Gaseous Viscosity Measurement for Several Refrigerant Mixtures

and activation energy of LiBr in DMSO, H2O and DMSO–H2O mixtures at various temperatures. Talat Zamir , Abdullah Khan , Shaheen Durrani , Fahim ...
0 downloads 0 Views 92KB Size
J. Chem. Eng. Data 2002, 47, 383-387

Gaseous Viscosity Measurement for Several Refrigerant Mixtures Zhi Zhang,* Zhi-Gang Liu, and Wen Wang School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, People’s Republic of China

An oscillating-disk viscometer was used to measure the gaseous viscosities of several kinds of refrigerant mixtures, which were 1,1-difluoroethane (HFC152a) + chlorodifluoromethane (HCFC22), perfluoropropane (HFC218) + propane (HC290) + chlorodifluoromethane (HCFC22), and 1,1,1,2-tetrafluoroethane (HFC134a) + perfluoropropane (HFC218) + isobutene (HC600a). To check the reliability and uncertainty of the viscometer, the gaseous viscosities of HCFC22 were measured. The deviations between the experimental data and the literature data were less than 3%. The gaseous viscosities of these mixtures were measured at the temperature 297-370 K and at pressures up to 2.14 MPa. The experimental results, the equations, and the curves for the gaseous viscosities of the mixtures are all presented.

Introduction An oscillating-disk viscometer can be used to measure the viscosities of gases and liquids with high accuracy. By now, there are several sets of equipment of this kind reported, which are respectively at Brown University1 and Maryland University2 in the United States, Tuhoko University3 in Japan, University of Trondheim4 in Norway, and Xi’an Jiaotong University5 in China. The two pieces of equipment in the United States and Norway adopt Pt-W alloy as the torsion wire and are used to measure liquid viscosity. The Japanese piece of equipment adopts quartz crystal as the torsion wire and is used to measure the gaseous viscosity. The one at Xi’an Jiaotong University is used to measure the gaseous viscosity and adopts Ti-Ni alloy as the torsion wire. The oscillating-disk viscometers can have lower uncertainties; at room temperature, they can reached 0.19% for liquid viscosity and 1-2% for gaseous viscosity. The experimental set of this work has the maximum uncertainty of 3% at experimental temperatures and pressures. The gaseous viscosities of HFC152a + HCFC22 (15 mass % and 25 mass % HCFC22), HFC218 (39 mass %) + HC290 (5 mass %) + HCFC22 (56 mass %), and HFC134a (86 mass %) + HFC218 (9 mass %) + HC600a (5 mass %) were measured with the oscillating-disk viscometer at different temperatures and pressures. Sample Purity According to the manufacturer’s materials, the purities of the HFC152a and HCFC22 are 99.9%, and the purities of the HFC218, HC290, HFC134a, and HC600a are 99.5%. We did not purify and analyze the samples. Experimental Apparatus The structure diagram of the oscillating-disk viscometer is shown in Figure 1, where 1 is the Ti-Ni alloy torsion wire, 2 is the fixed disk, which is used to prevent vertical flow caused by a temperature difference, 3 is the glass, 4 is the mirror, which is used to reflect the laser coming from the outside, 5 is the bearing, and 6 is the oscillating disk. * To whom correspondence should be addressed. E-mail: zhizhangbox@ 163.net.

Figure 1. Diagram of the oscillating-disk viscometer.

