7 Glucuronic Acid, Sulfate Ester, and Glutathione Xenobiotic Conjugates Analysis by Mass Spectrometry 1
Catherine Fenselau and Lauren Yellet
Downloaded by UNIV LAVAL on September 23, 2015 | http://pubs.acs.org Publication Date: January 24, 1986 | doi: 10.1021/bk-1986-0299.ch007
Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
The potential of the newer desorption ionization methods f o r analysis of glucuronic acid, sulfate ester, and glutathione xenobiotic conjugates by mass spectrometry i s discussed. Synthesis and analyses of six new glucuronides conjugated through oxime or carbinolamine functional groups are presented by way of demonstrating the strengths and limitations of fast atom bombardment mass spectrometry.
Historically mass spectrometric analysis has required that samples be v o l a t i l e . This has limited the application of this important analytical technique in structure studies of conjugated metabolites to v o l a t i l e derivatives. The widely realized potential of electron impact ionization, chemical ionization, and gas chromatography mass spectrometry for the analysis of glucuronides derivatized as acetates, methyl ethers and t r i m e t h y l s i l y l ethers has been reviewed (1). Derivatized sulfate esters (2,3) and glutathione conjugates (T,5) have been analyzed by these techniques only rarely. Attempts to analyse underivatized sulfate and glutathione conjugates by electron impact or chemical ionization, (including so-called direct chemical ionization) have resulted in analysis of pyrolysis products. 'Current address: A. D. Little, 15 Acorn Park, Cambridge, MA 02138
0097-6156/ 86/ 0299-0159506.00/ 0 © 1986 American Chemical Society
In Xenobiotic Conjugation Chemistry; Paulson, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
160
XENOBIOTIC CONJUGATION CHEMISTRY
Downloaded by UNIV LAVAL on September 23, 2015 | http://pubs.acs.org Publication Date: January 24, 1986 | doi: 10.1021/bk-1986-0299.ch007
In r e c e n t y e a r s , s e v e r a l t e c h n i q u e s have been developed f o r mass s p e c t r o m e t r y , whereby samples are i o n i z e d and a n a l y s e d from a condensed phase, w i t h o u t p r i o r v o l a t i l i z a t i o n . These d e s o r p t i o n t e c h n i q u e s have p e r m i t t e d t h e e x t e n s i o n o f mass s p e c t r o m e t r i c a n a l y s e s t o s u l f a t e and g l u t a t h i o n e c o n j u g a t e s , as w e l l as t o u n d e r i v a t i z e d and l a b i l e g l u c u r o n i c a c i d c o n j u g a t e s . Primary among t h e s e t e c h n i q u e s a r e f i e l d d e s o r p t i o n ( 6 ) , plasma d e s o r p t i o n (_7), l a s e r d e s o r p t i o n ( 8 ) , f a s t atom bombardment ( o r secondary i o n mass s p e c t r o m e t r y w i t h a l i q u i d sample m a t r i x ) (9) and thermospray i o n i z a t i o n ( 1 0 ) . The l a t t e r can a l s o s e r v e t o c o u p l e high p r e s s u r e l i q u i d chromatography and mass s p e c t r o m e t r y f o r a n a l y s i s o f i n v o l a t i l e and t h e r m a l l y l a b i l e samples. A number o f a u t h o r s have p o i n t e d out t h a t s p e c t r a a c q u i r e d u s i n g v a r i o u s d e s o r p t i o n t e c h n i q u e s have many f e a t u r e s i n common (11-14). G e n e r a l l y t h e i o n s d e t e c t e d are even e l e c t r o ^ i o n | : m o l e c u l a r i o n s formed by p r o t o n a t i o n o r a d d i t i o n o f NH- , Na , e t c . , and fragment i o n s formed by e l i m i n a t i o n o f n e u t r a l m o l e c u l e s . I t i s not c l e a r t o what e x t e n t p y r o l y s i s and s o l v o l y s i s r e a c t i o n s augment t h e c o n t r i b u t i o n s o f u n i m o l e c u l a r gas phase d e c o m p o s i t i o n s to spectra obtained using the various desorption techniques. G l u c u r o n i c A c i d Conjugate D e s o r p t i o n F e a t u r e s common t o t h e s p e c t r a o f g l u c u r o n i c a c i d c o n j u g a t e s a n a l y s e d by FAB, l a s e r and f i e l d d e s o r p t i o n were summarized s e v e r a l y e a r s ago ( 1 5 ) . These appear t o hold as w e l l as f o r plasma d e s o r p t i o n and thermospray s p e c t r a more r e c e n t l y examined. The s i t u a t i o n w i t h thermospray i s somewhat more c o m p l i c a t e d as w i l l be discussed l a t e r . Generally speaking, p o s i t i v e ion spectra contain p r o t o n a t e d , n a t M a t e d or analogous m o l e c u l a r i o n s s p e c i e s , and u s u a l l y (M+H-176) i o n s formed by t h e e l i m i n a t i o n o f n e u t r a l dehydroglucuronic a c i d . The (M-H)~ a n i o n s d e t e c t e d i n n e g a t i v e i o n d e s o r p t i o n s p e c t r a a l s o e l i m i n a t e d e h y d r o g l u c u r o n i c a c i d t o from (M-H-176)" o r (M-177)" i o n s . Anions c o m p r i s i n g t h e g l u c u r o n i c a c i d moiety (mass 193) a r e a l s o commonly o b s e r v e d . Examples o f l a s e r d e s o r p t i o n (16) and plasma d e s o r p t i o n s p e c t r a o f u n d e r v a t i z e d g l u c u r o n i c a c i d c o n j u g a t e s are shown i n F i g u r e s 1 and 2. The n a t u r e o f t h e anions and c a t i o n s observed i n FAB s p e c t r a formed by c l e a v a g e s i n the a c e t a l o r g l y c o s i d i c f u n c t i o n a l group have been found t o c o r r e l a t e w i t h the n a t u r e o f t h e a g l y c o n bond c o n j u g a t e d ( 1 5 ) . These c o r r e l a t i o n s a r e proposed i n scheme 1. D e s p i t e o u t s t a n d i n g FD measurements i n l a b o r a t o r i e s at Mainz and a few o t h e r p l a c e s , a n a l y s i s o f g l u c u r o n i c a c i d c o n j u g a t e s by FAB i s g e n e r a l l y more r e l i a b l e than FD a n a l y s e s . However, FAB i s a l s o not c o m p l e t e l y r e l i a b l e . We have worked w i t h some g l u c u r o n i c a c i d c o n j u g a t e s which p r o v i d e d n e i t h e r an anion o r c a t i o n spectrum from a v a r i e t y o f FAB m a t r i c e s . In one o f t h e s e cases t h e a n a l y s i s has been o b t a i n e d s u c c e s s f u l l y by thermospray. In s e v e r a l o t h e r i n s t a n c e s l a s e r d e s o r p t i o n has been s t r a i g h t f o r w a r d . Plasma d e s o r p t i o n u s i n g f i s s i o n fragments from Cf-252 has a l s o proven s u c c e s s f u l i n some i n s t a n c e s where FAB has failed. In t h e i n s t a n c e s where l a s e r and plasma d e s o r p t i o n were more s u c c e s s f u l , i t i s p o s s i b l e t h a t t h e FAB a n a l y s i s was
In Xenobiotic Conjugation Chemistry; Paulson, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV LAVAL on September 23, 2015 | http://pubs.acs.org Publication Date: January 24, 1986 | doi: 10.1021/bk-1986-0299.ch007
FENSELAU AND YELLET
Analysis of Glucuronic Acid by MS
M/Z F i g u r e 1. L a s e r d e s o r p t i o n mass spectrum o f t h e g l u c u r o n i c a c i d c o n j u g a t e o f 1 - n a p h t h y l a c e t i c a c i d ( 6 6 ) . The spectrum p r o v i d e d by Dr. Robert C o t t e r .
