) Omenetto. N. Appl. Phys. 8 1988, B 46. 209-20. (53) Sawada, Tsuguo; Kitamori. Takehiko Phys. Acoust. 1988, 78, 347-40 1. (54) Sawada, Tsuguo Kageku to Kogyo (Tokyo) 1989, 42, 869-71; Chem. Abstr. 1989, 7 7 7 , 104538f. (55) Schwedt, Georg CLB, Chem. Labor Be&. 1988, 39, 292, 295, 297-8; Chem. Abstr. 1988, 709, 65154~. (56) Osborne, B. G.; Tyson, J. F. Int. J . Food Sci. Technol. 1088, 23, 541-54 (57) Vakarcel, M.; Luque de Castro, M. D.; Lazaro, F.; Rlos, A. Anal. Chiin. Acta 1989, 216, 275-88. (56) Verges, M. Spectra 2000 [Deux Mille] 1988, 733, 6; Chem. Abstr. 1989. 770. 103941b. (59) Tiblta, David C.; Fateley, Willlam G. Spectroscopy (Eugsne, Oreg.) 1988, 3 , 14, 16, 18, 20-2, 24-5. (60) Treado, Patrick J.; Morris, Michael D. Anal. Chem. 1980,67, 723A724A, 727A-729A9 731A-732A. 734A. (61) Petho, Gabor; Petho Nagy. Eva Gyogys2eeszet 1988. 32, 525-31; Chem. Abstr. 1989, 770, 1010907~. (62) Brykina, G. 0.; Krysina, L. S.; Ivanov, V. M. Zh. Anal. Khim. 1988, 43, 1547-60; Chem. Abstr. 1989, 170, 127635f. (63) Nikhin, V. A.; Vorobev, V. G. Opt.-Mekh. from-st. 1988, 47-56; Chem Ab& . 1989, 7 70 23924Oe. (64) Zheng, Yongxi Yankuang Ceshi 1988, 5 , 189-79; Chem. Abstr. 1988, 709, 121603b. (65) Kessenikh, A. V.; Shmelev, L. V. Vysdrochlst. Veshchestva 1987, 186-71; Chem. Ab&. 1988, 108. 088842. (66) Matsuhisa, Kiichi; Aomura, Kazuo Kenkyu Hobun-Asahikawa Kogyo Koto Senmon Gakko 1988, 25, 43-57; Chem. Abstr. 1988, 709, 65976m. (67) Buns, D. Thornburn; O’Reilly, T. TrAC, Trends Anal. Chem. (Pers. Ed.) 1988, 7, 82-3. (68) Karpov, Yu. A.; Alimarln, I.P. Probl. Anal. Khlm. 1987, 7 , 23-41; Chem. Abstr. 1988, 708, 142208~. (69) Sun, Yaping Huaxue Tongbao 1987, 68-9, 49; Chem. Abstr. 1988, 708, 123750a. (70) Burns, D. Thorburn Anal. Roc. (London) 1988, 25, 253. (71) Burns, D. Thorburn Anal. Specmc. Ubr. 1987, 2 , 1-19. (72) Johansson, Axel; Peliersson. Roland Kem. Tidskr. 1988, 700, 48-50, 52, 54; Chem. Abstr. 1988. 109, 85135q. (73) Constant, Daniel Analusk lg88, 76, XXXII-XXXIV; Chem. Abstr. 1988, 708, 197536g. (74) Scholl, Willy VDLUFA-Schrlttenr. 1989, 2 8 , 1037-55; Chem. Abstr. 1989. 770. 211602a. (75) Narayanaswamy, R.; Sevilla, F., 111 J. Phys. E: Sci. Instrum. 1988, 27, 10-17. (76) Nishizawa, Koichi Chem. Sens. Technol. 1988, 7 , 237-45. (77) Peterson, John I. Roc. SPIE-Int. Soc. Opt. Eng. 1989, 990, 2-17. (78) Scheggl, A. M.; Conforti, G. Prac. SPIE-Int. Soc.Opt. Eng. 1988, 949, 146-51. (79) Boisde, Gilbert; Perez, Jean Jacques Proc. SPIE-Int. Soc. Opt. Eng. 1989. 7072, 58-65. (80) Manuel &una, Jose Ing. Qulm ( M d r U ) 1988, 20, 73-7; Ctmm. Abstr. 1988, 709, 221443t.

.

ULTRAVIOLET AND (81) Bruna, Jose Manuel Tec. Lab. 1987, 1 1 , 270-6; Chem. Abstr. 1988, 108, 67998~. (82) Fouk Susan; Gargus, A. Greg Am. Lab. (FakffeM, Conn.) 1987, 19, 52-3. (83) Wtz, W. Ruddf CRC Crtt. Rev. Anal. Chem. 1988, 19, 135-73. (84) Narayanaswamy, R.; R M , D. A. Sens. Achrarors 1988, 13, 293-8. (85) Lelchnltr, K u t Rev. Anal. Chem. 1988,8 , 337-68. (88) Butkevlch, V. I.; prhrabv, V. E. Zh. M I . Spektrosk. 1988,48, 7-28; Chem. Abstr. 1988, 108, 123430~. (87) Epperson, Patrick M.; Sweedler. Jonathan V.; BHhom, Robert 6.; Sims, Gary R.; Denton, M. Bonner Anal. Chem. 1988, 60, 327A-328A. 330A331A, 333A-335A. (88) Morris, Mlchael D. Chem. Anal. (N.Y.) 1986,89, 105-47. (89) Clark, E. J.; Fell. A. F. Chem. Br. 1987,2 3 , 1069-71, 1066. (90) Dubrovkin, I.M. Zh. Anal. Khlm. 1988,43, 965-79; Chem. Abstr. 1089, 110, 68628f. (91) Selakhov, M. Kh. Zh. M I . Spektrosk. 1987, 47, 839-45; Chem. Abstr. 1988, 108, 1237422. (92) Workman, Jerome, Jr. SpecboJcopy(Eugene. Or%.) 1989,4 , 10, 12, 14-15. (93) Menna, Tony Am. Lab. (FaMleM, Conn.) 1987. 19, 96. 98-101. (94) Zuman, Petr Mlcrochem. J. 1987, 36, 54-61. (95) Petrova, T. V.; Sawln, S. E. Zh. Anal. Khlm. 1987. 42, 1925-44; Chem. Abstr. 1988, 108, 1053218. (98) Sommsr, L.; Jancar, L. Scr. Fac. Afat. Univ. Scl. Pudcynianae h n . 1988, 18, 115-38. (97) Den Boef, G. Anal. Chlm. Acta 1989,216, 289-97. (98) Iki, Nobuhko; Hoshlno, Hkoshi Oolln News 1989, 48, 3-11; Chem. Abstr. 1980, 1 1 1 , 10809Od. (99) Sommer, Lumir; Langova, Marie CRC Crb. Rev. Anal. Chem. 1988, 19, 225-89. (100) Kracmar, J.; Kracmarova, J.; Remsova, M.: Kovarova, A.; Moravoce va, 8.; Helingerova, H. F?wrmaz/e 1988,43,881-6 Chem. Abstr. 1989, 110, 1215332. J. P.; Egllnton, 0. Educ. Chem. 1987,24, 181-4. (101) N s w ~1988,66 27-61; 1989,67, 26-72. (102) Chsm. (103) COatOs, J. Spe~trosropv(Eugene, OR) 1988. 3 . 14-20; 1989, 4 , 10-21, 28. (104) Clwczek, E. W. Spe~froscopy(€ugens,OR) 1989,4 , 10-28. (105) Buraviev, Yu. M; Wkit, I. A.; NkWna, 0. I.; Borbat, A. M.; Dem'yanSpdrtral'nogo Analiza Metalkw I Splechuk, A. S.; Severin, E. N. MetVOW Tekhnlka: Klev, USSR, 1988 Chem. Abstr. 1988, 109, 221559k. (106) Advances k, SpmXascqy, V d . 13: Specbosctyy of Bb&gical Sysfern; Clark, R. J. H., Hester, R. E., Eds.; John Wlby 8 Sons: Chlchester, UK, 1986. (107) Advances In Spectroscopy, Vol. 14: Spectroscopy of InorgenicBased Mterlals; Clark, R. J. H., Hester, R. E., Eds.; John Wiiey 8 Sons: Chlchester. UK, 1987. ( 106) OUenttYative Trace Ana&sis of Bldoglcal Mterlals ; McKenzie. H. A. Smythe, L. E., Eds.; Elsevler: Amsterdam, 1988. (109) Rwcker. ciemerd Neugebauer, Michael; Wllbms, Guenter Georg I n sttumSntek pherme2eublsdn, A n a m : L6twbuch zu Spekirapkopbchen , chrrwnatcgaphlschen und €kkbochemischen Ana!vasnmethoden; Wissenschaftlidre Verlagsgesellschaft mbH: Stuttgart. Fed. Rep. Ger., 1988 Chem. Abstr. 1988, 109. 23717011. (110) AnaW6-l AppUcetlons of Spectroscopy; Creaser, C. S., Davies, A. M. C., E&.; Royal Society of Chemistry: London, UK, 1987. ( 111) A n a w l Specfrosmpy Library, V d - 2 : Advances In Standards end MhOdObgy In ~pectrophotometry; Burgess, C., Mielenz, K. D., Eds.; EL sevler: Amsterdam, Neth., 1987. (112) Owen, A. J. The Dlode-Amy Advantage In UVlVkilble Spectroscopy; Hewlett-Packard Waldbronn, FRG. 1968. (113) Castlllo, J. R.; Belara, M. A.; Fernandez, A. An. Quim., Ser. B 1987, 83, 245-7; Chem. Absf. 1988, 108, 1235190. (114) Kavlentls, E. hMrochlm. Acta 1986 (Pub. 1987)3 , 251-8. (115) Alvarez, Fsmnando: De Pablos. Fernando; &mer Ariza, Jose Luis Talents 1988. 3 5 , 493-5. (116) Wieteeka, Elzbleta; Szczepanlak, Zenon Chem. Anal. (Warsaw) 1987. 32, 481-98 Chem. Abstr. 1988, 109, 2039460. b i Mrmchh. Acta 1986 (Pub. l987),3 , (117) Siren, Hell; Ridtkda. Maria L 159-73; Chem. Abstr. 1988, 108, 87042k. (118) ECAnsary. A. L.; Omar, M. M. Egypt. J . Chem. 1986 (Pub. l987),29, 511-19; Chem. Abstr. 1989, 110, 224585r. (119) Lata, Shashl; Shivahare, 0. C. Bangladesh J. Sei. Ind. Res. 1987, 2 2 , 17-20; Chem. Abstr. 1989, 110, 83134k. (120) Kanetake, Tatsutoshl; Otomo, Makoto Anal. Sei. 1988,4 , 411-15. (121) Ren, Ylng; Gao, Zhl; Zhang, Pelxun Fenxl Huaxue 1987, 15, 792-6; Chem. Ab&. 1988, ?08, 142319h. (122) Zhu, Yurul; Yln, Xlangllan; Zhang, Guoping; Zhao, Gulwen Zhongguo Kexue Jlshu Daxue Xuebao 1987, 17, 523-7; Chem. Abstr. 1988. 109, 3 1274r. (123) b o , Jlnzhang; Chen. Hui; Bai, Guangbl Inwg. CMm. Acta 1987, 140, 271-2. (124) Ll. Xinyi; Zhang, Huashan; Cui, Jlanchuan Geodeng Xuexiao Huaxue X-0 1988, 9 , 881-4; Chem. Abstr. 1988, 110. 107233~. (125) Thomaskutty, P. T.; Agrawal, Y. K. J. Radkwnal. Nucl. Chem. 1987, 116. 365-74. (126) Sun, Shusheng; LI, Tangqlng Beuhg Daxue Xuebeo. Zken Kexuehn 1988. 2 4 , 441-6; Chem. Abstr. 1989, 110, 204714k. (127) Pwohlt, D. N.; Chauhan, R. S. Rev. Roum. Chim. 1988, 3 3 , 413-17; Chem. Abstr. 1988, 109, 182848s. (128) Marczenko, Zygmunt; Kallnowskl, Krzysztof Chem. Anal. (Warsaw) 1987,32. 451-63 Chem. Abstr. 1988, 109, 16265~. (129) Castilb, G. M.; thibert, R. J.; Seudeal, N. D.; Zak, E. Microchem. J. 1988, 37,99-109. (130) Abbasl, S. A. Anal. Lett. 1988. 21, 461-76.

