8 Functional Properties of Microwave-Heated Soybean Proteins
Downloaded by TUFTS UNIV on November 30, 2016 | http://pubs.acs.org Publication Date: March 13, 1979 | doi: 10.1021/bk-1979-0092.ch008
D. L. ARMSTRONG and D. W. STANLEY Department of Food Science, University of Guelph, Guelph, N1G 2W1, Ontario, Canada T. J. MAURICE General Foods Limited, Cobourg, Ontario, Canada
Although the functional properties of proteins are of the greatest concern to the food scientist, our knowledge of them remains empirical. Observations are but rarely related back to fundamental physicochemical properties such as conformation. In many cases it is impossible even to connect one study with another since the researcher is faced with a myriad of techniques used for measuring protein functionality. It is of great importance to gain an understanding of the relationship between structure and functionality so that the latter can be correctly predicted, manipulated and controlled, if only to insure better utilization of protein in a world where population and malnutrition are growing daily. This study stems from an attempt to find alternatives to the present method of obtaining protein from heated, solvent extracted soy flakes. As the primary process can cause protein denaturation, insolubilization, impairment of flavour, functionality and color and may possibly affect its nutritive value, i t would seem that a better approach might be the direct isolation of soy protein using less harsh conditions. One method to achieve this is the preparation of an aqueous extract of soaked beans (soymilk) from which the protein is subsequently precipitated at the isoelectric point, a method favoured for recovering soy proteins with unimpaired functionality (1). However, i f the protein is not exposed to elevated temperatures the lipoxidase systems in the soybeans promote off-flavour in the soymilk, and trypsin inhibitors, which have a retarding effect on growth laboratory animals, will not be destroyed. A technique has been developed for processing soymilk in which the beans are soaked in water and then ground in water at a temperature above 80°C to inactivate the lipoxidase enzymes before they can have a significant effect on flavour (2). Although this eliminates the beany flavour previously associated with soymilk the protein is still exposed to high temperatures American Chemical a l
S o c i e t y
® ^ïsoWmljiIw Washington, 0. C.and 20036 Pour-El; Functionality Protein Structure ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
148
FUNCTIONALITY
A N D PROTEIN
STRUCTURE
•which c a n l e a d t o d e n a t u r a t i o n a n d i n s o l u b i l i z a t i o n . A l s o , t h e a b i l i t y of t h i s procedure to i n a c t i v a t e t r y p s i n i n h i b i t o r s i s d o u b t f u l s i n c e H a c k l e r et_ a l . (3) e s t i m a t e d t h a t s o y m i l k p r e p a r e d a t a m b i e n t t e m p e r a t u r e s r e q u i r e d 120 m i n a t 9 0 ° C t o r e d u c e t r y p s i n i n h i b i t o r a c t i v i t y t o 5$ o f t h e o r i g i n a l l e v e l . We h a v e a t t e m p t e d t o e m p l o y m i c r o w a v e h e a t i n g t o i n a c t i v a t e t h e o b j e c t i o n a b l e t r y p s i n i n h i b i t o r s and l i p o x i d a s e s y s t e m s . T h i s p r o c e s s has the advantages o f b e i n g e a s i l y c o n t r o l l e d and h a v i n g g r e a t p e n e t r a t i o n so t h a t a s h o r t e r t r e a t m e n t may b e u s e d w i t h a concomitant decrease i n p e r i p h e r a l o v e r - h e a t i n g .