10.1021/je015502m CCC: $22.00 © 2002 American Chemical Society Published on Web 04/19/2002

383

384

Journal of Chemical and Engineering Data, Vol. 47, No. 3, 2002 Table 3. Gaseous Viscosity of HFC152a + HCFC22 (25 mass % HCFC22)

Table 1. Comparison for HCFC22 between This Work and Reference Data9,10 T

P

F

η(this work)

η(ref 10)

η(ref 9)

T

P

F

η

T

P

F

η

Kr

MPa

kg‚m-3

µPa‚S

µPa‚S

µPa‚S

K

MPa

kg‚m-3

µPa‚S

K

MPa

kg‚m-3

µPa‚S

295.96 297.06 315.47 316.02 315.22 332.91 334.18 333.77 332.61 353.66 353.58 353.56 354.34 353.60 373.05 373.26 372.92 373.11 372.86

0.681 0.097 1.137 0.572 0.097 1.596 1.076 0.571 0.097 2.122 1.622 1.112 0.546 0.096 2.202 1.652 1.086 0.631 0.098

26.79 3.43 44.25 20.29 3.24 61.37 38.02 18.96 3.05 78.82 56.36 36.42 16.85 2.86 72.80 52.00 32.58 15.25 2.75

12.56 12.47 14.13 13.68 13.28 14.93 14.68 14.41 14.19 16.19 16.05 15.14 14.92 14.58 16.92 16.60 16.05 15.88 15.32

12.76 12.52 13.88 13.52 13.25 15.06 14.77 14.43 14.05 16.27 15.76 15.35 15.03 14.78 17.06 16.55 16.12 15.81 15.55

12.82 12.66 13.95 13.59 13.27 15.35 14.99 14.78 14.19 16.43 15.90 15.50 15.19 14.98 17.25 16.72 16.33 15.92 15.76

300.81 301.22 312.13 312.14 312.14 312.05 312.09 312.19 312.60 312.66 320.46 320.48 320.77 321.16 321.29 321.28 321.27 331.55 331.53 331.59 331.62 331.66 333.97 334.00 333.99 334.02 334.06 334.09 333.99 334.11 334.16 334.18 345.97 345.94 345.74 347.91 347.94 347.87 347.77 347.61 347.62

0.447 0.097 0.598 0.598 0.598 0.348 0.348 0.348 0.098 0.098 0.884 0.884 0.599 0.349 0.099 0.099 0.099 1.174 1.174 0.849 0.849 0.849 0.599 0.599 0.349 0.349 0.349 0.349 0.099 0.099 0.099 0.099 1.374 1.374 1.073 0.848 0.848 0.848 0.848 0.598 0.598

13.665 2.777 17.957 17.957 17.957 9.980 9.980 9.980 2.696 2.696 27.053 27.053 17.334 9.666 2.636 2.636 2.636 36.047 36.047 24.516 24.516 24.516 16.443 16.443 9.231 9.231 9.231 9.231 2.524 2.524 2.524 2.524 40.676 40.676 30.235 22.903 22.903 22.903 22.903 15.627 15.627

11.019 10.845 11.428 11.418 11.365 11.284 11.317 11.348 11.292 11.171 11.864 11.844 11.766 11.690 11.600 11.541 11.629 12.429 12.334 12.260 12.279 12.296 12.203 12.181 12.028 12.069 12.078 12.040 11.825 11.907 11.950 11.921 13.327 13.314 12.912 12.836 12.814 12.742 12.748 12.625 12.640

347.63 347.66 347.65 347.74 347.78 347.81 348.63 348.73 348.88 355.06 355.14 358.38 358.31 358.17 358.23 358.32 358.41 358.53 356.32 356.31 356.29 356.48 363.63 363.55 363.53 363.51 363.68 367.82 367.85 367.80 367.82 369.23 369.34 369.44 369.48 369.53 369.58 369.66 369.75 369.64 369.72

0.598 0.598 0.348 0.348 0.348 0.348 0.098 0.098 0.098 1.598 1.598 1.374 1.374 1.099 1.099 1.099 0.849 0.849 0.599 0.599 0.349 0.099 1.924 1.924 1.924 1.599 1.599 1.323 1.323 1.098 1.098 0.824 0.824 0.599 0.599 0.599 0.349 0.349 0.349 0.099 0.099