In Xenobiotic Conjugation Chemistry; Paulson, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
XENOBIOTIC CONJUGATION CHEMISTRY
V O H
?
HO-^^T^^O—CH-CH*0
\ H ,
1001 Downloaded by UNIV LAVAL on September 23, 2015 | http://pubs.acs.org Publication Date: January 24, 1986 | doi: 10.1021/bk-1986-0299.ch007
NH-CH
H
260 (MH-176)
«0 e
>
50 436 (fHO*
. 1
LA
,
m/z F i g u r e 2. Plasma d e s o r p t i o n mass spectrum o f g l u c u r o n i c a c i d conjugates of propranolol glucuronides. The spectrum i s p r o v i d e d by Dr. Robert C o t t e r .
Fast atom bombardment COOH
0 OH
O
Alcohols Phenols Carboxy Acids Quaternary Amines
MH-176
M-177
MH-192
m/z 193
Carbinolamlnes
MH-176 MH-192
M-177 M-193 m/z 193
Oxlmes N-hydroxy Amides
OH
COOH -o
^-OH OH
OH
BOTH LOSSES
t
Scheme 1
In Xenobiotic Conjugation Chemistry; Paulson, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
7. FENSELAU AND YELLET
Analysis of Glucuronic Acid by MS
163
confounded by s o l u t i o n phenomena, p r o b a b l y t h e absence ot s u f f i c i e n t sample m o l e c u l e s on t h e s u r f a c e o f t h e l i q u i d m a t r i x . In the second h a l f o f t h i s c h a p t e r we d i s c u s s i n more d e t a i l t h e high p o t e n t i a l o f f a s t atom bombardment, d e m o n s t r a t i n g a p p l i c a t i o n s t o a n a l y s i s o f some new g l u c u r o n i c a c i d c o n j u g a t e s r e c e n t l y s y n t h e s i z e d i n our l a b o r a t o r y .
Downloaded by UNIV LAVAL on September 23, 2015 | http://pubs.acs.org Publication Date: January 24, 1986 | doi: 10.1021/bk-1986-0299.ch007
Sulfate
Desorption
E a r l y d e s o r p t i o n s t u d i e s o f s u l f a t e e s t e r s (17) and t h e s e v e r a l f i e l d d e s o r p t i o n papers (18-22) c o n f i r m t h a t c a t i o n i z e d m o l e c u l a r i o n s can p r o v i d e m o l e c u l a r weight i n f o r m a t i o n , but a l s o suggest t h a t m u l t i p l y charged i o n s , s a l t c l u s t e r s , p y r o l y s i s and i r r e p r o d u c e a b i l i t y confound a n a l y s i s o f desorbed c a t i o n s . Fast atom bombardment has been r e p o r t e d t o be more e f f e c t i v e (23-26) a l t h o u g h c a t i o n i z a t i o n by a l k a l i e a r t h m e t a l s as w e l l as p r o t o n a t i o n produces redundant m o l e c u l a r i o n s p e c i e s i n p o s i t i v e i o n s p e c t r a . One group o f a u t h o r s (23) d e s c r i b e p o s i t i v e i o n s p e c t r a as p o o r l y r e p r o d u c e a b l e and "of low i n t e n s i t y , and agreement seems t o e x i s t t h a t n e g a t i v e i o n s p e c t r a are s i m p l e r , independent o f t h e presence o f m i x t u r e s o f a l k a l i e a r t h c o u n t e r i o n s and more r e p r o d u c e a b l e . Background s u b t r a c t i o n t e c h n i q u e s have been a p p l i e d t o i n c r e a s e s e n s i t i v i t y ( 2 3 , 2 4 ) . D e r i v a t i z a t i o n has been suggested as a way t o i n c r e a s e t h e m o l e c u l a r weight o f t h e s u l f a t e and move i t away from g l y c e r o l m a t r i x i o n s ( 2 3 ) . Sample p r e p a r a t i o n has been found t o be i m p o r t a n t t o c o n t r b T s i g n a l s u p p r e s s i o n by i m p u r i t i e s i n a c h i e v i n g f u l l scans on 15 ng samples and q u a n t i t a t i o n w i t h s t a b l e i s o t o p e l a b e l l e d i n t e r n a l standards ( 2 3 ) . The FAB spectrum o f t h e mixed a n h y d r i d e s u l f a t e e s t e r c o n j u g a t e o f indomethacin i s shown i n F i g u r e 3. Glutathione
Desorption
F i e l d d e s o r p t i o n has p r o v i d e d s a t i s f a c t o r y a n a l y s e s o f a number o f g l u t a t h i o n e c o n j u g a t e s ( 2 2 , 27-34) i n c l u d i n g a d i g l u t a t h i o n e formed i n the metabolism o f c h o l o r f o r m , ( 2 8 ) ^ Abundant molecular^ i o n s p e c i e s are o b s e r v e d , v a r y i n g among M , (M+H) and (M+Na) . Class c h a r a c t e r i s t i c f r a g m e n t a t i o n o c c u r s on one s i d e o r t h e o t h e r o f t h e t h i o e t h e r l i n k a g e , o r b o t h , g e n e r a t i n g some or a l l o f t h e c a t i o n s shown i n scheme 2. Onkenhout and c o l l e a g u e s have p o i n t e d out t h a t t h e s e same decomposition r e a c t i o n s a l s o occur during p y r o l y s i s (33). C e r t a i n l y t h e p o s s i b i l i t y o f p y r o l y t i c c o n t r i b u t i o n s can not be excluded i n most c a s e s . However t h e o b s e r v a t i o n o f a t l e a s t one o f t h e s e r e t r o - M i c h a e l f r a g m e n t a t i o n s induced by c o l l i s i o n a l a c t i v a t i o n s (22) a l s o argues f o r t h e i r occurence independent o f pyrolysis. F r e q u e n t l y cleavage^ i n t h e C y s - G l u bond produces c a t i o n s o f mass 130 and/or (MH-130) , which can be viewed as c o n f i r m i n g t h e presence of a g l u t a t h i o n e m o i e t y . One r e p o r t suggests 200 ng as a r e a s o n a b l e sample s i z e ( 3 0 ) . G l u t a t h i o n e c o n j u g a t e s are a l s o analysed r e a d i l y by f a s t atom bombardment and by plasma d e s o r p t i o n , as e i t h e r anions o r c a t i o n s ( 3 5 - 3 9 ) . In a d d i t i o n t o abundant m o l e c u l a r i o n s ( F i g . 4) f a s t atom
