Gate-Tuned Insulator–Metal Transition in Electrolyte-Gated

Jun 10, 2019 - PDF (2 MB) ... Download Hi-Res ImageDownload to MS-PowerPointCite This:Nano .... (7,8,43) It is known, in fact, that, in the presence o...
0 downloads 0 Views 2MB Size
Letter Cite This: Nano Lett. 2019, 19, 4738−4744

pubs.acs.org/NanoLett

Gate-Tuned Insulator−Metal Transition in Electrolyte-Gated Transistors Based on Tellurene Xinglong Ren,† Yan Wang,‡ Zuoti Xie,† Feng Xue,† Chris Leighton,† and C. Daniel Frisbie*,† †

Department of Chemical Engineering and Materials Science and ‡Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States

Downloaded via BUFFALO STATE on July 23, 2019 at 02:36:55 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

S Supporting Information *

ABSTRACT: Tellurene is a recently discovered 2D material with high hole mobility and air stability, rendering it a good candidate for future applications in electronics, optoelectronics, and energy devices. However, the physical properties of tellurene remain poorly understood. In this paper, we report on the fabrication and characterization of high-performance electrolyte-gated transistors (EGTs) based on solution-grown tellurene flakes 1 × 1013 cm−2, as confirmed by the temperature dependence of resistance and magnetoresistance measurements. Wide-range tuning of the electronic ground state of tellurene is thus achievable in EGTs, opening up new opportunities to realize electrical control of its physical properties. KEYWORDS: Insulator−metal transition, electrolyte gating, 2D tellurene, charge transport

E

stability in air;29,31,32 more recently, the quantum Hall effect has even been observed in tellurene at low temperatures.33 In addition to FET applications, tellurene can also be used to fabricate short-wave infrared photodetectors31 and nonlinear photonic devices.34 Moreover, density functional theory calculations suggest that tellurene has intriguing structural, ferroelectric, thermoelectric, and topological properties.35−38 Collectively, these findings highlight the potential of tellurene as a good platform for fundamental studies, potentially paving the way for future applications of tellurene-based devices. Here, we report the electrical characterization of EGTs based on tellurene and the observation of a gate-tuned insulator−metal transition. Our results show that solutiongrown tellurene flakes can be fabricated into high-performance p-type EGTs with charge densities >1013 cm−2, mobilities >400 cm2 V−1 s−1, and operating voltages 1013 cm−2) at targeted surfaces, has been widely applied in field-effect transport experiments based on a variety of materials.1−4 Due to the existence of strong electric fields and thus high charge densities, electrical control of materials properties can be realized both electrostatically and electrochemically in the electrolyte-gated transistor (EGT) geometry, simply by varying the gate voltage (VG).3,4 The effectiveness and ease of electrolyte gating make it a powerful tool to tune transitions among different electronic phases. Since the first observation of a gate-induced insulator−metal transition in epitaxial ZnO films in 2007,5 for example, the electrolyte gating approach has been applied to trigger electronic phase transitions in a broad range of materials, including organic semiconductors,6−8 transition metal and complex oxides,9−14 1D nanowires and nanotubes,15−18 and 2D van der Waals layered materials.19−25 Upon the discovery of graphene in 2004,26 2D materials (e.g., transition metal dichalcogenides,27 black phosphorus,28 etc.) have attracted significant attention due to their attractive electronic and optical properties. Recently, a new elemental 2D material, tellurene (i.e., nm thick tellurium (Te) flakes), was discovered, showing promising properties.29 Te has a trigonal crystal structure, in which individual atoms are covalently bonded into 1D helical chains, with van der Waals interactions bonding the neighboring chains together.30 Under appropriate conditions, 2D flakes of Te with thicknesses −0.2 V strongly localized insulating behavior occurs. Around −0.5 V this gives way to weak localization, the resistance upturn at −0.5 V occurring

ORCID

Xinglong Ren: 0000-0001-9824-5767 Yan Wang: 0000-0003-1264-3794 Zuoti Xie: 0000-0002-1828-0122 Chris Leighton: 0000-0003-2492-0816 C. Daniel Frisbie: 0000-0002-4735-2228 4742