15.627 15.627 8.812 8.812 8.812 8.812 2.403 2.403 2.403 46.928 46.928 38.290 38.290 29.477 29.477 29.477 22.016 22.016 15.183 15.183 8.595 2.372 56.948 56.948 56.948 44.961 44.961 35.128 35.128 28.349 28.349 20.486 20.486 14.522 14.522 14.522 8.241 8.241 8.241 2.278 2.278

12.612 12.623 12.568 12.625 12.538 12.551 12.471 12.437 12.547 13.592 13.533 13.433 13.490 13.321 13.368 13.227 13.064 13.142 12.874 12.975 12.797 12.685 14.297 14.183 14.188 13.850 13.862 13.681 13.709 13.523 13.612 13.525 13.616 13.499 13.384 13.438 13.312 13.353 13.292 13.244 13.275

Table 2. Gaseous Viscosity of HFC152a + HCFC22 (15 mass % HCFC22) T K 297.87 297.89 297.87 298.14 298.11 308.29 308.25 307.70 307.77 307.16 307.19 314.82 314.94 314.97 315.18 315.16 315.12 315.14 327.20 327.18 327.25 327.28 327.47 327.50 327.34 327.40 337.96 337.98 338.01 338.09 338.14 338.22 338.92 338.72 338.71

P

F

MPa kg‚m-3 0.324 0.324 0.324 0.099 0.099 0.583 0.583 0.348 0.348 0.098 0.098 0.822 0.597 0.597 0.347 0.347 0.097 0.097 0.923 0.923 0.597 0.597 0.347 0.347 0.097 0.097 1.148 1.148 0.848 0.848 0.598 0.598 0.349 0.099 0.099

9.517 9.517 9.517 2.771 2.771 17.340 17.340 9.903 9.903 2.656 2.656 25.004 17.325 17.325 9.614 9.614 2.588 2.588 27.004 27.004 16.464 16.464 9.189 9.189 2.479 2.479 33.294 33.294 23.333 23.333 15.824 15.824 8.873 2.430 2.430

η

T

µPa‚S

K

10.583 10.535 10.568 10.429 10.338 11.140 11.059 10.801 10.880 10.774 10.646 11.3287 11.278 11.233 11.177 11.107 11.078 11.099 11.891 11.803 11.666 11.749 11.663 11.633 11.483 11.569 12.427 12.491 12.322 12.334 12.154 12.188 12.089 11.891 12.049

345.96 345.91 344.80 344.78 344.84 344.88 345.14 345.98 346.02 345.65 345.62 356.54 356.55 356.56 356.70 356.71 357.83 357.80 357.82 355.97 356.03 358.38 358.36 358.78 358.83 363.66 364.43 365.34 365.30 365.54 365.66 365.62 366.86 366.05 365.99

P

F

η

MPa kg‚m-3 µPa‚S 1.274 1.274 1.099 1.099 0.849 0.849 0.599 0.348 0.348 0.098 0.098 1.648 1.648 1.648 1.349 1.348 1.098 1.098 0.848 0.598 0.598 0.348 0.348 0.098 0.098 1.698 1.348 1.098 1.098 0.848 0.598 0.598 0.347 0.097 0.097

36.293 36.293 30.567 30.567 22.694 22.694 15.428 8.649 8.649 2.364 2.364 47.490 47.490 47.490 36.941 36.941 28.852 28.852 21.551 14.816 14.816 8.307 8.307 2.271 2.271 47.505 35.762 27.991 27.991 20.955 14.345 14.345 8.072 2.203 2.203

12.966 12.975 12.769 12.776 12.514 12.580 12.362 12.279 12.216 12.198 12.133 13.562 13.546 13.516 13.268 13.167 13.107 13.139 12.851 12.689 12.746 12.494 12.559 12.377 12.304 13.798 13.328 13.287 13.264 12.991 12.873 12.882 12.763 12.499 12.553