Downloaded by TUFTS UNIV on November 30, 2016 | http://pubs.acs.org Publication Date: March 13, 1979 | doi: 10.1021/bk-1979-0092.ch008
MATERIALS AND METHODS Soybeans A l l s o y b e a n s u s e d w e r e f r o m t h e same l o t a n d v a r i e t y (Harrowsoy 6 5 ) . Proximate analyses i n d i c a t e d 37.6$ p r o t e i n (Ν x 5 . 5 0 ) , 2 0 . 2 $ f a t , 6 . 9 $ m o i s t u r e a n d 1 1 . 0 $ crude f i b e r . Preparation of
Soymilk
A 100 g sample o f s o y b e a n s was s o a k e d f o r 12 h i n ^50 m l o f t a p w a t e r at ambient t e m p e r a t u r e . This increased the moisture l e v e l o f the beans t o 6 2 . 1 $ . I f t h e b e a n s r e c e i v e d no h e a t t r e a t m e n t t h e y were p r o c e s s e d i m m e d i a t e l y . D r a i n e d beans were ground i n 1 £ o f tap water (20°C) i n a 1 g a l s t a i n l e s s s t e e l Waring Bien dor at h i g h speed f o r 3 min. The r e s u l t a n t s l u r r y was p a s s e d t h r o u g h a s m a l l h o u s e h o l d c e n t r i f u g a l s e p a r a t o r ( j u i c e e x t r a c t o r ) which trapped the s o l i d p a r t i c l e s i n a t r i p l e layer of cheesecloth. T h e s o y m i l k was s t o r e d a t 0 - ^ ° C u n t i l needed. Heating
Treatments
M i c r o w a v e i r r a d i a t e d s o y b e a n s were p r o d u c e d a f t e r t h e i n i t i a l s o a k i n g p r o c e d u r e u s i n g a L i t t o n microwave oven (Model 5 5 0 , f r e q u e n c y 21+50 M H , o u t p u t 1250 w a t t s ) . T h e b e a n s were p l a c e d i n t h e c e n t r e o f t h e o v e n on a p a p e r p l a t e i n a l a y e r about t h r e e beans t h i c k . Samples were t r e a t e d f o r 3 0 , 6 0 , 90 o r 120 s e c . S o y m i l k was t h e n p r e p a r e d i m m e d i a t e l y as p r e v i o u s l y described. The m e t h o d o f M a t t i c k and Hand (2_) a l s o was u s e d t o prepare soymilk. The b l e n d e r was p r e h e a t e d w i t h a b o i l i n g w a t e r r i n s e a n d b o i l i n g w a t e r was a d d e d t o t h e d r a i n e d b e a n s ; t h e minimum t e m p e r a t u r e o f t h e s l u r r y d u r i n g g r i n d i n g was 8 o ° C . Z
I s o l a t i o n o f Soymilk P r o t e i n s F i g u r e 1, a m o d i f i c a t i o n o f t h e m e t h o d u s e d b y P u s k i a n d M e l n y c h y n ( Λ ) , shows t h e p r e p a r a t i v e p r o c e d u r e u s e d t o i s o l a t e an a c i d - p r e c i p i t a t e d f r a c t i o n o f s o y m i l k p r o t e i n ( R D P ) .
Pour-El; Functionality and Protein Structure ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Pour-El; Functionality and Protein Structure ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
(discard)
Sediment
Figure 1.
Supernatant - RDP
(discard)
Supernatant - Whey
Centrifuge (500 χ g, 30 min)
0.1 Ν citric acid
Adjust to pH 4.6 w/
Supernatant
Scheme for isolation of acid precipitate protein from soymilk, adapted from Ref. 4
Centrifuge (1000 χ g, 30 min)
buffer (pH 7.0)
Dissolve in 0.3 M citrate-phosphate
buffer (pH 4.5, 2x)
Wash w/ 0.1 M citrate-phosphate
Sediment
Sediment (discard)
Centrifuge (1000 χ g, 30 min)
Soymilk
Downloaded by TUFTS UNIV on November 30, 2016 | http://pubs.acs.org Publication Date: March 13, 1979 | doi: 10.1021/bk-1979-0092.ch008
Ο
a*
a
S3
ι
ο
ι m
150
FUNCTIONALITY
Downloaded by TUFTS UNIV on November 30, 2016 | http://pubs.acs.org Publication Date: March 13, 1979 | doi: 10.1021/bk-1979-0092.ch008
Determination of Residual Trypsin
A N DPROTEIN
STRUCTURE
Inhibitor
