Geological and inorganic materials - ACS Publications - American

va, Izobret., Prom. Obraztsy, Tovarnye Znaki, (37), 77 (1979) (Russ). CA 91, 221997. (38A) King, A.D., EnergyRes. Abstr., 4(1 i), Abstr. No. 30969 (19...
2 downloads 0 Views 2MB Size
Anal. Chem. 1901, 53, 38R-44R (30A) Izhak, I.G., Ginzburg, R. V., Solodova, M. V., Khim. from-st., Ser.: Metody Anal. Kontrolya Kach. Prod. Khim. from-sti., (lo), 51-2 (1979) (Russ). CA 92, 140098. (31A) Izhak, I.G., Ginzburg, R . V., Khim. from-st., Ser.: Metody Anal. Kontroiya Kach. Prod. Khim. from-sti., (9), 16 (1979) (Russ). CA 92, 121199. (32A) Izhak, I.G., Ginzburg, R . V., Solodova, M. V., Khim. from-st., Ser.: Metody Anal. Kontrolya Kach. Prod. Khim. from-sti., (3), 41-3 (1980) (Russ). CA 93, 36394. (33A) Johnson, G. W., Taylor, H. E., Skogerboe, R. K., Appl. Spectrosc., 33(5), 451-6 (1979). Fert. A 13, 13. (34A) Khan, M. I., Kazmi, S. A., J Chem. SOC. f a k . , 1(1), 73-4 (1979) (Eng). CA 92, 51402. (35A) Kharsan, R. S., Mishra, R. K., Bull. Chem. SOC.Jpn., 53(6), 1736-8 (1980) (Eng). CA 93, 87982. (36A) Kharsan, R . S., Patel, K. S., Deb, K. K., Mishra, R. K., Fresenius' Z . Anal. Chem., 295(5), 415 (1979) (Eng). CA 91, 48914. (37A) Kholevinskaya, L. V., Emel'yanova, D. N., Shchipanov, V. P., Otktytiva, Izobret., from. Obraztsy, Tovarnye Znaki, (37), 77 (1979) (Russ). CA 91, 221997. (38A) King, A. D., Energy Res. Abstr., 4(11), Abstr. No. 30969 (1979). CA B l , 116840. (39A) Koralewski, T. J., Parker, G. A,, Anal. Chim. Acta, 113(2), 389-92 (1980). CA 92, 103764. (40A) Korenaga, T., Motomizu, S., Toei, K., Anal. Left., 13(A6), 455-64 (1980) (Eng). CA 93, 125103. (41A) Kruchkova, E. S., Pukhova, V. M., Trubnikova, L. I.,Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 23(1), 117-18 (1980) (Russ). CA 92, 190701. (42A) Krupinski, M., f r . Kom. Nauk.-Pol. Tow. Glebozn., Kom. Chem. Gleby., 9, 59-68 (1978) (Pol). CA 92, 93177. (43A) Lang, N. X., Thuc, T. T., Tap San Hoa Hoc, 17(4), 24-6 (1979) (Viet). CA 93, 18523. (44A) Langerman, S. A., Filobokova, A. M., Dormeshkina, T. D., Khim. from-st., Ser.: Metody Anal. Kontrolya Kach. Prod. Khim. from-sti., 12, 16-17 (1979) (Russ). CA 93, 6700. (45A) Levenkova, S. I., Klimovich, S. N., Khim. from-st., Ser.: Metody Anal. Kontrolya Kach. Prod. Khim. from-sti., 8, 33 (1979) (Russ). CA 91, 221883. (46A) Lindemann, A., LaborPraxis, 3(10), 14-16 (1979) (Ger). CA 92, 87410. (47A) L'vov, E. V., Orlov, N. A., Mandrazhi, E. K., Zh. Anal. Khim., 35(5), 894-902 (1980) (Russ). CA 93, 36409. (48A) Mizoguchi, T., Iwahori, H., Ishii, H., Talanta, 27(6), 519-24 (1980). Feti. A 13, 1732. (49A) Moskvin, L. N., Krasnoperov, V. M., Godon, N. P., Ofktytiya, Izobret., from. Obraztsy, Tovarnye Znaki, (15), 159 (1979). CA 91, 32381. (50A) Navas, A., Garcia-Sanchez, F., An. Quim., 75(6), 506-10 (1979) (Span). CA 92, 173868. (51A) Nigmatova, K., Orestova, I.I.,Uzb. Khim. Zh., (2), 15-21 (1979) (Russ). CA 91, 55249. (52A) Nishida, H., Bunseki Kagaku, 28(9), 563-5 (1979) (Japan). CA a i , 331RAA -.-. ..

(53A) Norov, Sh. K., Vartanova, 0. G., Zh. Anal. Khim., 34(8), 1500-4 (1979) (Russ). CA 92, 87367. (54A) Nozaki, T., Noda, K., Bunseki Kagaku, 29(1), 89-91 (1980) (Japan). CA 92. ._. 157159. . (55A) Panova, A, Bakurdzhieva, D., Angelova, G., Metalurgiya, 24(9), 24-5 (1979) (Bulg). CA 92, 173881. (56A) Paroutaud, P., Cousin, E., Fraisse, D., Microchem. J . , 25(3), 267-80 (1980). CA 93, 125051. (57A) Patterson, G. D., Jr , Pappenhagen, J. M., Chem. Anal., 2nd Ed., New York, 1978, 463-527. (58A) Penkina, G. M., Khlevnaya, M. G., Ponomarenko, N. P., Amerkhanov, M. A., Zavod. Lab., 45(9), 863-4 (1979) (Russ). CA 92, 14804. (59A) Pleskach, L. I., Otktytiya Izobref., from. Obraztsy, Tovarnye Znaki, 27, 65 (1979). CA 91, 150738. I

(60A) Prakash, D.,Shekhar, C., Chandra, S., J. Indian Chem. Soc., 57(4), 439-40 (1980) (Eng). CA 93, 88037. (61A) Pribil, R., Adam, J., Talanta, 28(2), 154-6 (1979). Fert. A 12, 1360. (62A) Romanova, N. S., Vladimirskil, T. N., Khim. from-st., Ser.: Metody Anal. Kontrolya Kach. Prod. Khim. from-sti., (2), 43-4 (1979) (Russ). CA 91. 150631. (63A) Romanova, N. S., Vladimirskaya, T. N., Khim. from-st., Ser.: Mefody Anal. Kontrolya Kach. Prod. Khim. from-stl., ( l l ) , 18-19 (1979) (Russ). CA 92, 179662. (64A) Romanova, N. S., Vladimirskaya, T. N., Khim. from-st., Ser.: Metody Anal. Kontrolya Kach. Prod. Khim. from-sti., (3), 27-8 (1980) (Russ). CA 93, 44702. ( M A ) Romanova, N. S., Vladlmirskaya, T. N., Khim. Prom-st., Ser.: Meto6' Anal. Kontroka Kach. Prod. Khim. from-sti., (E), 17-18 (1979) (Russ). CA 91, 209986. (86A) Rosenfeld, H. J., Selmer-Olsen, A. R., Analyst (London), 104(1243), 983-5 (1979). CA 93, 87443. (67A) Satake, M., Suzuki, T., Yoshlda, N., Fukui Daigaku Kogakubu Kenkyu Hokoku, 27(2), 279-86 (1979) (Eng). CA 92, 103731. (MA) Semenenko, K. A., Zuikova, N. V., Slepnev, S. N., Kuzyakov, Y. Y., Vestn. Mosk. Unlv., Ser. 2: Khim., 20(4), 369-72 (1979) (Rus). CA 92, 33276. (69A) Shahine, S., Khamis, S., Mlcrochem. J., 25(1), 48-7 (1980). Fert. A 13, 1527. (70A) Smets, E., Ana&st(London),105(1250), 482-90 (1980) (Eng). CA 93, 106377. (71A) Stankovic, E. S., Dukanovic, A. E., Glas. Hem. Drus. Boegrad., 44(7), 533-4 (1979) (Eng). CA 92, 140075. (72A) Svarcs, E., Bernane, A., Dzene, A., Latv. PSR Zinat. Akad. Vestis, Kim. Ser., 3, 366-7 (1979) (Russ). CA 91, 116751. (73A) Tanino, K., Sugawara, K., Bunseki Kagaku, 2B(4), 229-33 (1980) (Japan). CA 93, 67854. (74A) Thompson, K. C., Wagstaff, K., Analyst(London), 105(1252), 641-50 (1980). Fert. A 13, 2424. (75A) Thorpe, V. A., J . Assoc. Off. Anal. Chem., 83(4), 854-8 (1980). (76A) Trojanowicz, M., Anal. Chim. Acta, 114, 293-301 (1980) (Eng). CA 92, 157230. (77A) Tsujii, K., Kuga, K., Murayama, S., Yasuda, M., Anal. Chim. Acta, lll(l), 103-9 (1979). CA 92, 51416. (78A) Ustilernova, L. I., Egorova, T. I., Parfenova, T. K., Khim. from-st., Ser.: Fosfornaya from-st., 5, 18-19 (1979) (Russ). CA 92, 208394. (79A) Vittal, J. P., Anantasubramaniam, C. R., Soundararajan, R., Patil, K. C.. Talanta, 26(11), 1041-2 (1979) (Eng). CA92, 103681. (80A) Vladimirskaya, T. N., Kozlovskaya, 2 . S., Khim. Sel'sk. Khoz., 18(2), 52-3 (1980) (Russ). CA 92, 162673. (81A) Vbdimirskaya, T. N., Kozlovskaya, 2. S., Khim. from-st., Ser.: Metody Anal. Kontrolya Kach. Prod. Khim. from-sti., ( I l ) , 14-16 (1979) (Russ). CA 92, 179681. (82A) Vladimirskaya, T. N., Kozlovskaya, 2 . S.,Romanova, N. S., Khim. Sel'sk. Khoz., 18(2), 50-2 (1980) (Russ). CA 92, 162672. (83A) Wall, L. L., Gehrke, C. W., Suzuki, J., J . Assoc. Off. And. Chem., 83(4), 845-53 (1980). (84A) Wallace, G. F., At. Spectrosc., l ( l ) , 38 (1980). CA 92, 208418. (85A) Woodis, T. C., Jr., Hunter, G. E., Holmes, J. H., Jr., Johnson, F. J., J . Assoc. Off. Anal. Chem., 83(1), 5-6 (1980). (86A) Wyganowskl, C., Microchem. J., 25(2), 147-52 (1980). CA 92, 208463. (87A) Yavorskaya, G. M., Kazak, R. V., Lebedev, 0. P., Zavod. Lab., 44(11), 1325-6 (1978) (Russ). CA 90, 80310. (86A) Yoshimura, C., Noda, Y., Nippon Kagaku Kaishi, (ll), 1497-501 (1979) (Japan). CA 92, 33349. (89A) Zhdanova, T. G., Pavlova, A. P., Khim. from-st., Ser.: Met@ Anal. Kontrolya Kach. Prod. Khim. from-sti., (l), 43-7 (1980) (Russ). CAB3, 87920. (90A) Zlobin, V. K., Vladimirskaya, T. N., Khim. from-sf., Ser.: Metody Anal. Kontrolya Kach. Prod'. Khim. from-sti., 3, 32-4 (1979) (Russ). CA 91, 139558.