DOI: 10.1021/acs.nanolett.9b01827 Nano Lett. 2019, 19, 4738−4744

Letter

Nano Letters Notes

(16) Qin, F.; Ideue, T.; Shi, W.; Zhang, X.-X.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; et al. DiameterDependent Superconductivity in Individual WS2 Nanotubes. Nano Lett. 2018, 18 (11), 6789−6794. (17) Lieb, J.; Demontis, V.; Prete, D.; Ercolani, D.; Zannier, V.; Sorba, L.; Ono, S.; Beltram, F.; Sacépé, B.; Rossella, F. Ionic-Liquid Gating of InAs Nanowire-Based Field-Effect Transistors. Adv. Funct. Mater. 2019, 29 (3), 1804378. (18) Ji, H.; Wei, J.; Natelson, D. Modulation of the Electrical Properties of VO2 Nanobeams Using an Ionic Liquid as a Gating Medium. Nano Lett. 2012, 12 (6), 2988−2992. (19) Ye, J. T.; Inoue, S.; Kobayashi, K.; Kasahara, Y.; Yuan, H. T.; Shimotani, H.; Iwasa, Y. Liquid-Gated Interface Superconductivity on an Atomically Flat Film. Nat. Mater. 2010, 9 (2), 125−128. (20) Ye, J. T.; Zhang, Y. J.; Akashi, R.; Bahramy, M. S.; Arita, R.; Iwasa, Y. Superconducting Dome in a Gate-Tuned Band Insulator. Science 2012, 338 (6111), 1193−1196. (21) Yu, Y.; Yang, F.; Lu, X. F.; Yan, Y. J.; Cho, Y.-H.; Ma, L.; Niu, X.; Kim, S.; Son, Y.-W.; Feng, D.; et al. Gate-Tunable Phase Transitions in Thin Flakes of 1T-TaS2. Nat. Nanotechnol. 2015, 10 (3), 270−276. (22) Saito, Y.; Iwasa, Y. Ambipolar Insulator-to-Metal Transition in Black Phosphorus by Ionic-Liquid Gating. ACS Nano 2015, 9 (3), 3192−3198. (23) Jo, S.; Costanzo, D.; Berger, H.; Morpurgo, A. F. Electrostatically Induced Superconductivity at the Surface of WS2. Nano Lett. 2015, 15 (2), 1197−1202. (24) Costanzo, D.; Jo, S.; Berger, H.; Morpurgo, A. F. Gate-Induced Superconductivity in Atomically Thin MoS2 Crystals. Nat. Nanotechnol. 2016, 11 (4), 339−344. (25) Lu, J.; Zheliuk, O.; Chen, Q.; Leermakers, I.; Hussey, N. E.; Zeitler, U.; Ye, J. Full Superconducting Dome of Strong Ising Protection in Gated Monolayer WS2. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (14), 3551−3556. (26) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666−669. (27) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7 (11), 699−712. (28) Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y. Black Phosphorus Field-Effect Transistors. Nat. Nanotechnol. 2014, 9 (5), 372−377. (29) Wang, Y.; Qiu, G.; Wang, R.; Huang, S.; Wang, Q.; Liu, Y.; Du, Y.; Goddard, W. A.; Kim, M. J.; Xu, X.; et al. Field-Effect Transistors Made from Solution-Grown Two-Dimensional Tellurene. Nat. Electron. 2018, 1 (4), 228−236. (30) Wu, W.; Qiu, G.; Wang, Y.; Wang, R.; Ye, P. Tellurene: Its Physical Properties, Scalable Nanomanufacturing, and Device Applications. Chem. Soc. Rev. 2018, 47 (19), 7203−7212. (31) Amani, M.; Tan, C.; Zhang, G.; Zhao, C.; Bullock, J.; Song, X.; Kim, H.; Shrestha, V. R.; Gao, Y.; Crozier, K. B.; et al. SolutionSynthesized High-Mobility Tellurium Nanoflakes for Short-Wave Infrared Photodetectors. ACS Nano 2018, 12 (7), 7253−7263. (32) Zhou, G.; Addou, R.; Wang, Q.; Honari, S.; Cormier, C. R.; Cheng, L.; Yue, R.; Smyth, C. M.; Laturia, A.; Kim, J.; et al. HighMobility Helical Tellurium Field-Effect Transistors Enabled by Transfer-Free, Low-Temperature Direct Growth. Adv. Mater. 2018, 30 (36), 1803109. (33) Qiu, G.; Wang, Y.; Nie, Y.; Zheng, Y.; Cho, K.; Wu, W.; Ye, P. D. Quantum Transport and Band Structure Evolution under High Magnetic Field in Few-Layer Tellurene. Nano Lett. 2018, 18 (9), 5760−5767. (34) Wu, L.; Huang, W.; Wang, Y.; Zhao, J.; Ma, D.; Xiang, Y.; Li, J.; Ponraj, J. S.; Dhanabalan, S. C.; Zhang, H. 2D Tellurium Based HighPerformance All-Optical Nonlinear Photonic Devices. Adv. Funct. Mater. 2019, 29 (4), 1806346.

