Glucose Isomerization by Enzymes and Chemo-catalysts: Status and

Mar 16, 2017 - Isomerization of glucose is also a central reaction for making renewable platform chemicals, such as lactic acid, 5-hydroxymethylfurfur...
12 downloads 19 Views 1MB Size
Review pubs.acs.org/acscatalysis

Glucose Isomerization by Enzymes and Chemo-catalysts: Status and Current Advances Hu Li,† Song Yang,† Shunmugavel Saravanamurugan,*,‡ and Anders Riisager*,§ †

State-Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China ‡ Center of Innovative and Applied Bioprocessing (CIAB), Mohali 140 306, Punjab, India § Centre for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark ABSTRACT: The well-known interconversion of aldoses to their corresponding ketoses was discovered more than a century ago, but has recently attracted renewed attention due to alternative application areas. Since the pioneering discovery, much work has been directed toward improving the process of isomerization of aldoses in terms of yields, catalysts, solvents, catalytic systems, etc., by both enzymatic and chemo-catalytic approaches. Among aldose− ketose interconversion reactions, fructose production by glucose isomerization to make high-fructose corn syrup (HFCS) is an industrially important and large biocatalytic process today, and a large number of studies have been reported on the process development. In parallel, also alternative chemo-catalytic systems have emerged, as enzymatic conversion has drawbacks, though they are typically more selective and produce fructose under mild reaction conditions. Isomerization of glucose is also a central reaction for making renewable platform chemicals, such as lactic acid, 5-hydroxymethylfurfural (HMF), and levulinic acid. In these other applications, thermally stable catalysts are required, thus making use of enzymatic catalysis inadequate, since enzymes generally possess a limited temperature operating window, typically less than 80 °C. From this viewpoint, the chemo-catalysts especially solid heterogeneous catalystsare playing a key role for the development of not only making HFCS, but also making chemicals and fuels from glucose via the isomerized product/intermediate fructose. This review focuses on how both enzymeand chemo-catalysts are being useful for the isomerization of glucose to fructose. Specifically, development of Lewis acidcontaining zeolites for glucose isomerization is reviewed in detail, including mechanism, isotopic labeling, and computational studies. KEYWORDS: glucose, fructose, isomerization, Lewis acid and base, enzyme, catalysis

1. INTRODUCTION The isomerization of aldose to ketose carbohydrates is a highly important industrial reaction with large-scale applications in both the food and pharmaceutical industries. One of the key industrial applications is to make the sweetener product high-fructose corn syrup (HFCS) (also referred to as glucose− fructose syrup, GFS), which contains an aqueous mixture of glucose (aldohexose) and its isomer fructose (ketohexose) in various ratios.1,2 Fructose is the sweetest among the naturally available carbohydrates,3−6 and 4.6% fructose has a sweetness equivalent corresponding to 8.3% glucose or 5% normal table sugar, i.e., sucrose (disaccharide of glucose and fructose).7 Particularly in the US and Japan, many food products, such as soft drinks, processed food, cereals, and baked goods, comprise HFCS as an economic alternative to sucrose.8,9 In the EU, the use of HFCS is currently less pronounced due to regulation by a product quota.10 The interconversion of glucose to fructose is applicable not only to produce sweeteners, but potentially also to make a wide range of other chemicals and fuels derived from sugars, where © 2017 American Chemical Society

fructose is a key intermediate compound. Hence, much effort has been devoted in the last years to covert glucose preferentially derived from the polysaccharides contained in terrestrial biomass, such as cellulose, hemicellulose, starch, inulin, and pectinvia fructose to numerous chemicals, as summarized in several reviews.11−15 A noteworthy commercialized reaction is the dehydration of glucose via fructose to 5-hydroxymethyl furfural (HMF).16 HMF can be further processed into 2,5-furandicarboxylic acid (FDCA), which is a renewable substitute for petroleum-based terephthalic acid in polyester.17,18 In a similar manner, fructose is also an intermediate to make other important chemicals, such as levulinic acid and its esters, alkyl fructosides, and 5-ethoxymethylfurfural (Scheme 1).19−24 The interconversion reaction of glucose to fructose was discovered as early as in 1895 by Lobry de Bruyn and Van Ekenstein.25 For a period of about 100-years after this Received: December 21, 2016 Revised: March 13, 2017 Published: March 16, 2017 3010

DOI: 10.1021/acscatal.6b03625 ACS Catal. 2017, 7, 3010−3029

Review

ACS Catalysis

D-glucose by using the same xylose isomerase in Pseudomoaas hydrophil by adjusting the reaction conditions such as incubation time, pH, and temperature.49 Concomitantly, arsenate was required as an additive to perform the isomerization of D-glucose. Similar kind of studies have also been carried out by Tsumura and Sato to produce D-xylose grown cells of Aerobacter cloacae which was isolated from Japanese soil to perform D-glucose isomerization, but they still entailed arsenate in the reaction system.50,51 The enzyme extracted from the D-xylose-grown cells heterolactic acid bacteria, called glucose isomerase, which has an 8-fold increase in specific activity after the partial purification, was found by Yamanaka in 1963.52 The final equilibrium mixture between glucose and fructose was 40 and 60%, respectively. However, the presence of manganese ions was imperative for the activity of D-glucose isomerase. A D-glucose isomerizing enzyme from Escherichia intermediate HN-500 was also disclosed for the interconversion of glucose to fructose in the presence of arsenate and found to produce a sugar equilibrium of 55 and 45%, respectively.53,54 Isomerization of glucose to fructose using D-glucose/xylose isomerase, generally referred to as glucose isomerase (GI) (EC 5.3.1.5), is an industrially important biocatalytic process for the commercial production of the sweetener HFCS.55 The commercial production of HFCS was initially developed in Japan and later in the US due to the lack of sucrose supply after the Cuban revolution in 1958.55 The immobilized GI was commercially applied in the US as early as 1967 based on the production of HFCS from corn starch.55 However, until 1976, sucrose was the main sweetener derived from sugar beet (40%) and sugar cane (60%). In recent years, attention has also been placed on defatted microalgal biomasses as substrates for producing fructose with immobilized GI, resulting in various monosaccharides, such as glucose, galactose, fructose, and xylose.56−58 Currently, the reversible isomerization of glucose to fructose is carried out on large industrial scale in aqueous phase with GI (EC 5.3.1.5), which possesses high reaction specificity under benign pH conditions and relatively low reaction temperatures. However, major drawbacks of the process are inactivation of GI at higher temperatures (above 60 °C), narrow pH operation window, inhibition of GI in the presence of Ca2+ ions (prerequisite for the action of amylase when liquefaction, saccharification, and isomerization are carried out simultaneously), requirement of Co2+ ions for enzyme activity, and suboptimal concentrations of the product.55 Notably, the combination of divalent metal ions (e.g., Co, Mn, Mg, and Fe) with the aminoacid compositions of GI (e.g., histidine) can contribute to the improvements in terms of both activity and stability of the enzymes.59−67 The immobilization of GI with porous materials (e.g., silica/chitosan hybrid microspheres) can somewhat extend the narrow range of pH (5.8−8.0) and temperature (40−80 °C), but still not widely enough.68−71 For these reasons, the enzyme efficiency is still low from an economic point of view, and a large quantity of enzyme is thus needed to obtain viable throughputs.55,72 To overcome these drawbacks, a suitable chemo-catalytic system is thus desirable and the later sections discuss both homogeneous and heterogeneous catalyzed isomerization. 2.2. Alternative approaches with enzymes. Microwave (MW) irradiation is an alternative reaction approach which is considered to be clean, fast, and a convenient energy source.73 MW irradiation has been demonstrated to enhance the activity and stability of silica immobilized GI (SIGI).74 A high fructose

Scheme 1. Representative Products Derived from Fructose19−24

discovery, the interest in the reaction has mainly been dominated by biocatalytic approaches with enzymes and mineral acid/base catalysis. However, renewed interest has emerged within the last decades for exploration of chemocatalytic approaches with solid acid catalysts in application areas such as biomass valorization, as mentioned above. The catalytic mechanism for glucose isomerization generally involves either a Lewis acid-catalyzed intramolecular 1,2-hydride shift from the C2 to C1 position of the acyclic glucose by forming a six membered cyclic intermediate or a basemediated enediol mechanism activated by abstracting a proton at the C2 position of glucose.26−28 In the case of enzyme as catalyst, it functions as a metal(s) assisted 1,2-hydride shift as resembles the acid-catalyzed mechanism.29 In most cases, catalytic epimerization of glucose to mannose may concomitantly take place via an intramolecular carbon shift between the C1 and C2 positions.30,31 This review aims to describe how both enzyme- and chemo-catalysts are useful for the isomerization of glucose to fructose, and especially to highlight recent results and mechanistic insights obtained with Lewis acid-containing zeolites from isotopic labeling and computational studies.

