18 Gaseous Evolution of Molecular Hydrogen and Oxygen in Photochemical Splitting of Water Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 15, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch018
by Platinized Chlorophyll a Dihydrate Polycrystals Laboratory Simulation of the Primary Light Reaction in Plant Photosynthesis
L.
GALLOWAY,
D . R.
FRUGE,
and F. K .
FONG
Department of Chemistry, Purdue University, West Lafayette I N 47907
The proposal that (Chl a•2H O) is the photoreaction center Chl a aggregate for the water splitting reaction in plant photosynthesis led us to the belief that chlorophyll dihydrate polycrystals can be used in efficient water photolysis in vitro. In this chapter, the observation of gaseous evolution under white light illumination of platinized chlorophyll dihydrate polycrystals is described. The photoelectrolytic products were determined to be molecular hydrogen and oxygen by diffusion pyrolysis and mass spectrometry. The photochemi cal activity of (Chl a∙2H O) is attributed to the presence of water in Chl a aggregation via the C9 keto C = O • • • H(H)O • • • Mg bonding interaction. The demonstration of the decomposition of water by (Chl a∙2H O) lends support to the suggestion that a single photosystem in plant photo synthesis may be capable of splitting water in vivo. 2
2
2
n
2
n
" R e c e n t l y w e r e p o r t e d C h i a p h o t o g a l v a n i c effects a t t r i b u t a b l e t o w a t e r s p l i t t i n g reactions that result f r o m i l l u m i n a t i o n of t h e c h l o r o p h y l l a d i h y d r a t e aggregate ( C h i a - 2 H 0 ) ( I ) . T h e photooxidation of ( C h i a-H 0) > b y w a t e r w a s s u b s e q u e n t l y o b s e r v e d i n E S R experiments 0-8412-0429-2/79/33-173-210$05.00/0 © 1979 American Chemical Society v
2
2
w
w
2
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
18.
(2).
GALLOWAY
ET AL.
Photochemical
Splitting
of
211
H0 2
H o w e v e r , the q u a n t u m efficiency of the o b s e r v e d effects w a s l o w ,
a n d w e w e r e u n a b l e to detect the d i s c h a r g e of h y d r o g e n b y
direct
a n a l y t i c a l means. I n this chapter, w e describe the c o n d i t i o n s u n d e r w h i c h w e w e r e successful i n b r i n g i n g a b o u t gaseous h y d r o g e n e v o l u t i o n a t t r i b u t a b l e to w a t e r s p l i t t i n g i n a p h o t o e l e c t r o l y t i c c e l l c o n t a i n i n g p l a t i n i z e d chlorophyll polycrystals ( C h i a - 2 H 0 ) . 2
n
T h e d e m o n s t r a t i o n of
water
p h o t o e l e c t r o l y s i s b y the c h l o r o p h y l l is o f interest because of the role of Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 15, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch018
C h i a i n p l a n t photosynthesis.
It is also t o p i c a l i n v i e w of the c u r r e n t
search f o r a d i r e c t process f o r h a r v e s t i n g solar energy to p r o d u c e gaseous h y d r o g e n for f u e l . C o n s i d e r a b l e attention has b e e n f o c u s e d o n n - t y p e s e m i c o n d u c t i n g p h o t o a n o d e s s u c h as T i 0
2
and S r T i 0
3
(3,4,5).
However,
these materials operate i n t h e n e a r U V w a v e l e n g t h r e g i o n w h e r e
the
solar r a d i a n t energy d e n s i t y is l o w . I n contrast, the a c t i o n s p e c t r u m of t h e p h o t o r e a c t i v i t y of ( C h i a - 2 H 0 ) 2
f a r r e d w a v e l e n g t h regions ( J ) .
w i t h w a t e r spans the v i s i b l e a n d
n
T h e p o l y c r y s t a l s of c h l o r o p h y l l a d i -
h y d r a t e thus b e c a m e o u r p r i m e target f o r i n v e s t i g a t i o n . I n o u r earlier p h o t o c h e m i c a l c o n v e r s i o n experiments, the c h l o r o p h y l l was p l a t e d o n a s h i n y p l a t i n u m electrode ( I ) .
T h e p h o t o l y t i c reactions
w e r e detected b y m e a s u r i n g t h e e l e c t r o n f l o w i n a n external c i r c u i t of a l i q u i d j u n c t i o n p h o t o v o l t a i c c e l l c o n s i s t i n g of the P t - C h l a h a l f c e l l a n d a C h i a-free h a l f c e l l . It o c c u r r e d to us that the q u a n t u m efficiency of this assembly c a n b e l i m i t e d b y the p o o r contact b e t w e e n the s m o o t h m e t a l surface a n d the c h l o r o p h y l l . It appears that o n l y those
Chi a
m o l e c u l e s i n d i r e c t contact w i t h p l a t i n u m are effectively e n g a g e d i n the p h o t o c h e m i c a l process.
I n this context, J a c k i R o e t t g e r of this l a b o r a t o r y
has d e m o n s t r a t e d r e c e n t l y that a n increase i n the C h i a thickness of the P t - C h l a electrode has no systematic effect o n the c e l l p e r f o r m a n c e .
We
a c c o r d i n g l y sought to o v e r c o m e the p r o b l e m of l o w q u a n t u m efficiency b y f i l l i n g i n the crevices that separate the p o l y c r y s t a l l i n e C h i a aggregates f r o m each other a n d f r o m the s m o o t h m e t a l electrode surface b y
finely
d i v i d e d p l a t i n u m particles.
Preparation of Platinized (Chi a • 2H 0) 2
Oxygen on the Photovoltaic
n
Electrode.