In Xenobiotic Conjugation Chemistry; Paulson, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV LAVAL on September 23, 2015 | http://pubs.acs.org Publication Date: January 24, 1986 | doi: 10.1021/bk-1986-0299.ch007
164
XENOBIOTIC CONJUGATION CHEMISTRY
F i g u r e 3. F a s t atom bombardment mass spectrum o f indomethacin a c y l hydrogen s u l f a t e ( 6 7 ) .
R-S-G
R-s-H
^
^H-S-C (m/z 307)?
(M-273)?
RH (MH-306)* Scheme 2
6SCH2CH2 ^
847 (M + H)
____
r-X2.5
N-^V-CHgCHCOON GSCH CHo 9
^
NH
2
I
883
I 869 I 500 M/Z
550
600 800
850
F i g u r e 4 . Fast atom bombardment mass spectrum o f t h e d i g l u t a t h i o n e c o n j u g a t e o f p h e n y l a l a n i n e mustard ( 6 8 ) .
In Xenobiotic Conjugation Chemistry; Paulson, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
7. FENSELAU AND YELLET
Analysis of Glucuronic Acid by MS
165
Downloaded by UNIV LAVAL on September 23, 2015 | http://pubs.acs.org Publication Date: January 24, 1986 | doi: 10.1021/bk-1986-0299.ch007
bombardment promotes some f r a g m e n t a t i o n analogous t o f i e l d d e s o r p t i o n , n o t a b l y f o r m a t i o n o f c l a s s c h a r a c t e r i s t i c (MH-306) cations (38). The complementary c a t i o n s o f mass 308 are sometimes formed as w e l l , and i n n e g a t i v e i o n s p e c t r a anions o f mass 306 are o b s e r v e d , r e f l e c t i n g t h e presence o f t h e g l u t a t h i o n e m o i e t y . A comparison o f the e f f i c a c y o f s e v e r a l l i q u i d m a t r i c e s has l e d t h e a u t h o r s t o recommend t h e a n a l y s i s o f p o s i t i v e i o n s from t h i o g l y c e r o l as a r e l i a b l e general method. Fast atom bombardment has a l s o been used s u c c e s s f u l l y w i t h m e t a b o l i t e s r e l a t e d t o o r d e r i v e d from g l u t a t h i o n e c o n j u g a t e s , e . g . a homoglutathione soybean m e t a b o l i t e (40) and mammalian mercapturates and c y s t e i n y l c o n j u g a t e s (24, 4 1 - 4 4 ) . Ion E v a p o r a t i o n and LCMS Among t h e s e v e r a l types o f i n t e r f a c e s c o m m e r c i a l l y a v a i l a b l e f o r c o u p l i n g high p r e s s u r e l i q u i d chromatography and mass s p e c t r o m e t r y , t h e moving b e l t s (45) d i r e c t l i q u i d i n j e c t i o n (46) and thermospray ( i o n e v a p o r a t i o n ) ~(T4,47) systems have been u s e S T s u c c e s s f u l l y t o analyze underivatized glucuronic acid conjugates. S i n c e moving b e l t and d i r e c t i n j e c t i o n i n t e r f a c e s r e q u i r e at l e a s t m a r g i n a l l y v o l a t i l e samples, t h e y have been l e s s r e a d i l y a p p l i c a b l e t o s u l f a t e and g l u t a t h i o n e c o n j u g a t e s . G l u t a t h i o n e and i t s c o n j u g a t e s have been i o n i z e d by thermospray (38,48) and f i e l d induced i o n evaporation (49). Thermospray ( 1 0 ) , e l e c t r o s p r a y (50) and f i e l d induced i o n e v a p o r a t i o n ( 4 9 ) , varTants on t h e same mechanism ( 5 1 , 5 2 ) , appear t o o f f e r a t r u e d e s o r p t i o n t e c h n i q u e , where i o n s are formed i n the condensed phase and s u b s e q u e n t l y evaporated i n t o t h e gas phase. A s e p a r a t i o n o f d i a s t e r e o m e r i c p r o p r a n o l o l g l u c u r o n i d e s by r e v e r s e d phase HPLC i s shown i n F i g u r e 5. The chromatogram recorded by UV d e t e c t i o n can be compared w i t h chromatograms recorded by a thermospray i n t e r f a c e d mass s p e c t r o m e t e r . The p o t e n t i a l uses o f t o t a l i o n c u r r e n t chromatograms, mass chromatograms and s e l e c t e d i o n m o n i t o r i n g p a r a l l e l s t h e i r e s t a b l i s h e d u t i l i t y i n GCMS ( 5 3 ) . Both p o s i t i v e and n e g a t i v e i o n s are produced. G l u c u r o n i d e s were used t o i l l u s t r a t e t h e p o i n t t h a t the s e n s i t i v i t y o f thermospray (and l i k e l y , e l e c t r o s p r a y and f i e l d induced i o n e v a p o r a t i o n as w e l l ) v a r i e s from compound t o compound (47). Subsequently s e n s i t i v i t y f o r p o s i t i v e i o n s has been c o r r e l a t e d w i t h proton a f f i n i t y i n t h e gas phase ( 1 4 ) . Some o f t h e fragment ions may be formed by h i g h t e m p e r a t u r e r e a c t i o n s w i t h t h e v o l a t i l e b u f f e r ( u s u a l l y ammonium a c e t a t e ) r e q u i r e d f o r thermospray i o n i z a t i o n (10). C o n s i s t e n t w i t h t h e f r a g m e n t a t i o n scheme general t o d e s o r p t i o n t e c h n i q u e s , (M+NH.