2. BIOCATALYTIC PROCESSES Enzymes such as glucose and xylose isomerases have been studied for the past several decades, with significant progress being achieved in glucose-to-fructose isomerization.32−43 In this section, an overview of glucose-to-fructose isomerization via biocatalysis is the focus and various approaches with enzymes and theoretical studies of representative examples are also briefly discussed for subsequent comparisons to chemo-catalytic processes. 2.1. Enzymes. The first enzymatic isomerization of monosaccharides was performed in 1952, where studies were conducted to corroborate the enzymatic interconversion of erythrose to erythrulose in the presence of a rabbit muscle.44−47 In 1953, Hochster and Watson found a specific enzyme called xylose isomerase in Pseudomoaas hydrophil, which can catalyze the interconversion of the C5 sugars D-xylose to D-xylulose.48 Moreover, these authors have also reported that an enzyme called xylose isomerase was unable to isomerize aldoses other than xylose. Interestingly, Marshall and Kooi (in 1957) were the first to demonstrate the formation of D-fructose from 3011

DOI: 10.1021/acscatal.6b03625 ACS Catal. 2017, 7, 3010−3029

Review

ACS Catalysis Scheme 2. Assay Methods for Probing Glucose−Fructose Isomerization over Enzymes or Chemical Catalysts79

which was measured electrochemically to quantify the amount of fructose. The study reported 45% fructose; however, no details about the quantification of mannose (epimerized product of glucose) were revealed, thus making this method less attractive. Unlike the sample preparation required for chromatographic analysis for quantifying sugars,80−82 1H and 13C nuclear magnetic resonance (NMR) spectroscopy can directly provide both structure identification and quantification with known internal standards.83−85 Particularly, high-resolution magic angle spinning NMR spectroscopy (HR-MAS NMR) was able to directly determine the sugar content intact in plant tissue.86 Also, the DNS (alkaline 3,5-dinitrosalicylic acid reagent) method is useful for reducing sugar analyses; however, it is difficult to quantify the formed sugars individually.87 In addition, near-infrared (NIR) spectroscopy and FT-Raman spectroscopy have also recently been demonstrated to be applicable for quantitative determination of the concentrations of different sugars (e.g., fructose, glucose, and sucrose) in food, such as honey and juice.88,89 These reports reveal that developing analytic techniques for facile quantification of sugars is continuing. 2.3. Theoretical studies on enzymatic isomerization and other aspects. There are a large number of studies (including theoretical ones) focused on the stability and activity of GI and the reaction kinetics for the isomerization of glucose.90−96 In order to understand the reaction kinetics and GI enzyme deactivation of the enzymatic conversion of glucose to fructose in a batch reactor, Sproull et al. proposed a reversible Briggs−Haldane reaction model, in which the elementary reaction and inactivation rate constants showed an Arrheniustype temperature dependence.97 The “proteases” (hydrolases enzymes) were assumed to be homogeneously distributed in the whole cells to predict the model for glucose isomerization, and were demonstrated to have a much faster thermal inactivation rate constant than isomerase. They further deduced that inactivating the “proteases”, while minimizing activation of the GI enzyme, might be achievable by heat treatment of the reaction solution. It was further concluded that this would be useful to optimize operating parameters toward a lower cost base. In addition to the conventional reversible Briggs−Haldane reaction model, a performance equation was developed for immobilized GI in a continuous-feed stirred tank reactor by Chen and Chang to obtain a better understanding of how the stability of the enzyme particles was affected by the internal diffusion resistance.98 It has also been observed that the performance of GI could drastically be influenced by thermal

yield of 45% could be achieved with a glucose concentration of 0.8 M with 2% SIGI, 0.1 M PBS buffer (pH 7.5), and a magnesium ion concentration of 50 mM at 70 °C after 16 h under MW irradiation (480 W). A limited number of studies are concerned with the enzymatic conversion of glucose to fructose in organic solvents, since the process usually works best in water. However, isomerization of glucose has been achieved in aqueous ethanol (85−90%) to produce 55% of fructose-containing HFCS in the presence of tris-HCl buffer (25 mM, pH 7.0, containing 1 mM CoCl2 and 20 mM MgSO4) at 30 °C, indicating that GI can sustain and maintain its activity in an aqueous solution of organic solvent such as ethanol.75 In a search of alternative suitable solvents, Ståhlberg et al. (2012) screened various ionic liquids as solvents for GI in enzymatic conversion of glucose to fructose.76 They reported that a high fructose content of 55 and 58% could be obtained after 4 h at 70 and 80 °C, respectively, with GI in the presence of the ionic liquid N,N-dibutylethanolammonium octanoate (DBAO) and a trace amount of MgSO4. Although a substantial amount of mannose (yield 11%) was formed at elevated temperatures (e.g., 80 °C) after 24 h via epimerization, isomerization was achieved at temperatures of 60−80 °C.76 However, only a trace amount of fructose was observed without addition of water to the DBAO/GI system. Moreover, it was further demonstrated that addition of an equal volume of acid solution (1 M HCl) to the reaction mixture could result in complete recovery of the sugars to the aqueous phase, which provided a separation method suitable for large-scale production of these sugar mixtures. With immobilized GI, an impinging streams reactor combined with a plug flow was found to exhibit superior performance compared to a conventional batch stirred reactor for the solid−liquid enzyme reaction.77 The impinging jets technique seemed to greatly reduce external mass transfer resistance,78 enabling it to take only 9 s to reach 30% glucose conversion for fructose production. On the contrary, 5 min was required to achieve the comparable conversion in the packed-bed reactor. In order to assay the GI-mediated formation of fructose from glucose, Liu et al. introduced an electrochemical method (Scheme 2) as an alternative to high-performance liquid chromatography (HPLC), gas chromatography (GC), or Seliwanoff’s test (colorimetric method to determine ketoses).79 In this study, the formed fructose selectively reacted with redox active ferroceneboric acid (FBA) to form a FBA−fructose complex, 3012

DOI: 10.1021/acscatal.6b03625 ACS Catal. 2017, 7, 3010−3029

Review

ACS Catalysis Scheme 3. Schematic Routes for Isomerization of Glucose Derivatives102−107

Scheme 4. Possible Zwitterionic Intermediate-Based Mechanism for the Reversible Isomerization of F6P and G6P over Glu97 and His158113

deactivation of enzymes.99−101 On the contrary, Verhoff and Goldstein have found that the presence of substrate improved the stability of the enzyme by forming a complex between the active enzyme and substrate sites.91 For a traditional continuous process, thermal inactivation was responsible for a progressive decrease in the isomerization yield and thus a poor quality of the product obtained. To ensure a constant fructose yield, a pseudolinear model has been successfully derived by Palazzi and Converti, which was a satisfactory approximation of the more involved Briggs−Haldane approach, and substantially simplified the problem of optimizing an industrial fixed-bed column for HFCS production.90 Isomerization of D-glucose (1) to D-fructose (2) has been extended to study the interconversion of a series of D-glucose derivatives modified at position C-6 (e.g., 6-deoxy-6-thio-Dglucose (3), 6-deoxy-D-glucose (4), 6-O-methyl-D-glucose (5), the 6-azidodeoxy and the 6-fluorodeoxy derivatives of D-glucose (8,9), position C-3 (e.g., 3-O-methyl-D-glucose (12) and 3-deoxyD-arabino-hexose (13)), and both positions C-6 and C-3 (e.g., 6-azido-6-deoxy-3-O-methyl-D-glucose (16) and 6-azido-3,6dideoxy-D-ribo-hexose (17)), with immobilized GI to the corresponding derivatives of fructose (e.g., 6, 7, 10, 11, 13, 15, 18, and 19) with yields of 10−40%, as shown in Scheme 3.102−107 Nevertheless, modifications at position C-4 such as 4-deoxy-Darabino-hexose (4-deoxy-D-glucose) were not recognized as substrates. Subsequently, C-5-modified (2R,3R,4R)-configured hexoses could also be isomerized into the corresponding 2-ketoses (e.g., 5-deoxy-D-ribo-hexose, 5-azido-5-deoxy-D-allose) in the presence of GI.108 To clarify isomerization mechanisms, Rose and O’Connell have, based on experiments conducted in D2O, proposed that the hydrogen migration between fructose 6-phosphate (F6P) and glucose 6-phosphate (G6P)as a model reaction for understanding the hydrogen transfer from glucose to fructose was intramolecular, following an enediol mechanism.109 It was

suggested that the basic active sites in the enzyme attack the α-hydrogen of the carbonyl carbon of the substrate forming an acid-enediol intermediate, which eventually converts into product by transferring a second proton. On the other hand, Swan et al. have proposed the hydrogen transfer between C1 and C2 of the glucose/fructose to occur via a hydride shift, where Fe2+ is responsible for the proton transfer between O1 and O2.110 The hydrogen transfer between glucose and fructose via either an enediol or a hydride transfer mechanism has also been proposed by other authors.111,112 In view of the mechanistic controversies existing as to whether isomerization occurs via a 1,2-enediol intermediate mechanism or a hydride shift mechanism, QM(B3LYP)/MM single-point optimizations and QM(PM3)/MM molecular dynamics simulations were performed to study the reversible interconversion of the openchain forms G6P and F6P catalyzed by the metal-containing Pyrococcus f uriosus, PGI (phosphoglucose isomerase).113 On the basis of calculations and simulations, a zwitterion intermediatebased mechanism consisting both proton and hydride transfers was put forward (Scheme 4), which reconciled the controversial mechanisms and rationalized the enzymatic reaction. By using 1 D and 2D NMR methods, Abbas et al. further disclosed that the presence of metal electrophile to activate the carbonyl group of sugars was necessary for both the enediol and hydride shift processes.114

3. HOMOGENEOUS CHEMO-CATALYSIS 3.1. Base catalysis. As mentioned previously, the interconversion of glucose to fructose has been known for more than 100 years, since Lobry de Bruyn and Van Ekenstein discovered base or acid-catalyzed transformation of aldoses to the corresponding ketoses in 1895.25 The Lobry de Bruyn and Van Ekenstein rearrangement was further developed by Nef,115−117 while the formation of an enediol intermediate 3013

DOI: 10.1021/acscatal.6b03625 ACS Catal. 2017, 7, 3010−3029

3014

Polyethylenimine

[CTA]Si-MCM-41, -48, and -50

16

21

Mg−Al hydrotalcite synthesized by coprecipitation

15

Hydrotalcite, Amberlyst A21 and A26

as-synthesized, calcined, and rehydrated Mg−Al hydrotalcite

14

20

hydroxide-form DHT-4A2 hydrotalcite

13

Zirconium carbonate, hydroxide, and phosphate

NaAlO2

12

19

alkaline metal-containing metallosilicates (Na-X, Na-ETS-10, ETS-4, AV-1, etc.)