The Effect of
Activity
A s h i n y P t f o i l w a s p l a t i n i z e d b y p a s s i n g a 30 m A c u r r e n t f o r 10 m i n through a 7 X
1 0 " M chloroplatinic acid solution containing 6 X 2
10" M
l e a d acetate. A l a y e r o f p o l y c r y s t a l l i n e c h l o r o p h y l l , c o n t a i n i n g 1.5 X
4
10
17
C h i a m o l e c u l e s , w a s d e p o s i t e d o n the p l a t i n i z e d electrode surface, u s i n g the p r o c e d u r e d e s c r i b e d b y T a n g a n d A l b r e c h t (6).
T h e C h i a-plated
electrode t h e n w a s p l a t i n i z e d a g a i n i n t h e same c h l o r o p l a t i n i c a c i d s o l u t i o n , except that the 30 m A c u r r e n t was p a s s e d f o r o n l y 15 seconds.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
212
INORGANIC COMPOUNDS W I T H UNUSUAL PROPERTIES
II
T h e a c t i o n spectra of t h e p h o t o v o l t a i c response (1) of t h e p l a t i n i z e d C h i a electrode at p H =
7, m e a s u r e d i n a c e l l (see
F i g u r e 1) u s i n g as
t h e s e c o n d h a l f - c e l l a p l a t i n i z e d electrode n o t c o v e r e d w i t h C h i a, a r e g i v e n i n F i g u r e 2. T h e 740-nm m a x i m u m of the s p e c t r a l response s h o w n i n F i g u r e 2 confirms that ( C h i a - 2 H 0 ) 2
f o r the o b s e r v e d p h o t o v o l t a i c effects.
n
(7,8)
is p r i m a r i l y r e s p o n s i b l e
U n d e r an argon atmosphere the
o b s e r v e d response of the C h i a c e l l is p h o t o c a t h o d i c .
A remarkable
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 15, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch018
c h a n g e w a s o b s e r v e d w h e n the electrolyte s o l u t i o n w a s saturated w i t h oxygen.
T h e photogalvanic current reversed i n sign.
O n p u r g i n g the
o x y g e n - s a t u r a t e d s o l u t i o n w i t h a r g o n , t h e o r i g i n a l p h o t o c a t h o d i c response w a s restored. T o e n h a n c e t h e p h o t o v o l t a i c response, t h e p H values ( I ) of the C h i a a n d C h i a-free h a l f cells w e r e m a i n t a i n e d at 3 a n d 11, r e s p e c t i v e l y , i n another e x p e r i m e n t .
TO
A f t e r t h e h a l f cells w e r e degassed b y t h e passage
MASS SPECTROMETER
t
t
Ar Figure 1. The platinized Chi a cell. The Chi a-free electrode is used as a half cell in a liquid-junction photovoltaic cell. In photolytic reaction, only the platinized Chi a electrode is used in the production of molecular hydrogen and oxygen from water.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
18.
Photochemical
GALLOWAY E T AL.
Splitting
of
213
H0 2
2.40-
2.00
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 15, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch018
1.60 1.20
0.80
UJ
6
0.40
CM b
8
w
O
-0.40
in UJ *
-0.80
o
0
0
0
° *
o
O
o oooooooo° o u
0
a 0 o
a
°a
oo
0 0
-1.20 400
450
500
550
600
650
700
750
WAVELENGTH (nm) Figure 2. Effect of oxygen in the photovoltaic response of the platinized Chi a electrode, (a) /\, Electrolyte purged with argon gas, measurements made under a positive pressure of Ar; (b) O , electrolyte saturated with oxygen; (c) •, oxygen removed by passage of argon gas through the electrolyte solution for 30 min. The ordinate units are given in 10" electrons per incident photon. The efficiency of the liquid junction cell was calculated by dividing the photovoltaic response (electrons sec' ) by the incident photoresponse (photons sec' ). 2
1
1
of a r g o n gas f o r a b o u t 30 m i n u t e s , t h e p h o t o v o l t a i c response of t h e c e l l w a s m o n i t o r e d w i t h t h e entire o u t p u t f r o m t h e 1000 W t u n g s t e n - h a l o g e n l a m p f o c u s e d o n t h e p l a t i n i z e d C h i a electrode.
A n initial photocurrent
of a b o u t 1.5 /AA w a s o b t a i n e d . A f t e r t w o h o u r s of c o n t i n u o u s i l l u m i n a t i o n , a r e v e r s a l i n s i g n of t h e p h o t o c u r r e n t w a s o b s e r v e d , p o s s i b l y i n d i c a t i v e of a b u i l d u p i n t h e o x y g e n content of t h e e l e c t r o l y t e s o l u t i o n . T h e p o w e r of t h e r a d i a t i o n i n c i d e n t o n t h e s a m p l e w a s d e t e r m i n e d , u s i n g a L a s e r P r e c i s i o n r a d i o m e t e r , to b e 1.7 W . A p p r o x i m a t e l y one h a l f of this p o w e r occurs b e y o n d 800 n m , o u t of t h e r e a c h of C h i a p h o t o chemistry.
T h e o b s e r v e d p h o t o c u r r e n t , 1.5 ^ A , a m o u n t s t o a c o n v e r s i o n
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
214
INORGANIC
COMPOUNDS
WITH
UNUSUAL
PROPERTIES
II
efficiency of a b o u t 10~ , a s s u m i n g that t h e average e n e r g y of the p h o t o 6
c h e m i c a l l y a c t i v e p h o t o n s is 2 V .
T h e peak monochromatic q u a n t u m
efficiency at 740 n m is 4 X 10"
F i g u r e 2 ) . I n the " g r e e n g a p " w h e r e
3
(see
t h e C h i a a b s o r p t i o n is w e a k , the average m o n o c h r o m a t i c c o n v e r s i o n efficiency is a b o u t 8
X
10" .