In this equipment, the Ti-Ni alloy torsion wire and oscillating disk are key elements. The reflected laser is received by two fixed photodetectors and is converted to digital signals by a set of instruments. From the signals, the period and logarithm decrement (that is attenuation rate) can be obtained. The viscosities can be derived from the period and attenuation rate. The measurement theory is illustrated in several papers.1,5-7 The relative measurement method is used in this work; the imaginary part of the governing equation is

used to determine the viscosity on condition that the density of the fluid had been known.8 Results and Discussion Before measurements, the instrumental constants, the period, and the logarithm decrement in a vacuum state were measured. The corrections of working equations were derived by measuring the gaseous viscosity of nitrogen (purity 99.999%) and comparing with the reference data.9 Then the viscosities of HCFC22 were measured at the temperature 296-373 K (ITS-90) and at pressures up to 2.2 MPa. The results are compared with the reference data of Vargaftik9 and Hongo et al.10 to check the reliability and uncertainty of the equipment; the deviations are 3%. The detailed comparison is shown in Table 1. The gaseous viscosities of the mixtures are measured. Those of HFC152a + HCFC22 are measured at the temperature 297-370 K and at pressures up to 1.9 MPa; those of HFC218 + HC290 + HCFC22 are measured at the temperature 303-363 K and at pressures up to 2.14 MPa; and those of HFC134a + HFC218 + HC600a are measured at the temperature 305-363 K and at pressures up to 1.82 MPa. All the experimental results are listed in Tables 2-5, where the densities are calculated with the P-R equation. On the basis of the experimental results, the equations of gaseous viscosity of the mixtures are correlated in the

Journal of Chemical and Engineering Data, Vol. 47, No. 3, 2002 385 Table 4. Gaseous Viscosity of HFC218 + HC290 + HCFC22 T K 303.88 303.84 303.74 303.41 303.40 303.38 302.85 302.78 306.84 302.31 302.33 302.35 311.70 311.69 311.71 311.44 311.56 311.67 311.72 313.20 313.25 314.24 314.13 314.03 313.53 313.56 314.53 314.41 323.94 323.90 323.65 323.64 323.45 323.46 323.11 323.77 323.82 323.22 323.18 322.88 322.91 333.86 333.87 333.84 333.49 333.51 333.46 333.45 335.64 335.51 335.34 334.97 334.35 334.36 334.33 334.30 334.07 334.10 334.09 334.06 335.48 342.34 342.40 342.46

F

P

MPa kg‚m-3 1.131 1.131 1.126 0.821 0.821 0.821 0.631 0.631 0.321 0.096 0.096 0.096 1.346 1.346 1.346 1.071 1.071 1.071 1.071 0.821 0.821 0.571 0.571 0.571 0.321 0.321 0.096 0.096 1.571 1.571 1.321 1.321 1.071 1.071 0.821 0.571 0.571 0.321 0.321 0.096 0.096 1.696 1.691 1.691 1.321 1.321 1.321 1.321 1.071 1.071 1.071 0.821 0.571 0.571 0.571 0.571 0.321 0.321 0.321 0.321 0.096 1.921 1.921 1.921

57.118 57.118 56.844 38.769 38.769 38.769 28.765 28.765 13.646 4.011 4.011 4.011 68.203 68.203 68.203 51.082 51.082 51.082 51.082 36.966 36.966 24.516 24.516 24.516 13.301 13.301 3.839 3.839 77.439 77.439 61.950 61.950 48.033 48.033 35.370 23.634 23.634 12.862 12.862 3.746 3.746 80.555 80.233 80.233 58.794 58.794 58.794 58.794 45.371 45.371 45.371 33.667 22.699 22.699 22.699 22.699 12.382 12.382 12.382 12.382 3.585 90.235 90.235 90.235