Geological and Inorganic Materials Carleton B. Moore DepaHment of Chemistry, Arizona State University, Tempe, Arizona 85287

This review discusses publications describing methods for analysis of geological and inor anic materials during the period November 1978 through Octder 1980. The topical boundaries of the inorganic and geological materials are somewhat diffuse since closely related topics are reviewed in both the fundamental and application reviews. These include air pollution, fertilizers, ferrous metallurgy, nonferrous metallurgy, surface characterization, and water analysis in the application reviews 30 R

0003-2700/81/0353-38R$01.25/0

and many of the fundamental reviews especially emission spectrometry, ion exchange chromatography, and ion selective electrodes. The citations of this review may well, by necessity, include some of those listed in other reviews, but for the most part they have been selected from many of the thousands available to give the reader an overview of recent advances in each specialty reviewed together with mentions of particularly interesting specific or specialized contributions. 0 1981 American Chemical Society

GEOLGGICAL AND INORGANIC MATERIALS

Cadaton B. M W ~ O is ROfeSSa of Chemism at Arizom State Univerrily. He is also Prcf e s a 01 Geology and Direeta of Me Center f a Metewee Studies. In 1954 he received his B.S. degree hom Alfred Universny and in 1960 a h . ~ from . the California indiute of Techndqy He was a principal investigator la the anabsis 01 lhe lunar samples from lhe ApOilo missions and a member of the preliminary investggation team for Apiio 12 Ihrough 17 where he db total carbon anahses on the returned lunar samples. His r e search interests are in analytical geochemistry. He is d i m Of METEORITICS, the Journal of lhe MeteOrillCai Society.

GENERAL REVIEW LITERATURE As Joseph Dinnin has noted in earlier reviews in this series ( I ) , there seem to he pulses of activity especially with respect to the publication of important monographs. A 2-year period is really quite short, and 1979-1980 appears to he a time of relative inactivity in this area as compared to 1976-1978 which Dinnin re arded as bountiful in inorganic analytical literature. Among tge major publications are Kolthoff and Elving’s “Treatise on Analytical Chemistry, 2nd ed., Part I, Vol. 2, Theory and Practice’’ (2) which brings part of this classical series up to date from the original 1959 publication. In the Wiley-Interscience Chemical Analysis Series, Vol. 51 “Trace Element Analysis of Geological Materials” by Reeves and Brooks appeared in 1979 (3). In the same series is Vol. 55 “Archaeological Chemistry” by Coffer (4). This book is probably of greater interest to archaeologists than of use to analytical chemists although it gives us some idea of the type of analyses of interest to the archaeologists. A 9th ed. of “Colorimetric Chemical Analytical Methods”, by Thomas and Chamberlin (5),was published in 1980. Mikes “Laboratory Handbook of Chromatogaphic and Allied Methods” (6)covers inorganic analytical as well as other techniques. Budevsky’s “Foundations of Chemical Analysis” a routine reference has been translated from Bulgarian and published in 1979 (7). A second edition of Thompson and Reynolds “Atomic Absorption Fluorescence and Flame Emission Spectroscopy: A Practical Approach (8)became available in late 1978. “Working with Ion-Selective Electrodes” (9)by Schroeder was translated from German to English in 1979. Young’s “Separation Procedures in Inorganic Analysis: A Practical Handbook” (10) is a review of a most important area of inorganic research. Readers should not for et that new ASTM references continually become availa6e. Noteworthy in 1980 were “Chemical Analysis of Metals; Sampling and Analysis of Metal Bearing Ores’’ ( I J ) and “Emission Molecular and Mass Spectroscopy’’ Chromato raphy; Resinography; Microscopy; Computerized Systems; gurface Analysis” (12). Reuiews in Analytical Chemistry during the past 2 years contained two reviews of interest to our area. These we related to the application of mercury film electrodes to ultratrace analysis (13) and sampling and preconcentration for trace metal analysis in natural waters (14). DETERMINATION OF INDIVIDUAL ELEMENTS AND ANIONS Perhaps one of the most straightforward questions that a computer-based reference retrieval system can be used for is for individual elements and complex anions or cations. Even the selection of a method may not depend upon the “best” method available but upon the instrumentation available to the analyst. For this reason, no attempt to comprehensively review the voluminous literature is made here. Rather, particularly interesting papers are placed in the sections on analytical techniques and application areas. Two elements have heen selected for special consideration. These are fluorine and the rare earth elements which have attracted the Darticular attention of analvsts in the recent Dast. ’ Fluorine Analysis. Whde the analyses of sbme elements seem to have been well worked out for inorganic and geological materials, others seem to be perennial problems or of special interest because of particular applications. Among these with

much recent activity in the analytical literature is fluorine. Fluorine has always been a difficult element to separate from silicates and oxides especially when it is resent in trace quantities. Detection has heen improve by the use of fluoride-selective electrodes (15-1 7) or ion chromato aphy Several available techniques are described in a usefuahand: book of anion determination by Williams (18). Other contributions of potential interest include references (19-21) for fluorine in geological materials and in lake sediments (22). Techniques for fluorine analysis of mineral raw materials of a comDlex nature are (23). in bone (24). and usinr! emission spectiometry (25). Rare E a r t h Elements. Geochemical reeularities of trace abundancrs of lanthanide rare earth elemenci have made their important probe improved of the nature of georhemiral systrms. Detection of these elements has consumed extensive elfow of analytiral georhemtsts. In 1979 leaders in rare earth chemistry puhlished many mteresting papers in the rnnferenm pr~reedings“tlnndh)k tin the P h p i n and Chemistn of Rare Karths” ( X ) . Ksprrinlly interestin papers includr those on mass spertrornetrir stat)le-isotope filution analysis bv Srhuhuniann and Philpotm (27). spark source mass dpectrometry by Taylor at Canberra (28) and Conzemius (29). neutron activation by Boynton t.70,. and optical atomic emission and absorption methods hy DrKallr and Fassel 131). C)‘l,aiighlin disrussed sprrtrophobmetrir and pnlarovaphic methids 022). All of these papcrs disruts up-to-datr terhniqurs. Wright et HI. used laser selertive exritntion analysis of lanthanides in fluorites for extreme trare analysis (331.