The
4
average
q u a n t u m efficiency u s i n g
m o n o c h r o m a t i c l i g h t is thus three orders of m a g n i t u d e greater t h a n that o b t a i n e d u s i n g w h i t e l i g h t . It w a s f o u n d (10)
that at a n i n c i d e n t flux
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 15, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch018
c o r r e s p o n d i n g to the 1.7 W i n c i d e n t p o w e r , the photoresponse of the P t - C h l a c e l l observes a s e m i l i n e a r flux d e p e n d e n c e . T h e m o n o c h r o m a t i c incident ^ 10
14
fluxes
photons
u s e d i n the e x p e r i m e n t r e p r e s e n t e d sec cm" , _1
2
at w h i c h
i n Figure 2 were
t h e photoresponse
varies l i n e a r l y
w i t h flux. It is e v i d e n t f r o m F i g u r e 2 of R e f . 10 that a l i n e a r extension of the l o w - f l u x p h o t o r e s p o n s e d a t a at the m a x i m u m a v a i l a b l e p o w e r of the source w o u l d extrapolate to a q u a n t u m efficiency a b o u t 1 0
times
3
h i g h e r t h a n that o b s e r v e d . Gaseous Evolution of Molecular Hydrogen and Oxygen. Mass Spectrometric and Pyrolytic
Analyses C o n t i n u e d i l l u m i n a t i o n of the c e l l w i t h
Qualitative Observations.
a n o p e n e x t e r n a l c i r c u i t l e d to the o b s e r v a t i o n of gaseous e v o l u t i o n f r o m the P t - C h l
a electrode,
n o t a b l y the f o r m a t i o n of gas
bubbles
i n the i l l u m i n a t e d area f o l l o w e d instantaneously t h e r e p o s i t i o n i n g of the i l l u m i n a t e d area.
T o e l i m i n a t e the p o s s i b i l i t y that the gas b u b b l e s m a y
h a v e r e s u l t e d f r o m the d e g a s s i n g of a r g o n b e c a u s e of h e a t i n g b y t h e l i g h t source, the c e l l w a s p u r g e d w i t h h e l i u m a n d the e x p e r i m e n t w a s r e p e a t e d u n d e r a p o s i t i v e pressure of h e l i u m . i n w a t e r increases
T h e s o l u b i l i t y of h e l i u m
w i t h increasing temperature,
b e i n g 0.94
m L / 1 0 0 m L w a t e r at 2 5 ° a n d 7 5 ° C , r e s p e c t i v e l y .
and
1.21
Gaseous e v o l u t i o n
w a s a g a i n o b s e r v e d u n d e r i d e n t i c a l i l l u m i n a t i o n c o n d i t i o n s . W h e n the C h i a-free p l a t i n i z e d p l a t i n u m electrode w a s i l l u m i n a t e d u n d e r these c o n d i t i o n s , no signs of b u b b l i n g w e r e detected. Mass Spectrometric Analysis.
A f t e r t h e p l a t i n i z e d C h i a electrode
i n the c e l l s h o w n i n F i g u r e 1 was i l l u m i n a t e d f o r 30 m i n u t e s , the gaseous content o v e r the electrolyte s o l u t i o n w a s e v a c u a t e d d i r e c t l y i n t o
the
s a m p l e c h a m b e r of a C o n s o l i d a t e d E l e c t r o d y n a m i c s C o r p . 21-110-B mass spectrometer.
T h e r e s u l t i n g mass s p e c t r u m is s h o w n i n F i g u r e 3.
a d d i t i o n to the e x p e c t e d H e
+
In
l i n e at mass 4, a s t r o n g p e a k at mass 2
w i t h a n attendant trace p e a k at mass 3 w a s o b s e r v e d . T h e latter peaks are r e s p e c t i v e l y a t t r i b u t e d to H
2
+
a n d to t h e t r i a t o m i c i o n H
3
+
(11,12).
These identifications were confirmed b y using pure h y d r o g e n a n d h e l i u m as source. T h e gaseous content a b o v e the electrolyte s o l u t i o n i n the C h i a-free c e l l also w a s a n a l y z e d b y mass s p e c t r o m e t r y after a s i m i l a r l i g h t
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
18.
GALLOWAY
4
0
Photochemical
E T AL.
8
12
Sample
Splitting
of
20
24
16
215
H0 2
28
32
• o z o Xo xZCM
+ CV, O
+
a> X
+
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 15, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch018
(M
CO z UJ
+
I
+
X • I +
I X
•2SL
.
o
+ + CVJ ro
CM O
O I
2
12
16
MASS
20
24
NUMBER
Figure 3. Mass spectrometric determination of the gaseous products of the photoelectrolytic process, (a) Gaseous sample collected from illuminated platinized Chi a cell; (b) gaseous content over a similarly irradiated, platinized electrode in the absence of Chi a. Molecular hydrogen and oxygen, the two main products of the water splitting reaction, are readily manifested by the lines observed at masses 2 and 32 in (a). Helium gas was used to purge the cell prior to the light reaction. See text for a more detailed analysis. t r e a t m e n t of the C h i a-free p l a t i n i z e d electrode. a n d 3 w e r e d e t e c t e d (see H
2
+
N o lines at masses 2
c o m p a r i s o n i n F i g u r e 3 ) . S m a l l quantities of
are k n o w n to a c c o m p a n y h y d r o c a r b o n fragments at masses 13, 15, 25,
26, 27, a n d 29. T h e s e fragments a r e f o u n d t o o c c u r i n s i m i l a r i n t e n s i t y ratios i n b o t h the s a m p l e a n d b l a n k d e t e r m i n a t i o n s s h o w n i n F i g u r e 3. T h e possibility that the observed H
2
+
line m a y have originated from
h y d r o c a r b o n f r a g m e n t a t i o n is thus r u l e d o u t . T h e intense mass 32 l i n e i n t h e s a m p l e s p e c t r u m is a t t r i b u t e d to a i r leakage t h r o u g h the e x t e r n a l leads a d m i t t e d i n t o the s a m p l e c e l l v i a e p o x i e d m e t a l - g l a s s
joints f o r
t h e m e a s u r e m e n t of the p h o t o v o l t a i c response. B y e l i m i n a t i n g these joints w e w e r e able to r e d u c e t h e mass 32 l i n e to a l e v e l at w h i c h a q u a n t i t a t i v e e v a l u a t i o n o f the o x y g e n e v o l v e d c a n b e m a d e i n terms o f a statistical d i s t r i b u t i o n of i s o t o p i c o x y g e n ( 1 3 ) .