-176) i o n s are i m p o r t a n t i n t h e c a t i o n s p e c t r a , as w e l l as t h e c l a s s c h a r a c t e r i s t i c i o n o f mass 194, ammoniated g l u c u r o n i c a c i d . Less f r a g m e n t a t i o n i s observed i n anion s p e c t r a . The e x t e n t o f f r a g m e n t a t i o n o f g l u c u r o n i d e s i n thermospray i s dependent i n p a r t on t h e b u f f e r c o n c e n t r a t i o n and on the temperature. In a comparison o f thermospray w i t h FAB ( 1 4 ) , ammonium a c e t a t e was used i n t h e FAB m a t r i x as w e l l as tHe thermospray buffer. I t s presence s i g n i f i c a n t l y a l t e r s the c a t i o n FAB s p e c t r a +
In Xenobiotic Conjugation Chemistry; Paulson, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
166
XENOBIOTIC CONJUGATION CHEMISTRY
P R O P R A N O L O L
-• jd —
D - G L U C U R O N I D t
( 2 Dl ASTEREOMERS)
ULTR ASPHERE OOS 15 cm 4 5 ° / M E 0 H : 5 5 % AMMONIUM ACETATE o
PROTONATED
Downloaded by UNIV LAVAL on September 23, 2015 | http://pubs.acs.org Publication Date: January 24, 1986 | doi: 10.1021/bk-1986-0299.ch007
M/Z 260
.05M
AGLYCON
*C-OH H O - ^ ^ V ^ ^ O — CH-CH^OH 16
.20
4 7 % M E 0 H : 53/o AMMONIUM ACETATE
0.1 M
I ML /MINUTE
OMIN.
20
F i g u r e 5. High p r e s s u r e l i q u i d chromatograms o f p r o p r a n o l o l g l u c u r o n i d e s r e c o r d e d by thermospray mass s p e c t r o m e t r y and u l t r a v i o l e t spectroscopy (47). Upper p a n e l : s e l e c t e d i o n p r o f i l e o f (MH-176) . MidHTe p a n e l : s e l e c t e d i o n p r o f i l e o f (MH) . Lower p a n e l : p r o f i l e o f a b s o r p t i o n at 280 nm.
In Xenobiotic Conjugation Chemistry; Paulson, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
7.
FENSELAU AND YELLET
Analysis of Glucuronic Acid by MS
167
of glucuronic a c i d conjugates of non-basic aglycons, providing (M+NH4) i o n s w i t h improved s i g n a l t o n o i s e r a t i o s and s e n s i t i v i t i e s compared t o (M+H) i o n s generated i n g l y c e r o l o r t h i o g l y c e r o l w i t h o u t ammonium a c e t a t e ( 5 4 ) .
Downloaded by UNIV LAVAL on September 23, 2015 | http://pubs.acs.org Publication Date: January 24, 1986 | doi: 10.1021/bk-1986-0299.ch007
FAB A n a l y s i s o f G l u c u r o n i d e s o f C a r b i n o l a m i n e s and Oximes. Numerous s t u d i e s have been conducted t o i n v e s t i g a t e t h e m e t a b o l i c o x y g e n a t i o n o f C-N s y s t e m s , due t o t h e widespread o c c u r r e n c e o f t h i s type o f s t u c t u r e i n p h a r m a c e u t i c a l agents and p e s t i c i d e s , and a l s o because o f t h e p o t e n t i a l t o x i c o l o g i c a l and p h a r m a c o l o g i c a l p r o p e r t i e s which N-oxygenated compounds p o s s e s . O x i d i z e d m e t a b o l i t e s i n c l u d e h y d r o x y l a m i n e s , oximes and c a r b i n o l a m i n e s . A l l o f t h e s e can be c o n j u g a t e d w i t h g l u c u r o n i c a c i d , which may r e s u l t i n d e t o x i f i c a t i o n . However, some o f t h e s e N-O-glucuronides are v e r y r e a c t i v e , w i t h the g l u c u r o n i c a c i d moiety a c t i n g as a good l e a v i n g group. In o r d e r t o examine t h e pharmacology o f t h e s e g l u c u r o n i d e s , r e p r e s e n t a t i v e C-N c o n t a i n i n g m e t a b o l i t e s have been o b t a i n e d and conjugated w i t h g l u c u r o n i c a c i d ; t h e s t a b i l i t y , chromatographic and mass s p e c t r a l c h a c t e r i s t i e s o f t h e s e compounds have been s t u d i e d . A s t u d y o f the O - g l u c u r o n i d e s o f a s e t o f hydroxy a c e t y l a r y l a m i n e s has been p u b l i s h e d ( 5 5 ) . The c h a r a c t e r i z a t i o n by f a s t atom bombardment o f c a r b i n o l a m i n e g l u c u r o n i d e s d e r i v e d from t h e h e r b i c i d e diphenamid (56) t h e a n t i t u m o r agent hexamethylmelamine (57) and t h e Q h o l T n e s t e r a s e r e a c t i v a t o r 2 - p r a l i d o x i m e (58) i s d i s c u s s e d h e r e , along w i t h t h e c h a r a c t e r i z a t i o n o f g l u c u r o n i d e s o f phenyl acetone oxime (a m e t a b o l i t e o f amphetamine) (59,60) acetophenone oxime (61,62) and t h e a n t i v i r a l agent e n v i r o x i m e ( 6 3 ) . The f i r s t two c a r b i n o l a m i n e s named were s y n t h e s i z e d u s i n g s e q u e n t i a l c a t a l y s i s by cytochrome P-450 oxygenase and g l u c u r o n y l t r a n s f e r a s e i m m o b i l i z e d from r a b b i t l i v e r microsomes onto sepharose beads (64,65) as shown i n scheme 3. 