5 Gas Chromatographic Measurement and Identification of Pesticide Residues with Electron Capture, Microcoulometric, and
Downloaded by GEORGETOWN UNIV on August 24, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0104.ch005
Electrical Conductivity Detectors WILLIAM
E.
WESTLAKE
Department of Entomology, University of California, Riverside, Calif. 92502
The
gas chromatograph
qualitative
information
ance of the identity electron
capture
exceedingly
is not
of the compound
detector,
minute
while
quantities
tually useless for qualitative metric detection is widely
the
The
pesticide chlorine, with
unexcelled
confirmation
capture
together
assur-
being detected. for
The
detecting
The
is
sulfur,
retention
of the identity
of recorder
when the presence The detector
or
nitrogen.
time data,
electrolytic
conductivity
and is capable
of measuring
of an
degree
being or
spe-
specificity, of
measured.
is similarly iodine
organo-
is almost
offers a high
detector organic
and
responses
This
of the compound
vir-
microcoulo-
system has a high degree of specificity
used for
is indicated.
assurance
specific
of many compounds,
chlorine for
of giving
identification.
using the electron cific
capable
but can give a high degree of
specific
bromine.
C o m e r e m a r k s of a g e n e r a l n a t u r e r e g a r d i n g gas c h r o m a t o g r a p h y are ^
a p p r o p r i a t e before b e g i n n i n g a d i s c u s s i o n of specific d e t e c t i o n sys-
tems. T h i s p a p e r is not i n t e n d e d to b e a r e v i e w , b u t references are c i t e d w h e r e it seems a p p r o p r i a t e to s u p p o r t p a r t i c u l a r points. T h e i n t e n t is to s u m m a r i z e , i n a g e n e r a l w a y , w h a t the detectors w i l l a n d w i l l not d o a n d to m a k e k n o w n the a u t h o r s ideas r e g a r d i n g some advantages a n d d i s a d vantages i n their use. A l t h o u g h some m a y t h i n k o t h e r w i s e , a s u b s t a n t i a l m a j o r i t y of a n a l y t i c a l chemists w i l l s u r e l y agree that, s t r i c t l y s p e a k i n g , the gas c h r o m a t o g r a p h is not a n i n s t r u m e n t for q u a l i t a t i v e analysis. A s a q u a n t i t a t i v e 73
In Pesticides Identification; Biros, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
74
PESTICIDES I D E N T I F I C A T I O N
t o o l i t is often s u p e r b , a n d for the i s o l a t i o n of i n d i v i d u a l c o m p o n e n t s
of
a m i x t u r e i t is f r e q u e n t l y i n d i s p e n s a b l e . T h e d e v e l o p m e n t , d u r i n g t h e past 10 years, of detectors possessing some degree of specificity has m a d e i t p o s s i b l e , f r e q u e n t l y , to o b t a i n a reasonable assurance of the i d e n t i t y of the d e t e c t e d c o m p o u n d .
N o n e of the s o - c a l l e d specific detectors is i n -
f a l l i b l e , for, a l t h o u g h t h e y m a y h a v e a g r e a t l y e n h a n c e d response for a p a r t i c u l a r m o l e c u l a r species, t h e y w i l l also r e s p o n d to a lesser d e g r e e to others.
F o r absolute c e r t a i n t y w h e n d e t e r m i n i n g u n k n o w n
compounds,
therefore, some a d d i t i o n a l v e r i f i c a t i o n is essential. Downloaded by GEORGETOWN UNIV on August 24, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0104.ch005
T h e a v a i l a b i l i t y of detectors ( p a r t i c u l a r l y e l e c t r o n c a p t u r e )
capable
of g i v i n g a s i g n a l for as l i t t l e as a f e w p i c o g r a m s of s o m e c o m p o u n d s has r e s u l t e d i n the u n i v e r s a l a n d almost e x c l u s i v e use of the gas c h r o m a t o g r a p h for m e a s u r i n g p e s t i c i d e residues. W i t h o u t the gas c h r o m a t o g r a p h , m u c h of the r e s e a r c h o n p e s t i c i d e residues b e i n g c o n d u c t e d t o d a y w o u l d not b e possible because the m a n p o w e r r e q u i r e d to process the l a r g e s a m ples a n d to d o the c h e m i c a l w o r k necessary for other methods of analysis for residues i n the 0.1 p p m a n d l o w e r range does not exist. M a n y of the measurements b e i n g r e p o r t e d c o u l d not b e m a d e at a l l ( a t least, n o t i n a n y p r a c t i c a l m a n n e r ) b y means other t h a n gas c h r o m a t o g r a p h .