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
216
INORGANIC
COMPOUNDS WITH UNUSUAL
PROPERTIES
II
M a s s spectrometric analyses of t h e p h o t o l y t i c p r o d u c t s f r o m v a r i o u s m i x t u r e s of H
2
1 6
0, D
2
i e
O , andH
2
1 8
0 are compared w i t h the corresponding
mass spectra o f e l e c t r o l y z e d samples c o n t a i n i n g i d e n t i c a l i s o t o p i c m i x t u r e s i n F i g u r e s 4, 5, a n d 6. T h e results of a n e x p e r i m e n t u s i n g 1:1 D 0 - H 0 2
2
are s h o w n i n F i g u r e 4. I n this e x p e r i m e n t a r g o n gas w a s u s e d t o p u r g e the c e l l p r i o r to t h e l i g h t r e a c t i o n . the mass 4 ( D
2
+
If w e assume that t h e o b s e r v a t i o n of
) l i n e has r e s u l t e d f r o m w a t e r s p l i t t i n g a n d use t h e mass
20 ( D 0 ) l i n e as a n i n t e r n a l r e f e r e n c e f o r c a l i b r a t i o n , w e estimate, f r o m Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 15, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch018
2
+
a c o m p a r i s o n of the relative intensity ratios o f lines at masses 20 ( D 0 ) 2
I 'I 0
1
4
i
i
i
D
8 i
i
2
0 - H
12 i
i
2
0
16 i
Photolysis
i
20 i
i
22
H 0,0D 2
3h;
HDCtHjO*
Htf Ort
>-
Nf 0
- —10 1
+
CO LU
Electrolysis
UJ
cr
Blank
4
8
12
16
20
22
MASS NUMBER Figure 4. Comparison of the mass spectrometric determination of the photolytic products of 1:1 DiO-HtO with that of conventional electrolysis. Under comparable instrumental settings, the lines at masses 3 and 4 are not observed in the blank. Argon gas was used to purge the cell prior to the light reaction. Note changes in scale in the low-mass region.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
+
18.
GALLOWAY
Photochemical
E T A L . ?
D
of
217
H0 2
$
?
3:|
Splitting
D 0-H 0 2
+
2
Photolysis
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 15, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch018
HD* ?2
Ha
+
Electrolysis HD
+
?2
D
Blank
+
H+ HP 2
2
MASS and 4 ( D
2
+
3
4
Figure 5. Comparison of the mass spectra of the products of the photolysis and electrolysis of 3:1 D 0-H 0. Argon gas was used to purge the cell prior to the light reaction.
D+ 2
4
2
NUMBER
2
) observed i n the photolytic a n d electrolytic runs, that water
p h o t o l y s i s occurs at a rate o f 9 X 10" m o l h r " , c o r r e s p o n d i n g to a gaseous 6
1
( h y d r o g e n a n d o x y g e n ) e v o l u t i o n rate o f 0.3 m L h r . A significant l i n e - 1
at mass 2 is present i n t h e b l a n k . W e a t t r i b u t e this t o t h e f r a g m e n t a t i o n of D
2
0 t o D a n d O D , w h i c h is consistent w i t h t h e o b s e r v a t i o n o f w a t e r +
+
f r a g m e n t s at masses 17, 18, a n d 19 i n t h e p h o t o l y t i c , e l e c t r o l y t i c , a n d b l a n k runs. I n t h e b l a n k , t h e lines at masses 3 a n d 4 a r e n o t o b s e r v e d u n d e r settings s i m i l a r t o those o f t h e p h o t o l y t i c a n d e l e c t r o l y t i c e x p e r i ments. W e w e r e u n a b l e t o detect t h e H s i g n a l at mass 1 o n a c c o u n t o f +
instrumental limitations. T h e a b o v e considerations suggested t h e use of h i g h e r i n s t r u m e n t a l r e s o l u t i o n so that t h e interference could be differentiated f r o m the H
at mass 2 f r o m D 2
+
2
0 fragmentation
l i n e . T h e results o f a h i g h e r r e s o l u -
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
218
INORGANIC
COMPOUNDS
34
35
I
0 0* 33.994
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 15, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch018
, 6
WITH
UNUSUAL
PROPERTIES
II
36
I —
Photolysis
, 8
34
35 MASS
36
NUMBER
Figure 6. Comparison of mass spectrometric analyses of the photolytic and electrolytic products using 5:1 H2 0-Hi 0. The occurrence of the Cl* and H Cl lines is attributable to the presence of KCl in the aqueous electrolyte. Helium gas was used to purge the cell prior to the light reaction. 16
35
1
35
18
+
t i o n d e t e r m i n a t i o n of the m o l e c u l a r species H
2
+
, H D , and D +
2
+
obtained
i n the p h o t o l y s i s a n d electrolysis 3 : 1 D 0 - H 0 are s h o w n i n F i g u r e 5. 2
2
T h e D l i n e w a s s i g n i f i c a n t l y r e d u c e d o n f r e e z i n g the s a m p l e p r i o r to t h e +
e v a c u a t i o n of the gaseous contents of the c e l l into t h e mass This
o b s e r v a t i o n corroborates
the supposition that
o b s e r v e d as a result of w a t e r f r a g m e n t a t i o n .
spectrometer.
the D
+
line was
I n a separate e x p e r i m e n t ,
i n w h i c h h e l i u m gas w a s u s e d to p u r g e t h e c e l l p r i o r to the l i g h t r e a c t i o n ,
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
18.