11

ZirconosilicatesSZS(6.7, 1.0)

H2O, DMSO, DMSO/ 55 °C, 3 h H2O, DMSO/ethylene glycol, ethylene glycol, DMSO/propylene glycol

CaO doped ZrO2

10

Alkaline metal-containing A, X and Y type zeolites and hydrotalcites

H2O

100 wt %

r-TiO2 or a- TiO2 and m/c-ZrO2

9

17

2.2 M

H2O

100 wt %

Aluminate resin-containing hydroxyl group

8

18

0.28 M

100 °C, 2 h

H2O

144 wt %

Hydroxide resin

7

0.56 M

0.1 M

AlCl3·6H2O

120 °C, 10 min

10 mol %

Arginine

6

0.56 M

100 °C, 30 min

5

0.056 M 0.28 M 0.56 M

0.56 M 0.56 M 0.56 M

100 °C, 30 min 95 °C, 8 bar N2 120 °C, 20 min 120 °C, 20 min 110 °C, 25 min

H2O H2O

H2O H2O

100 wt % + H2O 1 wt % NaCl

40 wt %

100 wt %

100 wt %

20 wt %

H2O

H2O

DMF

H2O

100 °C, 20 bar He, 2 h

5 wt %

200 wt %

33 wt %

20 wt %

0.56 M

160 °C, 15 min

100 °C, 1.5 h

0.56 M 0.11 M

200 °C, 5 min

0.17 M

0.9 M

2−35 °C, 1 h−42 d

H2O

100 °C, 5 h

1.1 M

35 °C, 40 h

H2O

0.56 M

0.25 M

120−160 °C (MW), 1−30 min

H2O or H2O/THF (1:3)

H2O

H2O

Pyridine

90 °C, 9−20 min

32 wt %

40 wt %

10 mol %

Morpholine, piperazine, ethylenediamine, triethylamine, piperidine, and pyrrolidine

4

0.056 M

116 °C, 1−3 h

66.7 wt %

Al2O3

0.02 M

100 °C, 90 s

3

H2O

0.04 M + 0.2 M

Na2B4O7 + NaOH

0.5−3.3 M

35−102 °C, 15 min− 10 days

2

H2O

0.3−3.5 wt %

Solvent(s)

Glucose (Conc)

Alkaline carbonate, hydroxide, phosphate, and sulfate

Catalyst(s)

Temperature, Pressure, Time

1

Entry

Catalyst loading

53

26−53

28−47

3−42

40−65

3−22

34

48−75

10−20

46−68

27−56

30

25−80

65−90

38

30−70

41

43−62

46−59



32−100

Glucose (Conv, %)

41

19−24

12−34

1−22

21−27

1−18

30

23−35

10−17

16−49

20−39

21

5−13

44−72

32

25−35

31

17−31

36−43

90

23−29

Fructose (Yield, %)

∼90

98

85

∼90

78−86

Carbon Balance (%)

Dihydroxyacetone: ∼95% 1−2; Glycolaldehyde: 1−2

Mannose: 2−9

Mannose: 4

HMF: 20

Mannose: 40%) was observed at 55−70% conversion of glucose. Moreover, the catalyst was prone to recycling, providing an unchanged fructose yield (>40%) for at least four reaction runs, indicating that the activity of the catalyst was much better than Sn-beta prepared by the plasma enhanced vapor phase deposition method.257 Very recently, Vega-Vila et al. have reported that Sn can be incorporated into the framework of dealuminated beta zeolites containing vacancy sites (silanol nest) by refluxing with stannic chloride in dichloromethane (60 °C). The resulting Sn-beta zeolite composed a wide range of Sn content (1.4−6.1 wt % Sn, Si/Sn = 30−144).259 The conventional Sn-beta with a low-defect, micropore environment exhibited 15−50 times higher glucose−fructose isomerization rates in water at 100 °C than postsynthetically prepared Sn-beta containing a high-defect, micropore environment, implying that removal of residual intrapore hydrophilic defect sites in Sn-beta samples should enhance the turnover rates of glucose isomerization.259 4.3.4. Alternative to Sn-beta catalysts. In an aqueous system, the yield of fructose was lower than 40% over Sn-, Ti-, and Zr-containing silicate materials. Saravanamurugan et al. have reported an alternative two-step strategy to improve the yield of fructose from glucose using aluminosilicate containing no auxiliary metals, such as Sn, Ti, and Zr. In this approach, commercially available zeolite catalysts containing only silicon and aluminum were employed in alcohol and aqueous media in two steps to get high yields of fructose (>50%) from glucose (Table 1, entry 35).260 Scheme 12 shows the isomerization reaction protocol in methanol via the one-pot, two-step approach. Glucose was first isomerized to fructose in methanol,

Scheme 12. Reaction Pathway for Isomerization of Glucose to Fructose via Alkyl Fructoside over Zeolite in Alcohol and Aqueous Media260

accompanied by part of fructose converted into methyl fructoside, as an intermediate in the etherification reaction (Step 1), followed by addition of water to hydrolyze methyl fructoside to improve the yield of fructose (Step 2).260 It has been demonstrated that the most active catalyst was zeolite Y, which was found to be more active than other zeolites, such as, e.g., beta, ZSM-5, and mordenite. A 55% yield of fructose could be obtained from glucose (3 wt %) via the two-step process after reaction at 120 °C for 1 h,. Moreover, it was possible to achieve above 46 and 38% of fructose yield with a 9.1 and 16.7 wt % solution of glucose, respectively, at a prolonged reaction time.260 Furthermore, it was demonstrated that the aluminosilicates (e.g., H-USY(6)) could be recycled for at least five reaction runs without loss of significant activity. The methodology of the two-step isomerization protocol with commercial zeolites has later been generalized to other C5 and C4 aldoses, such as xylose, lyzose, erythrose, and threose.261,262 Here high yields to the corresponding ketoses were also obtained over H-USY(6), such as xylulose (47%) and erythrulose (42%) from xylose and erythrose, respectively. In the case of C5 sugar isomerization, the reaction was carried out in a one-pot, two-step protocol as C6 sugar isomerization, whereas C4 sugar isomerization was carried out only in an aqueous phase.261,262 For both glucose and xylose isomerization in alcohol, the zeolites functioned as bifunctional catalysts by catalyzing isomerization of glucose and xylose to fructose and xylulose by Lewis acid sites, and subsequently trapping the fructose and xylulose as fructosides and xylulosides with Brønsted acid sites, respectively.263 This cascade process led to kinetic product control and enabled obtaining higher equilibrium fructose yields after hydrolysis by adding water in the second step. By using 1H−13C HSQC NMR assays, it was found that glucose isomerization predominantly took place through a 1,2-hydride shift into the pro-R position of fructose in methanol, which was in line with an enzymatic isomerization process with respect to the stereoselectivity.264 It was also observed that catalytic transformation of glucose to fructose with H-USY(6) encompassed solvent exchange, but to a small extent (∼4.6%). Moreover, the direct cascade conversion of glucose to alkyl levulinates was also reported via intermediate fructose formation over the same zeolites and sulfated zirconia catalysts.265,266

5. CONCLUSIONS AND PERSPECTIVES Enzymatic and chemo-catalytic isomerization of aldoses to ketoses, specifically interconversion of glucose to fructose, is a 3024

DOI: 10.1021/acscatal.6b03625 ACS Catal. 2017, 7, 3010−3029

Review

ACS Catalysis

chemo-catalysts will predominantly be the focus in glucose valorization in the future. Based on the viewpoints above, some of the following imperative studies with respect to a robust catalytic system toward glucose isomerization followed by a domino reaction to produce chemicals/fuels by enzymes and chemo-catalysts can be envisioned for further development: • Structural stability and recyclability of catalysts are anticipated for further enhancement by using emerging techniques such as new methodologies for catalyst preparation with short time and the use of alternative green biosolvents. • An unambiguous confirmation of the catalytic mechanisms of glucose-to-fructose isomerization with advanced or improved computational technology is highly required to guide and design robust catalysts. • The interest in the integrated and/or direct conversion of cellulosic biomass comprising glucose units to potential chemicals and fuels keeps mounting, thus emphasizing the development of novel catalysts or catalytic systems (e.g., integrated chemo-enzymatic approach) effective for glucose isomerization, which is a crucial step for catalytic valorization of glucose-containing biomass.