This
latter a c c o m p l i s h m e n t is v i e w e d w i t h m i x e d emotions b y m a n y e x p e r i e n c e d r e s i d u e chemists, for the efforts d i r e c t e d t o w a r d d e t e c t i n g less a n d less a n d t o w a r d m i n i a t u r i z i n g samples h a v e l o n g since r e a c h e d the p o i n t of no r e t u r n . T h e errors i n h e r e n t i n s a m p l i n g , p r o c e s s i n g , i n s t r u m e n t a t i o n , a n d operator inconsistencies increase r a p i d l y as levels go
below
0.1 p p m a n d , at the 1 p p b l e v e l , it is d o u b t f u l that r e p r o d u c i b i l i t y c a n be as g o o d as ± 1 0 0 % .
W h e n its l i m i t a t i o n s are r e c o g n i z e d a n d the d a t a
p r o p e r l y i n t e r p r e t e d , the gas c h r o m a t o g r a p h is a n almost i n d i s p e n s a b l e i n s t r u m e n t for the r e s i d u e c h e m i s t e n g a g e d i n research a n d for r e g u l a t o r y agencies that m u s t screen thousands of samples e a c h y e a r for the presence of m a n y different pesticides. A s the title of this p a p e r i n d i c a t e s , i t is c o n c e r n e d o n l y w i t h the use of the electron c a p t u r e , m i c r o c o u l o m e t r i c , a n d e l e c t r o l y t i c c o n d u c t i v i t y detectors for q u a n t i t a t i o n a n d i d e n t i f i c a t i o n of p e s t i c i d e residues. F u r t h e r b a c k g r o u n d i n f o r m a t i o n o n gas c h r o m a t o g r a p h i c detectors m a y b e f o u n d i n the p a p e r b y W e s t l a k e a n d G u n t h e r
(1).
Electron Capture Detector T h e electron c a p t u r e detector is the most extensively u s e d , b y f a r , of those e m p l o y e d for p e s t i c i d e r e s i d u e d e t e r m i n a t i o n s .
It is also the
w o r s t possible c h o i c e for i d e n t i f y i n g the d e t e c t e d c o m p o u n d s .
Introduced
b y L o v e l o c k a n d L i p s k y ( 2 ) i n 1960, the use of this detector has r e v o l u t i o n i z e d p e s t i c i d e r e s i d u e d e t e r m i n a t i v e p r o c e d u r e s . T h e a b i l i t y to detect
In Pesticides Identification; Biros, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
5.
WESTLAKE
Gas Chromatographic
75
Measurement
a n d m e a s u r e e x c e e d i n g l y m i n u t e a m o u n t s of m a n y pesticides ( p a r t i c u l a r l y the o r g a n o c h l o r i n e c o m p o u n d s ) i n a w i d e r a n g e of substrates c a u s e d its i m m e d i a t e a c c e p t a n c e as a n a n a l y t i c a l t o o l for p e s t i c i d e r e s e a r c h . T h i s detector, h o w e v e r , has the u n f o r t u n a t e p r o p e r t y of g i v i n g responses to a host o f c o m p o u n d s other t h a n pesticides a n d is, therefore, v i r t u a l l y useless for i d e n t i f i c a t i o n . W h e n the i d e n t i t y of the c o m p o u n d b e i n g m e a s u r e d is k n o w n a n d o p e r a t i n g p a r a m e t e r s e s t a b l i s h e d , i t is u n e x c e l l e d
for
q u a n t i t a t i v e investigations. T h e l i m i t a t i o n s of the e l e c t r o n c a p t u r e detector w e r e q u i c k l y r e c o g Downloaded by GEORGETOWN UNIV on August 24, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0104.ch005
n i z e d , a n d the s e a r c h w a s c o n t i n u e d for m o r e s u i t a b l e d e t e c t i o n systems, r e s u l t i n g i n the d e v e l o p m e n t of s e v e r a l alternate types, e a c h h a v i n g its advantages a n d d i s a d v a n t a g e s . I n the m e a n t i m e , efforts h a v e c o n t i n u e d to m a k e the e l e c t r o n c a p t u r e detector a q u a l i t a t i v e t o o l a n d to i m p r o v e its p e r f o r m a n c e a n d ease of m a i n t e n a n c e . T h e m a j o r i t y of the e l e c t r o n c a p t u r e detectors use t r i t i u m as a n i o n i z a t i o n source, a l t h o u g h s t r o n t i u m - 9 0 w a s a d o p t e d b y some m a n u f a c t u r e r s . B o t h h a v e the d i s a d v a n tage of b e i n g v o l a t i l e at e l e v a t e d t e m p e r a t u r e s , a n d o p e r a t i n g t e m p e r a tures are l i m i t e d to 2 2 5 ° C or less. E v e n t h e n , there is a g r a d u a l loss of r a d i o a c t i v i t y , a n d deposits of s a m p l e extractives a n d c o l u m n p a c k i n g m a t e r i a l s b u i l d u p r a p i d l y i n the detectors, m a k i n g t h e m i n o p e r a b l e i n a r e l a t i v e l y short t i m e . T h e recent i n t r o d u c t i o n of n i c k e l - 6 3 as a n i o n i z a t i o n source p e r m i t s o p e r a t i n g t e m p e r a t u r e s u p to 4 0 0 ° C , thus p r e v e n t i n g the b u i l d - u p of c o l u m n effluents i n the detector.