€m.

I

LIGHT ABSORPTION SPECTROMETRY

(131) Jancar, Ludek; Havel, Josef; Sommer. Lumlr cdlect. Czech. Chem. Commun. 1988,53, 1424-60; Chem. Abstr. 1989, 110, 148755m. (132) Qi,Wenbln; Zhu, Uzhong Huaxue ShV 1987,9 , 206-11, 202; Chem. Abstr. 1988, 108, 1423042. (133) Vesiene, T.; Baciuiiene, 2. Lkt. TSR Mokslu Akad. Darb., Ser. 8 . 1887,65-8 Chem. Abstr. 1988, 108, 123587~. (134) Thompson, Shannon W.; Byme, Robert H. Anal. Chem. 1988,60, 19-22. (135) Yu, Chengwei; Chen, Llying Y8nkUeng Ceshi 1986, 5.308-12; Chem. Abstr. 1988, 108, 48319m. (136) Kenyu, Kina Lbjh News 1987. 40, 10-11; Chem. Abstr. 1988, 108, 30805g. (137) Kandrac, J.; Szaio, A. Acta Fac. Rerum Net. Univ. Comenlenae, Chim. 1986 (Pub. 1987),34, 117-27; Chem. Abstr. 1988, 108, 1938%. (138) Seleim, Mohamed M.; Idriss. Kamai A.; Saleh. Magda S.; Sedalra, Hassan Analyst (London) 1987, 112, 1685-8. (139) Iida, Yasuo Fresenius' Z . Anal. Chem. 1987,328, 547-52; Chem. Abstr. 1887, 107, 249155h. (140) Galante, L. J.; Hleftle, 0. M. Gov. Rep. Announce. Index(U.S.)1988, 88, Abstr. No. 838,116; Chem. Abstr. 1989, 110, 204726r. (141) Fernandez Gomez, E.; Perez Hugalde, Marla C.; Rodriguez Vazquez, J. A. An. Ouim. Ser. B 1S8Ss 8 4 , 243-8; Chem. Abstr. 1989, 110, 87598n. (142) Hllro, Kazuo, Kawahara, Akinori; Tanaka, Takashl; Wakida, Shinlchl; Yamane, Masataka; Higashi, Kunishii Suishitsu adeko Kenkyu 1988, 1 1 , 320-4; Chem. Abstr. 1988, 109, 134890~. (143) KO&, Kazunori; Mlshima, Kanae; Takumori, Yuko; Saimatsu, Jlro; Seklgewa. Keko; Kohno. Yoshio; Ueno, Hlroakl; Oka, Arata Hlroshma-shi Eisei Kenkyusho Mnpo 1988 (Pub. 1987),36-9; Chem. Abstr. 1988, 109, 43242s. (144) Sanz. Jesus; Gallarta. Felix; Galban, Javier; Castlllo, Juan R. Fresenlus' Z . Anal. Chem. 1988, 330, 510-15; Chem. Abstr. 1988, 109, 85311~. (145) Sanz, Jesus; Gallarta, Fellx; Galban, Javier; Castillo, Juan R. Analyst (London) 1988, 113, 1387-91. (146) Sastry, C. S. P.; Dlvakar, T. E.; Prasad. U. Viplava Chem. Anal. (Warsaw) 1987, 3 2 , 301-5; Chem. Abstr. 1988, 108, 210284~. (147) Sastry,Chllukuri S. P.; Prasad, Tata N. V.; Sastry,Bhetanabhotla S.; Rao, Erraguntla Venkata Analyst (London) 1988, 113. 255-8. (148) Dochinets, D. I.; Petrenko, V. V.; Zorya, 6. P. Fermats/ya (Moscow) 1988.3 7 , 52-4; Chem. Ab&. 1989, 110, 825821. (149) Dochinets, D. I.; Petrenko, V. V.; Zhorya, E. P. Zh. Anal. Khim. 1989, 4 4 , 510-13; Chem. Abstr. 1989, 110, 2191651. (150) Dochinets, D. I.; Zorya. 6. P.; Petrenko, V. V.; Klyuev, N. A. Ukr. Khim. Zh. (Russ. Ed.) 1989, 55, 369-92; Chem. Abstr. 1989, 1 1 1 , 160356j. (151) Sankar, D. Gowri; Sastry, C. S. P.; Reddy, M. Narayana; Aruna, M. Indian J. Pharm. Scl. 1988, 50, 178-80; Chem. Abstr. 1988. 109, 237 154k. (152) AbdeCHay, Mohaned H.; Korany, Mohamed A.; Galai, Sheeren M.; EC Sayed, Mahmound A. Alexandria J. Pharm. Sei. 1987, l , 11-15; Chem. Abstr. 1989, 110, 62606f. (153) Fillpeva, S. A.; Streiets, L. N.; Petrenko, V. V.; Buryak, V. P. Zh. Anal. Khim. 1989,44. 131-4; Chem. Abstr. 1989, 110, 1416742. (154) Zorya, B. P.; Petrenko, V. V.; Kiyuev. N. A,; Zinchenko, I. G. Ukr. Khim. Zh. (Russ. Ed.) 1987, 5 3 , 421-4; Chem. Abstr. 1988, 108, 11311b. (155) Verma, Krishna K.; Sanghi, Sunli K.; Jain, Archana Talenta 1988,35, 409-11. (156) Mohamed. F. A.; Mohamed, A. I.; ECShabouri, S.R. J . Pharm. Blomend. Anal. 1988,6. 175-83. 157) ECKommos, Michael E.; Emara, Kamala M. Analyst (London) 1988. 113, 133-7. 158) Kamidate, Tamio; Katayama, Atsushi; Watanabe, Hiroto Anal. Scl. 1988,4,329-30. 159) Besada, Amir Anal. Lett. 1988,21. 1917-25. 160) Refaat, 1. H.; ECKommos, M. E.; Farag, H. H.; El-Rabat, N. A. Bull. Pharm. Sei., Asslut Univ. 1987, 10, 71-84; Chem. Abstr. 1989, 110, 29 171g. 181) Verma. E. C.; Rao. 6. G.; Kumar, Pradeep; Sharma. N. K.; Sharma, D. K.; Sharma. Neelam Natl. Aced. Scl. Lett. (India) 1988, 1 1 , 179-82; Chem. Abstr. 1989, 110, 224562n. 162) Aiata; Han, Yuhua; Jang, Rushan Gongye Weisheng Yu Zhiyebing 1987, 13, 362-3; Chem. Ab&. 1988, 108, 201137~. (163) Klimowicz, Adam Methods Find. Exp. Clln. Pharmacol. 1988, 10, 331-6. (164) Cauderiier, P.; Luthier, E.; Josancy, M.; Jakel, M. BldogJste 1988, 174, 79-81; Chem. Abstr. 1988, 109. 206300a. (165) Hawkins, Barton, K.; Honigs, David E. Am. Biotechnol. Lab. 1987,5 , 26, 28, 30-7. (166) Koch, S.; Ackermann. G.; Brunne, I. Talenta 1988. 3 5 , 701-5. (187) Yakimova, V. P. OtkryHVa. Izobret. 1988,168 Chem. Abstr. 1989, 110, 33151t. (168) Rakhman'ko, E. M.; Furs, S. F.; Leshchev, S. M. Otkrytlya, Izobret. 1888, 168; Chem. Abstr. 1989, 110, 33150s. (169) Barron, Denis; Ibrahim. R. K. phvtochemlstry 1988, 2 7 , 2335-8. (170) Mall, Bahera; Nicholas, Peter, C. Blochem. Soc. Trans. 1988, 16, 394-5. (171) Kuk, Karei; Kuzilek. Vladimir; Vrbsky. Jaromir Sb. Vys. Sk. Chem.Technol. R a z e , Anal. Chem. 1988, H22, 115-29 Chem. Abstr. 1988, 108, 179337~. (172) Perov, P. A.; Markova, E. I.; Ivanova, E. K.; Germansheva, I. I.; Barbaiat, Yu. A. Zh. Anal. Khim. 1 8 W 43, 261-4; Chem. Abstr. 1988, 108, 215615~. (173) Agrapidis-Paloympis, Louise E.; Nash, Ropbert A.; Shaath, Nadim. A. J. SOC. Cosmet. Chem. 1987, 3 8 , 209-21. ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

