Genetic Associations of Sedimentary Zeolites in the Soviet Union

The studies of Coombs and Whetton (2), which compared the specific features of analcime in metamorphic and unaltered sedimentary rocks, are evidence...
0 downloads 0 Views 902KB Size
17 Genetic Associations of Sedimentary Zeolites in the Soviet Union A. G. KOSSOWSKAYA

Downloaded by CORNELL UNIV on October 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch017

Geological Institute, USSR, Academy of Sciences, Pijewsky 7, Moscow U.S.S.R.

Four types of association of zeolites with clay minerals are cla ified: (I) sedimentogenesis, (II) diagenesis, (III) regional epigenesis-metamorphism, (IV) "superimposed" changes within fields of high thermal activity. Zeolites of the true sedimenta formations (II) are examined in detail. The parent material is "disguised" pyroclastic since zeolite formation is impossibl without fresh reactive aluminosilicates (often pyroclastic) Given the presence of such raw material, a facies series can be outlined, showing the confinement of zeolites to various climati environments according to increasing pH of the mineral-forming solutions. Ca-zeolites (heulandite, laumontite) are associate with humid coal-bearing formations; Ca-Na-K zeolites (clinoptilolite) in normal marine rocks; and Na-zeolites (analcime) are confined to red formations of arid climate. ^ p h e w i d e s p r e a d occurrence of zeolites i n sediments of diverse genesis suggests t h a t i n a few years t h e y w i l l become no less i m p o r t a n t as i n d i cators of geological facies t h a n are c l a y m i n e r a l s t o d a y . I n t h i s role b o t h the c r y s t a l l o c h e m i c a l v a r i a t i o n s of t h e same zeolite i n different modes of occurrence a n d t h e paragenetic r e l a t i o n s h i p s w i t h o t h e r zeolites a n d c l a y m i n e r a l s c a n be used. T h e first step i n u s i n g s e d i m e n t a r y zeolites as i n d i cators of geological e n v i r o n m e n t s is t h e i r genetic classification. A possible scheme is g i v e n i n F i g u r e 1. A

D a t a e n a b l i n g c o m p a r i s o n s of t h e c o m p o s i t i o n a l differences of s e d i m e n t a r y zeolites of different o r i g i n are scarce. S u c h c o m p a r i s o n s h a v e been m o s t l y b e t w e e n zeolites f r o m m a g m a t i c r o c k s a n d those f r o m s e d i m e n t a r y r o c k s , i n d e p e n d e n t of t h e genetic t y p e of t h e l a t t e r (1). The studies of C o o m b s a n d W h e t t o n (2), w h i c h c o m p a r e d t h e specific features of a n a l c i m e i n m e t a m o r p h i c a n d u n a l t e r e d s e d i m e n t a r y r o c k s , are evidence of t h e c a p a b i l i t i e s of t h i s a p p r o a c h . C l i n o p t i l o l i t e s b e l o n g i n g t o different g r o u p s — a l k a l i n e basins of t h e U n i t e d States ( l a ) , t r u e s e d i m e n t a r y r o c k s 200 Meier and Uytterhoeven; Molecular Sieves Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

17.

KOSSOWSKAYA

Genetic Associations of Zeolites

201

Downloaded by CORNELL UNIV on October 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch017