U n f o r t u n a t e l y , there are
disadvantages for some designs, i n c l u d i n g h i g h e r m i n i m u m d e t e c t a b l e a m o u n t s a n d , m o r e i m p o r t a n t i n the w r i t e r s o p i n i o n , v e r y l i m i t e d l i n e a r ranges of response. O n e s u c h detector that was tested h a d a u s a b l e l i n e a r r a n g e of a b o u t 100 to 500 p g of a l d r i n .
I n this instance, the m i n i m u m
d e t e c t a b i l i t y was a c t u a l l y l o w e r t h a n necessary b u t the response w a s so n o n l i n e a r outside this r a n g e that it was v i r t u a l l y useless.
A t least t w o
m a n u f a c t u r e r s n o w c l a i m to h a v e n i c k e l - 6 3 detectors that h a v e u s a b l e l i n e a r ranges a n d m i n i m u m d e t e c t a b i l i t y e q u i v a l e n t to or better t h a n the t r i t i u m detectors.
A n o t h e r t y p e of e l e c t r o n c a p t u r e detector that w i l l
operate at temperatures u p to 4 0 0 ° C uses a ' n o n r a d i o a c t i v e " source i n the f o r m of a n e l e c t r i c a l d i s c h a r g e . T h i s detector gives a response s i m i l a r to that of other e l e c t r o n c a p t u r e detectors a n d is b e i n g r o u t i n e l y u s e d b y a n u m b e r of laboratories. Efforts t o w a r d u s i n g the electron c a p t u r e gas c h r o m a t o g r a p h as a q u a l i t a t i v e t o o l h a v e c e n t e r e d first o n the use of t w o or m o r e different c o l u m n s that h o p e f u l l y w i l l g i v e different r e l a t i v e r e t e n t i o n times for the various e l u t i n g peaks a n d , w i t h the j u d i c i o u s use of s t a n d a r d s , s o m e assurance of the i d e n t i t y of u n k n o w n s . T h i s p r o c e d u r e c a n b e t i m e - c o n s u m i n g a n d , w h i l e h e l p f u l , s t i l l m a y not y i e l d a n y t h i n g p o s i t i v e . A p r e f e r able procedure
is to c h r o m a t o g r a p h a s a m p l e , t h e n c a r r y out
In Pesticides Identification; Biros, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
some
76
PESTICIDES I D E N T I F I C A T I O N
c h e m i c a l r e a c t i o n (e.g., o x i d a t i o n , r e d u c t i o n , d e h y d r o c h l o r i n a t i o n , r e a r r a n g e m e n t , o r a d d i t i o n ) to f o r m a d e r i v a t i v e t h a t w i l l h a v e a different r e t e n t i o n t i m e . A c o m p a r i s o n w i t h standards t r e a t e d i n the same m a n n e r c a n g i v e i n f o r m a t i v e d a t a . A n i l l u s t r a t i o n of this is the c o n v e r s i o n DDT
of
to D D E b y d e h y d r o c h l o r i n a t i o n . S u c h i n d i r e c t m e t h o d s of g e t t i n g
the e l e c t r o n c a p t u r e gas c h r o m a t o g r a p h to give q u a l i t a t i v e i n f o r m a t i o n m a y produce useful but not conclusive confirmatory data. T h e r e are t w o areas i n p e s t i c i d e r e s i d u e d e t e r m i n a t i o n s w h e r e the e l e c t r o n c a p t u r e detector is w i t h o u t e q u a l . T h e first is for the s c r e e n i n g Downloaded by GEORGETOWN UNIV on August 24, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0104.ch005
of samples b y r e g u l a t o r y agencies to e l i m i n a t e f r o m f u r t h e r c o n s i d e r a t i o n a l l b u t the s m a l l p e r c e n t a g e t h a t c o n t a i n above-tolerance pesticide(s).