165R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (174) Mopper, BWy J.-ASSOC, Off. Anal. chem. 1988, 71. 1121-2. (175) Tanaka, U t a ; Wi, Atwhko; Kamlyama, Yasuo; Yamaoka, Yoshlo; Ozewa, Kazw; or#, Yuteka C k . W h . Acfe 1988, 172, 93-9. (176) Sakmetin, E. M. Farmatslva (Moscow) 1987, 36, 34-40 Chem. Abstr. 1908, 108, 681470. (177) Doyle, Mlchael L.; DI Cera, Emlco; GIii, Stanley J. Blochemistry 1988, 27., 820-4. -. - - - .. (178) Xu, Jlaxlang Zhonghue Ylxue Jlanyan Zazhll987, 10, 303-5; Chem. Abstr. 1988, 108, 201104j. (179) Wians, Frank H., Jr.: W ,Carolyn L.; Heald, James I.; Clark, Hector Lab. M .1988. 19. 151-5. (180) @ndimenlco; k a r d J.; Bouquln, Pamela L.; Tramposch, Kennth M. Anal. BIochem. 1988, 173, 45-8. (181) Yuno, Tomoji; Yamamoto, Yutaka Else/ Kensa 1988, 3 7 , 333-40 Chem. Abstr. 1988, 109, 225993~. (182) Saracu. Dan I. Anal. Lett. 1987, 2 0 , 1417-28. (183) Seracu, Dan I. Rev. Chlm. (Bucharest) 1988, 39, 54-8; Chem. Abstr. 1988, 109, 118461~. (164) Shimlru, Mkio skphvs. Chem. 1987, 2 8 , 169-74. (185) Jones, Cihre G.; Hare, J. Daniel; Compton, Steve J. J. Chem. E d . 1989, 15, 979-92. (186) OsMma, IcMyO; Kohema, Takayoshi; Kodaira, Tsukasa Tokushlma J . Exp. M.1981, 34,23-7; Chem. Abstr. 1988, 109, 19720a. (187) (kthem, Simon M.; Fryer, Peter J.; Paterson, Wiiiiam R. Anal. Blochem. 1988, 173, 353-8. (188) Frledenauer, Susanne: Berlet, Hans H. Anal. Blochem. 1989, 178, 263-8. (189) Loeffler, Bernd Michael: Kunre, Hans Anel. 8bchem. 1989, 177, 100-2. (190) Macart, Mlchel; Gerbaut, Luciie Clin. Chem. (Winston-Salem. N.C.) 1988, 34, 998-9. (191) Wimsatt, Dorothy K.; Lott, John A. Clin. Chem. (Winston-Salem, N. C.) 1987, 33, 2100-6. (192) Hlmmel, H. M.; Heller, W. J . Clln. Chem. Clin. Blochem. 1987, 2 5 , 909-13. (193) Kang, Jlan; Chu, Junb Shengwu Huexw, Yo Shengwu Wuli Jhzhan 1908, 15, 147-50 chem. Abstr. 1988, 109, 51147e. (194) Shlhabl, 2. K.: Dyer, R. D. Ann. Cfn. Lab. Scl. 1988, 18, 235-9. (195) Kamath, Poornlma; Pattabiraman, T. N. Blochem. Arch. 1988, 4 , 17-23. (196) Txvetanova, E.; Gotsev, R. Clh. Chem. (Whston-Salem, N.C.) 1988, 34, 430-1. (197) Jung, Klaus; Nickel, Rika Clln. Chem. (Winston-Salem, N.C.) 1989, 3 5 , 336-7. (198) Johnson, Roger N.; Baker, John R . Clin. Chem. (Wlnston-Salem, N.C.) 1988. 34, 1456-9. (199) Gargoxxa, (fad& R m r o , Maria Crktina; Hado. Ana Sllvla; Nesse, Alclra Acta Bkqukn. CHn. Latlnmm. 1988, 2 0 , 573-85; Chem. Abstr. 1988, 108. 127926k. (200) Hoorn, R. K. J. Tmchr.Ned. Ver. Klln. Chem. 1988, 13, 219-25; Chem. Abstr. 1989, 110, 1316292. (201) Kracmar, JoW Kracmarova, J.; Kovarova, A. cesk.Fann. 1988, 37, 7-13 Chem. Abstr. 1988, 108, 210296a. (202) Kracmar, J.; Kracmarova, J.; Kovarova, A. Cesk. farm. 1988, 3 7 , 53-60 Chem. Ab&. 1988, 109, 2753Od. (203) Kracmar, Joseph; Kracmarova, J.; Kovarova, A.: Stejskai, 2. phannazk 1988, 43, 173-6; Chem. Abstr. 1988, 109, 98667q. (204) Kracmar, J.; Kracmarova, J. Cesk. F8rm. 1988, 37, 149-58; Chem. Abstr. 1988, 109, 116147b. (205) Kracmar, J.; Kracmarova, J. Phamzle 1988, 43, 424-8; Chem. Abstr. 1988. 109, 176172r. (206) OKennedy, Rlcherd Bkahem. E&. 1988, 16, 47-8. (207) Pottiansky, Enrlqw Leo Acta Bk?quim. Clin. Latinoem. 1986, 2 0 , 615-18; Chem. Abstr. 1988, 108. 127927m. (208) Clesbka, Thomas; Qablus, Hans Joachim Anal. 8kchem. 1988. 168, 280-3. (209) Fel’dkoren, B. I.; bipova, E. I.; Kotsegub, T. P.; Rogozkin, V. A. Lab. Dek 1908, 56-9 chem. Abstr. 1988, 109, 51155f. (210) Kumar, Anwadhe; Rao. Pragna: Pattabiraman, T. N. Blcchem. Med Mstab. BM. 1988, 39, 296-304. (211) HIII, Hazel D.; Straka, James 0. Anal. Biochem. 1988, 170, 203-8. (212) Kdde, Hans J ~ r g e Qer. n Offen. DE 3,531.778 12 Mar 1987. Appi. 06 Sep 1985; chem.Abstr. 1987, 107, 2321951. (213) Del no, 6. J.. Jr.; Zabrbkle. D. W. BloTechnQues 1988, 6, 230-4. (214) CUftOn. P. M.; Chang. L.; Mackinnon, A. M. Anal. 8iochem. lS88, 172, 165-8. (215) Hinson. D. L.; Webber. R. J. BlOTechdques 1988, 6, 14. 16, 19. (216) HUaIIg, C. M. ckh. m.(Wton-S&m. N.C.) 1908, 34. 980-3. (217) Wobki, Tadeusz; Bertwl, Qlezyna; W b w i c z , Wladyslaw; Grodzicki, Zblgnbw Wmm. AMI. (Warsaw) 1987, 32, 233-42; Chem. Abstr. 1988, 109, 121786~. (218) Li, Jlanrhai; Wanp, Shu Zho@ua Ylxue Jlanyan Zazhi 1987, 10, 262-5; Chem. Abstr. 1988, 108, 127836f. (219) Burns, Dennis H.; Aberhart, D. John Anal. Blochem. 1988, 171, 339-45. __. (220) Tssty#er, Guy: Gourmelon, Patrick Roc. Nan. Aced. Sci. U.S.A. 1987. 84. 8145-9. (221) I & O P O I ~P. . 8. J. h n n . Blamed. Anal. 1988. 6 . 97-101. (222) Fum, YosMkuu; Morl, Iteuo; Fujlta, Kinuko; Nakahashi, Yoshihlro; T a w , T e k M chwn.mnn.BUR. 1987. 35. 5004-9. (223) ECKommoe, Michael E.; Emara. Kamle M. Analyst (London) 1988. 113, 1267-71. (224) EI-Shabowi, Satwa R.; Hussein. Sadha A.; AWeCAlim M. J.-Assoc. Off. Anal. Chem. 1988, 71, 764-7. (225) Witzei, H.; Plndur, U. Phann. Acta Helv. 1988, 63, 184-9; Chem. Abstr. 1988. 109. 176429e.