GALLOWAY
ET
AL.
Photochemical
Splitting
of
219
H0 2
the presence of m o l e c u l a r o x y g e n i n the p h o t o c h e m i c a l s p l i t t i n g of w a t e r is ascertained b y u s i n g 5 : 1 H of the lines at masses 34 (
1 6
0
2 1 8
1 6
0-H
2
1 8
0 (see
Figure 6).
0 ) a n d 35.998 ( +
1 8
0
2
+
The
occurrence
) compares w e l l w i t h
the c o r r e s p o n d i n g lines o b s e r v e d f o r t h e e l e c t r o l y t i c s a m p l e .
B o t h lines
are absent i n a b l a n k r u n i n w h i c h the C h i a-free electrode i n F i g u r e 1 was
treated
under
conditions
identical
to
those
of
the
photolytic
experiment. Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 15, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch018
Quantitative Determination by Diffusion Pyrolysis. I n a n
attempt
to q u a n t i f y t h e rate of the p h o t o c h e m i c a l w a t e r - s p l i t t i n g process,
we
d e s i g n e d a p y r o l y t i c apparatus, s h o w n s c h e m a t i c a l l y i n F i g u r e 7, t h a t a l l o w e d us to d e t e r m i n e t h e q u a n t i t y of the h y d r o g e n gas p r o d u c e d b y p h o t o l y s i s b y b u r n i n g it i n a stream of o x y g e n gas c a r r i e d b y gaseous h e l i u m . T h e l e v e l of b a c k g r o u n d o x y g e n i n the h e l i u m flow was registered as a c u r r e n t u s i n g the H e r s c h o x y g e n i n d i c a t o r ( 1 5 ) .
Gaseous h e l i u m
w a s a d m i t t e d t h r o u g h the entire apparatus at a constant flow rate u n t i l the o x y g e n c u r r e n t r e a c h e d a steady-state v a l u e . A t this p o i n t the valves, d e n o t e d b y o p e n circles i n F i g u r e 7, w e r e a d j u s t e d so that the h e l i u m flow w a s d i r e c t e d a l o n g a p a t h w a y ( m a r k e d b y arrows i n F i g u r e 7) that b y passed the s a m p l e c e l l . W i t h b o t h valves a b o v e a n d b e l o w the p l a t i n i z e d C h i a
electrode
c l o s e d , the p h o t o l y t i c r e a c t i o n w a s a l l o w e d to c a r r y o n f o r a k n o w n d u r a t i o n of t i m e .
After a brief period ( ^
1 m i n ) of c o o l i n g , the v a l v e
at ( a ) w a s o p e n e d . T h e distance b e t w e e n ( a )
and (b)
(at w h i c h p o i n t
the gas l i n e r e a c h e d the h y d r o g e n a n d o x y g e n r e a c t o r ) w a s 45 c m .
The
h y d r o g e n a n d o x y g e n p r o d u c e d b y w a t e r p h o t o l y s i s d i f f u s e d a l o n g the
Figure 7. The diffusion pyrolysis apparatus. The arrows indicate the of helium flow during operation.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
direction
220
INORGANIC
helium
flow.
COMPOUNDS
WITH
UNUSUAL
PROPERTIES
M o l e c u l a r h y d r o g e n , b e i n g 16 times l i g h t e r t h a n
II
oxygen,
a r r i v e d at ( b ) a p p r o x i m a t e l y f o u r times as q u i c k l y as t h e p h o t o l y t i c o x y g e n , c a u s i n g a r e d u c t i o n i n t h e b a c k g r o u n d o x y g e n c u r r e n t l e v e l as it w a s b u r n e d b y t h e p l a t i n u m h e a t i n g c o i l i n the h y d r o g e n a n d o x y g e n r e a c t o r (see F i g u r e 8 ) . O n d e p l e t i o n o f h y d r o g e n t h r o u g h c o m b u s t i o n , t h e o x y g e n c u r r e n t l e v e l w a s restored t o t h e steady-state b a c k g r o u n d l e v e l . S u b s e q u e n t l y , t h e s l o w e r d i f f u s i n g o x y g e n f r o m the p l a t i n i z e d C h i Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 15, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch018
a c e l l r e a c h e d t h e o x y g e n i n d i c a t o r , r e s u l t i n g i n a n increase i n t h e o x y g e n current. I n F i g u r e 8, t h e p y r o l y t i c analyses o f t w o p h o t o l y s i s experiments i n w h i c h t h e p h o t o c h e m i c a l r e a c t i o n w a s c a r r i e d o u t f o r five a n d 15 m i n u t e s ( r e s p e c t i v e l y s h o w n i n F i g u r e s 8 a a n d 8 b ) a r e c o m p a r e d w i t h a correI
1—I—I—I—I—I—I—I—I—I—I
1
a
T I M E (min) Figure 8. Comparison of pyrolytic analyses of the photolysis and electrolysis of water at pH = 3. (aJo) Illumination of the Pt-Chl a sample with the entire output of a 1000 W tungsten-halogen lamp for 5 and 15 min, respectively, (c) L o w e r , hydrogen generated by passing 10 mA for 20 sec; m i d dle, oxygen generated by passing a current of 10 mA for 20 sec; upper, sum of middle and lower curves.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
18.