2 - P r a l i d o x i m e c h l o r i d e was a l l o w e d t o decompose at pH 7.4 i n t h e presence o f i m m o b i l i z e d UDP-glucuronyl t r a n s f e r a s e and the c o f a c t o r u r i d i n e diphosphoglucuronic a c i d to obtain the conjugated c a r b i n o l i m i n e shown i n the scheme. C o n j u g a t i o n o f t h e t h r e e oximes shown i n scheme 4 was c a t a l y s e d by i m m o b i l i z e d t r a n s f e r a s e enzymes ( 6 5 ) . Conjugates were p u r i f i e d by e x t r a c t i o n and chromatography. The e l e c t r o n impact spectrum o f t h e v o l a t i l e p e r ( t r i m e t h y l ) s i l y l a t e d d e r i v a t i v e o f e n v i r o x i m e g l u c u r o n i d e i s shown i n F i g u r e 6. The m o l e c u l a r i o n i s v i s i b l e , p r o v i d i n g a m o l e c u l a r weight which can be c o r r e c t e d f o r t r i m e t h y l s i y l groups i n t h e case o f an unknown sample by a n a l y z i n g a second p o r t i o n o f t h e sample d e r i v a t i z e d w i t h d g - t r i m e t h y l s i l y l groups { ! ) . The i n t e n s e peak at m/z 375 i s c h a r a c t e r i s t i c o f t r i m e t h y l s i l y l a t e d g l u c u r o n i d e s as a c l a s s ( 1 ) . The l o s s o f 481 mass u n i t s i s c h a r a c t e r i s t i c o f t r i m e t h y l s i l y a t e d g l u c u r o n i c a c i d l i n k e d to a hydroxyl or other o x y g e n - c o n t a i n i n g f u n c t i o n a l group. The analogous fragment l o s t from an amine l i n k e d g l u c u r o n i d e would have a d i f f e r e n t mass. This argues f o r c o n j u g a t i o n o f t h e hydroxyl groups o f e n v i r o x i m e and not t h e ami^o group. The presence o f (M-481) i o n s and t h e absence o f (M-392) i o n s i s s u s t a i n e d i n s p e c t r a o f t h e o t h e r two oxime g l u c u r o n i d e s as w e l l , and may t h e r e f o r e be i n d i c a t i v e o f oxime c o n j u g a t i o n . T h i s e l e c t r o n impact a n a l y s i s does r e q u i r e
In Xenobiotic Conjugation Chemistry; Paulson, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
168
XENOBIOTIC CONJUGATION CHEMISTRY
HOOC .CH, P-ASO OXYGENASE
CHj
N
Downloaded by UNIV LAVAL on September 23, 2015 | http://pubs.acs.org Publication Date: January 24, 1986 | doi: 10.1021/bk-1986-0299.ch007
hexamethylmelamine
dyphenamid
DEGRADATION
HON-C-
P
H
7
'
HOOC GLUCURONYL TRANSFERASE
t
4
CH cr 3
HO^N
H O ^ - O ^ g
CH CI
S
3
OH
2-pralidoxime chloride Scheme 3
acetophenone oxime glucuronide
amphetamine oxime glucuronide Scheme 4
In Xenobiotic Conjugation Chemistry; Paulson, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
HjCl
Downloaded by UNIV LAVAL on September 23, 2015 | http://pubs.acs.org Publication Date: January 24, 1986 | doi: 10.1021/bk-1986-0299.ch007
7. FENSELAU AND YELLET
Analysis of Glucuronic Acid by MS
169
d e r i v a t i z a t i o n o f the g l u c u r o n i d e . However, t h i s approach i s a l s o c o m p a t i b l e w i t h gas chromatography and combined gas chromatography mass s p e c t r o m e t r y . P o s i t i v e and n e g a t i v e i o n s p e c t r a o f u n d e r i v a t i z e d e n v i r o x i m e g l u c u r o n i d e o b t a i n e d by f a s t atom bombardment mass s p e c t r o m e t r y are shown i n F i g u r e s 7 and 8. These were run u s i n g a g l y c e r o l m a t r i x . T y p i c a ^ o f many FAB s p e c t r a , t h e c a t i o n spectrum r e v e a l s (M+H) (M+Na) at m/z 557 and (M+K) a t m/z 573, a l l even e l e c t r o n molecular ion species. Even e l e c t r o n fragment i o n s a r e observed n o t a b l y (M+H-176) a t m/z 359 and (M+H-192) a t m/z 343. The anion spectrum c o n t a i n s an (M-H) peak at m/z 533 unaccompanied by a n a t r i a t e d s a t a l l i t e . T h i s and o t h e r peaks i n t h e anion spectrum appear t o correspond t o t h e same i o n s seen i n t h e c a t i o n s p e c t r u m , however two mass u n i t s l i g h t e r . The (M-H-176)" o r (m-177) ion r e f l e c t s a c l a s s c h a r a c t e r i s t i c , f r a g m e n t a t i o n . Ions o f mass 193 presumeably comprise anions o f t h e g l u c u r o n i c a c i d m o i e t y . Anions were recorded w i t h g r e a t e r s e n s i t i v i t y than c a t i o n s i n t h i s c a s e . F i g u r e 9 c o n t a i n s t h e FAB c a t i o n spectrum ( g l y c e r o l ) o f t h e g l u c u r o n i c a c i d c o n j u g a t e o f t h e h y d r o l y s i s product o f 2 - p r a l i d o x i m e . In a d d i t i o n t o being a c a r b i n o l i m i n e , t h i s m e t a b o l i t e a l s o has q u a t e r n a r y ammonium c e n t e r . T h i s permanent charge r e s u l t s i n f a c i l e d e t e c t i o n o f m o l e c u l a r c a t i o n s . Anions a r e much h a r d e r t o r e c o r d . I n t e r e s t i n g l y no