i e s ~ANALYTICAL

CHEMISTRY,

VOL. 62, NO. 12, JUNE 15, 1s

(226) Sastry, Chllukuri S. P.; Setyanarayana, Ponnada; Rao, Ambati, Ramarohen; Sin&, Nidiguntapalem Rajende Prasad MknxMm. Acta 1989, l , 17-24. (227) Zhang, L. M.; Yu. Y. X. Yaoxue Xuebao 1988, 2 3 , 915-20 Chem. Abstr. 1989, 110, 179619y. (228) Telb C., Myrlam; Feno, Veronica; Avb, PauRna Rev. cakmb.Cienc. Wm.-Farm. 1987, 16. 39-43; Chem. Ab&. 1988, 109, 237158q. (229) Veksler, K. V.; Vokova, E. N.; Ivan’kova, 0. N.; Trakhnova. G. M. O t k w a , Izobret. 1989, 175; Chem. Abstr. 1989, 111, 16969~. (230) Mejstrik, Vktor; Hronkova, Iva; Dnkova, Libuse; Krampera, Frantisek; Jandera, Jiri, Sagner. Zdenek Chem. Rum. 1988, 38, 321-3; Chem. Abstr. 1988, 109, 221637j. (231) Davies, D. Martin; Deary, Michael E. Analyst (London) 1988, 113, 1477-9. (232) Tanaka, Tosho; Yano, Yoshihlsa; Taniguchi, Makoto; 01, Susumu Agric. Blol. Chem. l98& 5 2 , 2097-9. (233) Wang, Zhenqlng; Zhou, Zheren; Shen, Hanxi &uxue Xuebao 1988, 46, 995-1000 Chem. Abstr. 1989. 110, 127739t. (234) Wang, Zhenqing; Ll, Jianjun; Shen, Hanxi Anal. Chlm. Acta 1988. 212, 145-54. (235) Zhou, Zheren; Wang, Zhenqlng Oeodeng Xuexlao Huaxue Xuebao 1988, 9 , 560-3; C h m . Abstr. 1988, 109, 243198~. (236) Ni, Yongnian Fenxi Huaxue 1987, 15, 995-9; Chem. Absb. 1988, 108, 1974593. (237) He. Xiwen; Ren, Hongji; Shi. Huiming Gaodeng X u e x h Htmxue XuebaO 1988, 9, 902-8; Chem. Ab&. 1989, 110, 1277461. (238) Zhang, Jingyu; Ren, Ying Zhmgguo Xitu Xuebao 1988, 6 , 75-9; Chem. Abstr. 1988, 109, 182680~. (239) Vetuschi. C.; Ragno. G. Spectrosc. Lett. 1989, 2 2 , 51-7. (240) Mueller. Hanswilly; Witte. Inge GIT Fachz. Lab. 1989. 33, 367-70 Chem. Abstr. 1989, 1 1 1 , 12587~. (241) Qiu, Jiaxue; Luo, Gooan; Cheng, Qizhen Zhonggw Yadre Daxue Xuebao 1988, 19, 273-5; Chem. Abstr. 1989, 110. 16044Om. (242) Whitman, David A.; Christian Gary D.; Ruzlcka, Jaromlr Anal. Chim. Acta 1988, 214, 197-205. (243) Jurenas, A.; Pogonin, V. I.; Chibisov, A. K. Zh.Anal. KMm. 1988, 43, 1657-63; Chem. Abstr. 1989. 110, 146774s. (244) Reichardt, W.; Schueler, E. Nahrung 1987, 31, 793-9 Chem. Abstr. 1988, 108. 206221. (245) Fedenko, V. S.; Vinnichenko, A. N.; Shenkarenko. I. V.; Syrovatko, V. A. 8/01. Nauki (Moscow) 1989, 108-12; Chem. Abstr. 1989, 1 1 1 , 53579n. (246) Pesce, Michael A.; Giacomo, Donald F. Ann. Clh. Lab. Sci. 1988, 18. 168-73. (247) Zhu, Guojian; Pan, Yang Ylyao Gongye 1988, 19, 224-5; Chem. Abstr. 1988, 109, 79832~. (248) Lin, Jixiao; Liu, Yibo Ylyao Gongye 1988, 19, 35-6 Chem. Abstr. 1988, 108, 1190520. (249) Liu, Hanjii; Hu, Dexiang Ylyao Gongye 1988, 19, 30-1; Chem. Abstr. 1988, 108, 119086~. (250) Gikison, I. S. Analusis 1988, 16, XXXIV-XXXV; Chem. Abstr. 1988, 108. 183211k. (251) Bermejo Barrera. A.; Guisasoia Escudero. M. M.; Bennejo Martinez, F. Quim. Anal. (Sercelona) 1988, 7 , 212-18; Chem. Abstr. 1989, 1 1 1 , 1081673. (252) Zhou, Shifu; Li, Zhong Ga&n X~8xlaoHuaxue Xuebao 1988, 9 , 8502; Chem. Abstr. 1989, 110, 127733m. (253) Hernandez Lopez, M.; Marquez Gomez, J. C.; Medinilla, J.; Qarcla Sanchez, F. Oulm. Anal. (Bercehma) 1988. 7 , 341-9; Chem. Abstr. 1989, 111 , 166382m. (254) Aleksandrova, N. N.; Mishchenko. V. T.; Poluektov, N. S.; Mukomel, V. L. Zavod. Lab. 1988, 5 4 , 15-17; Chem. Abstr. 1988, 109, 162459~. (255) Ren, Ying; She, Xiaoge Ylngyong Huaxue 1987, 4 , 5 5 - 8 Chem. Abstr. 1988, 108, 87126r. (256) Li. Jinhe; Peng, Ping; Shi, Huiming Fenxi Huaxue 1988, 16, 696-701; Chem. Abstr. 1989, 110, 185024s. (257) Chen, Pu; Luo, Qingyao; Zeng, Yune Guangpuxue Yu Guangpu Fenxi 1987. 7 , 5-10; Chem. Abstr. 1988, 108, 1054372. (258) Li, Jianjun; Luo, Qingyao; Zeng, Yune Fenxi Shiyanshl1989, 7, 16-18 Chem. Abstr. 1989, 11 1 , 166437h. (259) Bai, Guangbi; Kang. Jmgwan; Chen, Ruyao Fenxi Huaxue 1987, 15, 902-4; Chem. Abstr. 1988. 108. 123623m. (260) Wiilin, K. M. Acta Hy&ochim. Hydmbbl. 1988, 18. 39-43; Chem. Abstr. 1988, 108, 192489j. (261) Takita, H i n o r i Sesuido Kyokaishi 1988, 2 5 , 55-60 Chem. Abstr. 1989, 110, 82144b. (262) Milch, Gyorgy; Szabo, Eva Acta Chim. Hung. 1987, 124. 883-91; Chem. Abstr. 1988, 108, 156556~. (283) Singh. V.; Shukla, S. K.; Ram, Jagdish; Sharma. Des Raj Indian J . Forensic Scl. 1987, 1 , 145-52; Chem. Abstr. 1988, 108. 144841~. (264) Garcia Sanchez, F.;Carnero, C.; Heredla, A. Anal. Lett. 1988, 2 1 , 1243-57. (265) Vajragupta, Opa; Jantrasrisaiai Chanida; Gunmintra. Chawanuch Warasan Phesatchesat 1988, 15, 35-41; Chem. Abstr. 1989, 1 1 1 , 160377s. (266) Bai, T.; Jia, J. H. Yaoxue Xuebao 1988, 23, 616-22; Chem. Abstr. 1989, 110. 82599d. (267) Onw, Feyyaz; Acar, Nevin FABAD farm. BMmler Deg. 1989, 14, 1-8; C h m . Abstr. 1989, 111. 12603~. (268) Ei Yazbi, Fawzy A.; Kwany. Mohamed A.; Abdel-Razek, Omayma: El-Saved, Mahmoud A. Alexadla J . pherm. Scl. 1987, 1 , 1-4 Chem. Abstj. 1989, 110, 82576~. (269) Wang. Yijun; Wu, QluIlng Yaowu Fenxi Zazhi 1989, 9 , 172-3; Chem. Abstr. 1089. 111. 89669f. (270) Park, ManKi; Cho, JungHwan Arch. Phamcal Res. 1988, 11, 45-51.