B

I

~~~~~~~~~~

~

~

~

ANALYTICAL TECHNIQUES Ion Chromatography. Ion chromatography is currently one of the fastest yrowing analytiral techniques in the fields of geologd and/or inorganir analysis. Since the introdurtion of the wrhnique in 1975 (34). thr uses to nhirh ion chromatogrnphy has been applied have multiplied rapidly. The technique originally described by Small et 81. 134) hns been modified hy rliminatini: the suppressor rolumn (35-32, using coulometrir d r u ~ ~ i afor i n rare earth elements (38). or by using an L’V detector in conjunction with the standard conductometric detector (39). Techniques for low conductivity rluents for anion rhrmnatography are disru-qsed by Gjerde. Fritz. and Srhmuckler 140). The use of ion chromatography in the analysis of solid genlogiral samples has becnme quite widespread. These !eologiral applications include the analysis of s o ~ l s(411, anion analysis (42).analysis of rhlorine in silicate samples (43).and thr analysis of horon (44). Ion rhromatopraphy has also been applied UI the analysis of aqueous samples of grolngic interest. Among thrse applications are the analyia of arsenic (4’5.46). annlys1.i of geological brines, and the analvsu nf anions in water (47-191. Industrial applirations of inn chromatography in the area of inurganic analysis include the analysis nl boiler water (50) and fhe analysis of alloy pickling haths (51). A hnok series edited by Sawicki and coauthors. “Ion Chromato aphic Analysis of Environmental Pollutants” 652, S31,desrri ed numerous applirations of ion chromatography inrluding atmospheric sulfur dioxide. mobile sourre emiwo?. comhustion products, thrrmal deromposition ot‘airrraft i n terior materials. tlue gas scruhher systems. drill rorr pnre waters. industrial pnre3s water%snows. rainwatrrs, and soils. A statr-oi-thc.art review of iun chromatography has been prepared by Pohl and Johnson (54). Atomic Absorption Spectroscopy. Several books have been published on atnmic absorption spwtrosrupy (AAS) smre 1978 {5,5591. Alkemade’s I m i k 1,5!4 i< esperially well witten. Comprehensive reviews are published annually hv the Chemical Soriety, I.ondon ml. and every 2 years by the American Chrmiral Society (61). After dissolution, it is often neressary either to preconrentrate a trare metal when its ronrentration is too low for dirert analysis or to eliminate the sample matrix to avoid interferenres. This can he arromplished by employing the method of solvent extrnrtion or ion errhange. Two reviews. one by Cresser (62) and another by Wilson (631cover the literature in the field. Papers puhlished on the area of elertruthermd atomization have increased tremendously over the last S years. This in. terrst was sparked mainly by the suprrior detertion limita for

T

ANALYTICAL CHEMISTRY, VOL. 53. NO 5. APRIL 1981

39R

GEOLOGICAL AND INORGANIC MATERIALS

many elements as well as the small sample volume required. The first issue of “Progress in Analytical Atomic Spectroscopy” contained a large review of electrothermal atomization (64).Hydride generation is a sampling technique which may be used to separate and preconcentrate analyte from sample matrices, thereby removing potential chemical and/or spectral interferences commonly encountered with direct solution analysis. The hydrides of As, Se, Te, Sn, Sb, Bi, Ge, and Pb are commonly formed by reduction using NaBH4. Not only are interferences eliminated but also detection limits are improved by a factor of 100. Atomic absor tion coupled with the graphite furnace or heated quartz celfis usually used to detect the hydrides. Atomic emission has also been emplo ed by using inductively coupled, microwave induced, a n i d c plasmas as excitation sources. Development of the hydride generation method has been reviewed by Robins and Caruso (65).Applications to sediments (6% rocks and soils ( 6 3 ,and geological materials (68)usually employs an acid digestion step prior to hydride generation. Solid sampling is a direct elemental analysis of solids with no chemical preparation. In atomic absorption, the main technique where solid sampling is used is electrothermal atomization. The determination of Ag, Bi, Pb, Sn, Zn, and T1 in alloys has been accomplished by direct atomization in a graphite furnace (69).Use of the graphite furnace to atomize solid samples before introduction into a flame was used to determine As, Se, and Hg in sulfide ores, Pb in rocks, and Fe, Mn, Cd, and Zn in air and water filters (70,711.Atomization by laser radiation has also been employed (72).An excellent review of solid sampling b atomic absorption, emission, and fluorescence has been puglished by Van Loon (73).An interesting paper on tin analysis has been written by Hall (74) and a useful discussion of sulfate and phosphate anion interference in calcium flames by Smets (75). An accessory for the determination of mercury and hydride forming elements using flameless atomic absorption spectroscopy is described by Jackwerth et al. (76). Nuclear Techniques. Activation analysis is currently in a state of refinement. The advances made in recent years involve developing new processes for analyzing individual elements or groups of related elements, setting up new or improving existing analysis systems, extending the range of materials analyzed, and investigating the accuracy of the technique within itself and against other methods of analysis. Improvements in detection equipment provide increased precision in making measurements. With the increase in the ability to read spectra accurately comes a corresponding increase in the interference from other elements present in the matrix. Because of this, there is much experimentation in developing new radiochemical separation schemes (77-81). The desired elements or elemental groups are removed from the matrix, thus enabling an analysis to be made of the desired elements with less interference from other elements. These elements or groups can be separated before or after irradiation (82-101). The types of materials to which activation analysis is being applied has been extended to many diverse and interesting fields. It is still an extremely important tool in geological studies (79,80,102-107) but is now also being employed in unusual areas such as paleoclimatology(108),historical document studies (log),and even dentistry (110). A particularly useful review of neutron activation analysis of geological materials has been written by Laul (111). Activation analysis continues to be widely applied in geological and inorganic studies. It is still the best technique for determining the rare earth elements and one of the better methods for determining most minor and trace elements. Patterns in the trace elements are used extensively in following trends in various types of waters (77,97,105, 112-114),in deriving the genesis of terrestrial deposits (78,115-119)and meteorites (98,120),and in the evolution of the solar system (121).Quantitative analysis of silicates by instrumental epithermal neutron activation with (n, p) reactions have been discussed by Gladney and Perrin (122),lithium, boron, fluorine, and sodium using low-energy a particles by Borderie et al., (123), and fluorine in geological standards using the 19F reaction by Papper et al. (124). The use of activation analysis in prospecting for mineral resources is being expanded. New field instruments are being developed applying the principles of y-ray spectrometry that 40 R

ANALYTICAL CHEMISTRY, VOL. 53, NO. 5, APRIL 1981

Table I. Selected Publications on ICP Analysis elements matrix authors Ag, Au, Bi, Cd, Cu, geological Motooka, J. M. Pb, Zn et al. geological Thompson, M. As, Sb, Bi, Se, Te et al. geological Pahlavanpour, B. Sn et al. black Lechler, P., Se shale Leininger, R. K. B metals, Grallath, E., et al. quartz brines Hoult, D. W. S, Mg, Na, K rare earths geological Nikdel, S., et al. minerals rare earths Broekaert, J. A. C. et al. rare earths minerals Broekaert, J. A. C. et al. Ba, Co, Cr, Cu, Li, geological Uchida, H. et al. Ni, Sc, Sr, V, Zr

ref

164 165

166 167

168 169 170 171 172

173

can be used directly in boreholes (125-127). With the improvement in analytical hardware comes a corresponding improvement in computer equipment and a better ability to analyze the accuracy and precision of analytical measurements (84,128-135). Comparisons are also being made between activation analysis and other analytical techniques-such as X-ray fluorescence analysis, spark source mass spectrometry, and atomic absorption (136,137). Neutron capture prompt y-ra activation analysis in multielement systems is describecrby Failey et al. (138). Emission Spectrometry. In the past emission spectrometry was a workhorse of inorganic analysis which fell out of use as the standard techni ue for trace analysis. It is still a most sensitive rapid metho8for such elements as barium, and new excitation sources have generated renewed interest in ita use. Ionization coupled lasma sources have roved to be particularly interesting anf a r e reviewed separateyy. Miyazaki, Kimura, and Umezaki have used direct coupled plasma emission spectroscopy to determine arsenic in sediments (139). Dale (140)has developed a technique for the determination of boron in silicate materials. His method is based upon the use of a germanium internal standard in a lithium fluoridegraphite. Uchida and co-worker reconsidered silicate analysis in a modern perspective (141).Important sampling considerations for quartz and glass have been discussed by Wolcott and Woodworth (142). Inductively Coupled Plasma. The past few years have shown an im ressive increase in the development of inductively couple$ plasma (ICP) spectroscopictechniques for the analysis of inorganic and geological samples for major, minor, and trace elements. The technique has evolved sufficiently so that many general application review apers have appeared. A series of papers have been publishelas two meeting proceedings edited by Ramon Barnes (143,144).These include a review of the factors influencing precision and accuracy of ICP analyses by Watters et al. (145)and a review of recent geochemical applications of ICP by Golightly (146). Other pa ers on analytical procedures for silicic materials from a suisequent meeting (147-149)cover more specific instrumental improvements and difficult samples. Other interesting schemes for rock and mineral analyses include (150-153). Specific trace element studies in geologic materials are listed in Table I. Useful reviews of ICP for the analysis of refractory ceramics are iven by Schroth (154),in metals and related materials by 8hls (155),and in iron ores by Endo and Sakao (156). Sugimae (157) reviews ICP use for the analysis of airborne particulates and Notsu and Mabuchi in archaeological coins (158). Additional general reviews are given by (151, 159-161) all well-known analysts and worth reviewing. An atlas of spectral interferences in ICP spectroscopy has been collated by Parsons and co-workers (162). The preparation of standards for plasma emission spectroscopy has been detailed by Miller and DeMenna (163).