The m e t h o d o f L e a r m o n t h (5_) as a d a p t e d b y V a n B u r e n et_ a l . (6) -was f o l l o w e d t o d e t e r m i n e r e s i d u a l amounts o f t r y p s i n i n h i bitor. T h i s method i s b a s e d upon t h e a b i l i t y o f t r y p s i n t o r e t a r d g e l f o r m a t i o n and t r y p s i n i n h i b i t o r t o suppress t h e r e t a r dation. The s o u r c e o f t r y p s i n was a n e x t r a c t p r e p a r e d u s i n g 30 g o f c o m m e r c i a l b a r l e y m a l t f l o u r a n d 100 m l o f d i s t i l l e d w a t e r . T h i s was s t i r r e d f o r 1 h , t h e m i x t u r e a l l o w e d t o s e t t l e o v e r night and the supernatant f i l t e r e d . A b u f f e r e d g e l a t i n s o l was made b y d i s s o l v i n g 8 g g e l a t i n a n d 1 g d i s o d i u m h y d r o g e n c i t r a t e i n 100 m l d i s t i l l e d w a t e r . A mixture o f 5 ml d i s t i l l e d w a t e r , 5 m l g e l a t i n s o l a n d 5 m l m a l t e x t r a c t was i n c u b a t e d a t 3 5 ° C f o r 2 h a n d t h e n p l a c e d i m m e d i a t e l y i n an i c e w a t e r b a t h . This c o n t r o l h a d an a v e r a g e s e t t i n g t i m e o f 2 0 . 3 m i n . T r y p s i n i n h i b i t o r was a s s a y e d b y u s i n g s o y m i l k i n p l a c e o f t h e d i s t i l l e d w a t e r ; the presence o f t r y p s i n i n h i b i t o r l e s s e n s the time f o r gel formation. R e l a t i v e % t r y p s i n i n h i b i t o r was e x p r e s s e d a s : Relative
% t r y p s i n i n h i b i t o r = 100 -
Six determinations Sensory
were
done
s e t t i n g time
(soymilk)
setting
(water)
i n duplicate
time
f o r each
χ
1
Q
Q
sample.
Analysis
S o y m i l k s a m p l e s were e v a l u a t e d f o r o d o u r b y a p a n e l composed o f 1 7 - 2 0 u n t r a i n e d members. P a n e l i s t s were a s k e d t o e v a l u a t e t h e s a m p l e s f o r b e a n y o d o u r o n an u n s t r u c t u r e d 10 cm s c a l e r a n g i n g from " n o p e r c e p t i b l e odour ( θ ) t o "extreme odour" (lO) by p l a c i n g a v e r t i c a l mark on t h e l i n e a t a p o i n t c h o s e n t o r e f l e c t t h e i r o p i n i o n o f the sample. D a t a were r e c o r d e d as t h e d i s t a n c e from t h e l e f t h a n d , 0 e n d , o f t h e s c a l e t o t h e v e r t i c a l mark. The j u d g e s a l s o i n d i c a t e d w h e t h e r t h e o d o u r was n o t o b j e c t i o n able, s l i g h t l y objectionable or very objectionable. Three r e p l i c a t e s were p e r f o r m e d . 11
Functional
Analyses
Samples u s e d f o r a n a l y s e s o f f u n c t i o n a l p r o p e r t i e s were t h e r e d i s s o l v e d p r o t e i n f r a c t i o n s (RDP) f r o m t h e u n h e a t e d , t h e 6 θ sec microwave t r e a t m e n t and from t h e h o t water t r e a t m e n t s t h a t had s u b s e q u e n t l y been f r e e z e - d r i e d , a p r o c e d u r e r e p o r t e d t o r e s u l t i n minimum d e n a t u r a t i o n (7_). At l e a s t s i x determinations were done f o r e a c h t e s t . Solubility, A 1 g s a m p l e o f p r o t e i n was a d d e d t o e i t h e r 100 m l o f 0 . 3 M c i t r a t e - p h o s p h a t e b u f f e r r a n g i n g f r o m pH 2 . 0 t o 8 . 5 o r t o 100 m l o f pH 7 . 0 c i t r a t e - p h o s p h a t e b u f f e r e x t e n d i n g i n i o n i c s t r e n g t h from 0.005 t o 1.00. The m i x t u r e s were b l e n d e d
Pour-El; Functionality and Protein Structure ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
8.
ARMSTRONG E T AL.