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (271) Benchev, I.; Rbov, N.; Kolarska, A. -1. Kh&. 1987, 12, 115-26; Chem. Abstr. 1989, 110, 201896k. (272) Cawhi, Vanni; DI PWa, A. Maria; Raggi, M. Augusta; Maloll, M. Grazia Analyst (L-) 1987, 112, 1871-4. (273) Aaron, Jean Jaqw; a y e , Mame Diabou Talenta 1988, 35,513-18. (274) Un, Onghal; Wang, YongJln; Gu, Xueqiu Zhongaoyao 1988, 19, 202-3, 236 Chem. Abstr. 1988, 109. 116130r. (275) Noblle. L.; Cavrinl, V.; Raggi, M. A.; Di Pletra, A. M. Int. J. pherm. 1987, 40, 85-91. (276) ParlssCPoulou. M.; Rekopoulou, V.; Koupparls, M.; Macheras, P. Int. J . F h r m . 1989, 51, 169-74. (277) Green,PhlUp G.; Hadgraft, Jonathan Int. J. pherm. 1988, 46, 193-8. (278) Knochsn, M.; Bardem, M.; F'kggb, P. Bdl. Chim. Farm. 1987, 126, 294-7; Chem. Abstr. 1988, 108, 1 5 6 5 5 7 ~ . 12791 Mwtha. John L.: Julian. Thomas N.; Radebaugh. Galen W. J. pherm. ' &I. 1988; 77, 715-18. (280) Marqwt, Roland; Howlsier, Claude Anal. B&chem. 1989, 176, 265-8. Rvchlovsky, P.; Nemcova, Irma Cask. Farm. 1989, 38, 241-4 1281) . them; Abstr.fO89, 11 1 . 140649d. (282) Park, Man Kl; Cho. Jung Hwan; Park, Yeon Hwa Soul Taehekkyo Yakhak Mmmunb 1987. 12, 87-75; Chem. Abstr. 1989, 1 1 1 , 102798~. (283) M,Meeakl; Mori. Sadao Bunsekl Kagaku 1988, 37, 435-8; Chem. Abstr. 1988, 111231q. (284) Spivak, William; Morrison, Chet; Devinuto, Dana; Yuey. William Bio&em. J . 1988, 252. 275-81. (285) Tdedano, Marlne; Gutlerrez, M. Carmen: Gomez-Hens, Agustina; Perez-Bemdko, Ddores Analyst (London) 1989. 114, 211-15. (266) Polas&, Mlroslav; Kohoutkova. Dana; Waisser, Karei Anal. Chim. ACte 1988, 212, 279-64. (267) Matwmura, Elko; Shh, Takashi; Murao. Sawao; Yamamoto, Eiko; Kawano, Tatsu A@. BW. Chem. 1987. 51, 2743-50. (266) Asao, Shlgdtl; Watanabe. Harm; Hayashi. Yuzo Jpn. Kokai Tokkyo Koho JP 63,248,397 [88,248,397], 14 Oct. 1968, Appi. 87,82,278, 02 Apr. 1967; Chem. Abstr. 1989, 1 7 7 . Ill989j. (289) Scriven, Fbna; Wlasichuk, Kenneth 8.; Palcic, Monica M. Anal. Bio&em. 1988, 170,367-71. (290) Yasmkreh, Waiid G. Cnn. Bkchem. 1988, 27, 239-43. (291) Ouerakar, Arzu R.; Wolfbeis, Otto S. Clln. Chlm. Acta 1988, 772, 35-45. (292) Kawakubo, Susumu; Katsumata, Toshifumi; Iwatsukl, Masaaki; Fukasawa, Tsuglo; Fukasawa, Tsutomu Analyst (London) 1988, 113, 1827-30. (293) A&, M. A. 2.; Zegtto, E. A. G. Anal. Chlm. Acta 1987, 199, 137-45. (294) GladHovich, D. B.; Kuban, V.; Sommer. L. Talente 1988, 35, 259-65. (295) Karllcsk, R M Doiejsove, Jana; Polasek, Mlloslav Agrochemk, (Bretlsleva) 1988, 28, 119-22; Chem. Abstr. 1988. 709.89151q. (296) Wang, X.; Maraden, A. B.; Fogg, A. 0.;Tyson, J. F. Anal. Roc. (London) 1989, 26, 51-2. (297) Martlnezlozano, Carmen; Perez-Rulz, Tomas; Tomas, Virginia; YagW, Encarnacbn Analyst (London) 1988, 113, 1057-60. (298) H em,Peter C.; Tan, Susle S.; CardweU, Terence J.; Cattrail. Robert W.; Hamiiton, Ian C. Analyst (London) 1988, 713. 1551-5. (299) Stewart, James T.; Lang, James R.; Honigberg, Irwin L. J. Liq. ChroInntog. 1988, 11 3353-73. (300) Takeuchi, Toshlfumk Kabasawa, Yozo; Horikawa. Rikizo; Tanimura, Takenai Analyst (London) 1988, 113, 1673-5. (301) Ma, Takafuml; Goto, Nozomi; Takitani, Shoji Analyst (London) 1988, 713, 1333-5. (302) Rada, D.; Lorenzo, E.; Hernandez, M.; Hernandez, L. Mlcfochem. J. 1988, 37, 257-62. (303) Rada, D.; Vicnete, J.; Lorenzo, E.; Blanco, M. H.; Hernandez, L. Uuhn. Anal. (Bercdone) 1988, 7, 323-9; Chem. Ab&. 1989, 710, 179609~. (304) Kwpparis, M. A.; Anagnostopoulou, P. 1. Anal. Chlm. Acte 1988, 204, 271-83. I (305) AWdMoely, E. M.; Moustafa, A. A.; Ahmad, A. K. S.; Ei-Gendy, A. E. &I. #uum. 1987, 55, 259-65; Chem. Abstr. 1988, 108, 192852~. (306) LWdl, Hans; Baertschl, Anita Anal. Chim. Acte 1989, 217, 359-62. (307) -a, M.; Buguera, J. L.; cisanado, Denny D.; Alarcon, 0. M. Acta Cknt. Venez. 1988, 39, 323-7; Chem. Abstr. 1989, 1 7 1 . 172548m. (308) V m , Krlshna K.; Stewart, Kent K. Anal. Chlm. Acta 1988, 274, 207-18. (309) R u z k h , Jaromk; Fbsdorf, Josef Anal. Chim. Acta 1989, 278, 291-301. (310) BOutonnat, M.; Gllmore, D. A.; Keiibach, K. A.; Oiiphant, N.; Atkinson, G. H. A N . 1988, 42, 1520-4. (31 1) Nakal, Yoshlnobu; Yamamoto, Jelji; Terada, Katsuhide; Sakai, Manabu Y a k w k u ZassM 1988, 108, 1107-9; Chem. Abstr. 1989, 110, 10197Om. (312) BidogHo. G.; Tenet. G.; Cavalli, P.; Omenetto, N. Inorg. Chlm. Acta 1987, 140, 293-6. (313) R a w , G. Ramk AivarezCoque, M. C. Garcia; Smith, B. W.; Omeneno. N.; wkrefordmr, J. D. AM. spectrosc. 1988, 42,341-6. 13141 Gudvm. V. K. Zh. Anal. Khlm. 1988. 43. 613-18: Chem. Ab&. ' 1S88. lb9, 18280%. 1315) W,Judk; Szabo, Eva J. pherm. Blamed. Anal. 1987 (Pub. 1988), 6; 757-64. (316) Ii'h, M. 1.; Valgin. S. V.; Sobdev, D. M.; Sharkov, Yu. V. Zavod. Lab. 1987, 53, 32-5 Chem. Abstr. 1988, 108, 66934r. (317) U, T ~ ~ h Fenzl u a Huaxue 1987. 75, 887-92 Chem. Abstr. 1988. 708, 12365Oh. (318) Luo, CtKmgqing FenxlHuaxue 1987. 15. 336-9; Chem. Abstr. 1980p 108, 679049. (319) Per'kov, I.G.; Artsebashev, 0. V.; Drozd, A. V.; Syrova, E. 0. Zh. Anal. Khkn. 1987, 42, 1951-82; Chem. Abstr. 1988. 108. 105470e. (320) Olu, J. X.: Luo, G. 8.: Wang. Y. M. Yaoxue Xuebao 1988, 23, 142-7; Chem. Abstr. 1980. 708, 22696Oy. I

w.

(321) Sala, 0.;Maspoch, S.; Iturriaga, H.; Bianco. M.; Cerda. V. J. pherm. Biomed. Anal. 1987 (Pub. 1988), 6 , 765-72. (322) Asuero, A. 0.; Gonzalez, G.; De PabJos. F.; Gomez Ariza, J. L. Tabnta 1988. 35, 531-7. (323) Israel, Yecheskei Anal. Chim. Acta 1988, 206, 313-32. (324) Besson, J. E.; Veillas. 0.; Michoudet. C.; Kopp, N. J. Blochem. BloPhYS. method^ 1987, 15, 139-46. (325) Bershtein, 1. Ya. Fresenius' Z . Anal. Chem. 1988, 332. 227-31; Chem. Abstr. 1989, 110, 3299Od. (326) Grizodub, A. I.; Levin, M. G.; Georgievskli, V. P. Zh. Anal. Khhn. 1987, 42, 1589-97; Chem. Abstr. 1988, 108, 87210~. (327) Juhi. L. L.; Kaiiias, J. H. Anal. Chim. Acta 1988, 207, 125-35. (328) Wang, Hongdan Fenxl Huaxue 1987, 75, 1139; # e m . Abstr. 1988, 108, 197356~. (329) Xi, Changsheng; Li, Jinhe; Chen, Jiren; Shi, Huimlng Fenxi Huaxue 1987. 15, 326-9, 335; Chem. Abstr. 1988, 108. 86926q. (330) Savushking, A. V.; Sokolova, E. A.; Startsev, G. P.; Tveritinov, M. P. Zh. Rlkl. Spektrosk. 1988, 49, 112-16; Chem. Abstr. 1988, 109, 119304m. (331) Mazzacurati, V.; Ruocco, 0.: Signoreiii, G. Opt. Commun. 1988, 67, 399-403; Chem. Abstr. 1988, 109, 160135~. (332) O'Haver, T. C.; Kindervater, J. M. Appl. Spectrosc. 1988. 42, 183-6. (333) Marsden, Andrew B.; Tyson, Julian F. Anal. Roc. (London)1988, 25, 89-90. (334) Yap, C. T.; Anicin, 1. V. Appi. Spectrosc. 1988, 42, 729-30. (335) Craven, P. G.; Falrhurst, S. A.; Sutcllffe. L. H. Spectfochhn. Acta, Pafl A 1988. 44A, 539-45. (336) Grizodub, A. 1.; Asmoiova, N. N.; Levin, M. G.; Georgievskii, V. P. Zh. Anal. Khim. 1988, 43, 2170-8; Chem. Abstr. 1989. 110, 121543~. (337) Senatorova, N. R.; Ryzhikov, B. D. Vesm. Mosk. Univ., Ser. 3 : Fiz., Astron. 1988, 29,43-7; Cham. Abstr. 1988. 108, 158318t. (338) Ebei. S. CLB, Chem. Labor Be&. 1968, 39,116. 118; Chem. Abstr. 1988, 708, 197545). (339) Doerffei, Klaus; Hebisch, Ralph Fresenius' Z . Anal. Chem. 1988, 337, 510-12; Chem. Abstr. 1988, 709,203929b. (340) Kaiivas, J. H.; Blount, C. W. J. Chem. Educ. 1988, 65, 794-5. (341) Lorber, Avraham; Kowaiski, Bruce R. J. Chemom. 1988. 2 , 93-109. (342) Sm%,H. C.; Steigstra, H. ACS Symp. Ser. 1988, 361, 126-48. (343) Aspland. J. Richard Text. Chem. Color. 1988, 20, 17-22. (344) Ni, Yongnian; Yang, Quansheng Fenxi Huaxue 1987, 75, 1110-13 Chem. Abstr. 1988, 708, 215486r. (345) Aguiio, E.; Aibertengo, L. B d . SOC. Quim. Peru 1988, 52, 158-67; Chem. Abstr. 1988, 108, 231062m. (346) Mavrodineanu, R.; Burke, R. W. Anal. Spectrosc. Libr. 1987, 2 , 125-74. (347) Vorob'ev. V. G.; Brynkova. T. N.; Fedorov, Yu. K.; Lunter, S. 0.;EkC mov, A. I. Opt.-Mekh. Prom-st. 1988, 60-2; Chem. Abstr. 1988, 109. 829070. (348) Esquivei, J. B. Chromatographia 1988, 26, 321-3. (349) Ni, Yonynian; Zhu. Huifang; Bai, Ling Fenxi Huaxue 1988, 78. 266-8 Chem. Abstr. 1988, 109, 162381~. (350) Alonso, J.; Bartroll. J.; Dei Vaiie, M.; Escalada, M.; Barber, R. Anal. Chem. Acta 1987, 799. 191-6. (351) Kurt, Ismali; Goltepe, Mustafa; Karakaya. Nilgun; Kutlouav, Terker; Karaca, Levent Biyokini. Derg. 1988, 73, 23-37; Chem. Abstr. 1989, 1 7 1 , 130067~. (352) Asuero. A. G. Microchem. J. 1987, 36, 359-63. (353) Recamales, A. F.; Navas, M. J.; Asuero. A. 0. Cienc. Ind. Farm. 1988, 7 , 35-7; Chem. Ab&. 1988, 709,134894~. (354) Abdei Ghani, N. T.; Shafik, L. M.; Issa, L. M.; Issa, Y. M. Commun. Fac. Sci. Univ. Ankara, Ser. B : Chem. Chem. Eng. 1987, 33, 7-14; Chem. Abstr. 1989, 1 7 1 , 77430h. (355) Morgan, Mario S.; Van Trieste, Paul F.; Gariick, Stephanie M.; Mahon, Martin J.; Smith, Ailan L. Anal. Chim. Acta 1988, 275, 325-9. (356) Li, Jinhe; Xi. Changsheng; Han, Chao; Shi, Hulming Fenxi Huaxue 1987. 15, 733-5; Chem. Abstr. 1988, 708, 12344%. (357) Xi, Changsheng; Li, Jinhe; Han. Chao; Shi, Huiming Huaxue Xuebao 1987, 45, 860-4 Chem. Abstr. 1988, 108, 15458~. (358) Li, Jianjun; Luo, Qlngyao; Zeng, Yune Huaxue Xuebao 1988, 46, 5904; Chem. Abstr. 1988, 109,182676~. (359) Blanco, M.; Gene, J.; Iturriaga, H.; Maspoch, S.; Riba, J. Taiante 1987, 34, 987-93. (360) Rios, A.; Lazaro, F.; Luque de Castro, M. D.; Vaicarcei. M. Anal. Chim. Acta 1987, 799,15-27. (361) Hoiter, A.; Perkampus, H. H. Fresenius' Z . Anal. Chem. 1989, 333, 629-33 Chem. Abstr. 1989, 7 7 1 . 31040~. (362) Viiiari, A.; Ficarra, P.; Ficarra, R.; Vaienti, G.; Mondio, G. Boll. Chim. Farm. 1987, 726, 317-25; Chem. Abstr. 1988. 709,11602h. (363) Engh, Steven A.; Holler, F. James Anal. Chem. 1988, 60. 545-8. (364) Pascu, M. L.; Pascu, A.; Dumbraveanu, G.; Enescu, M.; Muntfanu, M. Rev. Roum. Phys. 1988, 33, 787-90; Chem. Abstr. 1988, 709, 218947e. (365) Satoh, Keiichi; Klkuchl, Yoichi; Suzuki, Toshio; Sawada, Kiyoshi Bunseki Kagaku 1980, 38, T54-T58; Chem. Abstr. 1989, 1 1 1 , 1458362. (366) Fiddlk, R. J.; North, A. N.; Meeten, G. H. J. Phys. E : Scl. Instrum. 1988, 27. 1033-7. (367) Prishchepov, A. S.; Kravchenko. S. A. Otkmya, Izobret. 1089. 190; Chem. Abstr. 1989, 7 7 1 , 126081f. (368) Marshall, Janet L.; Hopkins, Michael D.; Gray, Harry B. ACS Symp. SW. 1987, 357, 254-56. (369) Spitzer. M.; Gartig, F.; Van Eldick, R. Rev. Sci. Instrum. 1988, 59, 2092-3. (370) Loriguiilo. A.; Silva, M.; Perz-Bendito, D. Anal. Chim. Acta 1987, 199, 29-40. (371) Adams, Karen M. Appl. Opt. 1988, 27, 4052-6.