η

T

µPa‚S

K

13.3619 13.3274 13.3165 13.0751 12.9542 12.9827 12.8568 12.8585 12.6825 12.3721 12.3787 12.3053 13.7903 13.7865 13.7585 13.5838 13.6331 13.6170 13.5950 13.3621 13.3971 13.2952 13.2372 13.3254 13.0950 13.0071 12.9438 12.9283 14.4747 14.4434 14.2074 14.3333 14.0530 13.9989 13.7392 13.6548 13.6278 13.4961 13.3709 13.3003 13.3215 15.0258 15.0147 15.0339 14.7895 14.7767 14.7450 14.7659 14.2681 14.3051 14.2523 14.2340 14.0381 14.0501 14.0649 14.0874 13.8305 13.7806 13.7905 13.7733 13.6455 15.6044 15.5929 15.6241

342.56 344.74 344.50 344.24 344.16 343.96 343.55 343.51 342.58 342.53 342.49 341.37 340.71 344.84 354.99 354.84 354.73 354.58 354.06 354.00 353.94 353.86 352.78 352.82 352.73 352.54 352.50 352.53 352.44 352.46 352.53 352.99 352.82 352.66 352.60 352.42 352.50 352.54 353.58 353.60 362.90 363.18 362.99 363.40 363.18 363.17 363.19 363.31 363.33 363.32 363.19 363.24 363.21 363.16 362.76 362.80 362.82 362.77 362.61 362.69 362.74 362.76 362.76 362.83

F

P

MPa kg‚m-3 1.921 1.321 1.321 1.071 1.071 1.071 0.821 0.821 0.571 0.571 0.571 0.321 0.321 0.096 2.141 2.131 2.131 2.126 1.846 1.846 1.846 1.846 1.596 1.596 1.596 1.346 1.346 1.346 1.096 1.096 1.096 0.846 0.846 0.846 0.846 0.596 0.596 0.596 0.096 0.096 2.126 1.846 1.846 1.596 1.596 1.596 1.346 1.346 1.346 1.346 1.096 1.096 1.096 1.096 0.846 0.596 0.596 0.596 0.346 0.346 0.346 0.346 0.096 0.096

90.235 55.628 55.628 43.713 43.713 43.713 32.550 32.550 22.053 22.053 22.053 12.060 12.060 3.497 96.464 95.948 95.948 95.801 79.986 79.986 79.986 79.986 67.218 67.218 67.218 54.910 54.910 54.910 43.374 43.374 43.374 32.471 32.471 32.471 32.471 22.307 22.307 22.307 3.400 3.400 91.301 76.346 76.346 63.874 63.874 63.874 52.483 52.483 52.483 52.483 41.598 41.598 41.598 41.598 31.347 21.538 21.538 21.538 12.219 12.219 12.219 12.219 3.311 3.311

Table 5. Gaseous Viscosity of HFC134a + HFC218 + HC600a η

T

µPa‚S

K

15.6005 15.1175 15.1022 14.6685 14.6440 14.6325 14.5327 14.4297 14.3244 14.3663 14.3472 14.2930 14.2386 14.1977 16.3447 16.3435 16.3034 16.3257 16.2164 16.2123 16.2086 16.2318 15.9835 15.9857 15.9500 15.5993 15.5867 15.5875 15.1884 15.1781 15.1921 15.0391 14.8923 14.9572 14.9798 14.7390 14.7303 14.7483 14.4990 14.4303 16.8339 16.4314 16.4698 16.0311 16.0047 16.0474 15.6497 15.6688 15.6519 15.6681 15.4680 15.4649 15.4319 15.4601 15.0832 15.0436 15.0269 15.0343 14.8192 14.8616 14.8408 14.8369 14.5869 14.6040

305.59 305.45 305.40 304.87 304.84 304.81 303.83 303.79 303.75 315.33 314.63 314.58 314.26 314.20 313.98 314.03 314.04 325.07 324.98 324.85 324.44 324.36 324.01 324.09 324.07 323.82 323.90 323.66 323.71 334.97 334.66 335.02 334.96 334.93 334.59 334.56 334.54 335.17 334.73 334.66 334.60 333.85 333.86 333.83 343.70 343.63 343.57 343.54

following form. The parameters are listed in Table 6.