levels of some
O n c e the r e t e n t i o n times a n d detector responses
of
the
sought c o m p o u n d s h a v e b e e n e s t a b l i s h e d , samples c a n b e i n j e c t e d , a n d those not s h o w i n g a response i n d i c a t i n g the presence of i l l e g a l q u a n t i t i e s of pesticides m a y b e e l i m i n a t e d f r o m f u r t h e r c o n s i d e r a t i o n . T h o s e s h o w i n g possible above-tolerance levels ( n o r m a l l y less t h a n 2 % of the t o t a l ) m a y t h e n b e subjected to i n d e p e n d e n t c o n f i r m a t o r y m e t h o d s to e s t a b l i s h definitely the i d e n t i t y of the c o m p o u n d ( s ) . indicating organochlorine
pesticides, for
Electron capture
responses
e x a m p l e , are often
routinely
c h e c k e d b y m i c r o c o u l o m e t r i c gas c h r o m a t o g r a p h y to establish w h e t h e r or n o t the c o m p o u n d ( s ) c o n t a i n c h l o r i n e . T h e c o m b i n a t i o n of r e t e n t i o n t i m e a n d c h l o r i n e content g i v e reasonable assurance of the i d e n t i t y of the compound.
O r g a n o p h o s p h o r u s pesticides m a y b e c h e c k e d u s i n g a p h o s -
p h o r u s - s e n s i t i v e detector, n i t r o g e n - c o n t a i n i n g pesticides w i t h a n i t r o g e n detector, etc. T h e other area i n w h i c h the e l e c t r o n c a p t u r e detector has t r e m e n d o u s use is i n research activities w h e r e a k n o w n c o m p o u n d is s t u d i e d u n d e r c o n t r o l l e d c o n d i t i o n s . I n this k i n d of s t u d y , the substrate c a n b e c h e c k e d f o r interferences, f o r t i f i e d c o n t r o l samples c a n b e u s e d to d e t e r m i n e r e sponse of the c o m p o u n d of interest i n the presence of the substrate extractives, a n d levels i n t h e treated samples t h e n d e t e r m i n e d w i t h a h i g h d e g r e e of r e l i a b i l i t y , p r o v i d e d the w o r k is d o n e b y a s k i l l e d r e s i d u e analyst w h o w i l l i m m e d i a t e l y r e c o g n i z e a n y i r r e g u l a r i t i e s . P e r h a p s t h e most u n f o r t u n a t e p r o p e r t y of the e l e c t r o n c a p t u r e gas c h r o m a t o g r a p h is t h a t almost a n y o n e c a n take one a n d , after a f e w h o u r s of i n s t r u c t i o n f r o m a salesman, c a n inject samples a n d o b t a i n r e c o r d e r responses.
T h i s has h a p p e n e d , for there w a s a n i m m e d i a t e r u s h to get
o n t h e b a n d w a g o n b y m a n y w o r k e r s i n various phases of p e s t i c i d e r e s e a r c h a n d r e l a t e d fields w h o h a d a b s o l u t e l y no t r a i n i n g i n p e s t i c i d e r e s i d u e analysis or i n the use of i n s t r u m e n t s s u c h as the gas graph.
chromato-
T h e r e s u l t is that there is a n u n k n o w n , b u t v e r y s u b s t a n t i a l ,
a m o u n t of d a t a i n the l i t e r a t u r e t h a t is of a b s o l u t e l y n o v a l u e a n d w h i c h , m o r e i m p o r t a n t , m a y b e m i s l e a d i n g . It w a s r e a l i z e d , b e l a t e d l y b y m a n y ,
In Pesticides Identification; Biros, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
5.
WESTLAKE
Gas Chromatographic
77
Measurement
that e l e c t r o n c a p t u r e responses are o n l y i n d i c a t o r s a n d c a n n o t b e a c c e p t e d until confirmed b y an accepted
independent method.