OTHER TECHNIQUES Ion selective electrode contributions include the determi-

GEOLOGICAL AND INORGANIC MATERIALS

nation of chlorine in silicate rocks after ion-exchangin chromatography (174),sulfur in several inorganic and natur materials using a cadmium electrode (1751, and in minerals using a sulfide electrode (176). Fluoride in minerals was also determined by Bebeshko and co-workers (177). Interferences of a barium selective electrode used for sulfate are reviewed by Jones et al. (178). Ion exchange chromatographic techniques of interest to inorganic analysts are analyses of nickel in man anese nodules (179) and gallium in man anese nodules 680) both by Korkisch and co-workers. large number of elements including boron, lithium, selenium, and antimony as exam les have been determined after HPLC separation using an fCP detector by Fraley, Yates, and Manahan (181). Review of HPLC anions (182) and inorganic systems (183) have been reviewed. The use of chemical reactions using metallic mercury for preconcentration and determination of anions by Toropova and co-workers (184) presents an interesting application for this widely used preconcentration medium. A review of interference effects in industrial inorganic analytical chemistry has been repared by Fuller (185). A data-filled paper on proton-in8uced X-ray emission analysis of manganese nodules (186) is included among the seemingly large number of new techniques developed to analyze ocean floor materials. It appears that the analytical chemistry of ocean samples may be in the developmental sta e while lunar sample related research is application orientei The United States Geological Survey has prepared two manganese-nodule reference samples

3

1

(187).

Automatic methods for the simultaneous determination of carbon, hydrogen, nitrogen, and sulfur in inorganic materials have been developed by Kirsten (188).

AREAS OF APPLICATION Inorganic and geological analyses are similar in that they use common techniques on inorganic materials but they differ in that most laboratory or industrial materials have simple matrices while geological materials most often have complex matrices requiring constant attention with respect to sample preparation for elemental determinations. After an analytical technique has run its course of development, most of the new applications are related to sampling, sample preparation, or extraction of a constituent of interest so that its concentration may be determined. General articles on inorganic analysis worthy of attention include a review on the separation and preconcentration of trace substances in inorganic samples prepared by the IUPAC Analytical Chemistry Division (189). Russell (190)reviewed some features in inorganic trace analysis “...much ado about nothing” in which spark source mass spectroscopy is discussed. Analytical chemistry in the earth sciences was reviewed by Gijbels (191). Analytical approaches to soil and sediment analysis were reviewed by Asami (192). Proton-induced X-ray emission was introduced as a new tool in geochemistry by Kullerud et al. (193). Trends in the application of spectral analysis in geological sciences including X-ray spectroscopy were reviewed by Schroen (194). A potentially interesting article on progress in inorganic analytical chemistry in Chiva was written by Chen et al. (195). Thermal methods of analysis in the study of surface phenomena were used with goethite as the analyzed material by Paterson (196). An interesting paper on application of X-ray photoelectron spectroscopy in mineralogy and geochemistry was written by Bancroft, Brown, and Fyfe of the University of Western Ontario (197). The use of a Raman microprobe for the analysis of ceramic materials was introduced by Colomban (198), and Auger electron spectroscopy was used for the determination of the surface composition of sulfur bearing anion mixtures by Turner et al. (199). Geolo ic analysis by the track etch method was used to determine foron, lithium, uranium, and thorium by Liehu (200). Ion micro robe anal sis in geology and paleontology, a technique boun6) to be wiiely used in the future, was reviewed by Lefevre and Cuif (201). Inorganic ion determination by laser excited fluorescence was reviewed by Wright and Gustafson (202). Analytical geochemists continue to use fusion techniques to improve matrix effects (203) or to effect dissolution (204). Chromatography in inorganic trace analysis was reviewed by Schwedt (205).

Most geochemical articles refer to analytical techniques originally described in analytical chemistr , journals, but occasionally creative adaptions are reportedrin geochemical journals. This is particularly true with respect to the separation of trace elements from sometimes very complex matrices. Readers are directed to the journal Geochimica et Cosmochimica Acta which often contains such analytical contributions. In 1979, noteworthy articles include a f i e effort by Curtis, Gladney, and Jurney on the determination of boron in meteorites. As a result of this effort to eliminate contamination, the accepted cosmic abundance of boron has been revised downward by about a factor of 10 (206). A neutron activation technique for rare earth elements was utilized by Morgan and Wandless (207). Volatiles in submarine volcanic rocks were determined by high-temperature mass spectrometric analyses by Garcia et al. (208),and Shima used isotope dilution to determine titanium, zirconium, and hafnium in meteorites (209). Uranium and thorium microdistribution in meteorites were studied by using fission track techniques by Crozaz (210). A pa er on the geochemistry of Cd, Bi, Ti, Pb, and Zn by HeinricRs et al. (211) also leads us to two others by the same author on details of the flameless atomic absorption technique used (212, 213). Freund et al. used laser-induced mass spectroscopy to determine carbon in solid solution in olivine crystals (214). The effect of irradiation by neutrons of helium, neon, and argon recovery from basalt glass was investigated by Stettler and Bochsler (215). In the “Proceedings of the Tenth Lunar and Planetary Science Conference” supplement to Geochimica et Cosmochimica Acta, Nyquest et al. (216) discusses in detail the careful technique required for the determination of samarium and neodymium in basalts. This is an important pair of elements determined in geochemical samples. An analysts viewpoint of inorganic pollution in water has been written by Fishman (217). In high-purity fuel cell waters analytical aspects have been treated by Kapelner, Trocciola, and Freed (218). Standard Reference Materials. The preparation, study, and use of standards especially geochemical standards is essential to analytical chemistry. Readers must be reminded that the journal Geostandards Newsletter is available, important, and interesting. A partial search of library holdings of this important international contribution showed few subscribers among institutional libraries. It is ho ed that many individuals support the publishers, editors, an authors efforts; if not, you should. During 1979-1980 four issues were published. Virtually every article is interesting. Contributions in the Oct 1978 issue include analyzed minerals for electron microprobe (2191, Ag, Cd, and Pb contents of some rock standards (220), and the precision of rapid rock analyses and standard homo eneity (221). April 1979 has apers on the preparation of Er ore samples (222), P, CI, anBr contents of rock standards (223,224) rare-earth element data obtained by neutron activation (225) and germanium contents of standard rocks by flameless atomic absorption (226). There are 12 contributions to the Oct 1979 issue including a search for best values (227),instrumental neutron activation analysis of French geochemical reference samples (228) and 37 other standards (229). The April 1980 issue had papers on mass spectrometric isotope dilution of Cd (230)and delayed-neutron activation determination of U (231). Also included among the 14 contributions were papers on Se by flameless atomic absorption (232) and fluorine, chlorine, and water (233) as well as one on reference samples for electron microprobe analysis (234). The most recent issue of Oct 1980 continues with 15 papers including catholuminescence emission analysis of Ce (2351, the analysis of the new USGS manganese nodule standard (2361, and a sludge ash standard (237) as well as a paper on ceramic analysis in the laboratories of the British Ceramic Research Association (238). A study of general interest is the compilation of standard samples available put together by Sydney Abbey of the Geological Survey of Canada (239). A paper on the preparation and analysis of minerals for use as reference material has been written by Stoch and Ring (240). Other articles related to standards include an extensive review of elemental concentrations in the USGS geochemical exploration reference samples by Gladney et al. (241) and investigation of sediment analysis pretreatment techniques (242) and the needs for special analytical techniques in geoscience studies (243).