η ) A0 + A1F + A2F2 + A3F3

(1)

A0 ) A00 + A01T + A02T2 + A03T3

(1a)

A1 ) A10 + A11T + A12T2 + A13T3

(1b)

2

3

A2 ) A20 + A21T + A22T + A23T

(1c)

A3 ) A30 + A31T

(1d)

P

F

MPa kg‚m-3 0.691 0.686 0.686 0.346 0.346 0.346 0.096 0.096 0.096 0.926 0.596 0.596 0.346 0.346 0.096 0.096 0.096 1.092 1.087 1.087 0.847 0.847 0.597 0.597 0.597 0.347 0.347 0.097 0.096 1.312 1.312 1.097 1.097 1.097 0.827 0.827 0.827 0.597 0.347 0.347 0.347 0.097 0.097 0.097 1.562 1.562 1.562 1.562

32.077 31.828 31.828 14.924 14.924 14.924 3.958 3.958 3.958 43.296 25.977 25.977 14.391 14.391 3.832 3.832 3.832 50.328 50.064 50.064 37.137 37.137 24.982 24.982 24.982 13.911 13.911 3.732 3.732 60.061 60.061 47.985 47.985 47.985 34.473 34.473 34.473 23.890 13.400 13.400 13.400 3.617 3.617 3.617 71.689 71.689 71.689 71.689

η

T

µPa‚S

K

12.6396 12.5374 12.4290 12.3445 12.3373 12.3203 12.0164 12.0142 12.0077 12.9823 12.7175 12.6136 12.5407 12.5564 12.4020 12.4205 12.4267 13.5976 13.5820 13.4940 13.3587 13.2688 13.1824 13.1598 13.1510 12.9586 12.9733 12.9156 12.9150 14.2834 14.2591 14.0402 13.9738 14.0163 13.7033 13.6847 13.6888 13.6520 13.4116 13.4282 13.4043 13.3362 13.3129 13.3568 14.8240 14.8042 14.8479 14.8157

343.41 343.31 343.27 343.02 343.04 343.08 343.13 344.66 344.54 342.85 342.76 342.77 342.72 342.65 351.88 351.98 352.02 352.38 352.48 352.65 352.69 352.80 353.80 353.42 353.77 353.63 353.35 353.13 355.56 355.44 355.29 362.94 362.83 362.82 362.70 362.73 363.57 363.30 362.48 362.57 364.28 363.51 363.28 363.29 363.10 363.09 363.14 363.42

P

F

MPa kg‚m-3 1.347 1.347 1.347 1.097 1.097 0.847 0.847 0.597 0.597 0.347 0.347 0.347 0.097 0.097 1.642 1.642 1.642 1.347 1.347 1.097 1.097 1.097 0.847 0.847 0.597 0.597 0.347 0.347 0.097 0.097 0.097 1.822 1.822 1.822 1.597 1.597 1.347 1.347 1.097 1.097 0.847 0.847 0.347 0.347 0.347 0.347 0.097 0.097

59.239 59.239 59.239 46.162 46.162 34.259 34.259 23.058 23.058 13.031 13.031 13.031 3.527 3.527 72.878 72.878 72.878 56.594 56.594 44.207 44.207 44.207 32.733 32.733 22.300 22.300 12.572 12.572 3.388 3.388 3.388 78.306 78.306 78.306 66.264 66.264 53.592 53.592 42.379 42.379 31.460 31.460 12.189 12.189 12.189 12.189 3.311 3.311