of n o r m a l m a r i n e basins of the U . S . S . R . ( l i b ) , a n d volcanogenic r o c k s of the u p p e r zone of epigenetic change i n J a p a n ( I I I ) — s h o w s u b s t a n t i a l differences i n c h e m i c a l c o m p o s i t i o n ( F i g u r e 2). T h e c l i n o p t i l o l i t e of t h e siliceous Cretaceous f o r m a t i o n s of the U . S . S . R . is c h a r a c t e r i z e d b y a higher A l a n d S i content, a s m a l l n u m b e r of t o t a l cations, a n d a prevalence of C a over N a + K . N o significant differences h a v e been established between h e u l a n d i t e a n d l a u m o n t i t e i n s e d i m e n t a r y f o r m a t i o n s i n t h e zones of deep epigenesis ( i n i t i a l m e t a m o r p h i s m ) , o n t h e one h a n d , a n d t h e same m i n e r a l s i n h y d r o t h e r m a l deposits, o n t h e other. A p p a r e n t l y , t h i s w i l l r e q u i r e m o r e f a c t u a l d a t a . N e v e r t h e l e s s , t h e d i s t r i b u t i o n of these zeolites a n d the associations of c l a y m i n e r a l s p e r m i t a d i s t i n c t i o n between t h e zeolite facies of r e g i o n a l e p i g e n e s i s - m e t a m o r p h i s m a n d t h e zeolite m i n e r a l i z a t i o n i n g e o t h e r m a l areas (recent h y d r o t h e r m a l systems). I n r e g i o n a l e p i g e n e s i s - m e t a m o r p h i s m ( I I I ) , zeolite z o n a t i o n is c o n t r o l l e d b y the g r a d u a l rise of t e m p e r a t u r e a n d pressure d u r i n g b u r i a l . Zeolites of t h e h e u l a n d i t e groups are r e p l a c e d b y l a u m o n t i t e a t depths greater t h a n 2000-2500 m . I n shallower regions m o n t m o r i l l o n i t e d i s appears c o m p l e t e l y f r o m t h e c o l u m n , a n d l a u m o n t i t e is u s u a l l y associated w i t h d i o c t a h e d r a l c h l o r i t e a n d i l l i t e (e.g., t h e V e r k h o y a n region). I n t h e case of l o c a l t h e r m a l m e t a m o r p h i s m ( I V ) n o z o n a l i t y is observed i n t h e d i s t r i b u t i o n of zeolites a n d c l a y m i n e r a l s (3, 4). L a u m o n t i t e is f o u n d i n places i n t h e u p p e r h o r i z o n s b u t is r e p l a c e d b y m o r d e n i t e i n l o w e r horizons a n d b y h e u l a n d i t e i n association w i t h m o n t m o r i l l o n i t e . T h e zones of z e o l i t i z a t i o n c o m m o n l y s t a r t a t t h e surface a n d e x t e n d t o depths of s e v e r a l h u n d r e d meters. D i s t r i b u t i o n of zeolites is c o n t r o l l e d o n l y b y r o c k p e r m e a b i l i t y , t e m p e r a t u r e , a n d the c h e m i s t r y of solutions (e.g., K a m c h a t k a , K u r i l Isles). T h e c o m p o s i t i o n of zeolite assemblages c a n also serve as a c r i t e r i o n of geological e n v i r o n m e n t . T h e richest a n d m o s t diverse compositions of zeolites are observed i n tufogenic r o c k s of a l k a l i n e lakes a n d h y d r o t h e r m a l systems. T h e t r u e s e d i m e n t a r y r o c k s h a v e t h e poorest d i v e r s i t y of zeolites. T h e l a t t e r t y p e is t h e least described i n t h e l i t e r a t u r e a n d is d i s cussed a t greater l e n g t h here. I n t r u e s e d i m e n t a r y f o r m a t i o n s of t h e U . S . S . R . (II) three t y p e s of zeolite assemblages are w i d e s p r e a d : a n a l c i m e , c l i n o p t i l o l i t e , a n d h e u l a n d i t e - l a u m o n t i t e . S t u d i e s of these assemblages i n t h e R u s s i a n P l a t f o r m , t h e s u b - U r a l s , a n d eastern S i b e r i a h a v e l e d m e t o conclude t h a t zeolites i n p u r e l y s e d i m e n t a r y deposits c a n n o t be f o r m e d as a result of facies e n v i r o n m e n t alone. A n indispensable c o n d i t i o n t o t h e i r f o r m a t i o n is t h e presence of a p r i m a r y , easily decomposed, p a r e n t a l u m i n o silicate m a t e r i a l . S u c h m a t e r i a l i n regions r e m o t e f r o m v o l c a n i c a c t i v i t y is most l i k e l y of p y r o c l a s t i c o r i g i n . T h e zeolite associations i n these s e d i m e n t a r y series c a n be referred t o as " d i s g u i s e d . " T o detect these associat i o n s one m u s t search for " w i t n e s s e s " w h i c h c a n be o b t a i n e d b y a t h o r o u g h