a

ANALYTICAL CHEMISTRY, VOL. 53, NO. 5, APRIL 1981

41 R

GEOLOGICAL AND INORGANIC MATERIALS

ACKNOWLEDGMENT The author gratefully acknowledges the assistance of Vladimir Borovansky, Matthew Pierce, Keenan Evans, James Tarter, Julie Canepa, and Melissa Strait in the preparation of this review paper. Special thanks are given to Joan Wrona for her efforts in producing the final version. LITERATURE CITED

(1) Dinnin, J. I.Anal. Chem. 1979, 51, 144R-154R. (2) Kolthoff, I.M., Elving, P. J., Ed. "Treatise on Analytical Chemistry", 2nd ed.; Why: New York, 1979; Part 1 , Vol. 2, 815 pp, (3) Reeves, R. D.; Brooks, R. R. "Trace Element Analysis of Geological Materials"; Wiley: Interscience, New York, 1978; 421 pp. (4) Goffer, 2. "Archaeological Chemistry"; Wiley-Interscience: New York, 1980; 376 pp. (5) Thomas, L. C.; Chamberlin, G. J. "Colorimetric Chemical Analytical Methods", 9th ed.; Wiley: New York: 1980 625 pp. (6) Mikes, 0. "Laboratory Handbook of Chromatographic and Allied Methods"; 1979; 764 pp. (7) Budevsky, 0. "Foundations of Chemlcal Analysis"; Wiley (Halsted Press): New York, 1979; 367 pp. (8) Thompson, K. C.; Reynolds, R. J. "Atomic Absorption Fluorescence and Flame Emisslon Spectroscopy: A Practical Approach", 2nd ed.; Halstead Press: New York, 1978; 319 pp. (9) Camman, K. "Working with Ion-Selective Electrodes", Schroeder, A. H., translated from German; Springer-Verlag: 1979; 225 pp, (10) Young, R. S. "Separation Procedures in Inorganic Analysis: A Practlcal Handbook", Halstead Press: New York, 1980 475 pp. ( 1 1 ) ASTM Standards, Part 12, 1980, "Chemical Analysis of Metals; Sampling and Analysis of Metal Bearlng Ores". (12) ASTM Standards, Part 42, 1980, "Emission, Molecular, and Mass Spectroscopy; Chromatography; Resinography; Microscopy; Computerized Systems; Surface Analysis". (13) Subramian, G.; Prabhakara, R. G. "Reviews in Analytical Chemistry"; Freund Publishing House: Tel-Aviv, 4 , 95-109, 1979. (14) Meranger, J. C.; Subramanian, K. S.; Langford, C. H. "Reviews in Analyticai Chemistry"; Freund Publishlng House: Tel-Aviv, 5, 29-51, 1980. (15) Bebeshko, G. I.;Khallzova, V. A. Zavod. Lab. 1979, 45, 203-5; CA, 90, 214679k (1979). (16) Tan, Kai-Hsi Fen Hsl Hua Hsueh. 1978, 6, 465-7; CA, 92, 1 0 3 7 4 1 ~

(1980). (17) Yoshida, M.; Makihara, Y.; Katsura, T. Nippon Kagaku Kaishi. 1978, IO, 1375-9; CA, 89, 2 0 8 6 0 4 ~(1978). (18) Williams, W. J., "Handbook of Anion Determination", Butterworths: Woburn, MA, 1979; 768 pp. (19) Kato, Y. Gansekl Kobutsu Kosho Gakkalshi 1979, 74, 421-2; CA, 92, 157186n (19801. (20) Youh, Chang-Ching. Acta Geol. Taiwan 1977, 79, 55-61; CA, 90, 132285q (1979). Simkln, N. M.; Tolkachnikov, Yu. B.; Kolosova, M. M. Zavod (21) Rigin, V. I.; Lab. 1979, 45, 291-2; CA, 91, 0 3 3 3 4 6 ~(1980). (22) Dena. J. H., Yu, Y. S. T'u Jan0 Hsueh Pa0 1979, 16. 313-18; CA, 92, 0 3 3 3 4 3 ~(1980). (23) Khalizova, V. A.; Bebeshko, 0. I., Poiupanova, L. I.; Alekseeva, A. Ya. Zh. Anal. Khlm. 1979, 34, 501-6; CA, 91, 048760d (1979). (24) Woittiez, J. R. W.; Das, H. A. J. Radioanal. Chem. 1980, 59, 213-219. (25) Serdobova, L. I.; Bol'shakova, N. A. Prlkl. Geokhlmlya i Mineral., M . 1977, 74-80; CA, 93, 1 0 6 3 2 4 ~(1980). (26) Gschnedner, K. A,, Eyring, L., Ed. "Handbook on the Physics and Chemistrv of Rare Earths". Elsevier: Amsterdam. 1979; Vol. 4., 602 .DD: . CA, 92: 05122811 (1980).' (27) Schuhmann, S.; Philpotts, J. A. Handb. Phys. Chem. Rare Earths 1979, 4 , 471-81. (28) Taylor, S. R. Handb. Phys. Chem. Rare Earths 1979, 4 , 359-76. (29) Conzemius, R. J. Handb. Phys. Chem. Rare Earths 1979, 4 , 377-404. (30) Boynton, W. V. Handb. Phys. Chem. Rare Earths 1979, 4 , 457-70. (31) DeKalb, E. L.; Fassel, V. A. Handb. Phys. Chem. Rare Earths 1979, 4, 405-40. (32) O'Laughiin, J. W. Handb. Phys. Chem. Rare Earths 1979, 4 , 341-58. (33) Wright, J. C.; Tailant, D. R.; Gustafson, F. J.; Johnston, M. V.; Miller, M. P.; Moore, D. S.; Porter, L. C.; Akse, J. R. Angew. Chem. 1979, 91, 765-80. (34) Small, H.; Stevens, T.; Bauman, W. Anal. Chem. 1975, 47, 1801. (35) Fritz, J. S.; Gjerde, D. T.; Becker, R. M. Anal. Chem. 1980, 52, 15 19-22. (36) Gjerde, D. T.; Fritz, J. S.; Schmuckler, G. J. Chromatog. 1979, 186, 537-47. (37) Gjerde, D. T.; Fritz, J. S.; Schmuckier, G. J. Chromatog. 1980, 787, 35-45. (38) Girard, J. E. Anal. Chem. 1979, 51, 836-9. (39) BOuyoucos, S. A,; Armentrout, D. N. J. Chromatog. 1980, 189, 61-71. (40) Gjerde, D. T.; Fritz, J. S.; Schmuckier, G. J. Chromatogr. 1979, 186, 509-19. (41) Dick, W. A.; Tatabai, M. A. SollSci. Am. J. 1979, 43, 899-904. (42) Wen, G. S.; Fishman, M. J. Ion Chromatogr. Anal. Environ. Pollut. 1979, 2 , 235-44. (43) Evans, K. L.; Moore, C. B. Anal. Chem. 1980, 52,1908-1912. (44) Hill, C. J.; Lash, R. P. Anal. Chem. 1980, 52, 24-7. (45) Hansen, L. D.; Richter, B. E.; Rollins, D. K.; Lamb, J. D.; Eatough, D. J. Anal. Chem. 1979, 51, 633-6. (46) Steiber, R.; Merrill, R. Anal. Lett. 1979, 12, 273-8. (47) Fishman, M. S.; Pyen, G. "Determination of Selected Anions in Water by Ion Chromatography" 1979, USGS Water Resources Investigations Paper \

- - - I

#79- 101.

42R

ANALYTICAL CHEMISTRY, VOL. 53, NO. 5, APRIL 1981

(48) Smee, B. W.; Hall, G. E. M.; Koop, D. J. J. Geochem. Expl. 1978, 10, 245-248. (49) Slanina, J.; Lingerak, W. A.; Ordelman. J. E.; Borst, P.; Bakker, F. P. Ion Chromatogr. Anal. Environ. Pollut. 1979, 2, 305-17. (50) Stevens, T.; Turkelson, V. T.; Albe, W. R. Anal. Chem. 1977, 49, 1176-8. (51) Dulski, T. R. Anal. Chem. 1979, 51, 1439-43. (52) Sawicki, E.; Mulik, J., Eds. "Ion Chromatographlc Analysis of Envlronmental Pollutants, Vol. 11", Ann Arbor Science: Ann Arbor, MI, 1979. (53) Sawicki, E.; Mulik, J.; Wlttgensteln, E., Eds. "Ion Chromatographlc Ann Arbor Science: Ann Analysis of Environmental Pollutants, Vol. I"; Arbor, MI, 1978. (54) Pohl, C. A.; Johnson, E. L. J. Chromatogr. Scl. 1980, 18, 442-452. (55) Grove, E. L., Ed. "Applied Atomic Spectroscopy"; Plenum Press: New York. 1978. (56) Price, W. J., "Spectrochemical Analysls by Atomic Absorptlon"; Heydon and Son: London. 1979. (57) Siavin, M., "Atomlc Absorption Spectroscopy", 2nd ed.; Wiley: New York, 1979. (58) Thompson, K. C.; Reynolds, R. J., "Atomic Absorptlon, Fluorescence,

and Flame Emission Spectroscopy: A Practical Approach", 2nd ed.; Charles Griffin: London, 1978. (59) Alkemade, C. Th. J.; Herrmann, R., "Fundamentals of Analytical Flame Spectroscopy", A. Higler Ltd.: Bristol, 1979. (80) Dawson, J. B.; Sharp, B. L., Ed., "Annual Reports on Analytical Atomic Spectroscopy", The Chemical Society: London, 1979. (61) Horlick, 0. Anal. Chem. 1980, 52, 290R. (62) Cresser, M. S., "Solvent Extraction in Flame Spectroscopic Analysis"; Butterworths: London, 1978. (63) Wilson. D. L. At. Absorot. Newsl. 1979. 18. 13. i64) "Progress in Analytical 'Atomic Spectroscopy"; Pergamon Press: Oxford. Vol. I . 1978. (65) Robins, W. B.; Caruso, J. A. Anal. Chem. 1979, 51, 889A. (68) Hodge, V. F.; Seidei, S. L.; Goldberg, E. D. Anal. Chem. 1979, 51,

