Gas phase copper chalcogenide cluster ions, formed by laser-ablation

Jul 1, 1991 - P. F. Greenwood, I. G. Dance, K. J. Fisher, and G. D. Willett. Inorganic Chemistry ... Ian G. Dance, Keith J. Fisher, and Gary D. Willet...
0 downloads 0 Views 275KB Size
Volume 30 Number 15

Inorganic Chemistry

July 24, 1991

0 Copyrighi 1991 by ihe American Chemical Socieiy

Communications Gas-PhaseCopper Chalcogenide Cluster Ions, Formed by

Table I. Assignments of the Negative-Ion Fourier Transform Ion Cyclotron Resonance Mass Spectra of Laser-Ablated KCu4S3,Cu2Se, Cu Se, Cu2Te, and Cu + Te m / f lintensitv) *. ion KCu& CU~SC CU+ S@ CU~TC CU + T d [CUE]95 (35)d (Il)d 143 (19) 193 (8)d (45)d (37) [CUE,]127 223 (26) 321 (6) (6) (25) [CUE,]159 (43)d 301 (IO) 449 (6) (5) [Cu,E>I190 (50) (15) 286 (58) 384 (IO) (9) 224 (40) 366 (IS) (11) 512 (3) (3)

+

Laser Ablation Few metal chalcogenide species in the gas phase have been characterized.' Being cognizant of the plethora and variety of metal chalcogenide clusters characterized in the condensed phases2 and of their significance for semiconductor material science,' redox device^,^ and biology,5 we are investigating the formation and properties of metal chalcogenide clusters in the gas phase.6 We report that copper chalcogenide anions are readily formed by laser ablation (LA) of various solid compounds and from mixtures of elements. A single pulse from a Nd YAG laser (1064 nm) was used at various powers (15046OO MW cm-2), focused onto disks of pressed solid samples. The ablated ions were observed with a Spectrospin CMS-47 (FT-ICR) spectrometer' equipped with a cylindrical ICR cell and a 4.7-T superconducting magnet.* The samples investigated were CuS, Cu2S, K C U ~ SCu,-$e, ~ , ~ Cu Se mixtures, Cu2Te, and Cu + Te mixtures. The positive-ion measurements yielded only Cu+ and a series of chalcogenide ions E,+ ( n = 1-6). but the negative-ion spectra were rich with interesting species, extending in some cases to very high mass. Most of the ions up to m l z ca. 1600 were observed

+

( I ) (a) Goldfinger, P.; Jeunehomme, M. Trans. Faraday Sot. 1963, 59, 2851. (b) De Maria, G.;Goldfinger. P.; Malaspina, L.; Piacente, V. Trans. Faraday SOC.1965, 61, 2146. (c) Steblevskii, A. V.;Zharov, V. V.;Alikhanyan, A. S.;Gorgoraki, V. 1.; Pashinkin, A. S.Russ. J. Inorg. Chem. (Engl. Transl.) 1989,34,891-894. (d) Jackson, T. C.; Carlin, T. J.; Freiser, B. S.In?. J. Mass Spectrom. Ion Processes 1986, 72, 169-185. (e) MacMahon, T. J.; Jackson, T. C.; Freiser, B. S.J. Am. Chem. Soc. 1989, 1 1 1 , 421-427. (f) Sallans, L.; Lane, K. R.; Freiser, B. S.J. Am. Chem. Soc. 1989,I l l , 865-873. (2) (a) Mllller, A.; Diemann, E. Adu. Inorg. Chem. 1987,31, 89. (b) Fenske, D.; Ohmer, J.; Hachgenei, J.; Nerzweiler, K. Angew. Chem., Int. Ed. Engl. 1988, 27, 1277. (c) Dance, 1. G. In Comprehensive Coordination Chemistry; Wilkinson, G.,Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Press: Oxford, U. K. 1987;Chapter 4. (d) Lee, S.C.; Holm, R. H. Angew. Chem., Ini. Ed. Engl. 1990, 29, 840-856. (3) (a) Fendler, J. H. Chem. Reo. 1987,87, 877. (b) Steigerwald, M. L.; Brus, L. E. Annu. Reo. Maier. Sci. 1989, 19, 471. (c) Herron, N.; Wang, Y.;Eckert, H.J. Am. Chem. Soc. 1990, 112, 1322. (4) (a) Henglein, A. Top. Curr. Chem. 1988,143, 113. (b) Henglein, A. Chem. Reo. 1989.89, 1861, ( 5 ) (a) Newton. W. E . Siud. Inorg. Chem. 1984,5,409.(b) Dameron, C. T.; Reese. R. N.; Mehra, R. K.;Kortan, A. R.; Carroll, P. J.; Steigerwald, M. L.; Brus, L. E.;Winge, D. R. Nature 1989,338, 596. (c) Dameron, C.T.; Winge, D. R. Inorg. Chem. 1990, 29, 1343. (6) (a) El Nakat, J. H.; Dance, 1. G.; Fisher, K. J.; Willett, G. D.; Rice, D. J . Am. Chem. Sot: 1991,113, 5141. (b) El Nakat, J. H.; Dance, I. G.;Fisher, K. J.; Willett, G. D. J. Chem. SOC.,Chem. Commun., in Dress.

(7) zfiimann, M.;Kellerhals, Hp.; Wanczek, K. P. In?.J. Mass. Spectrom. Ion Processes 1983,46, 139. (8) (a) Greenwood, P. F.; Strachan, M. G.;Willett, G. D.; Wilson, M. A. Org. Mass Specirom. 1990. 25, 353. (b) Nguyen, T. H.; Clezy, P. S.; Willett, G. D.; Paul, G. L.;Tann, J. Org. Mass Spectrom. 1991,26, 215. (9) (a) Rudorff, V. W.; Schwarz, H. G.;Walter, M. Z . Anorg. Allg. Chem. 1952,269, 141. (b) Brown, D.R.; Zubieta, J. A,; Vella, P. A.; Wrobleski, J. T.; Watt, T.; Hatfield, W. E.; Day, P. Inorg. Chem. 1980,19, 1945.

I

255 (22) 287 (88) 350 (44) 382 (15) 445 (50) 509 (90) 541 (8)

604 (15) 667 (35) 732 (45) 827 (19) [ C U , ~ E ~ ]I050 - (35) ICulcEXl- 1210 (45) icu;;Egj- 1367(40) [ C U I ~ E ~ ~1527 ] - (40) [CuzlEIl]- 1687' (25)

-

349 (20) 429 (53) 492 (53) 571 (25) 634 (45) 697 (100)

(CS)

762 (22) 840 (20) 905 (55) 968 (83)

(IO) (8) (25) (30)

1380 (22) 1585 (17) 1791'(13)

(26) (37) (40)

(34) (31)

(15) (26) (39)

575 (6) 639 (3) 767 (