A,NALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

167R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (372) Thompson, Meg M.; Palmer, Rlchard A. Anal. Chem. 1988, 60, 1027-32. (373) Wksz, Douglas F.; Browne, R. J.; Blades, M. W. Appl. S p e c w c . 1987, 41, 1383-7. (374) Grossman, Willlam E. L. J. Chem. Edm. 1989, 66, 697-700. (375) Trojenowlcz, Mar& Worsfold, Paul J.; CHnch, J. Richard TrAC. Trends Anal. chsm.(h. Ed.) 1988, 7 , 301-5. (376) Epperson, Patrkk Michael Dks. Abstr. Int. B 1988, 48, Pt. 1, 3546. (377) Hohnson, C. 8.; Bonney. L.; Floryan, R. F. Roc. SPE-Int. Soc.Opt. Eng. 1988. 932, 285-90. (378) Li, Tonbao; Sun, Hong; Cao, Yuansheng Roc.-lnt. Symp. Tech. Comm. Fiwton-Detect., Int. Meas. Confed. 1987, 13th, 64-73; Chem. Abstr. 1988, 109, 138715n. (379) Scopes, Robert K.; Holmquist, Barton Anal. Blochem. 1987, 165, 258-68. (380) Nevln, W. Andrew; Llu, Wei Anal. Sci. 1988. 4 , 559-63. (381) Demlshev, A. G.; Pelykh, D. P.; Shbkov, A. K.; Vorob'ev, V. G.; SupHn, V. 2.; Zkeev, P. E.; Dublnskll, S. I.; Yushko, T. T. Opt.-Mekh. Rom-st 1988, 26-9; Chem. Abstr. 1988, 109, 138663~. (382) Legere, Guy J . Anal. At. Spectrom. 1988, 3 , 597-9. (383) Acton Research Corporatlon, P.O. Box 215, 525 Maln St., Acton, MA 01720. (384) Guided Wave, Inc., 5190 W e n Foothill Parkway, El h a d o Hills, CA 95630. (385) Hach Company, P.O. Box 389, Loveland, CO 80539. (386) Hltachl Instruments, Inc., 15 Miry Brook Road, Danbury, CT 06810. (387) Huntdab Aseoclates Laboratory, lnc., 11491 Sunset Hllk Road, Reston, VA 220906280. (388) JaSCo Incorporated, 314 Commerce Drhre, Easton, MD 21601. (389) Kontron Instruments, Vla G. Fantoli 16/15, 20138 Milano, Italy. (390) Pharmacla LKB Blotechnology Inc., 800 Centennial Ave., Plscataway, NJ 08854. (391) LT Indwtrb, Inc., 6110 Executlve BM., Rockville, MD 20852. (392) Milton Roy Co., 820 Linden Ave., Rochester, NY 14625. (393) Pacific Sclentlflc Co., Instrument Dlvislon, 2431 Linden Lane, Sliver Sprlng, MD 20910. (394) Perkln-Elmer Corp., 761 Maln Ave., Norwak, CT 06859-0012. (395) Phlllps Analytical, York St., Cambridge, Great Britain CBI 2PX. (396) Secomam, Inc., 35 Thlrd St., Fords, NJ 08863. (397) Sequoia-Turner Corp., 850 Maude Ave., Mountain View, CA 94043. (398) Shlmadzu Sclentiflc Instruments, Inc., 7102 Riverwood Dr., Columbia, MD 21046. (399) Beckman Instruments, Inc., Sclentiflc Instruments Division, P.O. Box 3100, 2500 Haarbor Boulevard, Fullerton, CA 928343100., (400) Clba Coming Diagnostlcs Corp., Gllford Systems, 132 Artino St., Oberlln. OH 44074. (401) Gllson Medical Electronics, Inc., 3000 W. Beltllne Hwy., MkMleton, WI 53562. (402) Qroton Technology, Inc., 99 Moody St., Weltham, MA 02154. (403) HI-Tech Sclentlflc Ltd., Brunel Rd., Sallsbwy, Wllts. SP2 7PU, England. (404) EG&G Prlnceton Applled Research, P.O. Box 2565, Princeton, NJ 08543. (405) Petrakis, J. P.; Bower, C. R.: Gebhard. M. W.; He4nz, R. M.; Mufson, S. L.; Reynoldson, J. M.; Turner, G. W. Nucl. Instrum. Methods Rtys. Res., Sect. A 1988, A268. 256-61. (406) Vellwt, M. T.; Blanc, F.; Vernet, P. Roc. SPIE Int. Soc. Opt. Eng. 1989, 900, 78-83. (407) Bagrov. V. G.; Medvedev, A. F.; Nikln, M. M.; Shlnkeev, M. L. Nut/. Instnun. Mthcds Phys Res .* Sect. A 1987, A26 1 , 337-8. (408) Zhang. Zhlilan; Zheng, Plng; Lin, Zhong Mikrochlm. Acta 1987 (Pub. 1988), 2 , 329-33. (409) Tran, C. D.; Franko, M. J . Phys. E . Scl. Instrum. 1989, 2 2 , 586-9. (410) Franko, Mladen: Tran Chleu D. Anal. Chem. 1988, 6 0 , 1925-8. (411) Tran, C. D.; Xu, M. Appl. Spectrosc. 1989, 43, 1056-61. (412) Bialkowskl, Stephen E.: He, ZM Fang Anal. Chem. 1988. 60, 2674-9. (413) Spear, J. D.; Russo, R. E.; Slka, R. J. Appl. Spectrosc. 1988, 42, 1103-5. (414) Posch, Hermann E.; Wolfbeis, Otto S.; Pusterhofer, Johannes Talanta 1988, 35, 89-94. (415) Small, J. R.; Hassel, R. L. Am. Lab. (FaMa/d, Conn.) 1988, 20, 88-91. (416) Lentjes, Eef 0. W. M.; Harff, Gottfrled A.; Backer, Egbert T. Clin. Chem. (Wnston-Salem, N.C.) 1987, 33, 2089-92. (417) ZIUstra. W. G.: Buwsma, A.: Zwart. A. Clln. Chem. (Wlnston-Salem. ' ti.c.j i988,34, 149-52. (418) Donatl, S.; Tambosso, T. Roc. SPIE-Int. Soc. Opt. Eng. 1989, 990, ~

711-7 .- . .