Meier and Uytterhoeven; Molecular Sieves Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

202

MOLECULAR SIEVES

Stage

Sedimento- genesis

Regions and age

Genetic types

a

Sediments of oceans (RecentEocene)

Bonatti Arhenius

Alcaline lake sediments (recent and old)

β

West regions of USA, East Africa (recent, Q , Tr)

Hau

True sedimentary formations without

a

Oceanic sediments (recent and old) I

Diagenesis

Downloaded by CORNELL UNIV on October 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch017

Diagenesis -initial

traces of volcanic activity

β

I

c

puroclastics)

Superimposed alteration

South sub-Urals

Volcanogenic -sedimentary and sedimentary series changed by regional epigenesis

π

Voleanogenic - sedimentary rocks in local zones of high thermal f i e l d values

IV

uss3) (issa)

(1868}

Shebpard, Gude 0964) Kossowskaya, Sokolova (1972)

(P) Southern region of the Russian Platform (Cr -Pg) England (Cr) 2

epigenesis

Epigenesis initial metamorphism

Authors

Verkhoyan f oredeep (Cr,) East Siberia

BututOVa (19B4) Brown et aUisss) Kossowskaya am) Zaporozhtseva etaL (IBBS)

Coombs e t a l . New Zealand (T), (1959) Japan (Tr) Verkhyan Iijima, Utada * (I9BS-1979 f oredeep (Cr,) Kossowskaya (mi) Zaporozhtseva (»BS) ;

Petrova Naboko

Kamchatka, Kuril Isles

(1970) (1970)

(Recent, Q-Tr ) 2

Figure 1. Abundance a n a l y s i s of t h e paragenetic r e l a t i o n s of d e t r i t a l r o c k - f o r m i n g a n d accessory minerals a n d c o - e x i s t i n g c l a y a n d o t h e r a u t h i g e n i c m i n e r a l s . T h e f o l l o w i n g discussion presents s u c h analyses f o r t h e three t y p e s of r e g i o n a l l y o c c u r ­ r i n g zeolites. Red Analcime Formation of the Sub-Urals {Late Permian) A n a l c i m e i n P e r m i a n t e r r i g e n e r o c k s of t h e s u b - U r a l s was o b s e r v e d l o n g ago (5, 6), b u t i t s d i s t r i b u t i o n a n d f o r m a t i o n c o n d i t i o n s became k n o w n o n l y r e c e n t l y (7). T h e P e r m i a n r e d f o r m a t i o n , a b o u t 600 m t h i c k , c o n ­ sists of a l o w e r c o m p l e x w h i c h i s terrigene-chemogenic a n d is f o r m e d i n saline lakes a n d lagoons, a m i d d l e c o m p l e x of n o r m a l m a r i n e o r i g i n , a n d a n u p p e r c o m p l e x w h i c h is also saline a n d l a g o o n a l i n i t s l o w e r p a r t a n d m o r e d e s a l i n a t e d i n i t s u p p e r p a r t . T h e l o w e r a n d u p p e r complexes consist of i n t e r b e d d e d sandstones, siltstones, marlstones, d o l o m i t e s , a n d , i n some places, g y p s u m s . B y t h e i r d e t r i t a l m i n e r a l c o m p o s i t i o n t h e sandstones are l i t h o c l a s t i c g r e y w a c k e s a l t h o u g h t h e l o w e r c o m p l e x c o n t a i n s m o r e

Meier and Uytterhoeven; Molecular Sieves Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

17.