η µPa‚S 14.6618 14.6046 14.6522 14.2739 14.3066 14.1260 14.1724 14.0581 14.0359 13.7737 13.7469 13.7341 13.6998 13.6799 15.3348 15.3427 15.3484 15.0801 15.1112 14.7200 14.8322 14.7190 14.4568 14.4725 14.3419 14.3800 14.0786 14.0610 14.0204 14.0116 14.0232 15.8518 15.7824 15.9038 15.5351 15.4808 15.3477 15.2977 14.9486 14.8953 14.8698 14.7974 14.4263 14.4166 14.3996 14.3994 14.2569 14.3377

The correlation deviations are within 2%. The curves of viscosities versus pressure and temperature are shown in Figures 2-5, respectively. Nagaoka et al.11 measured the gaseous viscosity of HFC152a + HCFC22 at 298-323 K and 0.1 MPa with the rolling-ball viscometer. The data calculated with eq 1 at 0.1 MPa are compared with the experimental results of Nagaoka et al.;11 the detailed results are shown in Table 7. From the table it can be seen that the results are in good agreement. Conclusion An oscillating-disk viscometer was built and was used to measure the gaseous viscosity. The instrumental constants of the equipment and the correction of the working equations were derived. The measurement deviations were 3%, which were derived by measuring the gaseous viscosity of HCFC22. The gaseous viscosities of HFC152a + HCFC22 were measured from 297 to 370 K and up to 1.9 MPa. The

386

Journal of Chemical and Engineering Data, Vol. 47, No. 3, 2002

Table 6. Parameters of Eq 1 for 85 mass % HFC152a + 15 mass % HCFC22, 75 mass % HFC152a + 25 mass % HCFC22, HFC218 + HC290 + HCFC22, and HFC134a + HFC218 + HC600a 85 mass % HFC152a + 15 mass % HCFC22

75 mass % HFC152a + 25 mass % HCFC22

HFC218 + HC290 + HCFC22

HFC134a + HFC218 + HC600a

A00 A01

5.350 705 96 -0.119 231 056

-0.105 411 065 × 103 0.966 952 790

-0.524 020 723 × 102 +0.445 129 074

+0.314 993 599 × 102 -0.321 482 297

A02 A03 A10

0.793 884 783 × 10-3 -0.113 528 447 × 10-5 0.210 027 431 × 102

-0.273 410 408 × 10-2 0.266 802 679 × 10-5 0.144 456 878 × 102

-0.100 187 128 × 10-2 +0.785 322 104 × 10-6 +8.119 519 94

+0.131 796 069 × 10-2 -0.155 239 813 × 10-5 +0.188 265 578 × 102

A11 A12 A13 A20 A21 A22 A23 A30 A31

-0.180 610 339 0.513 599 277 × 10-3 -0.482 485 658 × 10-6 -0.397 768 873 0.337 490 912 × 10-2 -0.932 922 458 × 10-5 0.839 118 128 × 10-8 -0.407 827 088 × 10-3 0.114 611 419 × 10-5

-0.120 702 416 0.334 417 792 × 10-3 -0.306 894 655 × 10-6 -0.873 395 104 0.736 365 280 × 10-2 -0.205 516 523 × 10-4 0.189 902 200 × 10-7 -0.234 663 744 × 10-3 0.656 299 579 × 10-6

-0.071 231 915 5 +0.208 273 377 × 10-3 -0.202 909 530 × 10-6 -0.043 536 769 7 +0.376 660 288 × 10-3 -0.108 403 062 × 10-5 +0.104 922 237 × 10-8 -0.179 656 896 × 10-5 -0.420 166 896 × 10-8

-0.164 268 590 +0.476 418 260 × 10-3 -0.459 127 077 × 10-6 -0.275 117 343 +0.238 859 372 × 10-2 -0.687 505 838 × 10-5 +0.656 780 159 × 10-8 -0.339 418 992 × 10-4 +0.908 065 276 × 10-7

Figure 2. Viscosity of HFC152a + HCFC22 (15 mass % HCFC22): O, 365 K; ], 355 K; 0, 345 K; 4, 335 K; 3, 325 K; b, 315 K; [, 305 K; 2, 295 K.