Microwave-Heated
Soybean
Proteins
151
Downloaded by TUFTS UNIV on November 30, 2016 | http://pubs.acs.org Publication Date: March 13, 1979 | doi: 10.1021/bk-1979-0092.ch008
f o r 5 m i n i n a S o r v a l l O m n i m i x e r a t 3000 r p m , c e n t r i f u g e a , f o r 30 m i n a t 1000 χ g a n d 20 m l o f t h e s u p e r n a t a n t a n a l y z e d f o r p r o t e i n . Emulsion Capacity and Stability. A 0 . 5 g sample o f t h e f r e e z e - d r i e d p r o t e i n f r a c t i o n was r e d i s s o l v e d i n a minimum o f 0 . 3 M c i t r a t e - p h o s p h a t e b u f f e r a t pH 7 . 0 a n d m i x e d t h o r o u g h l y •with 50 m l o f 1 M N a C l f o r 1 min i n a S o r v a l l O m n i m i x e r a t 1000 rpm i n a one p i n t Mason j a r s e t i n a w a t e r b a t h ( 2 0 ° C ) . Crisco o i l (50 ml) was a d d e d t o t h e j a r a n d an e m u l s i o n f o r m e d b y m i x i n g a t 500 rpm w i t h s i m u l t a n e o u s a d d i t i o n o f o i l a t t h e r a t e o f 1 ml/min u n t i l the emulsion broke. The e n d p o i n t was d e t e r m i n e d b y m o n i t o r i n g e l e c t r i c a l r e s i s t a n c e w i t h an o h m e t e r . As t h e e m u l s i o n b r o k e a s h a r p i n c r e a s e (.1 ΚΩ t o 35-^0 ΚΩ) was n o t e d . Emul s i o n c a p a c i t y was e x p r e s s e d as t h e t o t a l volume o f o i l r e q u i r e d t o r e a c h t h e i n v e r s i o n p o i n t p e r mg p r o t e i n . T h i s method i s s i m i l a r t o t h a t u s e d by C a r p e n t e r and S a f f l e (8) f o r sausage emulsions. To e s t a b l i s h e m u l s i o n s t a b i l i t y t h e same p r o c e d u r e was u s e d e x c e p t t h a t 100 m l o f o i l was a d d e d a n d a s t a b l e e m u l s i o n f o r m e d b y b l e n d i n g a t 1000 rpm f o r 1 m i n . A 100 m l a l i q u o t was t r a n s f e r r e d t o a g r a d u a t e c y l i n d e r a n d a l l o w e d t o s t a n d a t room t e m p e r a t u r e . O b s e r v a t i o n s were made o f t h e volume o f t h e o i l , e m u l s i o n and w a t e r p h a s e s a t 3 0 , 6 0 , 90 a n d 180 m i n . Bulk Density. B u l k d e n s i t y d e t e r m i n a t i o n s were made u s i n g a Scott paint volumeter ( F i s h e r S c i e n t i f i c Co.) with a 1 i n brass r e c e i v e r to c o l l e c t the sample. 3
Foam Volume. The d e t e r m i n a t i o n o f f o a m a b i l i t y was c a r r i e d o u t u s i n g t h e p r o c e d u r e o f Hermansson et_ a l . ( 9 ) w i t h m o d i f i c a tions. A 1 g sample o f t h e f r e e z e - d r i e d p r o t e i n f r a c t i o n was h o m o g e n i z e d w i t h 90 m l o f c i t r a t e - p h o s p h a t e b u f f e r i n a S o r v a l l O m n i m i x e r a t 3000 r p m . The r e s u l t a n t foam a n d l i q u i d were t r a n s f e r r e d t o a 250 m l g r a d u a t e d c y l i n d e r a n d t h e m i x e r cup w a s h e d w i t h 10 m l o f b u f f e r . The cup was d r a i n e d f o r 2 m i n a n d t h e c y l i n d e r a l l o w e d t o s t a n d f o r 30 m i n a t w h i c h t i m e t h e foam volume was m e a s u r e d . The i n f l u e n c e o f pH a n d i o n i c s t r e n g t h on foam volume was e s t a b l i s h e d u s i n g t h e b u f f e r s y s t e m s p r e v i o u s l y described. Wettability. W e t t i n g t i m e was d e t e r m i n e d b y d r o p p i n g 1 g o f sample f r o m a h e i g h t o f 10 cm o n t o t h e s u r f a c e o f a 0 . 3 M c i t r a t e - p h o s p h a t e b u f f e r i n a b e a k e r 7 cm i n d i a m e t e r a n d m e a s u r i n g t h e t i m e r e q u i r e d f o r a l l t h e sample t o w e t , as e v i d e n c e d by a complete c o l o r change. The i n f l u e n c e o f pH was e s t a b l i s h e d u s i n g the b u f f e r system p r e v i o u s l y d e s c r i b e d . Water Swelling Water Binding and Dispersion Indices. The methods u s e d were m o d i f i c a t i o n s o f t h o s e e m p l o y e d b y R a s e k h ( l O ) . A 1 g s a m p l e was a d d e d t o 20 m l d i s t i l l e d w a t e r i n a p r e w e i g h e d , g l a s s s t o p p e r e d g r a d u a t e d c y l i n d e r , m i x e d w i t h a g l a s s r o d and 3