KOSSOWSKAYA

Genetic Associations of Zeolites

203

[Characteristics of the objects

Deep-water zeolite clays Chemogenic-puroclastic sediments Red-terrigene formations

Downloaded by CORNELL UNIV on October 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch017

of arid climate Marine silico-cretaceous formations Terrigene coal-bearing formations of humid climate Thick clastogenic series w i t h zonal distribution of zeolites and clay minerals Absence of zonalitg in distribution of zeolites and clay minerals. Often mineralisation in viens.

of minerals

Legend:

1.1

basic e x t r u s i v e r o c k fragments, a n d the u p p e r c o m p l e x c o n t a i n s more a c i d i c igneous r o c k f r a g m e n t s . I d e n t i c a l facies e n v i r o n m e n t s of saline l a k e basins i n the lower a n d u p p e r complexes gave rise t o i d e n t i c a l a u t h i g e n i c c l a y m i n e r a l s . T h e s e are corrensite a n d specific F e - i l l i t e of e v a p o r i t e f o r m a t i o n s (£). T h e chemogenic m i n e r a l s i n c l u d e c a l c i t e , d o l o m i t e , a n d gypsum. A n a l c i m e occurs o n l y i n the u p p e r l a g o o n a l c o m p l e x i n beds 150-300 m t h i c k . I t is m o s t w i d e s p r e a d i n t h e cement of sandstones a n d fills t h e pores of m a n y chemogenic r o c k s associated w i t h t h e m . T h e w i d e s p r e a d occurrence of a n a l c i m e i n t h e u p p e r c o m p l e x a n d i t s absence i n the. l o w e r c o m p l e x (despite t h e s i m i l a r c o m p o s i t i o n of d e t r i t a l m a t t e r a n d t h e i d e n t i c a l c o n d i t i o n s of f o r m a t i o n ) w o u l d h a v e been u n a c c o u n t a b l e were i t n o t for one p e c u l i a r feature of t h e h e a v y m i n e r a l f r a c t i o n . T h e h e a v y m i n e r a l c o n t e n t of r o c k s of t h e u p p e r c o m p l e x v a r i e s f r o m f r a c t i o n s of a percent t o 2 or 2 . 5 % . U p ot 5 0 % of t h e h e a v y m i n e r a l f r a c t i o n consists of fresh, monoclinic pyroxene a n d amphibole.

Meier and Uytterhoeven; Molecular Sieves Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

MOLECULAR SIEVES

Downloaded by CORNELL UNIV on October 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch017

204

o-USA Δ-Uapcm Figure 2.

•-USSR

Relative significance of the zeolite formation factors

T h e s t r a t i g r a p h i e b o u n d a r y of a u t h i g e n i c a n a l c i m e i n sandstone ce­ m e n t coincides a l m o s t e x a c t l y w i t h t h e h e a v y m i n e r a l b o u n d a r y . T h i s coincidence has been observed i n a l a r g e area of t h e r e d f o r m a t i o n of t h e s u b - U r a l s foredip (from O r e n b u r g t o P e r m , a distance of a b o u t 1000 k m ) . T h e p y r o x e n e a n d a m p h i b o l e (as w e l l as a n g u l a r q u a r t z grains observed i n m a n y t h i n sections) c a n b e r e g a r d e d as witnesses of t h e f o r m e r presence of p y r o c l a s t i c m a t e r i a l . T h e s e d a t a suggest t h a t t h e v o l c a n i c a c t i v i t y i n t h e s u b - U r a l s began as e a r l y as t h e l a t e P e r m i a n . A n o t h e r t y p e of a n a l c i m e c o n c e n t r a t i o n s i n s e d i m e n t a r y r o c k s a r e a n a l c i m o l i t e s . T h e s e a r e r o c k s c o m p o s e d a l m o s t e n t i r e l y of g r a n u l a r , s p h e r u l i t i c a n a l c i m e . B e d s u p t o 1 t o 2 m t h i c k h a v e been described i n J u r a s s i c f o r m a t i o n s of G e o r g i a (9). S i m i l a r r o c k s h a v e been f o u n d b y B u r y a n o v a (10) a m o n g a n a l c i m e tuffs a n d tuffaceous sandstones of e a r l y C a r b o n i f e r o u s deposits of T u v a . A n a l c i m o l i t e s a r e s t r u c t u r a l l y s i m i l a r t o the r o c k s described b y V a n d e r s t a p p e n a n d V e r b e e k (11) i n C r e t a c e o u s a n d J u r a s s i c r o c k s of t h e C o n g o . T h e s e a u t h o r s assumed a s e d i m e n t a r y

Meier and Uytterhoeven; Molecular Sieves Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

17.