Figure 4. Viscosity of HFC218 + HC290 + HCFC22: O, 360 K; ], 350 K; 0, 340 K; 4, 330 K; 3, 320 K; b, 310 K; [, 300 K.

Figure 3. Viscosity of HFC152a + HCFC22 (25 mass % HCFC22): O, 370 K; ], 360 K; 0, 350 K; 4, 340 K; 3, 330 K; b, 320 K; [, 310 K; 2, 300 K.

Figure 5. Viscosity of HFC134a + HFC218 + HC600a: O, 360 K; ], 350 K; 0, 340 K; 4, 330 K; 3, 320 K; b, 310 K; [, 300 K.

Table 7. Comparison for HFC152a + HCFC22 between This Work and Ref 11

Literature Cited

15 mass % HCFC22

25 mass % HCFC22

T/K

η(this work)

η(ref 11)

η(this work)

η(ref 11)

298.15 323.15

10.4575 11.4981

10.0890 11.1320

10.7932 11.7045

10.4255 11.3152

gaseous viscosities of HFC218 + HC290 + HCFC22 were measured at 303-363 K and up to 2.14 MPa. The gaseous viscosities of HFC134a + HFC218 + R600a were measured at 305-363 K and up to 1.82 MPa.

(1) Krall, A. H.; Sengers, J. V.; Kestin, J. Viscosity of Liquid Toluene at Temperatures from 25 to 150 °C and at Pressure up to 30 MPa. J. Chem. Eng. Data 1992, 37, 349-353. (2) Kestin, J.; Khalifa, H. E. Measurement of Logarithmic Decrements through the Measurement of Time. Appl. Sci. Res. 1972, 32, 483-489. (3) Takahashi, M.; Yokoyama, C.; Takahashi, S. Gas Viscosities of Azeotropic Mixtures of the Halogenated Hydrocarbon R500, R502, and R503. J. Chem. Eng. Data 1988, 33, 267-274. (4) Torklep, K.; Oye, H. A. An Absolute Oscillating Cylinder (or Cup) Viscometer for High Temperatures. J. Phys. E: Instrum. 1979, 12, 875-885.

Journal of Chemical and Engineering Data, Vol. 47, No. 3, 2002 387 (5) Wang, W.; Li, G.; He, Z. R.; Liu, Z. G. Experimental Study for Gaseous Viscosity with Oscillating-Disk Viscometer. J. Xi′an Jiaotong Univ. 1997, 31, 10-14. (6) Krall, A. H.; Nieuwoudt, J. C.; Sengers, J. V.; Kestin, J. Feasibility of Simultaneous Viscosity and Density Measurements of A Fluid from the Motion of an Oscillating Disk. Fluid Phase Equilib. 1987, 36, 207-218. (7) Nieuwoudt, J. C.; Kestin, J.; Sengers, J. V. On the Theory of Oscillating-Body Viscometer. Physica 1987, 142A, 53-74. (8) Liu, Z. G.; Wang, W.; He, Z. R.; Zhang, Z.; Li, G. Analysis on the Deviation of Oscillating Disk Viscometer in Relative Measurement. 20th International Congress of Refrigeration; IIR/IIF: Sydney, 1999.

(9) Vargaftik, N. B. Tables on the Thermophysical of Liquids and Gases: in Normal and Dissociated States; Hemisphere Publishing Corporation: Washington-London, 1975. (10) Hongo, M.; Takahashi, S. Viscosity of Chlorodifluoromethane (R22) at High Pressure. J. Chem. Eng. Jpn. 1982, 15, 155-158. (11) Nagaoka, K.; Yamashita, Y.; Tanaka, Y.; Kubota, H.; Makita, T. Viscosity of Bonary Gaseous Mixture of Fluorocarbons. J. Chem. Eng. Jpn. 1986, 19, 263-267. Received for review July 16, 2001. Accepted November 25, 2001.

JE015502M