Pour-El; Functionality and Protein Structure ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
152
FUNCTIONALITY
A N D PROTEIN
STRUCTURE
s h a k e n v i g o r o u s l y f o r 3 m i n . The m i x t u r e was a l l o w e d t o s t a n d f o r 1 h a t room t e m p e r a t u r e a n d t h e foam l a y e r w a s h e d down w i t h 5 m l d i s t i l l e d w a t e r f o l l o w e d "by a f u r t h e r h o u r o f s t a n d i n g . At t h i s p o i n t t h e d i s p e r s i o n i n d e x c o u l d be d e t e r m i n e d by removing a 5 ml a l i q u o t from the midpoint o f the suspension and d r y i n g i t at 1 0 5 ° C f o r 18 h , i t s v a l u e b e i n g t h e p e r c e n t a g e d r y w e i g h t o f t h e t o t a l sample w e i g h t . A l t e r n a t i v e l y , t h e s u p e r n a t a n t was s e p a r a t e d f r o m t h e s e d i m e n t b y d é c a n t a t i o n , t h e volume o f t h e s e d i m e n t r e c o r d e d and t h e weight o f t h e sediment d e t e r m i n e d b e f o r e a n d a f t e r d r y i n g a t 1 0 5 ° C f o r 15 h . T h e p a r a m e t e r s were c a l c u l a t e d as :
Downloaded by TUFTS UNIV on November 30, 2016 | http://pubs.acs.org Publication Date: March 13, 1979 | doi: 10.1021/bk-1979-0092.ch008
Water
swelling index =
, _ . ,. . . Water b i n d i n g i n d e x T T
S w e l l e d volume P r e c i p i t a t e weight
Weight o f water i n = - — ~ — 7 — Ζ :—π P r e c i p i t a t e weight
sediment
Scanning E l e c t r o n Microscopy R e p r e s e n t a t i v e f r e e z e - d r i e d samples num s t u b s u s i n g c o n d u c t i v e p a i n t , c o a t e d (60:ko) i n a T e c h n i c s s p u t t e r c o a t e r and Autoscan scanning e l e c t r o n microscope at
were mounted o n a l u m i with gold/palladium e x a m i n e d i n an E T E C 10 k V .
Electrophoresis S a m p l e s were e l e c t r o p h o r e s e d u s i n g a 1% p o l y a c r y l a m i d e s y s t e m ( s t a c k s a t pH 8 . 9 , r u n s a t pH 9 · 5 ) . Sample l o a d i n g was b e t w e e n 5 a n d 15 μ ΐ . A c u r r e n t o f k m a / g e l was a p p l i e d w i t h t h e c a t h o d e i n t h e u p p e r b a t h o f a M o d e l 1200 C a n a l c o s y s t e m u n t i l t h e b r o m p h e n o l b l u e t r a c k i n g dye h a d moved 3 . 8 cm t h r o u g h t h e r u n n i n g g e l . The r e s u l t i n g g e l s were s t a i n e d f o r 1 h w i t h a n i l i n e b l u e - b l a c k ( 0 . 5 $ i n 1% a c e t i c a c i d ) , d e s t a i n e d w i t h 1% a c e t i c a c i d i n a Model l 8 0 1 Canalco quick g e l d e s t a i n e r and s u b s e q u e n t l y s c a n n e d a t 620 nm w i t h a J o y c e - L o e b l Chromos c a n densitometer. Differential
Scanning Calorimetry
A DuPont M o d e l 990 t h e r m a l a n a l y z e r e q u i p p e d w i t h a M o d e l 910 DSC c e l l b a s e was u s e d f o r d i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y . Samples w e r e a n a l y z e d as 15$ (w/w) s o l u t i o n s o f f r e e z e - d r i e d RDP w h i c h h a d b e e n d i a l y z e d t o remove e x c e s s b u f f e r s a l t s . A heating r a t e o f 5 ° C / m i n was u s e d ; r u n s were p e r f o r m e d i n a n i t r o g e n a t m o s p h e r e ( 5 ^ p s i ) . A known w e i g h t o f w a t e r was u s e d i n t h e r e f e r e n c e p a n t o b a l a n c e t h e h e a t c a p a c i t y o f t h e sample p a n . The i n s t r u m e n t a l s e n s i t i v i t y was 0 . 0 0 5 ( m e a l / s e c ) / i n . Heats o f t r a n s i t i o n (ΔΗ) were c a l c u l a t e d as c a l o r i e s / g p r o t e i n :
Pour-El; Functionality and Protein Structure ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
8.