KOSSOWSKAYA

Genetic Associations of Zeolites

205

o r i g i n of t h e a n a l c i m e o n t h e basis of t h e absence of evidence of v o l c a n i c ash. T h e d a t a of H a y (12) a n d G u d e a n d S h e p p a r d (13) suggest, h o w e v e r , t h a t a p r i m a r y v i t r o c l a s t i c r o c k s t r u c t u r e of p a r t i c l e s of a s h m i g h t h a v e d i s a p p e a r e d i f t h e a n a l c i m e d i d n o t f o r m d i r e c t l y f r o m t h e glass b u t f r o m p r e v i o u s l y f o r m e d zeolites, s u c h as p h i l l i p s i t e or c l i n o p t i l o l i t e . F u t u r e studies w i l l p r o b a b l y enable us t o f i n d t h e sources of t h e s i l i c a t e m a t e r i a l t h a t served t o f o r m t h i s t y p e of r o c k . I t is n o t u n l i k e l y t h a t t h i s w i l l p r o v e t o be disguised v o l c a n o g e n i c m a t e r i a l .

Downloaded by CORNELL UNIV on October 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch017

Clinoptilolite in the Siliceous Cretaceous Formation of the Russian Platform T h e m a r i n e f o r m a t i o n s of l a t e Cretaceous-Paleogene age o n t h e s o u t h ern p a r t of t h e R u s s i a n P l a t f o r m c a n be t r a c e d a l o n g s t r i k e for m o r e t h a n 2500 k m a n d across i t for more t h a n 1000 m . T h e y consist m o s t l y of siliceous r o c k s (gaizes), c l a y s , m a r l s , c h a l k , a n d a s m a l l a m o u n t of s a n d stones a n d siltstones of quartzose c o m p o s i t i o n . T h e rocks abound i n g l a u c o n i t e a n d often c o n t a i n p h o s p h o r i t e s ; the c l a y s are of a m o n t m o r i l l o n i t i c c o m p o s i t i o n , a n d a few p u r e bentonites h a v e been f o u n d . Clinop t i l o l i t e occurs i n a l m o s t a l l t y p e s of r o c k s of these f o r m a t i o n s . I t fills pores a n d c h a m b e r s of f o r a m i n i f e r a a n d r a d i o l a r i a a n d v a r i e s f r o m fractions of a percent t o 2 - 3 % of t h e r o c k . I t c o m m o n l y m a k e s u p 7 0 - 8 0 % of t h e 0.01- t o 0 . 0 0 1 - m m f r a c t i o n . A l l of t h e a u t h o r s w h o s t u d i e d these r o c k s r e g a r d e d the genesis of t h e zeolite m i n e r a l s as p u r e l y s e d i m e n t a r y , connected w i t h diagenesis processes (14, 15j 16j 17). I n d e e d , there was no v o l c a n i c a c t i v i t y o n t h e R u s s i a n P l a t f o r m a t t h a t t i m e . T h e a b u n d a n c e of s i l i c a i n t h e b a s i n , w h i c h p r o v i d e d for t h e a c c u m u l a t i o n of siliceous r o c k s , was u s u a l l y e x p l a i n e d b y t h e inflow of d i s s o l v e d c o m p o n e n t s i n t o t h e b a s i n f r o m adjacent w e a t h e r i n g crusts. T h e r e is a c o n t r a d i c t i o n a t t h i s p o i n t w h i c h has passed u n n o t i c e d b y a l l of t h e a u t h o r s . T h e m o n o m i n e r a l l i c q u a r t z c o m p o s i t i o n of t h e s a n d stones, w i t h o n l y s t a b l e accessory m i n e r a l s preserved (zircon, r u t i l e , t o u r m a l i n e ) suggests t h a t the sources of d e t r i t a l m a t e r i a l were either w e a t h e r i n g crusts or quartzose terrigene r o c k s of P a l e o z o i c age. I f t h i s is t r u e , the c l a y m i n e r a l s s h o u l d consist of those m i n e r a l s w h i c h are m o r e resistant t o w e a t h e r i n g , p a r t i c u l a r l y , k a o l i n i t e . T h i s m i n e r a l has n o t been f o u n d i n these deposits. T h e c l a y s a n d c l a y cement of t h e sandstones consist o n l y of m o n t m o r i l l o n i t e a n d , i n places, a l m o s t p u r e g l a u c o n i t e . T h u s , there is a d i s t i n c t genetic disagreement between t h e i n e r t c o m p o s i t i o n of t h e elastics a n d t h e i n t e n s i v e d e v e l o p m e n t of a u t h i g e n i c m i n e r a l s as e v i d e n c e d b y t h e presence of large a m o u n t s of g l a u c o n i t e , m o n t m o r i l l o n i t e , zeolites, a n d phosphates. T h e need t o e x p l a i n t h e source of t h e r e a c t i v e a l u m i n o s i l i c a t e m a t e r i a l t h a t was u s e d t o f o r m a l l these m i n e r a l s has n o t yet attracted attention.