(419) Kamahorl, M.; Watanabe, Y.; Mlura. J.; Taki, M.; Mlyagi, H. J . Chromtogr. 198S. 465, 227-32. (420) Dorschel, Crab A.; Ekmanis, Juris L.; Obemoltzer, James E.; Warren, F. Vincent, Jr.; BMllngmeyer, Brian A. Anal. Chem. 1989, 6 1 , 951A954A, 956A, 958A, 96OA. 962A, 966A. 968A. (421) ADlonso, J.; Del Valle, M.; Bartroll, J. Aflnkhd 1988, 45, 249-54; Chem. Abstr. 1989, 110, 127664q. (422) Tyson, Jullan F.; Marsden, Andrew B. Anal. Chim. Acta 1988, 214, 447-53. (423) bsgupta, Punendu K.; Vlthenage, Rathnapala S.; Petersen, Kaj Anal. Clnkn. ACte 1988. 215, 277-62. (424) Cacecl. Marco S. Comput. Chem. 1989, 13, 33-8. (425) M a r t h y , comdlus J.; Klng, Edward E. LabotfVaxb 1988, 12, 1091-2, 1094 Chem. Abstr. 1989, 110. 87699~. (426) Wotfbeis, Ottos S. Chem. Meg. (@tent) 1988, 14, 28-9; Chem. Abstr. 1989, 110, 914081. (427) Otto. Mawlas; Hoffmann, Alfred; Roedel, Gerd Petrak. Dleter. Ger. (East) M) 258.471, 20 Jul 1988, Appl. 300,643, 11 Mar 1987; Chem. Abstr. 1989, 110, 17842~. l68R

ANALYTICAL CHEMISTRY, VOL. 62. NO. 12, JUNE 15, 1990

(428) VanDyke, David A.; Cheng, Hung Yuan Anal. Chem. 1989, 61, 633-6. (429) Hlgley, S. E.; Wd, E.;Mlchal, R. J.; Therleult. J. P.; Jolh, D. A. Roc. SPIE-Int. Soc.Opt. Eng. 1988, 838, 318-24. (430)Bolsde, Gilbert; Blanc. Fkreal; Perez, Jean Jacques Talenta 1988,35, 75-82. (431) Boehme, Wolfgang; Horn, Konrad Melssner, Dieter LaborRaxk 1988, 12. 159-63; Chem. Abstr. 1988, 109, 162408k. (432) Kraus, Paul, R.; Wade, Adrian P.; Crouch, S. R.; Holland, J. F.; Miller, Brlnton M. Anal. Chem. 1988, 60, 1387-90. (433) Lane, A. S.; ReM, M. D.; Walls, D. F. Phys. Rev. Lett. 1988, 60, 1940-2. (434) Yappert, M. Cecilia; Schuyler, M. W.; Ingle, J. D., Jr. Anal. Chem. 1989, 61, 593-600. (435) Lin, Yung C; Adler, Robert J.; Edwards, Robert V. Ind. Eng. Chem. Res. 1988, 27. 273-9. (436) Butler. Edward 0.; GIII, Rachhpal; Garych. Lisa Anal. Bkchem. 1988, 170, 402-8. (437) Adamczyk, E.; Ranachowskl, J.; Rzeszotarska, J. Nauchn. Appar. 1987, 2 , 3-14; Chem. Abstr. 1988. 109, 11928%. (438) Ashurov, A. M.; MadVallev, U.; Slepchenko, G. N.; Ergashev, Sh.; Beremzhanov, I.M.; Zhavoronkov, A. A. Dokl. Akad. Nauk Taa2h. SSR 1988, 3 1 , 176-8; Chem. Abstr. 1989, 110. 31114j. (439) Hallikalnen, J.; Parkkinen, J.; Jaaskelainen, T. Rev. Sci. Insbum. 1988. 59, 81-3. (440) Slmon, Arno; Wunsch, Lutz; Zachmann, Guenter Mkrochlm. Acta 1967 (Pub. WEE), 2 , 311-13. (441) h o ,Jinzhang; Wang, Zhemlng; Wang, Yonghng; Bel, Quangbl Fenxl Ceshl Tongbao 1987, 6 , 50-4; Chem. Abstr. 1988, 108, 12360%. (442) Haaland, David M.; Thomas, Edward V. Anal. Chem. 1988. 60, 1193-202. (443) Kvalheim. Olav M.; Karstang, Terje V. Chemom. Intell. Lab. Syst. 1987, 2 , 235-7; Chem. Abstr. 1988, 108, 86932~. (444) Wu, Yutlan; Wang, Guifang; Gong, Huali J. Med. Coll. PLA 1987, 2 , 342-7; Chem. Abstr. 1988, 109, 98915~. (445) Lukkarl. Ingrid; Llndberg, Walter Anal. Chlm. Acta 1988, 211, 1-10. (446) Kalhras, John H.; Roberts, Nancy; Sutter, Jon M. Anal. Chem. 1989, 6 1 , 2024-30. (447) Wang, Dongjin; Li, Zhen; Ll, Changhua Fenxl Huaxue 1988, 16, 98660;Chem. Abstr. 1989, 111, 69985~. (448) Jones, Ron Anatat (London) 1987, 122, 1495-8. (449) Gable, Ralph W. J. Chem. Educ. 1988, 65, 26-7. (450) Amita, Takashl; Iwamoto, Kazumasa; Ichlse, MltsunoJo; Kojima, Tugio Bunsekl Kagaku 1988, 37, 389-94; Chem. Abstr. 1988, 109, 2041%. (451) Boehme, W.; Llekmeler, W.; Steinwand, M. GIT Fachz. Lab. 1988, 3 2 , 505-6, 508-9; Chem. Abstr. 1988, 109, 203925~. (452) Huber, L.; Zech, K. J . Pharm. Bbmed. Anal. 1987 (Pub. 1988), 6 , 1039-43. (453) Gur'eva, R. F.; Sawin, S. B. Zh.Anal. Khlm. 1988, 43, 476-82; Chem. Abstr. 1988, 109, 12164111. (454) Li, Xinyl; Chen, Hualxla Yepn Fenxl 1987, 7 , 19-21; Chem. Abstr. 1988, 109, 141648~. (455) Hal-Husseln, Amln T. Microchem. J . 1989, 39, 99-105. (456) Issa, R. M.; Aly, F. A.; ECRles, M. A.; Abu-Atla, F. M. Egypt. J . Pharm. Scl. 1987, 2 8 , 99-106 Chem. Abstr. 1987. 107, 2324703. (457) Gallardo Melgarejo, A.; Gallardo Cespedes, A.; Can0 Pavon, J. M. Analysf(Londbn) 1989, 114, 109-11. (458) Uchluml, Akha; Terakl, Yoshimi, Iwase, Yasuhko; Ugl, Yoshltaka; Shlbayama, Hlroharu Bhyo Klnzuku Tabha 1987, 27-32; Chem. Abstr. 1989, 1 1 1 , 131613q. (459) Botelia, J.; Bama, J. M.; Aknohaila, T. Rev. Metal. ( W W )1988,24, 271-5; Chem. Abstr. 1989, 1 1 1 , 186462r. (460) Tantsyura, G. F.; Denlsenko, V. P.; Ekbal, A. K.; Savenko, G. I.#rr. Khlm. Zh. (Russ. Ed.) 1987, 53, 515-18; Chem. Abstr. 1988, 108, 48308g. (461) Berezlna, E. M.; Lyutova, 0. V.; Voronln, N. I.; FIUmosMtln, A. G. .?avod. Lab. 1988, 54, 7-0 Chem. Abstr. 1989, 110, 22474011. (462) De FuMO, S.; Olorl, L. Metodl Anal. Acque 1987, 7 , 15-28; Chem. Abstr. 1988. 108. 173254n. (463) Luglnln, V. A.; Moskvln, L. N.; Yakushklna, M. S. Zh. Anal. Khlm. 1987, 42, 2128-32; Chem. Abstr. 1988, 108, 105555m. (464) Kunltskaya, I.S.; Mezaraups, Ya. G.; Jansons, E. fatv. PSR Zlnat. Akad. Vestis, Klm. Ser. 1988, 202-9; Chem. Abstr. 1988, 109, 203969q. (465) Adamiec, Izabella; Sllwa, Antonl; Sobczyk, Irena; Stapel, Teresa Pol. PL 141,976 10 May 1988. Appl. 248,567, 3 July 1984 Chem. Abstr. 1989, 110, 17847~. (466) Stefan, Shaker L.; El-Shetary, B.; Hanna, W. 0.; EWraghy, S. B.; Moez, M. S. Oflent. J . Chem. 1988, 4 , 184-95; Chem. Abstr. 1989, 110, 2416811. (467) Shankar, D. Gowrl; Sastry,C. S. P.; Reddy, M. Narayana; Slngh, N. R. Prasad Indlan LJmgs 1988, 2 5 . 478-9; Chem. Abstr. 1888, 109, 197309f. (468) Sankar, D. Gowri; Sastry, C. S. P.; Reddy, M. Narayana; Aruna, M. Indian Dnrgs 1989, 2 6 , 348-51; chem.Ab&. 1989, 111, 160389~. (469) Sastry, C. S. P.; Shankar. D. Gowrl; Reddy, M. Narayana; Slngh, N. R. Prasad Indlan Drugs 1987, 2 5 . 130-2; Chem. Abstr. 1988, 109, 43526n. (470) Sankar, D. Gowrl; Sastry. C. S. P.; Reddy, M. Narayana Acts Cienc. Indice, Chem. 1988, 14, 133-8; Chem. Abstr. 1989, 1 1 1 , 180871b. (471) Savinykh, Yu. V.; Nemerkrskaya, 2. I.Zh. Anal. Khlm. 1988, 43, 757-9 Chem. Abstr. 1988, 109, 182806s. (472) ANtyunova, A. S.; Gorshkova, T. A.; Kupletskaya, N. B.; Kashln, A. N. Zh. Anal. Khlm. 1988, 43. 1717-19; Chem. Abstr. 1989, 111, 32924f. (473) Terekhov, F. K. Khlm. Sel'sk. Khoz. 1988, 41-1; Chem. Abstr. 1988, 108, 220428).