The authors declare no competing financial interest.



ACKNOWLEDGMENTS This work was primarily supported by the MRSEC program of the National Science Foundation at the University of Minnesota under Award DMR-1420013. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program (DMR-1420013), and in the Minnesota Nano Center, which receives partial support from NSF through the NINN program (NNCI-1542202). X.R. thanks Rui Ma and Jiayi He for helpful discussions and experimental assistance.



REFERENCES

(1) Xie, W.; Frisbie, C. D. Electrolyte Gated Single-Crystal Organic Transistors to Examine Transport in the High Carrier Density Regime. MRS Bull. 2013, 38 (01), 43−50. (2) Goldman, A. M. Electrostatic Gating of Ultrathin Films. Annu. Rev. Mater. Res. 2014, 44 (1), 45−63. (3) Bisri, S. Z.; Shimizu, S.; Nakano, M.; Iwasa, Y. Endeavor of Iontronics: From Fundamentals to Applications of Ion-Controlled Electronics. Adv. Mater. 2017, 29 (25), 1607054. (4) Leighton, C. Electrolyte-Based Ionic Control of Functional Oxides. Nat. Mater. 2019, 18 (1), 13−18. (5) Shimotani, H.; Asanuma, H.; Tsukazaki, A.; Ohtomo, A.; Kawasaki, M.; Iwasa, Y. Insulator-to-Metal Transition in ZnO by Electric Double Layer Gating. Appl. Phys. Lett. 2007, 91 (8), 082106. (6) Wang, S.; Ha, M.; Manno, M.; Frisbie, C. D.; Leighton, C. Hopping Transport and the Hall Effect Near the Insulator−metal Transition in Electrochemically Gated Poly(3-Hexylthiophene) Transistors. Nat. Commun. 2012, 3, 1210. (7) Xie, W.; Wang, S.; Zhang, X.; Leighton, C.; Frisbie, C. D. High Conductance 2D Transport around the Hall Mobility Peak in Electrolyte-Gated Rubrene Crystals. Phys. Rev. Lett. 2014, 113 (24), 246602. (8) Ren, X.; Frisbie, C. D.; Leighton, C. Anomalous Cooling-RateDependent Charge Transport in Electrolyte-Gated Rubrene Crystals. J. Phys. Chem. Lett. 2018, 9 (17), 4828−4833. (9) Ueno, K.; Nakamura, S.; Shimotani, H.; Ohtomo, A.; Kimura, N.; Nojima, T.; Aoki, H.; Iwasa, Y.; Kawasaki, M. Electric-FieldInduced Superconductivity in an Insulator. Nat. Mater. 2008, 7 (11), 855−858. (10) Bollinger, A. T.; Dubuis, G.; Yoon, J.; Pavuna, D.; Misewich, J.; Božović, I. Superconductor−Insulator Transition in La2−xSrxCuO4 at the Pair Quantum Resistance. Nature 2011, 472 (7344), 458−460. (11) Leng, X.; Garcia-Barriocanal, J.; Bose, S.; Lee, Y.; Goldman, A. M. Electrostatic Control of the Evolution from a Superconducting Phase to an Insulating Phase in Ultrathin YBa2Cu3O7‑x Films. Phys. Rev. Lett. 2011, 107 (2), 027001. (12) Scherwitzl, R.; Zubko, P.; Lezama, I. G.; Ono, S.; Morpurgo, A. F.; Catalan, G.; Triscone, J.-M. Electric-Field Control of the MetalInsulator Transition in Ultrathin NdNiO3 Films. Adv. Mater. 2010, 22 (48), 5517−5520. (13) Walter, J.; Wang, H.; Luo, B.; Frisbie, C. D.; Leighton, C. Electrostatic versus Electrochemical Doping and Control of Ferromagnetism in Ion-Gel-Gated Ultrathin La0.5Sr0.5CoO3−δ. ACS Nano 2016, 10 (8), 7799−7810. (14) Walter, J.; Charlton, T.; Ambaye, H.; Fitzsimmons, M. R.; Orth, P. P.; Fernandes, R. M.; Leighton, C. Giant Electrostatic Modification of Magnetism via Electrolyte-Gate-Induced Cluster Percolation in La0.5Sr0.5CoO3−δ. Phys. Rev. Mater. 2018, 2 (11), 111406. (15) Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y. Superconductivity in a Chiral Nanotube. Nat. Commun. 2017, 8, 14465. 4743