Meier and Uytterhoeven; Molecular Sieves Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

206

MOLECULAR SIEVES

T h e f o l l o w i n g h y p o t h e s i s m a y be a d v a n c e d . T h e l a t e C r e t a c e o u s E o c e n e p e r i o d w as a t i m e of i n t e n s i v e A l p i a n orogenesis. A l p i a n volcanic a c t i v i t y i n the Caucasus a n d the Carpathians might have supplied the vast sea b a s i n t h a t covered t h e entire s o u t h e r n p a r t of t h e R u s s i a n P l a t f o r m w i t h fine p y r o c l a s t i c m a t e r i a l . T h i s served as t h e r a w m a t e r i a l i n t h e f o r m a t i o n of a u t h i g e n i c m i n e r a l s s u c h as c l i n o p t i l o l i t e , c r i s t o b a l i t e , m o n t m o r i l l o n i t e , a n d g l a u c o n i t e . L a s t y e a r , i m p o r t a n t proofs for t h i s h y p o t h esis were o b t a i n e d b y M u r a v y o v (18). D e t a i l e d field a n d m i c r o s c o p i c studies of siliceous r o c k textures (gaize) a n d t h e i r c o m p a r i s o n w i t h b i o genic silicites p r o m p t e d t h i s a u t h o r t o conclude t h a t m a n y siliceous r o c k s of t h e R u s s i a n P l a t f o r m were tuffs. Siliceous r o c k s p a s s i n g d i r e c t l y over i n t o bentonites w i t h a b u n d a n t r e m n a n t s of v o l c a n i c glass f r a g m e n t s i n f r a c t i o n s larger t h a n 0.005 m m h a v e been f o u n d .

Downloaded by CORNELL UNIV on October 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch017