reaction with significant interest as shown in this review. For the isomerization of glucose, the performance of various types of catalysts, including enzymes, immobilized enzymes, organic bases such as NaOH, alkaline metal-containing solid catalysts, metal oxides, hydrotalcites, sulfonic acid functionalized resins, zeolite, and zeotype materials, are surveyed with respect to the obtainable yield of fructose at different reaction conditions. Both enediol and 1,2-hydride shift mechanisms have been proposed for the enzymatic conversion of glucose, and they are discussed based on how active sites in enzyme can coordinate with glucose to form fructose and vice versa. Sn-containing zeolites are suggested as attractive solid catalysts for the transformation of glucose to fructose and are also comprehensively surveyed, including 1,2-hydride shift mechanism and computational studies on how the active Sn sites play a crucial role in the reaction. Moreover, the possible role of adjacent silanol groups (generated from partially hydrolyzed Sn active sites/defect sites) to Sn active sites on interconversion of glucose is also reviewed. Notably, the perception in the literature of the role of Sn species, adjacent silanol, and solvent type in the isomerization of glucose to fructose seems controversial, signifying elucidation in future studies. Commercially available zeolites which do not contain any auxiliary metals, such as Sn, Ti, Zr, or Hf, are also presented in this review as alternatives to Sn-beta zeolites for the isomerization of glucose to fructose via methyl fructoside. Analogous to chemical processes, most biocatalysts are preferably utilized in immobilized heterogeneous form, as they can be recycled multiple times.267 More than 107 tons of HFCS is currently being produced per year on an industrial scale with about 1500 tons of immobilized enzymes,268 and the production of 42−55% HFCS with equivalent and/or higher sweetness than sucrose has been adopted by Coca-Cola, PepsiCo, and other beverage industries.269 However, the reaction rates with biocatalysts for producing HFCS are quite low even with the assistance of microwave and ultrasound irradiations.270,271 In this regard, chemo-catalytic processes are most likely to be robust candidates for producing HFCS from cellulosic biomass in comparable grades to enzymatic systems in a long-term perspective.272 Even though commercial production of HFCS has been successfully realized with either enzyme- or chemo-catalytic isomerization of glucose, some efficient strategies for synthesizing robust catalysts as new direction are still emanating for further improvement on the efficiency of the catalytic systems. For instance, Delidovich and Palkovits developed an extractionassisted isomerization strategy involving successive chemocatalytic isomerization and fructose separation, which significantly improved the fructose yield reaching 51% in water by using a soluble phosphate buffer as catalyst.273 The development of robust and effective solid acid/base catalysts could pave the way to promote the industrial progress on making not only HFCS but also useful platform biochemicals; however, the effects of reaction parameters such as solvent type274−278 should be taken into account. Adversely, a great concern regarding human consumption of fructose-containing sweeteners has already been mounting due to the health issues related to obesity. Furthermore, US Food and Drug Administration and EU regulations currently do not allow chemical catalysts to be used for food-grade fructose production. This apparently reflects that making potential chemicals from glucose via fructose with alternative and robust chemo-enzymatic or



AUTHOR INFORMATION

Corresponding Authors

*E-mail: [email protected]. *E-mail: [email protected]; Tel.: +45 45252233. ORCID

Anders Riisager: 0000-0002-7086-1143 Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS H.L. and S.Y. want to acknowledge financial support from the National Natural Science Foundation of China (21576059, 21666008) and Key Technologies R&D Program of China (2014BAD23B01). S.S. and A.R. gratefully acknowledge Department of Biotechnology (Government of India), New Delhi, India, and Department of Chemistry, Technical University of Denmark, for support, respectively.



REFERENCES

(1) Vuilleumier, S. Am. J. Clin. Nutr. 1993, 58 (5), 733S−736S. (2) Casey, J. P. Res. Manage 1976, 19, 27−32. (3) Hanover, L. M.; White, J. S. Am. J. Clin. Nutr. 1993, 58, 724S− 732S. (4) Hardy, S. L.; Brennand, C. P.; Wyse, B. W. J. Am. Diet. Assoc. 1979, 74, 41−46. (5) Stone, H.; Oliver, S. M. J. Food Sci. 1969, 34, 215−222. (6) Pangborn, R. M. J. Food Sci. 1963, 28, 726−733. (7) Cameron, A. T., Ed. The Taste Sense and the Relative Sweetness of Sugars and Other Sweet Substances: Sugar Research Foundation; Scientific Report; Literary Licensing: Whitefish, 1947; Vol. 9, p 72. (8) White, J. S. Am. J. Clin. Nutr. 2008, 88, 1716S−1721S. (9) Parker, K.; Salas, M.; Nwosu, V. Biotechnol. Mol. Bio. Rev. 2010, 5, 71−78. (10) Aguirre, E. K.; Mytton, O. T.; Monsivais, P. Liberalising agricultural policy for sugar in Europe risks damaging public health. BMJ. 2015, 351, h5085. (11) Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044−4098. 3025

DOI: 10.1021/acscatal.6b03625 ACS Catal. 2017, 7, 3010−3029

Review

ACS Catalysis (12) Alonso, D. M.; Bond, J. Q.; Dumesic, J. A. Green Chem. 2010, 12, 1493−1513. (13) Gallezot, P. Chem. Soc. Rev. 2012, 41, 1538−1558. (14) Li, H.; Bhadury, P. S.; Riisager, A.; Yang, S. Catal. Sci. Technol. 2014, 4, 4138−4168. (15) Li, H.; Yang, S.; Riisager, A.; Pandey, A.; Sangwan, R. S.; Saravanamurugan, S.; Luque, R. Green Chem. 2016, 18, 5701−5735. (16) Pacheco, J. J.; Davis, M. E. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 8363−8367. (17) Gorbanev, Y. Y.; Klitgaard, S. K.; Woodley, J. M.; Christensen, C. H.; Riisager, A. ChemSusChem 2009, 2, 672−675. (18) Zhang, Z.; Deng, K. ACS Catal. 2015, 5, 6529−6544. (19) Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411− 2502. (20) Li, H.; Fang, Z.; Luo, J.; Yang, S. Appl. Catal., B 2017, 200, 182− 191. (21) Rosatella, A. A.; Simeonov, S. P.; Frade, R. F. M.; Afonso, C. A. M. Green Chem. 2011, 13, 754−793. (22) Lam, E.; Luong, J. H. T. ACS Catal. 2014, 4, 3393−3410. (23) Mäki-Arvela, P.; Simakova, I. L.; Salmi, T.; Murzin, D. Y. Chem. Rev. 2014, 114, 1909−1971. (24) Li, H.; Saravanamurugan, S.; Yang, S.; Riisager, A. Green Chem. 2016, 18, 726−734. (25) Lobry de Bruyn, C. A.; Van Ekenstein, W. A. Recueil des Travaux Chimiques des Pays-Bas 1895, 14, 203−216. (26) Guo, J.; Zhu, S.; Cen, Y.; Qin, Z.; Wang, J.; Fan, W. Appl. Catal., B 2017, 200, 611−619. (27) Graça, I.; Iruretagoyena, D.; Chadwick, D. Appl. Catal., B 2017, 206, 434−43. (28) Ennaert, T.; Van Aelst, J.; Dijkmans, J.; De Clercq, R.; Schutyser, W.; Dusselier, M.; Verboekend, D.; Sels, B. F. Chem. Soc. Rev. 2016, 45, 584−611. (29) Collyer, C. A.; Blow, D. M. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 1362−1366. (30) Spasova, B.; Kuesters, C.; Stengel, B.; Brandner, J. Chem. Eng. Process. 2016, 105, 103−109. (31) Lari, G. M.; Grçninger, O. G.; Li, Q.; Mondelli, C.; Ljpez, N.; Pérez-Ramírez, J. ChemSusChem 2016, 9, 3407−3418. (32) Valetti, F.; Gilardi, G. Nat. Prod. Rep. 2004, 21, 490−511. (33) Bandlish, R. K.; Michael Hess, J.; Epting, K. L.; Vieille, C.; Kelly, R. M. Biotechnol. Bioeng. 2002, 80, 185−194. (34) Seyhan Tükel, S.; Alagöz, D. Food Chem. 2008, 111, 658−662. (35) Yu, H.; Guo, Y.; Wu, D.; Zhan, W.; Lu, G. J. Mol. Catal. B: Enzym. 2011, 72, 73−76. (36) Huang, R.; Qi, W.; Su, R.; He, Z. Chem. Commun. 2010, 46, 1115−1117. (37) Lee, Y. C.; Chen, C. T.; Chiu, Y. T.; Wu, K. C. W. ChemCatChem 2013, 5, 2153−2157. (38) Grande, P. M.; Bergs, C.; de María, P. D. ChemSusChem 2012, 5, 1203−1206. (39) Simeonov, S. P.; Coelho, J. A. S.; Afonso, C. A. M. ChemSusChem 2013, 6, 997−1000. (40) Schenk, M.; Bisswanger, H. Enzyme Microb. Technol. 1998, 22, 721−723. (41) Häsler, H.; Stütz, A. E. Top. Curr. Chem. 2001, 215, 77−114. (42) Mu, W.; Yu, L.; Zhang, W.; Zhang, T.; Jiang, B. Appl. Microbiol. Biotechnol. 2015, 99, 6571−6584. (43) Makkee, M.; Kieboom, A. P. G.; Van Bekkum, H. Recueil des Travaux Chimiques des Pays-Bas 1984, 103, 361−364. (44) Akabori, S.; Uehara, K.; Muramatsu, A. I. Proc. Japan Acad. 1952, 26, 39−39. (45) Uehara, K. Nippon Kagaku Zasshi 1952, 73, 311−311. (46) Uehara, K. Nippon Kagaku Zasshi 1952, 73, 411−411. (47) Uehara, K. Nippon Kagaku Zasshi 1952, 73, 716−716. (48) Hochster, I. M.; Watson, R. W. J. Am. Chem. Soc. 1953, 75, 3284−3285. (49) Marshall, R. O.; Kooi, E. R. Science 1957, 125, 648−649. (50) Tsumura, N.; Sato, T. Bull. Agric. Chem. Soc. Jpn. 1960, 24, 326− 327.