fragment i o n s are formed under the c o n d i t i o n s used t o r e c o r d F i g u r e 9. S p e c t r a o f p o s i t i v e and n e g a t i v e i o n s formed from t h e g l u c u r o n i d e o f hydroxydiphenamid (a c a r b i n o l a m i d e ) , by f a s t atom bombardment w i t h g l y c e r o l m a t r i c e s , are shown i n F i g u r e s 10 and 1 1 . Again the anion spectrum can be recorded w i t h l e s s sample. As i n t h e case o f e n v i r o x i m e g l u c u r o n i d e , a n i o n s c o m p r i s i n g t h e g l u c u r o n i c a c i d moiety a r e d e t e c t e d (mass 1 9 3 ) , and t h e l o s s o f the g l u c u r o n i c a c i d , (M+H-192) i s found i n t h e c a t i o n spectrum. Both o f t h e s e are c l a s s c h a r a c t e r i s t i c i o n s . Cleavage r e s u l t i n g i n r e t e n t i o n o f both oxygen atoms by t h e g l u c u r o n i c a c i d m o i e t y (mass 192,193 or 194) combined w i t h t h e absence o f mass 177 or (M+H-176) i o n s may be c h a r a c t e r i s t i c o f c a r b i n o l a m i n e c o n j u g a t i o n . Enzymatic oxygenation i n t h e d i p h e n y l m e t h i n e m o i e t y can be r u l e d out by o b s e r v a t i o n o f t h e peak at m/z 167 i n t h e anion specrum. The l a s t FAB s p e c t r u m , F i g u r e 12, i s t h a t o f hydroxyhexamethylmelamine g l u c u r o n i d e measured w i t h a t h i o g l y c e r o l m a t r i x . The p r o t o n a t e d m o l e c u l a r i o n i s o b s e r v e d , as w e l l as t h e c l a s s c h a r a c t e r i s t i c i o n (M+H-194) o f mass 20£. When t h i s a n a l y s i s was run from a g l y c e r o ^ m a t r i x , (M-H) i o n s were desorbed i n g r e a t e r abundance than (M+H) ions. In a d d i t i o n t o p r e s e n t i n g new o b s e r v a t i o n s on t h e a n a l y s i s o f some novel g l u c u r o n i d e s c o n j u g a t e d t o oxime and c a r b i n o l a m i n e f u n c t i o n a l groups, t h i s d i s c u s s i o n i s intended to i l l u s t r a t e the p o t e n t i a l and l i m i t a t i o n s o f ^ f a s t atom bombardment, t h e most w i d e l y used of the new d e s o r p t i o n mass s p e c t r o m e t r y t e c h n i q u e s . Molecular weights may be o b t a i n e d and c o n f i r m e d by redundant s p e c i e s . Class c h a r a c t e r i s t i c f r a g m e n t a t i o n may support i d e n t i f i c a t i o n as a glucuronide. In some cases f r a g m e n t a t i o n w i t h i n t h e aglycon may p r o v i d e an i n d i c a t i o n o f t h e s i t e o f m e t a b o l i c o x y g e n a t i o n and conjugation. I t appears t h a t c o n j u g a t i o n w i t h d i f f e r e n t f u n c t i o n a l groups l e a d s t o d i f f e r e n t p a t t e r n s o f c l e a v a g e w i t h i n the
In Xenobiotic Conjugation Chemistry; Paulson, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
170
XENOBIOTIC CONJUGATION CHEMISTRY
SMT-OOC SMTO
N
100 -1
O-TMS
375
217
-X
10
Downloaded by UNIV LAVAL on September 23, 2015 | http://pubs.acs.org Publication Date: January 24, 1986 | doi: 10.1021/bk-1986-0299.ch007
1 50
*
-1
-X^A / A ^ / r l 220
240
270
290
370
//Xr-J//A 380
410
430
500 510
trX780
790
820
830
870
M/Z
F i g u r e 6. E l e c t r o n impact mass spectrum o f t r i m e t h y l s i l y l a t e d enviroxime glucuronide. >NH
359 100'
(M^-175) 359 235
x2
GH+ -106-194)
535
50-J
253
0^-106-176)
2
(ttf-192) 343 (!U*-106)
J
-
• iJllllllll^JjlJl, 250
T// 290
557 573
429
i — r * r 340
380
420
440
530
55G
570
F i g u r e 7. P o s i t i v e i o n f a s t atom bombardment mass spectrum o f enviroxime glucuronide.
In Xenobiotic Conjugation Chemistry; Paulson, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
2
Downloaded by UNIV LAVAL on September 23, 2015 | http://pubs.acs.org Publication Date: January 24, 1986 | doi: 10.1021/bk-1986-0299.ch007
7.
Analysis of Glucuronic Acid by MS
FENSELAU AND YELLET
160
200
230
260
350
370
171
390
430
530
F i g u r e 8. Negative i o n f a s t atom bombardment mass spectrum of enviroxime glucuronide.
100
100
150
ZC0
250
F i g u r e 9. Fast atom bombardment mass spectrum o f t h e g l u c u r o n i d e o f t h e c a r b i n o l a m i n e d e r i v e d from p r a l i d o x i m e chloride.
In Xenobiotic Conjugation Chemistry; Paulson, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
540
172
XENOBIOTIC CONJUGATION CHEMISTRY
inn
240
xlO
H
Downloaded by UNIV LAVAL on September 23, 2015 | http://pubs.acs.org Publication Date: January 24, 1986 | doi: 10.1021/bk-1986-0299.ch007
50
3 eg
452
i 210
I
I
T
I
i
i
i
i
f~~~i 400
i
i
i 450
500
M/Z
F i g u r e 10. P o s i t i v e i o n f a s t atom bombardment mass spectrum o f hydroxydiphenamide g l u c u r o n i d e .
167
100
OH
430
^
193
to
I
50 _
i
H
1^
T
1
T—I
250
200
M/Z
F i g u r e 11. Negative i o n f a s t atom bombardment mass spectrum o f hydroxydiphenamide g l u c u r o n i d e .