ARMSTRONG ET AL.
Microwave-Heated
ΔΗ = ^
Soybean
Proteins
153
(60 BEAqs)
where A = peak area, M = sample mass, C = sample c o n c e n t r a t i o n , Β = time base s e t t i n g , Ε = c e l l c a l i b r a t i o n c o e f f i c i e n t , Δqs = Y a x i s range. The t r a n s i t i o n temperature was taken as the temperature at the peak maximum. RESULTS AND
DISCUSSION
Downloaded by TUFTS UNIV on November 30, 2016 | http://pubs.acs.org Publication Date: March 13, 1979 | doi: 10.1021/bk-1979-0092.ch008
Yield P r o t e i n r e c o v e r i e s were e s t a b l i s h e d f o r soymilk, RDP and "whey" f r a c t i o n s as a percentage of the p r o t e i n i n the i n t a c t beans. Table I gives the comparative r e c o v e r i e s f o r the s i x treatments. I t may be seen t h a t i n c r e a s i n g the microwave t r e a t ment s i g n i f i c a n t l y reduced the p r o t e i n y i e l d i n soymilk and RDP. These r e s u l t s p a r a l l e l e d previous f i n d i n g s which i n d i c a t e d t h a t the degree t o which soy p r o t e i n s can be d i s s o l v e d at n e u t r a l pH depends upon the extent o f h e a t i n g during p r o c e s s i n g ( l l ) . Although more p r o t e i n was l o s t i n the g r i n d i n g step a f t e r micro wave p r o c e s s i n g than the hot water treatment, the corresponding RDP s gave a higher p r o t e i n y i e l d ; twice as much p r o t e i n was recovered from the 60 sec microwave i r r a d i a t e d sample as from t h a t t r e a t e d w i t h hot water. Thus, more p r o t e i n was a c i d pre c i p i t a t e d u s i n g moderate microwave h e a t i n g while hot water g r i n d i n g produced p r o t e i n s t h a t were i n i t i a l l y water s o l u b l e but could not be p r e c i p i t a t e d at pH k.6. The l a t t e r have probably been heat denaturated to the p o i n t t h a t they e a s i l y form i n s o l u b l e aggregates and were removed during the c e n t r i f u g a t i o n steps. 1
R e s i d u a l T r y p s i n I n h i b i t o r Levels Table I I gives the r e s u l t s o f r e s i d u a l t r y p s i n i n h i b i t o r l e v e l s f o r the various soymilk p r e p a r a t i o n s . The 90 and 120 sec microwave treatments were the most e f f e c t i v e i n i n a c t i v a t i n g the t r y p s i n i n h i b i t o r complex w h i l e hot water t r e a t e d and unheated samples showed the highest l e v e l s . I t i s not s u r p r i s i n g t o f i n d t h a t microwave p r o c e s s i n g i s more e f f i c i e n t than hot water i n suppressing t r y p s i n i n h i b i t o r c o n s i d e r i n g the r a p i d p e n e t r a t i o n o f food m a t e r i a l by microwaves and the s u s c e p t i b i l i t y o f p r o t e i n a c t i o n t o s m a l l heat induced changes i n t e r t i a r y s t r u c t u r e . Hence, C o l l i n s and McCarty (.12) found microwaves produced a more r a p i d d e s t r u c t i o n o f endogenous potato enzymes (polyphenol o x i dase and peroxidase) than hot water heating. I t i s d i f f i c u l t t o judge a safe l e v e l o f t r y p s i n i n h i b i t o r but Van Buren et_ a l . (6) have shown t h a t maximum p r o t e i n e f f i ciency r a t i o s are obtained when at l e a s t 90% of the t r y p s i n
Pour-El; Functionality and Protein Structure ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
154
FUNCTIONALITY A N D PROTEIN STRUCTURE
Table I .