(51) Tsumura, N.; Sato, T. Agric. Biol. Chem. 1961, 25, 616−619. (52) Yamanaka, K. Agric. Biol. Chem. 1963, 27, 265−270. (53) Natake, M. Agric. Biol. Chem. 1966, 30, 887−895. (54) Natake, M. Agric. Biol. Chem. 1968, 32, 303−313. (55) Bhosale, S.; Rao, M.; Deshpande, V. Microbiol. Rev. 1996, 60, 280−300. (56) Lee, D. G.; Choi, D. J.; Park, J. K. Process Biochem. 2015, 50, 941−947. (57) Goo, B. G.; Baek, G.; Choi, D. J.; Park, Y. I.; Synytsya, A.; Bleha, R.; Seong, D. H.; Lee, C. G.; Park, J. K. Bioresour. Technol. 2013, 129, 343−350. (58) Pignolet, O.; Jube au, S.; Vaca-Garcia, C.; Michaud, P. J. Ind. Microbiol. Biotechnol. 2013, 40, 781−796. (59) Batt, C. A.; Jamieson, A. C.; Vandeyar, M. A. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 618−622. (60) Lee, C. Y.; Bagdasarian, M.; Meng, M. H.; Zeikus, J. G. J. Biol. Chem. 1990, 265, 19082−19090. (61) Hartley, B. S.; Hanlon, N.; Jackson, R. J.; Rangarajan, M. Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol. 2000, 1543, 294− 335. (62) Vieille, C.; Epting, K. L.; Kelly, R. M.; Zeikus, J. G. Eur. J. Biochem. 2001, 268, 6291−6301. (63) Garcia-Viloca, M.; Alhambra, C.; Truhlar, D. G.; Gao, J. J. Am. Chem. Soc. 2002, 124, 7268−7269. (64) Marg, G. A.; Clark, D. S. Enzyme Microb. Technol. 1990, 12, 367−373. (65) Gaikwad, S. M.; Rao, M. B.; Deshpande, V. V. Enzyme Microb. Technol. 1992, 14, 317−320. (66) Danno, G. Agric. Biol. Chem. 1971, 35, 997−1006. (67) Kovalevsky, A. Y.; Hanson, L.; Fisher, S. Z.; Mustyakimov, M.; Mason, S. A.; Forsyth, V. T.; Blakeley, M. P.; Keen, D. A.; Wagner, T.; Carrell, H. L.; Katz, A. K.; Glusker, J. P.; Langan, P. Structure 2010, 18, 688−699. (68) Zhao, H.; Cui, Q.; Shah, V.; Xu, J.; Wang, T. J. Mol. Catal. B: Enzym. 2016, 126, 18−23. (69) Xu, J. H.; Xu, X. M.; Wu, H. C.; Luo, G. S. RSC Adv. 2014, 4, 37142−37147. (70) Wu, L.; Liu, Y.; Chi, B.; Xu, Z.; Feng, X.; Li, S.; Xu, H. Food Chem. 2015, 187, 182−188. (71) Song, Y. S.; Kim, J. E.; Park, C.; Kim, S. W. Korean J. Chem. Eng. 2011, 28, 1096−1100. (72) Tumturk, H.; Demirel, G.; Altinok, H.; Aksoy, S.; Hasirci, N. J. Food Biochem. 2008, 32, 234−246. (73) Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250−6284. (74) Yu, D.; Wu, H.; Zhang, A.; Tian, L.; Liu, L.; Wang, C.; Fang, X. Process Biochem. 2011, 46, 599−603. (75) Visuri, K.; Klibanov, A. M. Biotechnol. Bioeng. 1987, 30, 917− 920. (76) Ståhlberg, T.; Woodley, J. M.; Riisager, A. Catal. Sci. Technol. 2012, 2, 291−295. (77) Fatourehchi, N.; Sohrabi, M.; Dabir, B.; Royaee, S. J. J. Chem. Technol. Biotechnol. 2014, 89, 1918−1923. (78) Khalilpour, R.; Roostaazad, R. Biochem. Eng. J. 2008, 40, 328− 336. (79) Liu, L.; Xia, N.; Du, J.; He, Q.; Qin, Y.; Li, H.; Li, C. Int. J. Electrochem. Sci. 2013, 8, 9163−9170. (80) Morvai-Vitányi, M.; Molnár-Perl, I.; Knausz, D.; Sass, P. Chromatographia 1993, 36, 204−206. (81) Li, K.; Liu, S.; Tan, Y.; Chao, N.; Tian, X.; Qi, L.; Powell, W. A.; Jiang, X.; Gai, Y. J. Agric. Food Chem. 2013, 61, 4011−4018. (82) Ruiz-Matute, A. I.; Rodríguez-Sánchez, S.; Sanz, M. L.; Martínez-Castro, I. J. Food Compos. Anal. 2010, 23, 273−276. (83) Fan, T. W. M.; Colmer, T. D.; Lane, A. N.; Higashi, R. M. Anal. Biochem. 1993, 214, 260−271. (84) Cazor, A.; Deborde, C.; Moing, A.; Rolin, D.; This, H. J. Agric. Food Chem. 2006, 54, 4681−4686. (85) Duquesnoy, E.; Castola, V.; Casanova, J. Carbohydr. Res. 2008, 343, 893−902. 3026