GALLOWAY
E T AL.
Photochemical
Splitting
of
221
H0 2
s p o n d i n g analysis of h y d r o g e n a n d o x y g e n generated b y electrolysis ( F i g u r e 8 c ) i n w h i c h t h e C h i a-free ( b l a n k ) h a l f c e l l i n F i g u r e 1 a c t e d as a c o u n t e r electrode.
F i r s t , t h e b l a n k electrode was u s e d as t h e a n o d e i n t h e
electrolysis, so that h y d r o g e n w a s p r o d u c e d i n t h e a b s e n c e of l i g h t i n t h e enclosed s a m p l e c e l l w i t h t h e P t - C h l a electrode o p e r a t i n g as t h e cathode. A f t e r a 10 m A c u r r e n t w a s passed f o r 20 seconds, t h e s a m p l e c e l l w a s o p e n e d so that the h y d r o g e n gas w a s a d m i t t e d i n t o t h e h e l i u m flow Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 15, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch018
t o w a r d t h e h y d r o g e n a n d o x y g e n reactor.
T h e expected reduction i n the
o x y g e n c u r r e n t w a s o b s e r v e d after a t i m e l a g s i m i l a r t o that o b s e r v e d i n t h e p h o t o l y t i c experiments. O n c o m p l e t i o n of the e l e c t r o l y t i c h y d r o g e n measurement, t h e s a m p l e c e l l w a s flushed w i t h h e l i u m to get r i d of a n y h y d r o g e n that r e m a i n e d i n t h e electrolyte. W i t h the b l a n k electrode o p e r a t i n g as a c a t h o d e " a n d the P t - C h l a e l e c t r o d e as the anode, t h e entire p r o c e d u r e d e s c r i b e d i n t h e p r e c e d i n g p a r a g r a p h was r e p e a t e d f o r a n a l y z i n g t h e o x y g e n p r o d u c e d b y electrolysis i n t h e s a m p l e c e l l . T h e s u m m a t i o n of these t w o analyses r e s u l t e d i n the c u r r e n t - t i m e p l o t g i v e n i n F i g u r e 8c, w h i c h is c o m p a r e d w i t h t h e c o r r e s p o n d i n g plots o b t a i n e d i n t h e p h o t o l y t i c experiments. T h e results s h o w n i n F i g u r e 8 w e r e o b t a i n e d at a h e l i u m flow rate o f 28 b u b b l e s p e r m i n u t e t h r o u g h 0.25 i n . i . d . glass t u b i n g s i n the flow i n d i c a t o r . T h e observed H : 0 2
photolysis
(Figure
2
ratio appears to b e greater i n t h e p r o d u c t f r o m 8a, 8 b )
than
f r o m electrolysis
(Figure
8c).
In
e x t e n d e d w o r k c o m p l e t e d after t h e o r a l p r e s e n t a t i o n o f this p a p e r , w e o b t a i n e d e v i d e n c e that p l a t i n u m itself c a n b e r e s p o n s i b l e f o r the d e s c r i p t i o n of w a t e r i n a t h e r m a l r e a c t i o n of t h e p l a t i n u m w i t h w a t e r , i n w h i c h the p r o d u c t s are h y d r o g e n a n d some o x i d a t i o n c o m p o u n d of p l a t i n u m (14). Discussion O u r m o d e l for the C h i a - H 0 photoelectrolytic cell was based 2
o n the p-type semiconductor properties (8,9).
(17,18)
(16)
of ( C h i a - 2 H 0 ) 2
w
T h e e x p e r i m e n t a l b e h a v i o r d e s c r i b e d above c a n b e e x p l a i n e d b y
c o n s i d e r i n g t h e p o l y c r y s t a l l i n e c h l o r o p h y l l as a s e m i c o n d u c t i n g c a t h o d e a n d t h e finely d i s p e r s e d p l a t i n u m p a r t i c l e s as a m e t a l l i c a n o d e i m m e r s e d i n a n a c i d i c aqueous electrolyte a c c o r d i n g to t h e d e s c r i p t i o n of W r i g h t o n (4), M a v r o i d e s ( 5 ) , O h n i s h i (19),
a n d their co-workers. I n dark equili-
b r a t i o n , there is a n energy b a n d b e n d i n g at t h e C h i a surface, p r o d u c i n g a S c h o t t k y b a r r i e r at t h e C h i a - e l e c t r o l y t e interface.
Electron-hole pairs
generated at t h e s e m i c o n d u c t o r surface b y l i g h t a b s o r p t i o n across t h e b a n d g a p leads to a s e p a r a t i o n b y t h e electric e l i m i n a t i n g w a s t e f u l r e c o m b i n a t i o n b a c k reactions.