A n outstanding
i l l u s t r a t i o n of m i s i n t e r p r e t e d e l e c t r o n c a p t u r e gas c h r o m a t o g r a p h i c r e sponses is f o u n d i n the m u l t i t u d e of reports of D D T residues i n e v e r y t y p e of e n v i r o n m e n t i n e v e r y p a r t of the w o r l d . It is o n l y n o w b e c o m i n g e v i d e n t that m a n y of these r e p o r t e d D D T residues w e r e , i n fact, p o l y chlorinated
biphenyls, and
compounds
h a v e b e e n m i s t a k e n for D D T w h e n s u i t a b l e c o n f i r m a t o r y
it may
be
found
eventually that
other
Downloaded by GEORGETOWN UNIV on August 24, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0104.ch005
p r o c e d u r e s w e r e not used.
The Microcoulometric Detector O n e of the most u s e f u l detectors for gas c h r o m a t o g r a p h i c d e t e r m i n a t i o n of p e s t i c i d e residues, the m i c r o c o u l o m e t r i c detector, w a s b y C o u l s o n et al (3,4)
and described by Coulson (5).
developed
T h i s w a s the first
system to b e d e v e l o p e d s p e c i f i c a l l y for p e s t i c i d e r e s i d u e d e t e r m i n a t i o n . C a s s i l (6)
d e s c r i b e d the i n s t r u m e n t a n d its a p p l i c a t i o n i n the d e t e r m i n a -
t i o n of T h i o d a n i n the presence of D D T . O v e r the e n s u i n g years, the m i c r o c o u l o m e t r i c d e t e c t i o n system b e c a m e v i r t u a l l y a necessity i n a n y l a b o r a t o r y d e t e r m i n i n g o r g a n o c h l o r i n e or s u l f u r - c o n t a i n i n g o r g a n i c p e s t i cides.
I n a d d i t i o n to its use as a p r i m a r y t o o l for analysis, the detector
has v e r y w i d e use as a c o n f i r m a t o r y p r o c e d u r e for e l e c t r o n c a p t u r e d e tector responses a p p e a r i n g to b e o r g a n o c h l o r i n e pesticides. ficity
T h e speci-
for c h l o r i n e , or s u l f u r , as the case m a y be, a l l o w s the o p e r a t o r a
h i g h degree of confidence i n the results o b t a i n e d a n d has l e d to the extensive use of this d e t e c t i o n system for c o n f i r m a t o r y purposes b y
the
U . S. F o o d a n d D r u g A d m i n i s t r a t i o n a n d other r e g u l a t o r y agencies. D u r i n g the past eight years, m a n y i m p r o v e m e n t s h a v e b e e n i n the d e t e c t i o n system.
A n i m p r o v e d t i t r a t i o n c e l l a n d a better
t r o m e t e r a n d p y r o l y s i s f u r n a c e i n c r e a s e d the response
made elec-
many-fold and
s i m p l i f i e d the m a i n t e n a n c e p r o b l e m s associated w i t h the v a r i o u s c o m ponents.
T h e latest m o d e l , r e c e n t l y a n n o u n c e d , is c o m p l e t e l y n e w , w i t h
the e x c e p t i o n of the t i t r a t i o n c e l l , a n d e m b o d i e s a m i n i a t u r i z e d p y r o l y s i s f u r n a c e a n d i m p r o v e d c o u l o m e t e r a n d p o w e r s u p p l y as w e l l as a c o m pletely new cabinet configuration. A newly-designed pyrolysis tube, it is c l a i m e d , has r e s u l t e d i n a system t h a t is insensitive to changes i n gas flow rates a n d gives i n c r e a s e d response.
D o u b l i n g or h a l v i n g the o x y g e n
flow rate does n o t a p p r e c i a b l y affect response, n o r d o s u b s t a n t i a l changes i n the c a r r i e r gas flow rate. T h i s is i n s h a r p contrast to a m i n i a t u r i z e d p y r o l y s i s system a n n o u n c e d b y G u i f f r i d a a n d Ives ( 7 )
that gave s u b -
s t a n t i a l changes i n response w i t h c h a n g i n g gas flow rates. Tests w i t h the n e w p r o d u c t i o n m o d e l s h o w that the o x y g e n used for c o m b u s t i o n m u s t be s a t u r a t e d w i t h w a t e r v a p o r to g i v e m a x i m u m a n d
In Pesticides Identification; Biros, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
78
PESTICIDES I D E N T I F I C A T I O N
consistent response. a n d G u n t h e r (8)
T h i s was reported b y Coulson (5) for the first m o d e l p r o d u c e d
and by Barkley
b u t has b e e n l a r g e l y
o v e r l o o k e d b y users of this e q u i p m e n t . T h e latest p r o d u c t i o n m o d e l of the m i c r o c o u l o m e t r i c d e t e c t i o n syst e m has a m i n i m u m d e t e c t a b l e l i m i t of a b o u t 1 n g of c h l o r i n e b u t , i n the w r i t e r s o p i n i o n , the m i n i m u m for p r a c t i c a l use is a b o u t 3 n g . T h i s estim a t e is b a s e d u p o n responses o b t a i n e d b y D o h r m a n n I n s t r u m e n t s p e r s o n n e l w i t h s t a n d a r d solutions of
pure lindane.