1256. (67) Rubeska, 1.; Hlavinkova, V. At. Absorpt. Newsl. 1979, 16, 5. (68) Sanzolone, R. F.; Chao, T. T.; Welsch, E. P. Anal. Chim. Acta. 1979, 108, 357. (69) Baily, P., Norval, E.; KilroaSmith, T. A.; Skikne, M. I.; Rollin, H. B. Microchem. J. 1979, 24, 107. (70) Koop, D. J.; Silvester, M. D.; Van Loon, J. C., Plttsburgh Conference on Analytical Chemistry and Applied Spectroscopy: Cleveland, OH, March

1979. (71) Ip, J.; Thomassen, Y,; Butler, L. R. P.; Van Loon, J. C. Anal. Chim. Acta 1979. 70. 1. (72) Rees, D: I.J . Assoc. Publ. Analysts. 1978, 16, 71. (73) Van Loon, J. C. Anal. Chem. 1980, 52, 955A. (74) Hall, A. Chem. mol. 1980, 30, 135-42. (75) Smets, B. Analyst (London) 1980, 105, 482-90. (76) Jackwerth, E.; Willmer. P. G.: Hohn, R.; Berndt, H. At. Abs. Newsl. 1979, 78, 66-88. (77) Alimarin, I.P.; Yakovlev, Yu. V.; Kolotov, V. P.; Miklishanskii, A. Z.; Savel'ev, B. V.; Nikitina, L. P.; Menyailov, I. A. J. Anal. Chem. 1979, 33, 1289-1293. (78) Bergerioux, C.; Zikovsky, L. J. Radloanal. Chem. 1978, 46, 277-284. (79) Chattopadhyay, A.; Katz, S. A. J. Radioanal. Chem. 1978, 46, 321-332. (80) Rowe, J. J.; Baedecker, P. A.; Morgan, J. W.; Millard, H. T. "Neutron Activation of Geologic Materials", USGS Prof. Pap. 1150, p. 232, 1979. (81) Smet, T.; Hertogen, J.; Gljbels, R.; Hoste, J. Anal. Chlm. Acta 1978, 107, 45-62. (82) AI-Jobori, S. M. Radlochem. Radioanal. Lett. 1978, 35, 319-323. (83) Artem'ev, 0.I.; Stepanov, V. M.; Kovel'skaya, 0. E. J. Anal. Chem. 1978, 33, 391-395. (84) Artem'ev, 0. I.; Kiselev, 8. G.; Stepanov, V. M. Zh. Anal. Khlm. 1978, 3.7

(85)Chaudhary, M. S.; Ahmad, S.; Qureshi, I.H. J. Radloanal. Chem. 1980, 57, 136-146. (86) Chen, S. G.; Pung, T. C. Radiochem. Radioanal. Lett. 1978, 33,

139-147. (87) Das, N. R.; Battacharyya, S. N. Anal. Chlm. Acta. 1978, 102, 22 1-224. (88) Gharib, A.; Morris, D. F. C. Talanta 1978, 25, 569-572. (89) Gil'bert, E. N.; Verevkin, G. V.; Solonsova, V. A. J. Anal. Chem. 1979, 33, 1214-1220. (90) Gladney, E. S. Anal. Lett., 1978, A l l , 429-435. (91) Hasanen, E.; Saimela, S. Radiochem. Radioanal. Lett., 1979, 37, 207-2 14. (92) Kafka, D.; Turan, J.; Bobro, M. J. Radloanal. Chem. 1980, 57, 211-213. (93) Kuleff, I., Kostadinov, K. N. J. Radloanal. Chem. 1978, 46. 365-371. (94) Mustafa, M. A. H.; Oldham, G. J. Radloanal. Chem. 1980, 57, 503-506. (95) Nlr-el, Y.; Lavi, N. J. Radloanal. Chem. 1980, 55, 125-130. (96) Rosenberg, R. J. Radlochem. Radloanal. Lett. 1979, 40, 115-121. (97) Sava, S.; Zikovsky, L.; Boisvert, J. J. Radioanal. Chem. 1980, 57, 23-27. (98) Shukla, P. N.; Goel, P. S. Geochim. Cosmochlm. Acta 1979, 43, 1865- 1867. (99) Terada, K.; Okuda, K.; Maeda, K.; Kiba, T. J. Radloanal. Chem. 1978, 46, 217-228. (100) Whitley, J. E.; Moyes, A. B.; Bowden, P. J. Radloanal. Chem. 1979, 48, 147-i58. (101) Zaitsev, E. I.; Rablnovich, B. S.; Sotskov, Yu. P. J. Anal. Chem. 1979, 33, 1214-1220.

GEOLOGICAL AND INORGANIC MATERIALS (102) Gijbels, R. H.; Hertogen, J. I n "Analytical Chemistry in the Exploration, Mlning, and Processlng of Materials", Strashelm, A., Steele, T. W.; Eds.; Pergamon Press: Oxford, 1978; pp 1553-1573. (103) Leipuskaya, D. I.; Drynkln, V. I.; Voinkov, D. M.; Brouchuk, 1. F.; IlyaBelenkl, B. V. J. Radloanal. Chem. 1980, 57, 407-416. sova, K. I.; (104) Malyshev, V. 1.; Shiryaeva, M. E.; Sokolova, Z. A.; Lyubimova, L. M.; Salmln, Yu. P.; Tatarkin, M. A.; Ryumina, K. N.; Shelyaklna, A. M. J. Radioanal. Chem. 1980, 57, 287-297. (105) Menyailov, A. A.; Pavlov, V. A.; Petrukhin, V. A.; Timerbaeva, K. M.; Andrievskii, E. N. Izv. Vyssh. Uchebn. Zavsd., Geol. Raw&. 1978, 3 , 124-1 73. (106) Mudra, K.; Slmkova, M. Radiochem. Radioanal. Lett. 1979, 38. 181-188. (107) Padracky, P.; Hejl, V. 0.; Mastalka, E.; Frana, J. Radlolsotopy, 1977, 18, 829-838. (108) Buczho, Cs. M.; Ilkov, N. L.; Borbeiy, A. Radiochem. Radioanal. Lett. 1978, 35, 175-179. (109) Barrondon, J. N.; Irigoin, J. Archaeometry 1978, 21, 101-106. (110) Byrna, A. R.; Vrbic, V. J. Radioanal. Chem. 1979, 54, 77-85. (111) Laul, J. C. At. Energy Rev. 1979, 17, 603-95. (112) Guichard, F.; Church, T. M.; Treuii, M.; Jaffrezlc, H. Geochem. Cosmochem. Acta, 1979, 43, 983-997. (113) Luckscheiter, B.; Parekh, P. P. Neues. Jahrb. Mineral 1979, 3 , 135-l A A

(146) 'Bergerloux, C.; Zikovsky, L. J. Radioanal. Chem. 1980, 57, 137-146. (117) Gurevich, A. V.; Vikhrova, 2. V.; Vyropayev, V. Ya.; Drynkln, V. I.; Leipunskaya, D. I.; Shlrokova, I.Ya. J. Radioanal. Chem. 1980, 57, 417-422. (1 18) Moeller, P. Atomkernenerg.lKerntech. 1979, 34, 291-293. (119) Tripathi, P. S. M. Erdoel Kohle, Erdgas, Petrochem. 1979, 32, 256-262. (120) Lewls, R. S.; Aberts, L.; Hertogen, J.; Janssens, M. J.; Palme, H.; Anders, E. Geochim. Cosmochim. Acta, 1979, 42, 897-903. (121) Takahashi, H.; Gros, J.; Higuchi, H.; Morgan, J. W.; Anders, E. Geochim. Cosmochim. Acta, 1978, 42, 1859-1869. (122) Gladney, E. S.; Perrin, D. R. Anal. Chem. 1979, 51, 2297-3000. (123) Borderie, B.; BasUtcu. M.; Barrandon. J. N.; Plnault. J. L. J. Radloanal. Chem. 1980, 56, 185-98. (124) Papper, C. S.; Chittleborough, C.; Chaudhri, M. A. Proc.-Aust. Conf. Nucl. Tech. Anal. 1978, 2nd, 111-12. (125) Guma, V. I.; Lisltsyn, A. Ye.; Miller, V. V. Int. Geol. Rev. 1979, 21, 227-230. (126) Hydrogeochemicaland stream sediment reconalssance: National Uranium Resource Evaluation program. Savannah River Laboratory semi-annual report, Oct 1979-March 1980. DuPont de Nemours (EL) and Co., Aiken, SC (USA), Savannah River Lab. (127) Smith, R. C.; Rodriguez, R. G. Nucl. Instrum. Methw's, 1979, 158, 261-280. (128) Bernshtejn, L. A.; Zalesskij, V. L. Tr. Mosk. Khim. TekhnolInst. Khimlya Tekhnol. Osobo Chistykh Veshchestv 1977, 96, 47-52. (129) Croudace, I.W. Chem. Geol. 1979, 25, 175-177. (130) Das, H. A.; Faanhof, A.; Van der Sloot, H. A. J. Radioanal. Chem. 1979, 54, 289-301. (131) Das, H. A.; Faanhof, A,; Van der Sloot, H. A. J. Radioanal. Chem. 1979, 54, 303-310. (132) Fujinaga, K. J. Radioanal. Chem. 1980, 57, 29-35. (133) Lyon, W. S. Radiochem. Radioanal. Lett. 1880, 42, 1-4. (134) McGlniey, A. N.; Schwelkert, E. A. J. Radioanal. Chem. 1979, 52, 101-1 10. (135) Bachinskl, S. W.; Scott, R. B. Geochim. Cosmochim. Acta 1979, 43, 93-100. (136) Ackerman, F.; Bergmann, H.; Schlelchert, U. 2. Anal. Chem. 1979, 296, 270-276. (137) Blommaert, W.; Vandelannoote, R.; Van't Dack, L.; Gijbels, R.; Van Grieken, R. J. Radioanal. Chem. 1980, 57, 383-400. (138) Failey, M. P.; Anderson, D. L.; Zoller, W. H.; Gordon, G. E.; Lindstrom, R. M. Anal. Chem. 1979, 51, 2209. (139) Miyazaki, A.; Kimura, A.; Umezaki, Y. Anal. Chim. Acta 1979, 107, 395-398. (140) Dale, L. S. Appl. Spectrosc. 1979, 33. 