DOI: 10.1021/acscatal.6b03625 ACS Catal. 2017, 7, 3010−3029

Review

ACS Catalysis

(122) De Wit, G.; Kieboom, A. P. G.; Van Bekkum, H. Carbohydr. Res. 1979, 74, 157−175. (123) Gottfried, J. B.; Benjamin, D. G. Ind. Eng. Chem. 1952, 44, 141−145. (124) Mendicino, J. F. J. Am. Chem. Soc. 1960, 82, 4975−4979. (125) Barker, S. A.; Somers, P. J.; Hatt, B. W. U.S. Patent, 1973, 3875140. (126) Shaw, A. J.; Tsao, G. T. Carbohydr. Res. 1978, 60, 327−335. (127) Shaw, A. J.; Tsao, G. T. Carbohydr. Res. 1978, 60, 376−382. (128) Haack, E.; Braun, F.; Kohler, K. German Patent, 1964, 1163307. (129) Ekeberg, D.; Morgenlie, S.; Stenstrøm, Y. Carbohydr. Res. 2002, 337, 779−786. (130) Ekeberg, D.; Morgenlie, S.; Stenstrøm, Y. Carbohydr. Res. 2005, 340, 373−377. (131) Yang, B. Y.; Montgomery, R. Carbohydr. Res. 1996, 280, 27− 45. (132) de Bruijn, J. M.; Kieboom, A. P. G.; van Bekkum, H. Recl. Trav. Chim. Pays-Bas 1986, 105, 176−183. (133) de Bruijn, J. M.; Kieboorn, A. P. G.; van Bekkurn, H. Recl. Trav. Chirn. Pays-Bas 1987, 106, 35−43. (134) Kieboom, A. P. C.; van Bekkum, H. Recl. Trav. Chim. Pays-Bas 1984, 103, 1−12. (135) De Bruijn, J. M.; Kieboom, A. P. G.; Van Bekkum, H. Starch/ Stärke 1987, 39, 23−28. (136) Liu, C.; Carraher, J. M.; Swedberg, J. L.; Herndon, C. R.; Fleitman, C. N.; Tessonnier, J. P. ACS Catal. 2014, 4, 4295−4298. (137) Carraher, J. M.; Fleitman, C. N.; Tessonnier, J. P. ACS Catal. 2015, 5, 3162−3173. (138) Yang, Q.; Sherbahn, M.; Runge, T. ACS Sustainable Chem. Eng. 2016, 4, 3526−3534. (139) Richard, J. P. J. Am. Chem. Soc. 1984, 106, 4926−4936. (140) Nagorski, R. W.; Richard, J. P. J. Am. Chem. Soc. 2001, 123, 794−802. (141) Zhao, H.; Holladay, J. E.; Brown, H.; Zhang, Z. C. Science 2007, 316, 1597−1600. (142) Hu, S.; Zhang, Z.; Song, J.; Zhou, Y.; Han, B. Green Chem. 2009, 11, 1746−1749. (143) Yang, Y.; Hu, C.; Abu-Omar, M. M. J. Mol. Catal. A: Chem. 2013, 376, 98−102. (144) Enslow, K. R.; Bell, A. T. Catal. Sci. Technol. 2015, 5, 2839− 2847. (145) Zakrzewska, M. E.; Bogel-Łukasik, E.; Bogel-Łukasik, R. Chem. Rev. 2011, 111, 397−417. (146) Ståhlberg, T.; Fu, W.; Woodley, J. M.; Riisager, A. ChemSusChem 2011, 4, 451−458. (147) Li, H.; Xu, W.; Huang, T.; Jia, S.; Xu, Z.; Yan, P.; Liu, X.; Zhang, Z. C. ACS Catal. 2014, 4, 4446−4454. (148) Chheda, J.; Román-Leshkov, Y.; Dumesic, J. Green Chem. 2007, 9, 342−350. (149) Jia, S.; Liu, K.; Xu, Z.; Yan, P.; Xu, W.; Liu, X.; Zhang, C. Catal. Today 2014, 234, 83−90. (150) Mushrif, S. H.; Varghese, J. J.; Vlachos, D. G. Phys. Chem. Chem. Phys. 2014, 16, 19564−19572. (151) Tang, J.; Guo, X.; Zhu, L.; Hu, C. ACS Catal. 2015, 5, 5097− 5103. (152) Nguyen, H.; Nikolakis, V.; Vlachos, D. G. ACS Catal. 2016, 6, 1497−1504. (153) Loerbroks, C.; van Rijn, J.; Ruby, M. P.; Tong, Q.; Schuth, F.; Thiel, W. Chem. - Eur. J. 2014, 20, 12298−12309. (154) Mäki-Arvela, P.; Holmbom, B.; Salmi, T.; Murzin, D. Y. Catal. Rev.: Sci. Eng. 2007, 49, 197−340. (155) Lin, Y. C.; Huber, G. W. Energy Environ. Sci. 2009, 2, 68−80. (156) Hara, M. Energy Environ. Sci. 2010, 3, 601−607. (157) Rinaldi, R.; Schüth, F. Energy Environ. Sci. 2009, 2, 610−626. (158) Li, H.; He, J.; Riisager, A.; Saravanamurugan, S.; Song, B. A.; Yang, S. ACS Catal. 2016, 6, 7722−7727. (159) Rebenfeld, L.; Pacsu, E. J. Am. Chem. Soc. 1953, 75, 4370− 4371. (160) Sowden, J. C. J. Am. Chem. Soc. 1954, 76, 4487−4488.

(86) Delgado-Goñi, T.; Campo, S.; Martín-Sitjar, J.; Cabañas, M. E.; San Segundo, B.; Arús, C. Planta 2013, 238, 397−413. (87) Yu, S.; Olsen, C. E.; Marcussen, J. Carbohydr. Res. 1997, 305, 73−82. (88) Xie, L.; Ye, X.; Liu, D.; Ying, Y. Food Chem. 2009, 114, 1135− 1140. (89) Batsoulis, A. N.; Siatis, N. G.; Kimbaris, A. C.; Alissandrakis, E. K.; Pappas, C. S.; Tarantilis, P. A.; Harizanis, P. C.; Polissiou, M. G. J. Agric. Food Chem. 2005, 53, 207−210. (90) Palazzi, E.; Converti, A. Biotechnol. Bioeng. 1999, 63, 273−84. (91) Verhoff, F. H.; Goldstein, W. E. Biotechnol. Bioeng. 1982, 24, 703−723. (92) Roels, J. A., Ed. Energetics and kinetics in biotechnology; Elsevier: Amsterdam, 1983; Vol. 1, pp 163−203. (93) Chen, K. C.; Wu, J. K. Biotechnol. Bioeng. 1987, 30, 817−824. (94) Converti, A.; Del Borghi, M. Enzyme Microb. Technol. 1997, 21, 511−517. (95) Converti, A.; Del Borghi, M. Bioprocess Eng. 1997, 18, 27−33. (96) Palazzi, E.; Convertic, A. Proceedings of the 1st European congress on chemical enginering May 4−7, Florence, Italy, 1997, pp 2711−2714. (97) Sproull, R. D.; Lim, H. C.; Schneider, D. R. Biotechnol. Bioeng. 1976, 18, 633−648. (98) Chen, K. C.; Chang, C. M. Enzyme Microb. Technol. 1984, 6, 359−364. (99) Illanes, A.; Altamirano, C.; Zuniga, M. E. Biotechnol. Bioeng. 1996, 50, 609−616. (100) van den Tweel, W.; Harder, A.; Buitelaar, R. M., Eds.; Stability and stabilization of enzymes; Elsevier: The Netherlands, 1993; Vol. 1, pp 1−520. (101) Huang, H.; Denard, C. A.; Alamillo, R.; Crisci, A. J.; Miao, Y.; Dumesic, J. A.; Scott, S. L.; Zhao, H. ACS Catal. 2014, 4, 2165−2168. (102) Chmielewski, M.; Chen, M. S.; Whistler, R. Carbohydr. Res. 1976, 49, 479−481. (103) Bock, K.; Meldal, M.; Meyer, B.; Wiebe, L. Acta Chem. Scand. 1983, 37, 101−108. (104) Durrwachter, J. R.; Wong, C. H. J. Org. Chem. 1988, 53, 4175− 4181. (105) Durrwachter, J. R.; Drueckhammer, D. G.; Nozaki, K.; Sweers, H. M.; Wong, C. H. J. Am. Chem. Soc. 1986, 108, 7812−7818. (106) de Raadt, A.; Stiitz, A. E. Tetrahedron Lett. 1992, 33, 189−192. (107) Legler, G. Adv. Carbohydr. Chem. Biochem. 1990, 48, 319−384. (108) Fechter, M. H.; Stütz, A. E. Carbohydr. Res. 1999, 319, 55−62. (109) Rose, I. A.; O’Connell, E. L. J. Biol. Chem. 1961, 236, 3086− 3092. (110) Swan, M. K.; Graham Solomons, J. T.; Beeson, C. C.; Hansen, T.; Schonheit, P.; Davies, C. J. Biol. Chem. 2003, 278, 47261−47268. (111) Berrisford, J. M.; Hounslow, A. M.; Akerboom, J.; Hagen, W. R.; Brouns, S. J. J.; van der Oost, J.; Murray, I. A.; Blackburn, G. M.; Waltho, J. P.; Rice, D. W.; Baker, P. J. J. Mol. Biol. 2006, 358, 1353− 1366. (112) Berrisford, J. M.; Akerboom, J.; Brouns, S.; Sedelnikova, S. E.; Turnbull, A. P.; van der Oost, J.; Salmon, L.; Hardre, R.; Murray, I. A.; Blackburn, G. M.; Rice, D. W.; Baker, P. J. J. Mol. Biol. 2004, 343, 649−657. (113) Wu, R.; Xie, H.; Cao, Z.; Mo, Y. J. Am. Chem. Soc. 2008, 130, 7022−7031. (114) Abbas, S. N.; Mok, K. H.; Rashid, N.; Xie, Y.; Ruether, M.; O’Brien, J.; Akhtar, M. Bioorg. Chem. 2016, 66, 41−45. (115) Nef, J. U. Justus Liebigs Ann. Chem. 1907, 357, 214−312. (116) Nef, J. U. Justus Liebigs Ann. Chem. 1910, 376, 1−119. (117) Nef, J. U. Justus Liebigs Ann. Chem. 1914, 403, 204−383. (118) Wolfrom, M. L.; Lewis, W. L. J. Am. Chem. Soc. 1928, 50, 837− 854. (119) Sowden, J. C.; Schaffer, R. J. Am. Chem. Soc. 1952, 74, 505− 507. (120) Kooyman, C.; Vellenga, K.; De Wilt, H. G. J. Carbohydr. Res. 1977, 54, 33−44. (121) Topper, Y. J.; Stetten, D., Jr. J. Bioi. Chem. 1951, 189, 191− 202. 3027