I n f l u e n c e o f h e a t i n g methods on p r o t e i n recovery.
P r o t e i n recovery (% o f p r o t e i n i n whole bean)
Downloaded by TUFTS UNIV on November 30, 2016 | http://pubs.acs.org Publication Date: March 13, 1979 | doi: 10.1021/bk-1979-0092.ch008
Treatment
Milk
RDP
Whey
Unheated
77.7°
59.7
d
30 sec microwave
72.6°
U6.3
C
60 sec microwave
1*1. 3*
21.8
90 sec microwave
3U.8
a
11.3
a
10.3
C
120 sec microwave
30.7
a
8.6
a
11.2
C
Hot water
7l.U
5.1
a
c
10.7
9.1°>
c
7.6 '
b
7.6 '
b
a
b
a
a
a,b c,d ç l e a p i n g s i m i l a r s u p e r s c r i p t s do not d i f f e r s i g n i f i c a n t l y (P < 0.05) 9
o l u n ] n s
Table I I .
I n f l u e n c e of h e a t i n g methods on r e s i d u a l t r y p s i n inhibitor levels.
Treatment
Relative trypsin i n h i b i t o r l e v e l (%)
Unheated
9k.6
30 sec microwave
5^.9
6θ sec microwave
13.5
d
90 sec microwave
0
120 sec microwave
0
Hot water
b
a
73.5°
Numbers b e a r i n g s i m i l a r s u p e r s c r i p t s do not d i f f e r s i g n i f i c a n t l y (p
ο
a
Ω
8.
ARMSTRONG
E T A L .
Microwave-Heated
Soybean
Proteins
171
Downloaded by TUFTS UNIV on November 30, 2016 | http://pubs.acs.org Publication Date: March 13, 1979 | doi: 10.1021/bk-1979-0092.ch008
e x p o s e more h y d r o p h o b i c g r o u p s a n d l e a d t o e v e n l a r g e r a n d i n s o l u b l e aggregates. The l o s s o f e l e c t r o s t a t i c r e p u l s i o n between e l e c t r i c a l double l a y e r s o f l i k e s i g n c o u l d o c c u r a t t h i s p o i n t , c o n c o m i t a n t "with a l o s s o f b o u n d w a t e r , a n d make L o n d o n Van d e r W a a l * s f o r c e s i m p o r t a n t . The i n t e r f a c i a l a r e a o f t h e p r o t e i n w o u l d i n c r e a s e as u n f o l d i n g p r o c e e d s . U n f o l d i n g o f n a t i v e p r o t e i n subunits would be expected t o b e a c c o m p a n i e d b y a s h a r p d r o p i n ΔΗ b u t t h e d i s s o c i a t i o n o f s u b u n i t s may n o t demand u n f o l d i n g . Thus, w h i l e P r i v a l o v and K h e c h i n a s h v i l i (2j0) showed f o r f i v e s i n g l e c h a i n p r o t e i n s t h a t ΔΗ v a r i e d d i r e c t l y w i t h d e n a t u r a t i o n t e m p e r a t u r e , o u r d a t a ( F i g u r e 8) e x h i b i t s enough l a c k o f l i n e a r i t y t o q u e s t i o n t h e c o n c l u s i o n t h a t w i t h a l a r g e , s u b u n i t e d p r o t e i n o n l y an u n f o l d i n g phenomenon i s b e i n g o b s e r v e d . I t may b e t h a t t h e i n i t i a l p a r t o f the curve represents subunits d i s s o c i a t i n g . Obviously, f u r t h e r w o r k on t h e f u n d a m e n t a l a s p e c t s o f t h e r m a l d e n a t u r a t i o n i n t h i s soybean system i s needed. ACKNOWLEDGEMENTS T h i s w o r k was s p o n s o r e d i n p a r t b y t h e N a t i o n a l R e s e a r c h C o u n c i l , t h e D e p a r t m e n t o f I n d u s t r y , T r a d e a n d Commerce a n d t h e O n t a r i o M i n i s t r y o f A g r i c u l t u r e and Food. Technical assistance was p r o v i d e d b y M r s . C. B u r g e s s , M r s . B . Holmes a n d M i s s P . Pierson.