r

Laumontite-Heulandite

Associations in the Coal-Bearing

Series in Eastern Siberia T h e c o a l - b e a r i n g C r e t a c e o u s f o r m a t i o n s of t h e V e r k h o y a n area are 4 0 0 - 5 0 0 m t h i c k i n p l a t f o r m areas a n d over 2500 m t h i c k i n t h e f o r e d i p . I n t h e foredip t h e y e x t e n d f r o m t h e n o r t h t o southeast for m o r e t h a n 1500 k m . L a u m o n t i t e occurs o n l y i n t h e foredip i n s a n d y p a c k e t s , 2 0 - 1 0 0 m t h i c k . L a u m o n t i t e is absent i n p l a t f o r m sections; however, i n some of t h e m , C a - z e o l i t e s , s u c h as h e u l a n d i t e , desmine, a n d p r o b a b l y e p i s t i l b i t e , h a v e been f o u n d . A l t h o u g h l a u m o n t i t e is w i d e s p r e a d t h r o u g h o u t t h e entire Cretaceous f o r m a t i o n s of t h e foredip, zeolites i n p l a t f o r m sections are rare a n d h a v e been f o u n d m o s t l y i n n o r t h e r n regions (19,20). T h e presence of l a u m o n t i t e a n d other C a - z e o l i t e s appears t o be r e l a t e d t o t h e c o m p o s i t i o n of t h e sandstone, a n d these m i n e r a l s are m o s t a b u n d a n t i n arkoses c o n t a i n i n g calcic plagioclase (up to A n ) . L a u m o n t i t e was f o r m e d a t t h e expense of C a - p l a g i o c l a s e d u r i n g b u r i a l t o n o t less t h a n 2000 or 2500 m . T h e l a u m o n t i t e facies of t h e V e r k h o y a n r e g i o n m a y therefore be c o m p a r e d w i t h t h e l a u m o n t i t e facies of N e w Z e a l a n d (21). C l a y m i n e r a l s i n t h e p l a t f o r m sections c o m m o n l y c o n t a i n m o n t m o r i l l o n i t e . I n the foredip r o c k s m o n t m o r i l l o n i t e occurs w i t h a m i x e d l a y e r , 28 A c h l o rite-montmorillonite mineral and illite but never w i t h laumontite. Laum o n t i t e is w i d e s p r e a d i n t h i c k sections of other coal-bearing f o r m a t i o n s w h e r e i n the clastic m a t e r i a l is of g r e y w a c k e a n d m e d i u m - a r k o s e c o m p o s i t i o n . L a u m o n t i t e is also w i d e s p r e a d i n J u r a s s i c r o c k s of t h e I r k u t s k c o a l b a s i n (22), C a r b o n i f e r o u s r o c k s of t h e C h i t a b a s i n (28) a n d T r i a s s i c r o c k s of the n o r t h e r n regions of t h e P e c h o r a c o a l b a s i n (24). 4 0

T h e a b o v e discussion suggests t h a t t r u e s e d i m e n t a r y f o r m a t i o n s are g e n e r a l l y p o o r i n t y p e s of zeolites ( c o n t a i n i n g o n l y one or t w o species) a l t h o u g h the o r i g i n of the zeolites is c l e a r l y c o n t r o l l e d b y t h e facies c o n d i t i o n s . A n i n d i s p e n s i b l e c o n d i t i o n is t h e presence of fresh a l u m i n o s i l i c a t e

Meier and Uytterhoeven; Molecular Sieves Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

17.

KOSSOWSKAYA

Genetic Associations of Zeolites

207

material as disguised pyroclastics. The following series of facies can be suggested, in order of increasing pH of the mineral-forming solutions: Coal-bearing formations of humid climate Normal marine deposits Red formations of arid climate

Ca-zeolites:

laumonite, Ca-heulandite, desmine epistilbite (?) Ca-Na:K zeolites: clinoptilolite Na-zeolites: analcime

Downloaded by CORNELL UNIV on October 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch017