DOI: 10.1021/acscatal.6b03625 ACS Catal. 2017, 7, 3010−3029

Review

ACS Catalysis (161) Langlois, D. P.; Larson, R. F. U.S. Patent, 1956, 2746889. (162) Rendleman, J. A.; Hodge, J. E. Carbohydr. Res. 1979, 75, 83− 99. (163) Watanabe, M.; Aizawa, Y.; Iida, T.; Nishimura, R.; Inomata, H. Appl. Catal., A 2005, 295, 150−156. (164) Kitajima, H.; Higashino, Y.; Matsuda, S.; Zhong, H.; Watanabe, M.; Aida, T. M.; Smith, R. L., Jr. Catal. Today 2016, 274, 67−72. (165) Lima, S.; Dias, A. S.; Lin, Z.; Brandão, P.; Ferreira, P.; Pillinger, M.; Rocha, J.; Calvino-Casilda, V.; Valente, A. A. Appl. Catal., A 2008, 339, 21−27. (166) Despax, S.; Estrine, B.; Hoffmann, N.; Bras, J. L.; Marinkovic, S.; Muzart, J. Catal. Commun. 2013, 39, 35−38. (167) Lecomte, J.; Finiels, A.; Moreau, C. Starch/Stärke 2002, 54, 75−79. (168) Yu, S.; Kim, E.; Park, S.; Song, I. K.; Jung, J. C. Catal. Commun. 2012, 29, 63−67. (169) Delidovich, I.; Palkovits, R. J. Catal. 2015, 327, 1−9. (170) Delidovich, I.; Palkovits, R. Catal. Sci. Technol. 2014, 4, 4322− 4329. (171) Lee, G.; Jeong, Y.; Takagaki, A.; Jung, J. C. J. Mol. Catal. A: Chem. 2014, 393, 289−295. (172) Souza, R. O. L.; Fabiano, D. P.; Feche, C.; Rataboul, F.; Cardoso, D.; Essayem, N. Catal. Today 2012, 195, 114−119. (173) Yue, C.; Magusin, P. C. M. M.; Mezari, B.; Rigutto, M.; Hensen, E. J. M. Microporous Mesoporous Mater. 2013, 180, 48−55. (174) Moreau, C.; Durand, R.; Roux, A.; Tichit, D. Appl. Catal., A 2000, 193, 257−264. (175) Son, P. A.; Nishimura, S.; Ebitani, K. React. Kinet., Mech. Catal. 2014, 111, 183−197. (176) Jarvinen, P.; Engstrom, K.; Riihimaki, V. Occup. Environ. Med. 1999, 56, 1−5. (177) Yang, Q.; Runge, T. ACS Sustainable Chem. Eng. 2016, 4, 6951−6961. (178) Yang, Q.; Lan, W.; Runge, T. ACS Sustainable Chem. Eng. 2016, 4, 4850−4858. (179) Yang, Q.; Zhou, S.; Runge, T. J. Catal. 2015, 330, 474−484. (180) De Robertis, A.; De Stefano, C.; Patane, G.; Sammartano, S. J. Solution Chem. 1993, 22, 927−940. (181) De Stefano, C.; Gianguzza, A.; Sammartano, S. Thermochim. Acta 1993, 214, 325−338. (182) Felippe, C.; Bellettini, I. C.; Eising, R.; Minatti, E.; Giacomelli, F. C. J. Braz. Chem. Soc. 2011, 22, 1539−1548. (183) Johnstone, R. A. W.; Liu, J. Y.; Whittaker, D. J. Chem. Soc., Perkin Trans. 2 1998, 2, 1287−1288. (184) Patel, S. M.; Chudasama, U. V.; Ganeshpure, P. A. Green Chem. 2001, 3, 143−145. (185) Patel, S. M.; Chudasama, U. V.; Ganeshpure, P. A. React. Kinet. Catal. Lett. 2002, 76, 317−325. (186) Kamiya, Y.; Sakata, S.; Yoshinaga, Y.; Ohnishi, R.; Okuhara, T. Catal. Lett. 2004, 94, 45−47. (187) Weingarten, R.; Kim, Y. T.; Tompsett, G. A.; Fernández, A.; Han, K. S.; Hagaman, E. W.; Wm, C. C., Jr.; Dumesic, J. A.; Huber, G. W. J. Catal. 2013, 304, 123−134. (188) Pagán-Torres, Y. J.; Wang, T.; Gallo, J. M. R.; Shanks, B. H.; Dumesic, J. A. ACS Catal. 2012, 2, 930−934. (189) Wang, T.; Pagán-Torres, Y. J.; Combs, E.; Dumesic, J. A.; Shanks, B. Top. Catal. 2012, 55, 657−662. (190) Holm, M. S.; Pagan-Torres, Y. J.; Saravanamurugan, S.; Riisager, A.; Dumesic, J. A.; Taarning, E. Green Chem. 2012, 14, 702− 706. (191) Akiyama, G.; Matsuda, R.; Sato, H.; Kitagawa, S. Chem. - Asian J. 2014, 9, 2772−2777. (192) Li, G.; Pidko, E. A.; Hensen, E. J. M. ACS Catal. 2016, 6, 4162−4169. (193) Moliner, M.; Román-Leshkov, Y.; Davis, M. E. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 6164−6168. (194) Corma, A.; Nemeth, L. T.; Renz, M.; Valencia, S. Nature 2001, 412, 423−425. (195) Gounder, R.; Davis, M. E. AIChE J. 2013, 59, 3349−3358.

(196) Ren, L.; Guo, Q.; Orazov, M.; Xu, D.; Politi, D.; Kumar, P.; Alhassan, S. M.; Mkhoyan, K. A.; Sidiras, D.; Davis, M. E.; Tsapatsis, M. ChemCatChem 2016, 8, 1274−1278. (197) Delidovich, I.; Palkovits, R. ChemSusChem 2016, 9, 547−561. (198) Luo, H. Y.; Lewis, J. D.; Román-Leshkov, Y. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 663−692. (199) Orazov, M.; Davis, M. E. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 11777−11782. (200) Moliner, M. Dalton Trans. 2014, 43, 4197−4208. (201) Davis, M. E. Top. Catal. 2015, 58, 405−409. (202) Osmundsen, C. M.; Holm, M. S.; Dahl, S.; Taarning, E. Proc. R. Soc. London, Ser. A 2012, 468, 2000−2016. (203) Li, L.; Stroobants, C.; Lin, K. F.; Jacobs, P. A.; Sels, B. F.; Pescarmona, P. P. Green Chem. 2011, 13, 1175−1181. (204) Cho, H. J.; Dornath, P.; Fan, W. ACS Catal. 2014, 4, 2029− 2037. (205) Zhang, X.; Liu, D.; Xu, D.; Asahina, S.; Cychosz, K. A.; Agrawal, K. V.; Al Wahedi, Y.; Bhan, A.; Al Hashimi, S.; Terasaki, O.; Thommes, M.; Tsapatsis, M. Science 2012, 336, 1684−1687. (206) Ren, L.; Guo, Q.; Kumar, P.; Orazov, M.; Xu, D.; Alhassan, S. M.; Mkhoyan, K. A.; Davis, M. E.; Tsapatsis, M. Angew. Chem., Int. Ed. 2015, 54, 10848−10851. (207) Rose, I. A. Philos. Trans. R. Soc., B 1981, 293, 131−143. (208) Román-Leshkov, Y.; Moliner, M.; Labinger, J. A.; Davis, M. E. Angew. Chem., Int. Ed. 2010, 49, 8954−8957. (209) Bermejo-Deval, R.; Assary, R. S.; Nikolla, E.; Moliner, M.; Román-Leshkov, Y.; Hwang, S. J.; Palsdottir, A.; Silverman, D.; Lobo, R. F.; Curtiss, L. A.; Davis, M. E. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 9727−9732. (210) Hayashi, Y.; Sasaki, Y. Chem. Commun. 2005, 2716−2718. (211) Taarning, E.; Saravanamurugan, S.; Holm, M. S.; Xiong, J. M.; West, R. M.; Christensen, C. H. ChemSusChem 2009, 2, 625−627. (212) Choudhary, V.; Pinar, A. B.; Lobo, R. F.; Vlachos, D. G.; Sandler, S. I. ChemSusChem 2013, 6, 2369−2376. (213) Marianou, A. A.; Michailof, C. M.; Pineda, A.; Iliopoulou, E. F.; Triantafyllidis, K. S.; Lappas, A. A. ChemCatChem 2016, 8, 1100− 1110. (214) Gounder, R.; Davis, M. E. ACS Catal. 2013, 3, 1469−1476. (215) Christianson, J. R.; Caratzoulas, S.; Vlachos, D. G. ACS Catal. 2015, 5, 5256−5263. (216) Brand, S. K.; Labinger, J. A.; Davis, M. E. ChemCatChem 2016, 8, 121−124. (217) Harris, J. W.; Cordon, M. J.; Di Iorio, J. R.; Vega-Vila, J. C.; Ribeiro, F. H.; Gounder, R. J. Catal. 2016, 335, 141−154. (218) Brand, S. K.; Josephson, T. R.; Labinger, J. A.; Caratzoulas, S.; Vlachos, D. G.; Davis, M. E. J. Catal. 2016, 341, 62−71. (219) Bermejo-Deval, R.; Orazov, M.; Gounder, R.; Hwang, S. J.; Davis, M. E. ACS Catal. 2014, 4, 2288−2297. (220) Bermejo-Deval, R.; Gounder, R.; Davis, M. E. ACS Catal. 2012, 2, 2705−2713. (221) Chethana, B. K.; Mushrif, S. H. J. Catal. 2015, 323, 158−164. (222) Hwang, S. J.; Gounder, R.; Bhawe, Y.; Orazov, M.; BermejoDeval, R.; Davis, M. E. Top. Catal. 2015, 58, 435−440. (223) Gunther, W. R.; Wang, Y.; Ji, Y.; Michaelis, V. K.; Hunt, S. T.; Griffin, R. G.; Román-Leshkov, Y. Nat. Commun. 2012, 3, 1109. (224) Gardner, D. W.; Huo, J.; Hoff, T. C.; Johnson, R. L.; Shanks, B. H.; Tessonnier, J. P. ACS Catal. 2015, 5, 4418−4422. (225) Kruger, J. S.; Nikolakis, V.; Vlachos, D. G. Appl. Catal., A 2014, 469, 116−123. (226) Padovan, D.; Parsons, C.; Grasina, M. S.; Hammond, C. Green Chem. 2016, 18, 5041−5049. (227) Dong, W.; Shen, Z.; Peng, B.; Gu, M.; Zhou, X.; Xiang, B.; Zhang, Y. Sci. Rep. 2016, 6, 26713. (228) Holm, M. S.; Saravanamurugan, S.; Taarning, E. Science 2010, 328, 602−605. (229) Tolborg, S.; Meier, S.; Saravanamurugan, S.; Fristrup, P.; Taarning, E.; Sádaba, I. ChemSusChem 2016, 9, 3054−3061. 3028