In Xenobiotic Conjugation Chemistry; Paulson, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
1 450
FENSELAU AND YELLET
Downloaded by UNIV LAVAL on September 23, 2015 | http://pubs.acs.org Publication Date: January 24, 1986 | doi: 10.1021/bk-1986-0299.ch007
100-1
Analysis of Glucuronic Acid by MS
-X20
H00C
403
50(MH -194) 209
—I—i—i—i—nfn—r —i—i 250 340 M/Z 1
200
1—i—i—r»—i—r 400
F i g u r e 12. Fast atom bombardment mass spectrum o f hydroxyhexamethylmelamine g l u c u r o n i d e .
In Xenobiotic Conjugation Chemistry; Paulson, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
174
XENOBIOTIC CONJUGATION CHEMISTRY
glycosidic acetal group. When both can be obtained, anion and cation spectra provide complimentary and reinforcing information. Summary
Downloaded by UNIV LAVAL on September 23, 2015 | http://pubs.acs.org Publication Date: January 24, 1986 | doi: 10.1021/bk-1986-0299.ch007
All of the more common conjugated xenobiotic metabolites are now known to be susceptible to mass spectral analysis using one or another of the desorption techniques. An investigator can expect to obtain molecular weight information and, in most cases, some structural information from fragmentation. Sensitivities currently range between 1 ng and 1 ug. Liquid chromatography mass spectrometry can be utilized as well as gas chromatography mass spectrometry. Acknowledgments We thank Donald Delong, L i l l y Research Laboratories, for a sample of enviroxime, Patrick Callery, University of Maryland, School of Pharmacy, for a sample of the oxime of phenyl acetone; Robert J . Cotter, Dan Liberato, Gordon Hansen, Jeff Honovich, Ron Robbins, Carol Lisek, Mehrshid Alai and Deanne Dulik for assistance with mass spectra, especially those in Figures 1-5. This research was supported by USPHS grants NIH GM-21248 and GM07626. Literature Cited 1. Fenselau, C.; Johnson, L.P. Drug Metab. Disp., 1980, 8, 274-283. 2. Paulson, G.; Bakke, J.; Giddings, J.; Simpson, M. Biomed. Mass Spectrom. 1978, 5, 128-132. 3. Paulson, G.; Simpson, M.; Giddings, J.; Bakke, J.; Stolzenberg, G.; Biomed. Mass Spectrom. 1978, 5, 413-417. 4. Damon, M.; Chavis, C.; Godard, P.; Michel, F.B.; Crastes de Paulet, A. Biochem. Biophys. Research Commun. 1983, 111, 518-524. 5. Maas, R.L.; Lawson, J.A.; Brash, A.R.; Oates, J.A. Adv. Prostag. Thrombox. and Leukotr. Res. 1983, 11, 229-234. 6. Giessman, U.; Rollgen, F.W. Int. J . Mass Spectrom. Ion Phys. 1981, 38, 267-279. 7. MacFarlane, R.D. Acc. Chem. Res. 1982, 15, 268-275. 8. Cotter, R.J. Anal. Chem. 1984, 56, 485A-504A. 9. Barber, M.; Bordoli, R.S.; E l l i o t , G.J.; Sedgwick, R.D.; Tyler, A.N. Anal. Chem. 1982, 54, 645A-657A. 10. Blakely, C.R.; Vestal, M.L. Anal. Chem. 1983, 55, 750-754. 11. Ens, W.; Standing, K.; Chait, B.T.; Field, F.H. Anal. Chem. 1981, 53, 1241-1244. 12. Wunsch, L.; Benninghoven, A.; Eicke, A.; Heinen, H.J.; Ritter, H.P.; Taylor, L.C.E.; Veith, J. Org. Mass Spectrom. 1984, 19, 176-182. 13. Balasunmugan, K.; Hercules, D.M.; Cotter, R.J.; Heller, D.; Benninghoven, A.; Sichterman, W.; Anders, V.; Keough, T.; MacFarlane, R.D.; McNeal, C.J. Anal. Chem. 1984, 56, 5759-5762.
In Xenobiotic Conjugation Chemistry; Paulson, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
7.
FENSELAU AND YELLET
14. 15. 16. 17. 18.
Downloaded by UNIV LAVAL on September 23, 2015 | http://pubs.acs.org Publication Date: January 24, 1986 | doi: 10.1021/bk-1986-0299.ch007
19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40.
Analysis of Glucuronic Acid by MS
175
Fenselau, C.; Liberato, D.J.; Yergey, J.A.; Cotter, R.J.; Yergey, A.L. Anal. Chem. 1984, 56, 5759-5762. Fenselau, C., Yelle, L.; Stogniew, M.; Liberato, D.; Lehman, J.; Feng, P.; Colvin, M. J r . Intern. J . Mass Spectrom. Ion Phys. 1983, 46, 411-414. van Breemen, R.B.; Tabet, J.C.; Cotter, R.J. Biomed. Mass Spectrom. 1984, 11, 278-283. Mumma, R.O.; Vastola, F.J. Org. Mass Spectrom. 1972, 6, 1373-1376. Games, D.E.; Games, M.P.; Jackson, A.H.; Olavesen, A.H.; Rossiter, M.; Winterburn, P.J. Tetrahed Let. 1974, 2377-2380. Schulten. H.R.; Lehmann, W.D. Anal. Chim. Acta. 1976, 87, 103-112. Matcham, G.W.J.; Dodgson, K.S. Biochem. J. 1977, 167, 717-722. Deutsch, J.; Gelboin, H.V. Biomed. Mass Spectrom. 1982, 9, 99-102. Nelson, S.D.; Vaishnav, Y.; Kambara, H.; Baillie, T.A. Biomed. Mass Spectrom. 1981, 8, 244-251. Gaskell, S.J.; Brownsey, B.G.; Brooks, P.W.; Green, B.N. Biomed. Mass Spectrom. 1983, 10, 215-219. Ackermann, B.L.; Watson, J.T.; Newton, J . F . ; Hook, J.B.; Braselton, W.E. J r . Biomed. Mass Spectrom. 