These
results
were
o b t a i n e d i n m o d e I o p e r a t i o n (gas flow into the c e l l b e t w e e n the elecDownloaded by GEORGETOWN UNIV on August 24, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0104.ch005
t r o d e s ) rather t h a n m o d e I I o p e r a t i o n (gas flow i m p i n g i n g d i r e c t l y o n the sensor e l e c t r o d e ) , a m o r e " s e n s i t i v e " m o d e c u r r e n t l y b e i n g u s e d o n last y e a r s m o d e l detector i n o u r laboratories. M o d e I is p r e f e r r e d , for o p e r a t i n g p a r a m e t e r s are m u c h less c r i t i c a l . I n 1966, M a r t i n ( 9 )
a n n o u n c e d a t i t r a t i o n c e l l for the m i c r o c o u l o -
m e t r i c system that is specific for n i t r o g e n after p y r o l y s i s of the s a m p l e u n d e r r e d u c i n g c o n d i t i o n s d u r i n g w h i c h the n i t r o g e n is c o n v e r t e d a m m o n i a . A l b e r t (10)
e x t e n d e d this w o r k , a n d C a s s i l et al. (11)
to
have
m o r e r e c e n t l y r e p o r t e d o n the use of this detector for d e t e r m i n i n g o r g a n o n i t r o g e n pesticides a n d h a v e c o m p a r e d its p e r f o r m a n c e w i t h t h e elect r o l y t i c c o n d u c t i v i t y detector,
finding
t h e m e q u a l . T h e s e authors f o u n d
b o t h detectors u s e f u l i n the range of 3 to 200 n g of n i t r o g e n , p e r m i t t i n g t h e m e a s u r e m e n t of as little as 0.05 p p m of o r g a n o n i t r o g e n
pesticides
i n 100-gram samples. B u r c h f i e l d a n d his associates (12, 13, 14)
reported a procedure i n -
v o l v i n g r e d u c t i v e p y r o l y s i s of the effluent gases w h e r e b y
compounds
c o n t a i n i n g c h l o r i n e , s u l f u r , o r p h o s p h o r u s f o r m H C 1 , H S , or P H , respec2
tively.
3
B y u s i n g a n a l u m i n u m o x i d e s c r u b b e r f o l l o w i n g the p y r o l y s i s
stage, the system was specific for p h o s p h o r u s .
H o w e v e r , the d e t e c t i o n
system appears to b e i n f e r i o r to other a v a i l a b l e detectors for p h o s p h o r u s a n d w i l l p r o b a b l y h a v e little or no use for this p u r p o s e .
The Electrolytic Conductivity Detector T h e e l e c t r o l y t i c c o n d u c t i v i t y detector for gas c h r o m a t o g r a p h y d e v e l o p e d b y C o u l s o n (15, 16, 17),
was
w h o d e s c r i b e d m o d e s of o p e r a t i o n
for the d e t e c t i o n of c h l o r i n e , s u l f u r , or n i t r o g e n , b u t d i d not establish the r e l i a b i l i t y of the detector for p e s t i c i d e r e s i d u e analysis or the m i n i m u m d e t e c t a b i l i t y for e a c h m o l e c u l a r species. C a s s i l et al. (11)
described
the use of the detector for d e t e r m i n i n g residues of c a r b a m a t e pesticides a n d c o m p a r e d its response w i t h that of the m i c r o c o u l o m e t r i c detector, as m e n t i o n e d e a r l i e r , finding t h e m e q u a l i n response a n d s e l e c t i v i t y a n d u s a b l e o v e r a r a n g e of 3 to 200 n g of n i t r o g e n . A n i m p r o v e d p y r o l y s i s t u b e w a s d e s c r i b e d , a n d n i c k e l w i r e or t u r n i n g s was u s e d as the catalyst
In Pesticides Identification; Biros, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
5.