404-406. (141) Uchida, H.; Uchida, T.; Chuzo, I.Anal. Chim. Acta 1979, 108, 87-92. (142) Wolcott, J. F.; Woodworth, J. R. Appl. Spectrosc. 1979, 33, 413. (143) Barnes, R. M., Ed. "Appl. Inductively Coupled Plasmas Emiss. Spectrosc." Franklin Inst. 1978, pp, 188. (144) Barnes, R. M., Ed. "Appl. Plasmas Emission Spectrochem."; Heyden: 1979, pp 147. (145) Watters, R. L., Jr.; Norris, J. A. Appl. Inductively Coupled Plasmas €miss. Spectrosc. 1978, CONF. PROC. (Franklin Inst. Press, Philadelphia, PA.), 65-81. (146) Golightly, D. Appl. Inductively Coupled Plasmas €miss. Spectrosc. 1978, CONF. PROC. (Franklin Inst. Press, Philadelphia, PA.), 107-19. (147) Carr, C. D.; Borst, J. E. Appl. Plasma €miss. Spectrochem., (Pap, Annu. Meet. Fed. Anal. Chem. Spectrosc. SOC.). 5th, 1979, 33-45. (148) Ward, A. F.; Luciano, V. J.; Marciello, L. F. Appl. Plasma €miss.! Spectrochem.,(Pap. Annu. Meet. Fed. Anal. Chem. Spectrosc. SOC.),5th, 1979, 71-8. (149) Burman, J. 0. Appl. Plasma Emiss. Spectrochem., (Pap. Annu. Meet. Fed. Anal. Chem. Spectrosc. SOC.),5th, 1979, 15-22. (150) Yano, Y.; Tanuma, S. Bunseki 1980, 4 , 272-5; CA, 93, 050699a 11980) ._.,. (151) Burman, J. 0.; Bostroem, K. Kem. Tidskr. 1980, 92, 28-34; CA, 93, 1 9 6 9 6 2 ~(1980). ~

(152) Walsh, J. N. Spectrochim. Acta, Part B 1980, 356,107-11. (153) Broekaert, J. Laborfraxis 1980, 4, 43-4, 46-7; CA, 92, 190579r (1980). (154) Schroth, H. Fresenius' 2. Anal. Chem. 1979, 296. 286-7. CAS92. 081022h (1980). (155) Ohls, K.; Sommer, D. Fresenlus' Z . Anal. Chem. 1979, 296, 241-6, CA, 9 1 , 067934e (1979). (156) Endo, Y.; Sakao, N. Tetsu to Haagane. 1980, 66, 1395-400, CA, 93, 1179111 119801. ,, (157) -Sugimae, A. Taiki Osen Gakkaishi 1979, 14, 389-98; CA, 93, 137089a (1980). (158) Notsu, K.; Mabuchi, H. Cult. Prop. Anal. Chem.. Int. Symp. Consew. Restor. Cult. (Prop., 2nd), 1978, 111-24. (159) Boumans, P. W. J. M. Fresenius' 2. Anal. Chem. 1878, 299, 337-61. (160) Ward, A. F. Am. Lab. (Fairflekj, Conn.) 1978, 70, 79-87. (161) Barnes, R. M. Wlss. Z.-Karl-Marx-Unlv. Leipz/g, Math.-Naturwlss. Reihe 1979, 28, 383-92. (162) Parsons, M. L.; Forster, A.; Anderson, D. "An Atlas of Spectral Interferences In ICP Spectroscopy", Plenum Press; New York, 1980; 644 pp. (163) Miller, W.; DeMenna, G. The Spex Speaker, Year 25, Issue 3 , 1980, 1-11. (164) Motooka, J. M.; Mosler, E. L.; Sutley, S. J.; Viets, J. G. Appl. SpectrOSC. 1979, 33, 456-80. (165) Thompson, M.; Pahlavanpour, 8.; Walton, S. J.; Kirkbright, G. F. Analyst (London) 1978, 103, 705-13. (166) Pahlavanpour, B.; Thompson, M.; Waiton, S. J. J. Geochem. Explor. 1979, 12, 45-55. (167) Lechler, P.; Lelninger, R. K. Morgantown Energy Techno/. Cent., (Spec. Pub/.) METC/SP (US. Dep. Energy), 1978, 273-9. (168) Grallath, E.; Tschoepel, P.; Koelblin, 0.; Stix, U.; Toelg, G. Fresenlus' Z . Anal. Chem. 1980, 302, 40-51; CA, 93, 0 6 0 4 9 4 ~(1980). (169) Hoult, D. W. At. Spectrosc. 1980, 1 , 82-3. (170) Nlkdel, S.; Massoumi, A.; Winefordner, J. D. Mlcrochem. J. 1979, 24, 1-7. (171) Broekaert, J. A. C.; Lels, F.; Laqua, K. Spectrochim. Acta, Part B 1979, 348, 73-84. (172) Broekaert, J. A. C.; Leis, F.; Laqua, K. Spectrochlm. Acta. Part B 1979, 348, 167-75. (173) Uchida, H.; Uchlda, T.; Iida, C. Anal. Chim. Acta 1880, 776, 433-7. (174) Akalwa, H.: Kawamoto, H.; Hasegawa, K. Talanta 1979, 26, 1027- 1028. (175) Chakraborti, D.; Adams, F. Anal. Chim. Acta 1979, 109, 307-317. (176) Sorensen, D. L.; Knelb, W. A.; Porceila, D. B. Anal. Chem. 1979, 51, 1870- 1872. (177) Bebeshko, G. I.; Roze, V. P.; Khallzova, V. A. Zh Anal. Khlm. 1978, 34, 507-510 (Russ.), 388-391 (Engl.). (178) Jones, D. L.; Moody, 0. J.; Thomas, J. D. R.; Hangos, M. Ana/yst (London) 1979, 104, 973-6. (179) Korkisch, J.; Steffan, I.; Fisk, M. B. Anal. Chim. Acta 1979, 108, 63. (180) Korkisch, J.; Steffan, I.; Nonaka, J.; Arrhenius, 0. Anal. Chim. Acta 1879, 109, 181. (181) Fraley, D. M.; Yates, D.; Manahan, S. E. Anal. Chem. 1979, 57, 2225. (182) Reeve, R. N. J. Chromatogr. 1979, 777, 393-7. (183) Schwedt, G. Chromatographia 1979, 12, 613-19. (184) Toropova, V. F.; Polyakov, Yu. N.; Naumova, E. A. Elektrodyne Protsessy Adsorbtslya. 1978, 2 , 141-9; CA, 97, 221863q (1979). (185) Fuller, C. W. Proc. Anal. Dlv. Chem. SOC. 1979, 18, 199-203. (186) Klrchner, S. J.; Oona. H.; Perron, S. J.; Fernando, 0.; Lee, J. J.-H.; Leithin, H. Anal. Chem. 1980, 52, 2195-2201. (187) Flanagan, F. J.; Gottfrled, D. USGS Professlonal Paper No. 1155, 1980, 39 p. (188) Kirsten, W. J. Anal. Chem. 1979, 57, 1173-1179. (189) IUPAC Analytical Chemistry Dlvlsion. Pure Appl. Chem. 1979, 57, 1195-211. (190) Russell, D. S. Chem. Can. 1979, 31, 13-16. (191) Gijbels, R. H. Euroanal. 3, Rev. Anal. Chem., (Conf.), 3rd. 1978, 295-330. (192) Asami, T. Bunseki1980, 9 , 598-607; CA, 93, 1 8 9 2 6 2 ~(1980). (193) Kullerud, G.; Steffen, R. M.; Simms, P. C.; Rickey, F. A. Chem. Geol. 1979, 25, 245-56. (194) Schroen, W. Wiss. Z.-Karl-Marx-Univ. Le/pz/g, Math-Naturwiss. Relhe 1979. 28, 443-8; CA, 92, 0689012 (1980). (195) Chen. J. K.; Liu, J. C.; Luo, 0.Y.; Zeng, Y. E. Hua Hsueh Tung Pa0 1979, 4, 292-7; CA, 91, 150548~(1979). (196) Paterson, E. Anal. R o c . (London) 1980, 17, 234-6. (197) Bancrott, 0. M.; Brown, J. R.; Fyfe, W. S. Chem. Geol. 1979, 25, 227-43. (198) Colomban, P. Ind. Ceram. 1979, 734, 815-20; CA, 92, 208290b (1980). (199) Turner, N. H.; Murday, J. S.; Ramaker, D. E. Anal. Chem. 1980, 52, 84-92. (200) Liehu, A. E. Solid State Nucl. Track Detect., Proc. Int. Conf., 9th. 1978, 7, 689-95. (201) Lefevre, R.; Cuif, J. P. Trav. Lab. Micropaleontol. (Univ. Pierre-etMarie-Curie). 1979, 8 , 5-37; CA, 92, 1 6 6 5 8 0 ~(1980). (202) Wright, J. C.; Gustafson, F. J. Anal. Chem. 1978, 50, 1147A-l148A, 1150A, 1152A, 1154A, 1156A, 1158A, 116OA. (203) Jagoutz, E.; Palme, C. Anal. Chem. 1978, 50, 1555-8. (204) Nuhfer, E. B.; Romanosky, R. R. At. Absorpt. News/. 1979, 18, 8-9, (205) Schwedt, 0. Top. Curr. Chem. 1879, 85, 159-212. (206) Curtis, D.; Giadney, E.; Jurney, E. Geochim. Cosmochim. Acta 1980, 44, 1945-1953. (207) Morgan, J. W.; Wandless, G. A. Geochlm. Cosmochim. Acta 1980, 44, 973-980. - - - I

ANALYTICAL CHEMISTRY, VOL. 53, NO. 5, APRIL 1981

43R