field
of the barrier,
E l e c t r o n s are trans-
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
222
INORGANIC
COMPOUNDS WITH UNUSUAL
f e r r e d f r o m t h e c a t h o d e surface to the H / H +
PROPERTIES
II
free energy l e v e l o f t h e
2
aqueous phase, l i b e r a t i n g h y d r o g e n i n t h e r e a c t i o n : 2 C h l a + 2 H 0 -> 2 C h l a + H + 2 0 H " +
2
2
T h e holes m o v e i n t o t h e b u l k o f ( C h i a • 2 H 0 ) 2
t h r o u g h t h e p l a t i n u m anode, to t h e H 0 / 0 2
2
a n d are t h e n t r a n s m i t t e d
2
l e v e l of t h e electrolyte, g i v i n g
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 15, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch018
off o x y g e n i n t h e r e a c t i o n :
2Chl a + H 0 +
2Chl a + ^ 0
2
T h e photooxidation of ( C h i a - 2 H 0 ) > 2
n
2
+ 2H
+
b y w a t e r r e c e n t l y has b e e n
2
e s t a b l i s h e d b y E S R observations ( 2 ) . R has b e e n n o t e d r e c e n t l y (2,7,16) of c h l o r o p h y l l (8,9,20-28)
( C h ia - H 0 ) 2
that a m o n g k n o w n aggregates ( A ) and ( C h i a - 2 H 0 ) >
2
2
n
2
( B ) are d i s t i n g u i s h e d b y t h e i r a b i l i t y to b e p h o t o o x i d i z e d i n t h e p r e s e n c e of w a t e r , g i v i n g rise t o w e l l - c h a r a c t e r i z e d p h o t o v o l t a i c b e h a v i o r
(1,7,16).
S i g n i f i c a n t l y , i t w a s suggested that t h e p h o t o o x i d i z e d d i h y d r a t e aggregate, (Chi a • 2H 0) 2
n
+
, not ( C h i a • H 0 ) 2
2
+
, is sufficiently strong a n o x i d a n t t o
b e r e a d i l y r e d u c e d b y w a t e r ( 2 ) . T h e p h o t o c h e m i c a l a c t i v i t y of C h i a H 0 aggregates has b e e n a t t r i b u t e d t o p h o t o a c t i v a t e d p r o t o n shifts 2
32)
(31,
between the magnesium-bound water molecule a n d the c a r b o n y l
g r o u p t o w h i c h i t is h y d r o g e n b o n d e d , r e s u l t i n g i n t h e a c q u i s i t i o n b y the m a g n e s i u m a t o m of a n e g a t i v e charge (31,32).
T h e magnesium atom
b e i n g conjugated to r i n g V , t h e negative c h a r g e it acquires d u r i n g p h o t o a c t i v a t i o n is expected to b e r e a d i l y t r a n s m i t t e d v i a vr-electron resonance to t h e C 9 keto g r o u p , w h i c h is p r e s u m a b l y t h e site at w h i c h t h e e l e c t r o n leaves b o t h aggregates ( A ) a n d ( B ) d u r i n g t h e p r i m a r y l i g h t r e a c t i o n . W e c a n thus r a t i o n a l i z e the a p p a r e n t l y s y m b i o t i c roles of t h e m a g n e s i u m atom a n d the ring V cyclopentanone r i n g i n the photochemical activity of ( A ) a n d ( B ) . W e note that the charge transfer m e c h a n i s m d e s c r i b e d here appears to b e feasible o n l y i n ( A ) a n d ( B ) . I n C
2
C h i a dimers
i n w h i c h the C = 0 • • • H ( H ) O • • • M g interactions i n v o l v e t h e C 9 k e t o g r o u p (22, 23, 26, 27, 28) as i n t h e d i m e r of C h i a p o l y h y d r a t e (26) c o v a l e n t l y l i n k e d d i m e r s (22,23)
or i n
i n w h i c h the C I O C = O • • • H ( H ) -
O - • • M g interactions are s t e r i c a l l y f o r b i d d e n (26,27),
d e r e a l i z a t i o n of
the n e g a t i v e charge a c q u i r e d b y the m a g n e s i u m a t o m i n p h o t o a c t i v a t i o n to t h e C 9 keto c a r b o n y l is e x p e c t e d to b e s t a b i l i z e d b y t h e w a t e r p r o t o n to w h i c h the c a r b o n y l g r o u p is h y d r o g e n b o n d e d . It has b e e n r e p o r t e d that, u n l i k e ( C h i a - H 0 ) 2
2
and (Chi a - 2 H 0 ) , 2
n
the C 9 - l i n k e d C
2
sym-
m e t r i c a l d i m e r c a n o n l y b e p h o t o o x i d i z e d i n t h e p r e s e n c e of a n a d d e d e l e c t r o n acceptor, s u c h as t e t r a n i t r o m e t h a n e
(28).
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
18.
GALLOWAY E T A L .
223
Photochemical Splitting of H 0 2
T h e present d e m o n s t r a t i o n o f t h e p h o t o c h e m i c a l s p l i t t i n g o f w a t e r b y ( C h i a • 21120)^ lends s u p p o r t t o t h e r e c e n t l y p r o p o s e d photosynthesis m o d e l i n w h i c h a single p h o t o s y s t e m m a y b e c a p a b l e of t h e i n v i v o w a t e r splitting reaction v i a a two-photon activation mechanism ( 1 ) . It was at o n e t i m e c o m m o n l y b e l i e v e d that t w o C h i a photosystems are r e q u i r e d i n b r i n g i n g a b o u t w a t e r s p l i t t i n g a c c o r d i n g to the so-called "series s c h e m e " or " Z s c h e m e " o f photosynthesis.
Attempts to achieve
photochemical
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 15, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch018
s p l i t t i n g of w a t e r i n v i t r o b a s e d (see, f o r e x a m p l e , R e f . 33) o n t h e series scheme have n o t thus f a r b e e n b r o u g h t t o f r u i t i o n . C u r r e n t efforts i n this l a b o r a t o r y a r e c o n c e r n e d w i t h d e t e r m i n i n g the q u a n t u m r e q u i r e m e n t f o r t h e i n v i t r o w a t e r - s p l i t t i n g r e a c t i o n a n d the p o w e r efficiency of t h e p h o t o c h e m i c a l c o n v e r s i o n .