ABSTRACT Aqueous extracts of soybeans were prepared from beans that had been either microwave processed or ground in hot water and protein fractions were acid precipitated to establish the effects of the processing methods on functional properties. Soymilk proteins which had received no heat treatment retained optimal functional properties (with the exception of foaming and those properties relating to the interaction of proteins with water) and gave the highest yield of protein. Residual trypsin inhi bitor levels and objectionable odours were, however, highest in this preparation. Proteins from soymilk prepared by the hot water method exhibited poor isoelectric precipitation and functional properties, a low level of objectionable odour but high levels of trypsin inhibitor. An initial microwave exposure gave a superior product compared to the conventional process and higher protein solubility at certain pH's than even the unheated sample. Electrophoresis, scanning electron microscopy and differential scanning calorimetry were used to suggest that these observations resulted from the action of heat in first disso ciating protein subunits followed by their aggregation and unfolding.
Pour-El; Functionality and Protein Structure ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
172
FUNCTIONALITY AND PROTEIN STRUCTURE
LITERATURE CITED 1. 2. 3.
Downloaded by TUFTS UNIV on November 30, 2016 | http://pubs.acs.org Publication Date: March 13, 1979 | doi: 10.1021/bk-1979-0092.ch008
4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.
Smith, A.K. and Circle, S.J. "Soybeans: Chemistry and Technology", Smith, A.K. and Circle, S.J., Eds., AVI Publishing Co., Westport, Conn., 1972. Mattick, L.R. and Hand, D.B., J. Agric. Food Chem. (1969) 17, 15. Hackler, L.R., Van Buren, J.P., Steinkraus, K.H., El Rawi, I. and Hand, D.B., J. Food Sci. (1965) 30, 723. Puski, G. and Melnychyn, P., Cereal Chem. (1968) 45, 192. Learmonth, E.M., J. Sci. Food Agric. (1952) 3, 54. Van Buren, J.P., Steinkraus, K.H., Hackler, L.R., El Rawi, I. and Hand, D.B., J. Agric. Food Chem. (1964) 12, 524. Kinsella, J . E . , Crit. Rev. Food Sci. Nutr. (1976) 7, 219. Carpenter, J.A. and Saffle, R.L., J. Food Sci. (1964) 29, 774. Hermansson, A.M., Sivik, B. and Skjöldebrand, C., Lebensm. Wiss. Technol. (1971) 4, 201. Rasekh, J., J. Milk Food Technol. (1974) 37, 78. Wolf, W.J. and Tamura, T., Cereal Chem. (1969) 46, 331. Collins, J.L. and McCarthy, I.E., Food Technol. (1969) 23, 337. Hermansson, A.M., "Proteins in Human Nutrition", Porter, J.W.G., and Rolls, B.A., Eds., Academic Press, London, 1973. Hermansson, A.M., Olsson, D. and Holmberg, Β., Lebensm. Wiss. Technol. (1974) 7, 176. Nash, A.M., Kwolek, W.F. and Wolf, W.J., Cereal Chem. (1971) 48, 360. Lee, C.H. and Rha, C., J. Food Sci. (1978) 43, 79. Cumming, D.B., Stanley, D.W. and deMan, J.M., J. Food Sci. (1973) 38, 320. Catsimpoolas, Ν., Cereal Chem. (1969) 46, 369. Bau, H.M., Poullain, B., Beaufrand, M.J. and Debry, G., J. Food Sci. (1978) 43, 106. Privalov, P.L. and Kechinashvili, N.N., J. Mol. Biol. (1974) 86, 665.
RECEIVED
October 17, 1978.
Pour-El; Functionality and Protein Structure ACS Symposium Series; American Chemical Society: Washington, DC, 1979.