WESTLAKE
Gas Chromatographic
79
Measurement
i n s t e a d of the n i c k e l s u l f a t e - t r e a t e d q u a r t z w o o l suggested b y C o u l s o n . V a r i o u s a l k a l i e s w e r e tested b e t w e e n the p y r o l y s i s f u r n a c e a n d detector, b a r i u m oxide on 10/16 mesh perlite being preferred. P a t c h e t t (18)
m a d e a d e t a i l e d s t u d y a n d e v a l u a t i o n of the e l e c t r o -
l y t i c c o n d u c t i v i t y detector a n d d e v e l o p e d t e c h n i q u e s to p e r m i t d e p e n d a b l e a n d c o n t i n u o u s use of the detector near a l o w e r l i m i t of d e t e c t i o n of 0.1 n g of n i t r o g e n . H e m a d e a s u b s t a n t i a l i m p r o v e m e n t i n detector r e sponse t h r o u g h m o d i f y i n g the detector c e l l b y p l a c i n g a T e f l o n insert
Downloaded by GEORGETOWN UNIV on August 24, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0104.ch005
i n the i n l e t t u b e to r e d u c e s o r p t i v e losses of a m m o n i a . H e also p r o v e d the necessity for u s i n g h i g h - p u r i t y h y d r o g e n gas a n d m a i n t a i n i n g h i g h purity deionized water between Cassil recommend
p H 7.0 a n d 7.5.
the use of h y d r o g e n
B o t h Patchett a n d
as the c a r r i e r gas to o b t a i n
o p t i m u m consistent results. W e s t l a k e et al
(19)
u s e d the e l e c t r o l y t i c c o n d u c t i v i t y detector
for
d e t e r m i n i n g residues of A C D 1 5 M , a t r i a z i n e h e r b i c i d e ( A l l i e d C h e m i c a l C o . ) i n sweet c o r n g r a i n a n d plants (stalks a n d l e a v e s ) . T h e y also d e m onstrated the s e p a r a t i o n of a m i x t u r e of eight t r i a z i n e h e r b i c i d e s a n d the absence of i n t e r f e r r i n g responses at the r e t e n t i o n t i m e of the c o m p o u n d either b y n a t u r a l l y - o c c u r r i n g p l a n t c o m p o n e n t s or r e l a t e d pesticides.
A
major peak, f r o m a n u n i d e n t i f i e d c o m p o n e n t of the c o r n p l a n t extractives, was o b s e r v e d at a r e t e n t i o n t i m e a b o u t three times that of A C D 1 5 M .
It
was not present i n the c o r n g r a i n . I n f o r m a t i o n to date i n d i c a t e s that s u c h a n interference is r a r e , b u t this serves to i l l u s t r a t e the necessity for v i g i l a n c e at a l l times, e v e n w h e n u s i n g a detector as specific as this one, to g u a r d against i n c o r r e c t i n t e r p r e t a t i o n s of the r e c o r d e r responses.
In gen-
e r a l , the e l e c t r o l y t i c c o n d u c t i v i t y detector is r e m a r k a b l y free f r o m i n t e r ferences f r o m n a t u r a l l y - o c c u r r i n g c o m p o n e n t s
i n p l a n t extractives a n d
a n y t h i n g other t h a n o r g a n o n i t r o g e n c o m p o u n d s , b u t there are f r e q u e n t exceptions. T h e e l e c t r o l y t i c c o n d u c t i v i t y detector has b e e n u s e d to d e t e r m i n e o r g a n i c i o d i n e w i t h excellent success b y W e s t l a k e (20),
as w e l l as c h l o -
r i n e i n o r g a n o c h l o r i n e pesticides, o p e r a t i n g i n the r e d u c i n g m o d e
to
y i e l d H I or H C 1 as the d e t e c t e d p r o d u c t . T h e m i n i m u m d e t e c t a b i l i t y for c h l o r i n e is a p p r o x i m a t e l y e q u a l to that of the c u r r e n t m i c r o c o u l o m e t r i c d e t e c t i o n system. C o u l s o n (4, 15)
c o m p a r e d the responses of the elec-
trolytic conductivity, microcoulometric, and electron capture
detectors
for o r g a n o c h l o r i n e c o m p o u n d s i n v a r i o u s extractives a n d f o u n d the first t w o a p p r o x i m a t e l y e q u a l a n d the electron c a p t u r e detector u n s a t i s f a c t o r y because of h i g h b a c k g r o u n d . O n e i m p o r t a n t a d v a n t a g e of the e l e c t r o l y t i c c o n d u c t i v i t y detector is its s i m p l i c i t y . It r e q u i r e s no a m p l i f i c a t i o n of s i g n a l , thus e l i m i n a t i n g the electrometer necessary for the other systems. I n the r e d u c i n g m o d e , it is
In Pesticides Identification; Biros, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
80
PESTICIDES I D E N T I F I C A T I O N
h i g h l y specific f o r h a l i d e o r , w i t h a l k a l i s c r u b b e r , f o r n i t r o g e n .