DOI: 10.1021/acscatal.6b03625 ACS Catal. 2017, 7, 3010−3029

Review

ACS Catalysis (230) Holm, M. S.; Pagán-Torres, Y. J.; Saravanamurugan, S.; Riisager, A.; Dumesic, J. A.; Taarning, E. Green Chem. 2012, 14, 702− 706. (231) Lew, C. M.; Rajabbeigi, N.; Tsapatsis, M. Ind. Eng. Chem. Res. 2012, 51, 5364−5366. (232) Dijkmans, J.; Dusselier, M.; Gabriëls, D.; Houthoofd, K.; Magusin, P. C. M. M.; Huang, S.; Pontikes, Y.; Trekels, M.; Vantomme, A.; Giebeler, L.; Oswald, S.; Sels, B. F. ACS Catal. 2015, 5, 928−940. (233) Yang, X.; Bian, J.; Huang, J.; Xin, W.; Lu, T.; Chen, C.; Su, Y.; Zhou, L.; Wang, F.; Xu, J. Green Chem. 2017, 19, 692−701. (234) Bui, L.; Luo, H.; Gunther, W. R.; Román-Leshkov, Y. Angew. Chem., Int. Ed. 2013, 52, 8022−8025. (235) Antunes, M. M.; Lima, S.; Neves, P.; Magalhães, A. L.; Fazio, E.; Fernandes, A.; Neri, F.; Silva, C. M.; Rocha, S. M.; Ribeiro, M. F.; Pillinger, M.; Urakawa, A.; Valente, A. A. J. Catal. 2015, 329, 522−537. (236) Winoto, H. P.; Ahn, B. S.; Jae, J. J. Ind. Eng. Chem. 2016, 40, 62−71. (237) Zhang, L.; Xi, G.; Chen, Z.; Jiang, D.; Yu, H.; Wang, X. Chem. Eng. J. 2017, 307, 868−876. (238) Luo, H. Y.; Lewis, J. D.; Román-Leshkov, Y. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 663−692. (239) Rajabbeigi, N.; Torres, A. I.; Lew, C. M.; Elyassi, B.; Ren, L.; Wang, Z.; Cho; Hong, J.; Fan, W.; Daoutidis, P.; Tsapatsis, M. Chem. Eng. Sci. 2014, 116, 235−242. (240) Yang, G.; Pidko, E. A.; Hensen, E. J. M. ChemSusChem 2013, 6, 1688−1696. (241) Pidko, E. A.; Degirmenci, V.; van Santen, R. A.; Hensen, E. J. M. Angew. Chem., Int. Ed. 2010, 49, 2530−2534. (242) Zhang, Z.; Song, J.; Han, B. Chem. Rev. 2017, DOI: 10.1021/ acs.chemrev.6b00457. (243) Pidko, E. A.; Degirmenci, V.; van Santen, R. A.; Hensen, E. J. M. Inorg. Chem. 2010, 49, 10081−10091. (244) Zhang, Y. M.; Pidko, E. A.; Hensen, E. J. M. Chem. - Eur. J. 2011, 17, 5281−5288. (245) Pidko, E. A.; Degirmenci, V.; Hensen, E. J. M. ChemCatChem 2012, 4, 1263−1271. (246) Rai, N.; Caratzoulas, S.; Vlachos, D. G. ACS Catal. 2013, 3, 2294−2298. (247) Li, G.; Pidko, E. A.; Hensen, E. J. M. Catal. Sci. Technol. 2014, 4, 2241−2250. (248) Li, Y. P.; Head-Gordon, M.; Bell, A. T. ACS Catal. 2014, 4, 1537−1545. (249) Gounder, R.; Davis, M. E. J. Catal. 2013, 308, 176−188. (250) Blasco, T.; Camblor, M. A.; Corma, A.; Esteve, P.; Guil, J. M.; Martinez, A.; Perdigon-Melon, J. A.; Valencia, S. J. Phys. Chem. B 1998, 102, 75−88. (251) Giovambattista, N.; Debenedetti, P. G.; Rossky, P. J. J. Phys. Chem. C 2007, 111, 1323−1332. (252) Lew, C. M.; Rajabbeigi, N.; Tsapatsis, M. Microporous Mesoporous Mater. 2012, 153, 55−58. (253) Dijkmans, J.; Gabriëls, D.; Dusselier, M.; de Clippel, F.; Vanelderen, P.; Houthoofd, K.; Malfliet, A.; Pontikesb, Y.; Sels, B. F. Green Chem. 2013, 15, 2777−2785. (254) Witvrouwen, T.; Dijkmans, J.; Paulussen, S.; Sels, B. J. Energy Chem. 2013, 22, 451−458. (255) Chang, C. C.; Wang, Z.; Dornath, P.; Cho, H. J.; Fan, W. RSC Adv. 2012, 2, 10475−10477. (256) Hammond, C.; Conrad, S.; Hermans, I. Angew. Chem., Int. Ed. 2012, 51, 11736−11739. (257) Liu, M.; Jia, S.; Li, C.; Zhang, A.; Song, C.; Guo, X. Chin. J. Catal. 2014, 35, 723−732. (258) Tolborg, S.; Katerinopoulou, A.; Falcone, D. D.; Sádaba, I.; Osmundsen, C. M.; Davis, R. J.; Taarning, E.; Fristrup, P.; Holm, M. S. J. Mater. Chem. A 2014, 2, 20252−20262. (259) Vega-Vila, J. C.; Harris, J. W.; Gounder, R. J. Catal. 2016, 344, 108−120. (260) Saravanamurugan, S.; Paniagua, M.; Melero, J. A.; Riisager, A. J. Am. Chem. Soc. 2013, 135, 5246−5249.

(261) Paniagua, M.; Saravanamurugan, S.; Melian-Rodriguez, M.; Melero, J. A.; Riisager, A. ChemSusChem 2015, 8, 1088−1094. (262) Saravanamurugan, S.; Riisager, A. Catal. Sci. Technol. 2014, 4, 3186−3190. (263) Saravanamurugan, S.; Riisager, A.; Taarning, E.; Meier, S. ChemCatChem 2016, 8, 3107−3111. (264) Saravanamurugan, S.; Riisager, A.; Taarning, E.; Meier, S. Chem. Commun. 2016, 52, 12773−12776. (265) Saravanamurugan, S.; Riisager, A. ChemCatChem 2013, 5, 1754−1757. (266) Saravanamurugan, S.; Riisager, A. Catal. Commun. 2012, 17, 71−75. (267) Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B. Nature 2001, 409, 258−268. (268) Buchholz, K.; Seibel, J. Carbohydr. Res. 2008, 343, 1966−1979. (269) DiCosimo, R.; McAuliffe, J.; Poulose, A. J.; Bohlmann, G. Chem. Soc. Rev. 2013, 42, 6437−6474. (270) Yu, D.; Wu, H.; Zhang, A.; Tian, L.; Liu, L.; Wang, C.; Fang, X. Process Biochem. 2011, 46, 599−603. (271) Wang, Y.; Pan, Y.; Zhang, Z.; Sun, R.; Fang, X.; Yu, D. Process Biochem. 2012, 47, 976−982. (272) Kamm, B.; Gruber, P. R.; Kamm, M. Ullmann’s Encyclopedia of Industrial Chemistry 2016, 1, 1−38. (273) Delidovich, I.; Palkovits, R. Green Chem. 2016, 18, 5822−5830. (274) Cantero, D. A.; Á lvarez, A.; Bermejo, M. D.; Cocero, M. J. J. Supercrit. Fluids 2015, 98, 204−210. (275) Gao, D. M.; Kobayashi, T.; Adachi, S. Chem. Eng. Res. Des. 2015, 104, 723−729. (276) Gao, D. M.; Kobayashi, T.; Adachi, S. Biosci., Biotechnol., Biochem. 2015, 79, 470−474. (277) Gao, D. M.; Kobayashi, T.; Adachi, S. Biosci., Biotechnol., Biochem. 2015, 79, 1005−1010. (278) Soisangwan, N.; Ga, D. M.; Kobayashi, T.; Khuwijitjaru, P.; Adachi, S. Carbohydr. Res. 2016, 433, 67−72.

3029

DOI: 10.1021/acscatal.6b03625 ACS Catal. 2017, 7, 3010−3029