T h e effects o f
o x y g e n o n t h e p h o t o v o l t a i c a c t i v i t y of t h e p l a t i n i z e d C h i a electrode s h o w n i n F i g u r e 2 c a n b e r e l a t e d t o s i m i l a r effects o b s e r v e d earlier ( 1 ) . M o l e c u l a r o x y g e n appears to exert a n i n h i b i t i v e role i n C h i a • H 0 l i g h t 2
reactions.
T h i s role c a n b e responsible, i n p a r t at least, f o r t h e o b s e r v e d
a c c e l e r a t i o n o f t h e a p p a r e n t p h o t o l y t i c rate a t temperatures o x y g e n is i n s o l u b l e i n w a t e r .
at w h i c h
I t is k n o w n that the manganese i o n p l a y s
a p a r t i n the e v o l u t i o n of o x y g e n i n p l a n t photosynthesis (34). I t m a y b e p o s s i b l e to find t h e i n v i t r o a n a l o g f o r t h e i n v i v o manganese i o n effect. It appears reasonable to suppose that success i n a c h i e v i n g h i g h l y efficient p h o t o c h e m i c a l s p l i t t i n g of w a t e r u l t i m a t e l y c a n d e p e n d o n t h e extent t o w h i c h w e are c a p a b l e of u n d e r s t a n d i n g a n d d u p l i c a t i n g t h e i n v i v o l i g h t reaction i n the laboratory. A chnowledgmen t T h i s research w a s s u p p o r t e d b y t h e A l c o a F o u n d a t i o n a n d b y t h e N a t i o n a l Science F o u n d a t i o n . Assistance b y R . G . C o o k s a n d A . B . C o d d i n g t o n i n t h e m e a s u r e m e n t of mass spectra is g r a t e f u l l y a c k n o w l e d g e d . Literature Cited 1. Fong, F. K., Polles, J. S., Galloway, L., Fruge, D. R., J. Am. Chem. Soc. (1977) 99, 5802. 2. Fong, F. K., Hoff, A. J., Brinkman, F. A., J. Am. Chem. Soc. (1978) 100, 619. 3. Fujishima, A., Honda, K., Nature (1972) 238, 37. 4. Wrighton, M. S., Wolczansdi, P. T., Ellis, A. B., J. Solid State Chem. (1977) 22, 17. 5. Mavroides, J. G., Katalas, J. A., Kolesar, D. F., Appl. Phys. Lett. (1976) 28, 241. 6. Tang, C. W., Albrecht, A.C.,Mol.Cryst. Liq. Cryst. (1974) 25, 53. 7. Fetterman, L. M., Galloway, L., Winograd, N., Fong, F. K., J. Am. Chem. Soc. (1977) 99, 653. 8. Fong, F. K., Koester, V. J., J. Am. Chem. Soc. (1975) 97, 6888. 9. Fong, F. K., Koester, V. J., Biochim. Biophys. Acta (1976) 423, 52.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 15, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch018
224
INORGANIC
COMPOUNDS
WITH
UNUSUAL PROPERTIES
II
10. Galloway, L., Roettger, J. D., Fruge, D. R., Fong, F. K., J. Am. Chem. Soc. (1978) 100, 4635. 11. Beynon, J. H., Cooks, R.G.,Caprioli, R. M., Proc. R. Soc. London, Ser. A (1972) 327, 1. 12. Papp, N., Kerwin, L., Phys. Rev. Lett. (1969) 22, 1343. 13. Fong, F. K., Galloway, L., J. Am. Chem. Soc. (1978) 100, 3594. 14. Galloway, L., Fruge, D. R., Fong, F. K., J. Am. Chem. Soc. unpublished data. 15. Hersch, P., Proc. Int. Symp. Microchem. 1958 (1959) 141-150. 16. Fong, F. K., Winograd, N., J. Am. Chem. Soc. (1976) 98, 2287. 17. Tang, C. W., Albrecht, A. C., J. Chem. Phys. (1975) 62, 2139. 18. Ibid. (1975) 63, 953. 19. Ohnishi, T., Nakato, Y., Tsubomura, H., Ber. Bunsenges. Phys. Chem. (1975) 79, 523. 20. Strouse, C. E., Proc. Nat. Acad. Sci. USA (1974) 71, 325. 21. Chow, H.-C., Serlin, R., Strouse, C. E., J. Am. Chem. Soc. (1975) 97, 7230. 22. Boxer, S.G.,Closs, G. L.,J.Am. Chem. Soc. (1976) 98, 5406. 23. Boxer, S. G., Ph.D. dissertation, Department of Chemistry, University of Chicago (1976). 24. Winograd, N., Shepard, A., Karweik, D. H., Koester, V. J., Fong, F. K., J. Am. Chem. Soc. (1976) 98, 2369. 25. Fong, F. K., Koester, V. J., Polles, J. S., J. Am. Chem. Soc. (1976) 98, 6406. 26. Fong, F. K., Koester, V. J., Galloway, L., J. Am. Chem. Soc. (1977) 99, 2372. 27. Shipman, L. L., Cotton, T. M., Norris, J. R., Katz, J. J., Proc. Nat. Acad. Sci. USA (1976) 73, 1791. 28. Wasielewski, M. R., Studier, M. H., Katz, J. J., Proc. Nat. Acad. Sci. USA (1976) 73, 4282. 29. Cotton, T. M., Ph.D. dissertation, Department of Chemistry, Northwestern University (1976). 30. Clarke, R. H., Hobart, D. R., FEBS Lett. (1977) 82, 155. 31. Fong, F. K., Proc. Nat. Acad. Sci. USA (1974) 71, 3692. 32. Fong, F. K., Appl. Phys. (1975) 6, 151. 33. Bolton, J. R., J. Solid State Chem. (1977) 22, 4. 34. Cheniae, G. M., Annu. Rev. Plant Physiol. (1970) 21, 467. RECEIVED February 22, 1978.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.