I n the
o x i d a t i v e m o d e , i t is q u i t e specific f o r s u l f u r o r c h l o r i n e .
Summary E a c h o f t h e detectors d i s c u s s e d has a n e x t r e m e l y i m p o r t a n t p l a c e i n pesticide residue determinations. W h e n the limitations a n d capabilities of e a c h a r e r e c o g n i z e d a n d t h e responses e v a l u a t e d b y e x p e r i e n c e d p e r s o n n e l , a reasonable assurance of t h e i d e n t i t y o f m a n y pesticides c a n b e Downloaded by GEORGETOWN UNIV on August 24, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0104.ch005
o b t a i n e d . N o n e o f t h e detectors a r e c o m p l e t e l y specific a n d , f o r p o s i t i v e i d e n t i f i c a t i o n , v e r i f i c a t i o n b y a n i n d e p e n d e n t m e t h o d is r e q u i r e d . U n f o r t u n a t e l y , m a n y investigators f a i l e d to r e a l i z e ( a n d this is s t i l l t r u e o f s o m e ) t h a t t h e gas c h r o m a t o g r a p h c a n a n d does l i e , a n d a t r e m e n d o u s v o l u m e o f d a t a o f d o u b t f u l m e r i t has b e e n p u b l i s h e d . T h e m o r e experienced
one becomes w i t h the technique, t h e more
skeptical he
b e c o m e s a b o u t t h e v a l i d i t y o f t h e gas c h r o m a t o g r a p h i c responses.
Only
b y m a i n t a i n i n g this a t t i t u d e c a n v a l i d d a t a b e d e r i v e d f r o m gas c h r o m a t o g r a p h y o f p e s t i c i d e residues.
Literature Cited (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
Westlake, W . E., Gunther, F . A . , Residue Rev. (1967) 18, 175. Lovelock, J. E., Lipsky, S. R., J. Am. Chem. Soc. (1960) 82, 431. Coulson, D . M . , Cavenaugh, L . A . , Anal. Chem. (1960) 32, 1245. Coulson, D . M . , De Vries, J. E., Walther, B., J. Agr. Food Chem. (1960) 8, 399. Coulson, D . M . , Advan. Pest Control Res. (1962) 5, 153. Cassil, C. C., Residue Rev. (1962) 1, 37. Guiffrida, L . , Ives, N . F . ,J.Assoc. Offic. Agr. Chemists (1969) 52, 541. Barkley, J. H . , Gunther, F . A., unpublished report, 1964. Martin, R. L., Anal. Chem. (1966) 38, 1209. Albert, D . K., Anal. Chem. (1967) 39, 1113. Cassil, C. C., Stanovick, R. P., Cook, R. F . , Residue Rev. (1969) 26, 63. Burchfield, H . P., Johnson, D . E., Rhoades, J. W . , Wheeler, R. J.,J.Gas Chromatog. (1965) 3, 28. Burchfield, H . P., Rhoades, J. W . , Wheeler, R. J., J. Agr. Food Chem. (1965) 13, 511. Burchfield, H . P., Wheeler, R. J., J. Assoc. Offic. Agr. Chemists (1966) 49, 651. Coulson, D . M . , J .Gas Chromatog. (1965) 3, 134. Ibid., (1966) 4, 285 Coulson, D . M . , "Advances in Chromatography" Vol.III,p. 197, Marcel Dekker, New York, 1966. Patchett, G. G., J. Chromatog. Sci. (1970) 8, 155. Westlake, W . E . , Westlake, A . , Gunther, F . A . , J. Agr. Food Chem. (1970) 18, 685. Westlake, A . , unpublished data.
RECEIVED
June 12,
1970.
In Pesticides Identification; Biros, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.