DOI: 10.1021/acs.nanolett.9b01827 Nano Lett. 2019, 19, 4738−4744

Letter

Nano Letters (35) Wang, C.; Zhou, X.; Qiao, J.; Zhou, L.; Kong, X.; Pan, Y.; Cheng, Z.; Chai, Y.; Ji, W. Charge-Governed Phase Manipulation of Few-Layer Tellurium. Nanoscale 2018, 10 (47), 22263−22269. (36) Lin, C.; Cheng, W.; Chai, G.; Zhang, H. Thermoelectric Properties of Two-Dimensional Selenene and Tellurene from GroupVI Elements. Phys. Chem. Chem. Phys. 2018, 20 (37), 24250−24256. (37) Gao, Z.; Liu, G.; Ren, J. High Thermoelectric Performance in Two-Dimensional Tellurium: An Ab Initio Study. ACS Appl. Mater. Interfaces 2018, 10 (47), 40702−40709. (38) Wang, Y.; Xiao, C.; Chen, M.; Hua, C.; Zou, J.; Wu, C.; Jiang, J.; Yang, S. A.; Lu, Y.; Ji, W. Two-Dimensional Ferroelectricity and Switchable Spin-Textures in Ultra-Thin Elemental Te Multilayers. Mater. Horiz. 2018, 5 (3), 521−528. (39) Du, Y.; Qiu, G.; Wang, Y.; Si, M.; Xu, X.; Wu, W.; Ye, P. D. One-Dimensional van der Waals Material Tellurium: Raman Spectroscopy under Strain and Magneto-Transport. Nano Lett. 2017, 17 (6), 3965−3973. (40) Yuan, H.; Shimotani, H.; Tsukazaki, A.; Ohtomo, A.; Kawasaki, M.; Iwasa, Y. High-Density Carrier Accumulation in ZnO Field-Effect Transistors Gated by Electric Double Layers of Ionic Liquids. Adv. Funct. Mater. 2009, 19 (7), 1046−1053. (41) Ovchinnikov, D.; Gargiulo, F.; Allain, A.; Pasquier, D. J.; Dumcenco, D.; Ho, C.-H.; Yazyev, O. V.; Kis, A. Disorder Engineering and Conductivity Dome in ReS2 with Electrolyte Gating. Nat. Commun. 2016, 7, 12391. (42) Xie, W.; Frisbie, C. D. Organic Electrical Double Layer Transistors Based on Rubrene Single Crystals: Examining Transport at High Surface Charge Densities above 1013 cm−2. J. Phys. Chem. C 2011, 115 (29), 14360−14368. (43) Xia, Y.; Xie, W.; Ruden, P. P.; Frisbie, C. D. Carrier Localization on Surfaces of Organic Semiconductors Gated with Electrolytes. Phys. Rev. Lett. 2010, 105 (3), 036802. (44) Podzorov, V.; Menard, E.; Rogers, J. A.; Gershenson, M. E. Hall Effect in the Accumulation Layers on the Surface of Organic Semiconductors. Phys. Rev. Lett. 2005, 95 (22), 226601. (45) Xie, W.; Zhang, X.; Leighton, C.; Frisbie, C. D. 2D InsulatorMetal Transition in Aerosol-Jet-Printed Electrolyte-Gated Indium Oxide Thin Film Transistors. Adv. Electron. Mater. 2017, 3 (3), 1600369. (46) Nelson, J.; Goldman, A. M. Metallic State of Low-Mobility Silicon at High Carrier Density Induced by an Ionic Liquid. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91 (24), 241304. (47) Paulsen, B. D.; Frisbie, C. D. Dependence of Conductivity on Charge Density and Electrochemical Potential in Polymer Semiconductors Gated with Ionic Liquids. J. Phys. Chem. C 2012, 116 (4), 3132−3141. (48) Zabrodskii, A. G. The Coulomb Gap: The View of an Experimenter. Philos. Mag. B 2001, 81 (9), 1131−1151. (49) Shklovskii, B. I.; Efros, A. L. Electronic Properties of Doped Semiconductors; Springer Science & Business Media, 2013; Vol. 45. (50) Lee, P. A.; Ramakrishnan, T. V. Disordered Electronic Systems. Rev. Mod. Phys. 1985, 57 (2), 287−337. (51) Bergmann, G. Weak Localization in Thin Films. Phys. Rep. 1984, 107 (1), 1−58.

4744

DOI: 10.1021/acs.nanolett.9b01827 Nano Lett. 2019, 19, 4738−4744