Anal. Chem. 1000, 62, 169R-184R (474) Aizenber , L. V.; Qoryunova, N. N.; Dvornlkov, A. N. Zh. Anal. K M . 1987, 42, 2871-5; Chem. Abstr. 1988, 108, 87290q (475) Lee, Albert W. M.; Chan, W. H.; Chlu, Connle M. L.;‘ Tang, K. T. Anal. chkn.A . ~_ l a1989. .. 218. 157-80. (476) Iskandw, Madkne’L.; Medlen, H. A. A.; Nashed, S. Mlcrochem. J . 1987, 36, 388-76. (477) Sastry, C. S. P.; Tlpknenl, A. S. R. P.; Swyanaranana. M. V. Indian 1989, 26, 351-3; chem.Abstr. 1989, 111. 100837~. (478) Marlnl, Sergb I d . &V8nde 1988, 17, 423-4; Chem. Abstr. 1989, 110, 73928h. (479) Asabe, Yoshlhlro; Anraku, Masayukl; Takltani, Shoji Iyekuhln Kenkyu 1988, 19, 700-8; Chem. Abstr. 1989, 110, 127812m. (480) Mohamed, Abdel Maboud I. T8bnta 1988, 35, 821-4. (481) Suzukl, Masao; Nlshinaka, Tomoko; Takltani, Shoji Iyekuhln Kenkyu 1987, 18, 749-52 Chem. Abstr. 1988, 108, 1132Od. (482) Onur, Feyyaz; Acar, Nevin Oezl Unlv. EczaCMRC F8k. Dwg. 1988, 5, 187-74; Chem. Abstr. 1989, 110, 219218a. (483) ISsOpoulos, Prodromos E. Analyst (London) 1989, 114, 237-9. (484) Szakacs Pinter, Mar@; Laszlo, Erika; Per1 Mdnar. Ibolya Mgy. Kem. Fdy. 1987, 93, 480-3; Chem. Ab&. 1988, 108, 1056871. (485) Zlvanovlc, Ljnjane; Zlvanov-Stakic, Dobrila Am. arm. 1987,37,2172 2 Chem. Abstr. 1988, 108 137942b. (486) ZbanOvlc, Ljlljane A h . F8fm. 1987, 37,279-83; Chem. Abstr. 1888, 109, 98921t. (487) Kljenska, Danuta R . Cent. Inst. Ochr. R. 1987, 37, 43-8; Chem. Abstr. 1088, 108, 81032k. (488) hntonl, G.; Mura, P.; Pinzauti, S.; Gratteri, P.; La Porta, E. Int. J. phafm. 1989, 50, 75-8. (489) Emara, Kamla M.; El-Kommos, Mlchael F. Alexandrle J . Pharm. Scl. 1989. 3, 19-22; Chem. Abstr. 1989, 111, 71090a. (490) Ock, Chi Wan; Balk, Chae Suen Yekh8k Hoechl 1987, 31, 330-7; Chem. Abstr. 1988, 108, 82228~. (491) Xin, Xun Yeoxue Tongb80 1987, 2 2 , 74-5; Chem. Absf. 1988, 108, 11310a. (492) Qian, Shougen Shipin Yu Fejko Gongye 1987, 48-51; Chem. Abstr. 1988, 108, 201110h. (493) EI-Dln, M. Sharaf; Belai, F.; Hassan, S. Zmtr8bl. pharm., Pharmakolhsr LabOretWhMdkgn. 1988, 127, 133-5; Chem. Abstr. 1988, 109, 798192. (494) ECKommos, Michael E.; Emara, Kamla M. Alexendrie J. phefm. Scl. 1988, 2, 171-8; Chem. Abstr. 1989, 110, 1604844. (495) Chen, Yi YQao Gongye 1987, 18, 327-8; Chem. Abstr. 1988, 108. 11299d. (498) Ichlba, Hldeakl; Morishlta, Muneo; Yajima, Takehiko Chem. Pharm. Bull. 1988, 36, 5009-11.

(497) Nyyssonen. Kristilne; Parviainen, M. T.; Penttila, I. M. J . CUn. Chem. CHn. Blochem. 1988, 26, 219-22. (498) Petrowltz, H. J.; Wagner, M. Fresenk’ Z. Anal. Umm. 1988, 330, 125-8; Chem. Ab&. 1988, 709, 313263. (499) Kuklinskil, A. Ya.; Bogaevskaya, M. T.; Fedotova, L. V.; LarlcMtine, T. V. Nefleperereb. NeMhim. (MOscuw) 1988, 19-20 Chem. Abstr. 1080, 110, 687881. (500) Geblckl, Janusz M.; Gulile, Jennlfer Anal. B/ochem. 1989, 176, 360-4. (501) Slngh. V.; Shukla, S. K.; Mahanwal, J. S.; Ram, Jagdish phamzk, 1989. 44, 229-30. (502) Koleva, M.; Nlnov, S.; Koiev, S. Dokl. Bo/g. Aked. &auk 1988, 41, 39-42; Chem. Abstr. 1989, 110, 107364~. (503) Iovchev, I.; Lazova, 0. F8fm8&&8 SOW 1988, 38, 24-30; Chem. Abstr. 1988, 109, 116148~. (504) Becker, 6.; Krone, I . phann. f m x . 1988, 43, 168-8; Chem. Abstr. 1988. 109, 218078~. (505) Morelii, Basillo; hriani, Marina; Gesmundo, Mariateresa Anal. Lett. 1987, 20. 1429-50. (506) Li, Zhongzhong; Wu. Licun Shenyang Yaoxueyuan Xuebao 1988, 5, 94-6, 148; Chem. Abstr. 1988, 109, 118125t. (507) Gantverg, A. N. G@. Sann. 1988, 36-7; Chem. Abstr. 1988, 109, 188907~. (508) Kuzmicka, L.; Ptuanowska-Tarasiewicz, H.; Tarasiewicz, M. Phamzis 1988, 43. 288-9; Chem. Abstr. 1988, 109, 278761. (509) El-Shabouri. Saiwa R.; Mohamed, Fardous A.; Mohamed, Abdel Moboud I . Talenta 1987. 34, 968-70. (5 IO) Tomaszewski, Leszek; Seraflnska, Barbara; Szaniawska, Marla Dagn . Leb. 1988. 24, 58-67; Chem. Abstr. 1088, 109. 89152r. (511) Fabregas, J. L.; Casassas. E. Drug. Dev. I d . pharm. 1988, 14, 155-63. (512) Yuan, Jimln; CUI, Min Ylyeo O g y e 1987, 18, 497-9; Chem. Abstr. 1988, 108, 27035a. (513) Fllipeva, S. A.; Streiets, L. N.; Petrenko, V. V.; Buryak, V. P. F8fm8tS k 8 (MOSCOW) 1987, 36, 39-42; Chem. AbStr. 1988, 108, 101438~. (514) Veselov, V. Ya.; Savel’ev, Yu. V.; Grekov, A. P. Zh. Anal. Khlm. 1088, 43, 1125-7; Chem. Abstr. 1989, 110, 165286a. (515) Reo, G. Ramana; Avadhanulu, A. 8.; Glrldhar, R. Indkn Drugs 1989, 2 6 , 298-300; Chem. Absf. 1989, 110, 219174h. (516) Saha, Upal J.-Assoc. Off. Anal. Chem. 1989, 72, 242-4. (517) Llang, Derong; Qin, Yongping; Llang, Maozhi; Huang, Ylng; Zeng, Jingze H m l Yke &xu8 Xuebao 1987, 18,256-8 Chem. Abstr. 1988, 108, 87474c. (518) Rizk, M.; Walash, M. I.; ECBrashy, A. Spectrosc. Lett. 1988, 2 1 , 393-409.

Atomic Absorption, Atomic Emission, and Flame Emission Spectrometry James A. Holcombe* and D.Christian Hassell Department of Chemistry, University of Texas at Austin, Austin, Texas 78712

A. INTRODUCTION This biennial review concentrates on fundamental studies in the areas denoted in the title and represents an attempt to continue coverage from the previous review of this same series (AI). A more comprehensive focus on applications can be found in alternate years in this same journal (e.g., ref A2). Complementary reviews in areas of atomic spectrometry in this same journal issue include that on emission (A3) and elemental mass spectrometric (A4) a proaches to analysis. Within the last two years, relevant ‘terature reviews have been published & la Atomic Spectrometry Updates in Journal of Analytical Atomic Spectrometry including a review of atomization and excitation (A5). Others will be discussed in their relevant section. Atomic Spectrometry continues to include their review of the literature on a biannual basis. Other review articles will be found throughout this article in the appropriate sections. In the application section of this review we have attempted to include literature references which are generally available in major libraries in the western hemisphere with a preference given toward articles written in English, unless we felt that the application or a proach was extremely novel. This same filter was not used o!r the studies with a more fundamental bent since this is intended to be the primary focus of this review. In instances where the journal may not be readily

E

0003-2700/90/0362-169R$09.50/0

available in major libraries, we attempted to include the chemical abstract number for the reader’s ease of perusing the general contents. General trends observed since the last review include a continued dominance of this area of the literature with electrothermalatomization (ETA) and an increasing number of studies using this mode of atomization for atomic as well as in ita more traditional role in fluorescence (AF’) atomic absorption spectrometry ( U S ) . One is also left with the im ression that a fundamental understanding of ETA has s t a r t e f t o solidify with an attendant refocusing on the surface chemistry, rather than the gas phase, as a requirement in developing a complete picture of processes res onsible for atomization and interference phenomena. The Lvelopment of some rudimentary understanding of this relatively complex system that makes up ETA has occasionally resulted in a migration of traditional ugas phase spectrosco ists” into other modes of data collection for interpretation of multifaceted and multiphase problem. The flame still serves as a convenient atom generator for purauing other novel spectroscopicprobes, but basic analytical studies of flames and research in the area of flame emission (FE) and flame atomic absorption (FAA) have all but disappeared from the arena of active research compared to other areas. This attenuation in literature citations for FAA and

th

0 1990 American Chemical Society

169 R