1984, 11, 502-511. Jardine, I.; Scanlan, G.F.; Mattox, V.R.; Kumar, R. Biomed. Mass Spectrom. 1984, 11, 4-9. Fenselau, C.; Cotter, R.J.; In "IUPAC Frontiers of Chemistry"; Laidler, K.J., Ed.; Pergammon: Oxford, 1982, p. 207-216. Tunek, A.; P l a t t , K.L.; Przybylski, M.; Oesch, F. Chem. - B i o l . Interactions 1980, 33, 1-17. Pohl, L.R.; Branchflower, R.V.; Highet, R.J.; Martin, J . L . ; Nunn, D.D.; Monks, T . J . ; George, J.W.; Hinson, J.A. Drug Metab. Disp. 1981, 9, 334-339. Przybylski, M.; Cysyk, R.L.; Shoemaker, D.; and Adamson, R.H. Biomed. Mass Spectrom. 1981, 8, 485-491. Meerman, J.H.N.; Beland, F.A.; Ketterer, B.; Srai, S.K.S.; Bruins, A.P.; Mulder, G.J. Chem.-Biol. Interactions 1982, 39, 149-168. Moss, E.J.; Judah, D.J.; Przybylski, M.; Neal , G.E. Biochem. J. 1983, 210, 227-233. Gandich, K.; Przybylski, M. Biomed. Mass Spectrom. 1983, 10, 292-299. Onkenhout, W.; Vermeulen, N.P.E.; Luijten, W.C.; deJong, H.J. Biomed. Mass Spectrom. 1983, 10, 614-619. Przybylski, M.; Luderwald, I.; Kraas, E.; Voelter, W.; Nelson, S.D. Z. Naturforsch. Teil 1979, 34, 736-743. Murphy, R.C.; Mathews, W.R.; Rokach, J.; Fenselau, C. Prostaglandins, 1982. 23, 201-206. Larsen, G.L.; Ryhage, R. Xenobiotica 1982, 12, 855-860. Ross, D.; Larsson, R.; Norbeck, K.; Ryhage, R.; Moldeus, P. Molecular Pharmacology 1985, 27, 277-286. Pallante, S.L.; Lisek, C.A.; Dulik, D.M.; Fenselau, C. Drug Metab. Disp., 1986, in press. Fairlamb, A.H.; Blackburn, P.; Ulrich, P.; Chait, B.T.; Cerami, A. Science, 1985, 227, 1485-1487. Frear, D.S.; Swanson, H.R.; Mansager, E.R. Pest. Biochem. Physiol. 1985, 23, 56-65. In Xenobiotic Conjugation Chemistry; Paulson, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
176
XENOBIOTIC CONJUGATION CHEMISTRY
Downloaded by UNIV LAVAL on September 23, 2015 | http://pubs.acs.org Publication Date: January 24, 1986 | doi: 10.1021/bk-1986-0299.ch007
41.
Bakke, J.E.; Bergman, A.L.; Larsen, G.L. Science 1982, 217, 645-647. 42. Stogniew, M.; Fenselau, C. Drug Metab. Disp. 1982, 10, 609-613. 43. Logan, C.J.; Cottee, F.H.; and Page, J.A. Biochem. Pharmacol. 1984, 33, 2345-2346. 44. Hutson, D.H.; Logan, C.J.; Regan, P.D. Drug Metab. Disp. 1984, 12, 523-524. 45. Games, D.E.; Lewis, E. Biomed. Mass Spectrom. 1980, 7, 433-436. 46. Kenyon, C.N.; Goodley, P.C.; Dixon, D.J.; Whitney, J.O.; F a u l l , K.F.; Barchas, J.D. American Laboratory, 1983, January, 38-49. 47. Liberato, D.J.; Fenselau, C.C.; Vestal, M.L.; Yergey, A.L. Anal. Chem. 1983, 55, 1741-1744. 48. Fenselau, C.; Larsen, B.S. In "Drug Metabolism"; Siest, G., Ed.; Pergamon Press: Oxford, 1985. 49. Thomson, B.A.; Iribarne, J.V.; Dziedzic, P.J. Anal. Chem. 1982, 54, 2219-2224. 50. Whitehouse, C.M.; Dreyer, R.N.; Yamashita, M.; Fenn, J.B. Anal. Chem. 1985, 57, 675-679. 51. Iribarne, J.V.; Thomson, B.A. J . Chem. Phys. 1976, 64, 2287-2294. 52. Thomson, B.A.; Iribarne, J.V. J . Chem. Phys. 1979, 71, 4451-4463. 53. Fenselau, C. Anal. Chem. 1977, 49, 563A - 570A. 54. Fenselau, C. In "Mass Spectrometry in Health and Life Sciences"; Burlingame, A.L. and Castagnoli, N.J., Ed.; Elsevier: Amsterdam, 1985. 55. Feng, P.C.; Fenselau, C.; Colvin, M.; Hinson, J . Drug Metab. Disp. 1981, 9, 521-524. 56. McMahon, R.E.; Sullivan, H.R. Biochem. Pharm. 1965, 14, 1085-1092. 57. Gescher, A,; Hickman, J.A.; Stevens, F.G. Biochem. Pharmacol. 1979, 28, 3235-3238. 58. Brown, N.D.; S t r i c k l e r , M.P.; Sleeman, H.; Doctor, B.P. J . Chromatog. 1981, 212, 361-365. 59. Cho, A.K.; Wright, J . Life Science, 1978, 22, 363-371. 60. Hucker, H.B.; Michniewicz, B.M.; Rhodes, R.E. Biochem. Pharmacol. 1971, 20, 2123-2127. 61. Sternson, L.A.; Hes, J . Pharmacology 1975, 13, 234-240. 62. Sternson, L.A.; Hincal, F.; Bannister, S.J. J . Chromatog. 1979, 144, 191-200. 63. Wikel, J.H.; Paget, C.J.; Delong, D.C. J . Med. Chem. 1980, 23, 368-372. 64. Lehman, J.P.; Ferrin, L.; Fenselau, C.; Yost, G.S. Drug Metab. Disp. 1981, 9, 15-18. 65. Yelle, L., M.A. Thesis, Johns Hopkins University, Baltimore, MD 1982. 66. Hamar-Hansen, C.; Fournel, S.; Magdalou, J.; Boutin, J.A.; Siest, G. submitted. 67. van Breemen, R.B.; Fenselau, C.; Dulik, D.M. In "Biological Reactive Intermediates"; Snyder, R.; Witmer, C.M.; Jollow, D.J. and Kocsis, J.J. Eds.; Plenum Press: New York, 1986. 68. Dulik, D.M.; Hilton, J.; Fenselau, C.; Colvin, M.; Biochem. Pharm. i n press. RECEIVED October 30, 1985 In Xenobiotic Conjugation Chemistry; Paulson, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.