Anal. Chem. 1981, 53, 4413-61 R (208) Garcia, M. 0.; Llu, N. W. K.; Muenow, D. W. Geochim. Cosmochim. Acta 1979. 43. 305-312. (209) Shlma, M. iieochlm. Cosmochim. Acta 1979, 4 3 , 353-362. (210) Crozaz, G. Geochlm. Cosmochim. Acta 1979, 43, 127-136. (211) Heinrlchs, H.; Schultz-Dobrick, 6.; Wedepohi, K. H. Geochim. Cosmochim. Acta 1980,44, 1519-1533. (212) Heinrlchs, H. 2.Anal. Chem. 1979a, 294,345-351. (213) Heinrichs, H. Z. Anal. Chem. 1979b, 295,355-361. (214) Freund, F.; Kathrein, H. Wengler, H.; Knobel, R.; Helnen, H. J. Geochim. Cosmochlm. Acta 1980, 4 4 , 1319-1333. (215) Stettler, A.; Bochsler, P. Geochim. Cosmochim. Acta 1979, 43, 157-169. (216) Nyquist, L. E.; Shlh, C.-Y.; Wooden, J. L.; Bansal, B. M.; Wiesmann, H. Proc. Lunar Pbnet. Scl. Conf. 70th. 1979, Voi. 1, 77-114. (217) Skougstad, M. W.; Fishman, M. J. Toxicol. Mviron. Chem. Rev. 1978, 2,219-36. (218) Kapelner, S. M.; Trocciola, J. C.; Freed, M. S. Ion Chromatogr. Anal. Environ. Pollut. 1979,2,345-60. (219) Ingamelis, C. 0.Geostandards Newsletter, 1978, Vol. 11, 115. (220) Eison, C. M.; Dostai, J.; Hynes, D.L.; de Albuquerque, C. A. R. Geostandards Newsletter, 1978,Vol. 11, 121. (221) Clemency, Ch. V.; Borden, D. M. Geostandards Newsletter, 1978, Vol. 11, 147. (222) Stoch, H.; Steele, T. W.; Rankin, R. S. Geostandards Newsletter, 1979, Vol. 111, 25. (223) Johansen, 0.;Stelnnes, E. Geostandards Newsletter, 1979, Vol. 111, 47. (224)-Fuge, R.; Johnson, C.C. Geostandards Newsletter, 1979, Vol. 111, 51. (225) Boriey, 0. D.; Rogers, N. Geostandards Newsletter, 1979, Vol. 111, 89. (226) Schnepfe, M. M. Geostandards Newsletter, 1979, Vol. 111, 93.

(227)Abbey, S.;Meeds, R. A. Geostanderds Newsletter, 1978, Voi. 111, 121. (228) Bornhorst, Th. J.; Balagna, J. P. Geostandards Newsletter, 1979, Vol. 111. 177. (229)’Van Der Sloot, H. A.; Zonderhuis, J. Geostandards Newsletter, 1979, Vol. 111, 185. (230) Rosman, K. J. R.; De Laeter, J. R. Oeostandards Newsletter, 1980, voi. IV, 1. (231) Ledger, E. B.; Tleh, T. T.: Rowe. M. W. Geostandards Newsletter, 1980, Vol. IV, 5.

(232) Erzlnger, J.; Puchelt, H. Geostandards Newsletter, 1980, Vol. IV, 13. (233) Troll, G.; Farzaneh, A. Geostandards Newsletter, 1980, Vol. IV, 37. (234)Jarosewich, E.; Nelen, J. A.; Norberg, J. A. Geostandards Newsletter, 1980. VOl. IV. 43. (235) hiazzucoteiil, A.; Vannucci, R. Geostandards Newsletter, 1980, Vd. IV, 149. (236)Neil, S. T. Geostandards Newsletter, 1980, Voi. IV, 205. (237) Knechtei, J. R.; Fraser, J. L. Geostandards Newsletter, 1980, Vol. IV, 213. (238) Bennett, H. Geostandards Newsletter, 1980, Vol. IV, 247. (239) “Studies in “Standard Samples” for use in the general analysis of Silicate Rocks and Minerals, Part 6: 1979 Edltlon of “Usable” values”, Geological Survey of Canada: Ottawa, 1880,30 pp. (240) Stoch, H.; Ring, E. Rep.-Natl. Inst. Mefall. ( S . Afr.) 1980, 2042,25 PP.

(241) Gladney, E. S.;Perrin, D. R.; Owens, J. W.; Knab, D. Anal. Chem. 1979, 57, 1557-69. (242)Umezaki, Y.; Bansho, K. Sangyo ‘ 0 Kankyo. 1978, 7 , 110-15; CA, 92,046997h (1980). (243) Hughes, T. C. Roc.-Aust. Conf. Nucl. Tech. Anal. 1978, 2nd, 113-17.

Ferrous Analysis W. A. Straub” and J. K. Hurwitz United States Steel Corporation, Research Laboratory, Monroeville, Pennsylvania 15 146

This review is the latest in a continuing series of papers covering the period from November 1978 to October 1980. The previous review (722) was published in 1979. A major change in the format of this paper from previous papers was made to help the reader find specific information quickly. The references listed in the bibliography have been divided into categories and presented in Table I. The analytical methods are column headings, and the elements determined are row headings. Under each element, there are several subcategories referring to the matrix in which the element is resent, such as carbon and low-alloy steels, ores, and slags. hen few references are available, when the material does not lend itself to the tabular format, or when significant advances have been made, written descriptions follow.

P

BOOKS AND REVIEWS This current literature survey is a continuation of similar reviews b the same authors, the last of which appeared in 1979 (7227. Other reviews of the chemical analysis of steels have appeared in the past 2 years in German (676) and in a 233-page bibliography with abstracts (116) in English. Most noteworthy, a recently published book covers the entire field of analytical control of iron and steel production (852). ASTM publications on sampling and analysis of metals and ores have made their regular appearance (16,17). A two-part anal sis survey was published in 1980 on general techniques a n i i n strumentation for steelmaking analysis and production control (13.310). Instrumental methods of ferroallov analvsis have been reviewed (298). LD-steelmaking chemical control has been discussed (154) as have phvsical metallurgical determinations used in metallographic investigations 7232). General reviews of chemical analysis of iron and steel have appeared in Japanese (485) and in English (630). Calibration of physical analytical methods in a steel mill laboratory has been discussed (713) as has the analytical control of principal materials in a quality-control laboratory (662). The analysis of trace components in iron and steel has been reviewed (669). 44 R

Ores/Slags/Sinters/Concentrates. Two Indian publications have appeared concerning the chemical and instrumental analysis of ores and minerals (646)and the samplin of iron ores (698). X-ray fluorescence, and nuclear analytic8 methods, including photon activation and neutron activation, have been reviewed with regard to ore prospecting applications (308). Modern analytical methods, including emission and atomic-absorption spectrometry, X-ray fluorescence, and potentiometry as applied to raw materials were also covered (540). Instrumental methods of sla analysis have been discussed (694). A review of the use ofthe ore microscope and electron microprobe in the mining industry has appeared. A short review of the use of radioisotopic X-ray fluoresence determinationof iron in concentrateswas published in Chinese (301),and nuclear techniques of bulk-iron-ore analysis have been reviewed in English (90). Three reviews have appeared that have recommendations for the various methods of chemical analysis of prereduced iron ores and sinters (212, 240, 571).

Atomic Absorption Spectrometry. Extensive reviews of the use of atomic absorption (AA) spectrometry in ferrous metallurgy have been published in German (681), in Czech (353),and in Japanese (566),and a comprehensive review of the use of AA for the analysis of diverse metallurgical materials has appeared in English (58). Specific applications of twochannel AA in a cast-iron and steel foundry have been dlscussed (705) as has an interlaboratory round-robin test of the use of AA for the determination of trace metals in iron ores (567). X-ray Spectral Methods. A Russian review of the foreign literature on the use of X-ray spectral methods in ferrous metallurgy was published in 1978 (530). The use of X-ray fluorescencefor minerals exploration (144),iron-ore analysis (216), and foundry pig-iron analysis (231) as well as its use as a comparison with optical emission spectrometry in a foundry (244) has been reviewed. X-ray fluorescence methodology as used for iron and steel analysis in Japan was reported in the Japanese literature (21,

0003-2700/81/0353-44R$06.00/0 0 1981 American Chemical Society