Literature Cited 1. Senderov, Ε. E., Khitarov, Ν. I., "Zeolites, Their Synthesis and Formation Conditions in Nature," Nauka, Moscow, 1970. 2. Coombs, D. S., Whetton, J. T., "Composition of Analcime from Sedimentary and Burial Metamorphic Rocks," Geol. Soc. Amer. Bull. (1967) 78, 269-282. 3. Naboko, S. I., Glavatskikh, S. F., "Hydrothermal Minerals of Goryachi Plyazh (Kunashir I.)," in "Mineralogiya Gidrotermal'nykh Sistem Kamchatki i Kuril'skikh Ostrovov," Nauka, Moscow, 1970. 4. Petrova, V. V., "Zeolites of Paratum Deposit," in "Mineralogiya Gidrotermal'­ nykh Sistem Kamchatki i Kuril'skikh Ostrovov," Nauka, Moscow, 1970. 5. Rengarten, Ν. V., "Authigenic Analcime in P Sandstones of the Kirov re­ gion," Zap. Minerale. (1940) v. 69, (2) 50-53. 6. Boldyreva, A. M., "Authigenic Analcime in Upper Cretaceous Deposits of the Chkalov and Aktyubinsk Regions," Zap. Mineral. (1953) 82, 291-297. 7. Kossowskaya, A.G., Sokolova, T. N. (1972) "Graywackes of the Red Forma­ tion of the Sub-Urals in the Orenburg Region," in "Graywackes," Nauka, Mos­ cow, 1972. 8. Kossowskaya, A. G., Drits, V. Α., "The Variability of Micaceous Minerals in Sedimentary Rocks," Sedimentology (1970) 15 (1/2) 83-101. 9. Dzotsenidze, G. Z., Skhirtladze, Ν. I., Chechelashvili, I. D., "Lithology of Bath­ ian Deposits of Okriba," Monograph of the Geological Institute of the Georgian SSR, No. 7, Tbilisi, 1956. 10. Buryanova, Ε. Z., "Analcime and Zeolite-Containing Rocks of Tuva," Izv. AN SSSR, Ser. Geol. (1960) 6, 74-84. 11. Vanderstappen, R., Verbeek, T., "Analcime et Mineraux Argileux," Belg. Ann., Ser. J (1964) 8 (47). 12. Hay, R. L., "Zeolites and Zeolitic Reaction in Sedimentary Rocks," Geol. Soc. Amer., Spec. Paper, (1966) 85. 13. Gude, A. J., Sheppard, R. Α., "Composition and Genesis of Analcime in the Barstow Formation, San Bernardino County, California," Clays Clay Minerals. (1967) 189 (Proc.15thConf.). 14. Bushinsky, G. I., "Mordenite in Marine Deposits of Jurassic, Cretaceous, and Paleogene," DAN SSSR (1950) 73 (6) 1271-74. 15. Rengarten, Ν. V., "Zeolite from the Mordenite Group in Upper Cretaceous and Paleogenic Marine Deposits of the Eastern Slope of the Urals," DAN SSSR (1945) 48 (8), 619-622. 16. Butuzova, G. Yu., "On Learning Zeolites of the Heulandite Group," Litol. Polezn. Iskop. (1964) (4) 66-79. 17. Sitnikova, Z. S., "Authigenic Zeolites from Cretaceous deposits of southern Trans-Urals," Mineral. Mestorozhd. Polezn. Iskop. Urala (1968) (8) 87-94. 18. Muravyov, V. I., "Origin of the Gaizes," Litol. Polezn. Iskop. (1973) (3). KZ

2

Meier and Uytterhoeven; Molecular Sieves Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

MOLECULAR SIEVES

208

Downloaded by CORNELL UNIV on October 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch017

19. Kossowskaya, A. G., "Mineralogy of the Terrigene Mesozoic Complex of the Vilyui Depression and the Western Verkhoyan Region," p. 63, Trudy GIN AN SSSR, 1962. 20. Zaporozhtseva, A. S., Vishnevskaya, T. N., Glushinsky, P. I., "Zeolites of the Cretaceous Deposits of Yakutia,"Litol.Polezn. Iskop. (1963) (2) 161-177. 21. Kossowskaya, A. G., Shutov, V. D., "Correlation of Regional Epigenesis and Metagenesis Zones in Volcanogenic Rocks," DAN SSSR (1961) 139, 677-700. 22. Koporulin, V. I., "Types of Secondary Change of the Sandstones and Gravelites of the Irkutsk Coal Basin," Izvest. AN SSSR, Ser. Geol. (1962) (3) 30-40. 23. Buryanova, E . Z., Bogdanov, V. V., "Regularities of the Distribution of Authegenic Zeolites—Laumontite and Heulandite—in the Sedimentary Rocks of Tarbagatai Coal Field," Litol. Polezn. Iskop. (1967) (2). 24. Kossowakaya, A. G., in press. RECEIVED December 6, 1972.

Meier and Uytterhoeven; Molecular Sieves Advances in Chemistry; American Chemical Society: Washington, DC, 1973.