Gold-Catalyzed Regioselective Hydration of ... - ACS Publications

Dec 27, 2010 - A general atom-economical approach for the synthesis of α-acyloxy methyl ketone is demonstrated through regioselective hydration of a ...
0 downloads 0 Views 1MB Size
pubs.acs.org/joc

Gold-Catalyzed Regioselective Hydration of Propargyl Acetates Assisted by a Neighboring Carbonyl Group: Access to r-Acyloxy Methyl Ketones and Synthesis of (( ()-Actinopolymorphol B† Nayan Ghosh, Sanatan Nayak, and Akhila K. Sahoo* School of Chemistry, University of Hyderabad, Hyderabad 500046, India [email protected] Received October 8, 2010

A general atom-economical approach for the synthesis of R-acyloxy methyl ketone is demonstrated through regioselective hydration of a wide range of propargyl acetates. Readily available catalyst comprising of 1% Ph3PAuCl and 1% AgSbF6 in dioxane-H2O efficiently hydrolyzes the terminal alkynes of the propargyl acetate in the absence of acid promoters at ambient temperature within a short time. Effective regioselective hydration is facilitated by the neighboring carbonyl group as demonstrated through 18O-labeling study. Compatibility of functional moieties and tolerance to various acid-labile protecting groups are observed. The catalytic condition is also suitable to perform hydration of TMS-substituted propargyl acetates, even though it requires prolonged reaction time for completion. Stereointegrity of the propargylic acetate is preserved during the hydration. The robustness of the system is successfully demonstrated through gram scale preparation of the product in nearly quantitative yield. The common R-acyloxy methyl ketone is transformed to 1,2-diol and 1,2-amino alcohol derivatives. Synthesis of actinopolymorphol B is achieved for the first time involving hydration of the propargyl acetate as the key step.

Introduction A straightforward and atom-economical approach to the formation of carbonyl derivatives through alkyne hydration is not only environmentally benign, but also cost-effective.1,2 Therefore, hydrocarbon alkynes can be considered as pro-ketones.2 A functional group having a directing unit adjacent to terminal

alkyne is expected to assist in the generation of either R- or βsubstituted carbonyls through hydration.3 A propargylic ester moiety would trigger regioselective Markovnikov’s hydration of terminal alkynes with ease, and the hydration product would transform to R-hydroxy methyl ketones in a straightforward manner.4 The R-hydroxy methyl ketone moieties are found in many natural products of pharmacological significance, and some representative molecules are shown in Figure 1.5

† Dedicated to Professor Tamejiro Hiyama on the occasion of his retirement from Kyoto University, Japan. (1) (a) Hintermann, L.; Labonne, A. Synthesis 2007, 8, 1121. (b) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079. (c) Bruneau, C.; Dixneuf, P. H. Chem. Commun. 1997, 507. (2) (a) Smith, M. B.; March, J. March’s Advanced Organic Chemistry: Reaction, Mechanism and Structure, 6th ed.; Wiley: Hoboken, NJ, 2007. (b) Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry; Springler: New York, 2007. (3) (a) Hintermann, L.; Kribber, T.; Labonne, A.; Paciok, V. Synlett 2009, 15, 2412. (b) Labonne, A.; Zani, L.; Hintermann, L.; Bolm, C. J. Org. Chem. 2007, 72, 5704. (c) Jennings, P. W.; Hartman, J. W.; Hiscox, W. C. Inorg. Chim. Acta 1994, 222, 317. (d) Stork, G.; Borch, R. J. Am. Chem. Soc. 1964, 86, 935.

(4) For recent and selected references to the synthesis of R-hydroxy ketones, see: (a) Hoyos, P.; Sinisterra, J.-V.; Molinari, F.; Alc antara, A. R.; Marı´ a, P. D. D. Acc. Chem. Res. 2010, 43, 288. (b) Bierenstiel, M.; D’Handt, P. J.; Schlaf, M. Tetrahedron 2005, 61, 4911. (c) Linghu, X.; Potnick, J. R.; Johnson, J. S. J. Am. Chem. Soc. 2004, 126, 3070. (d) Fleming, S. A.; Carroll, S. M.; Hirschi, J.; Liu, R.; Pace, J. L.; Redd, J. H. Tetrahedron Lett. 2004, 45, 3341. (e) Ooi, T.; Saito, A.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 3220. (f) Momiyama, N.; Yamamoto, H. Org. Lett. 2002, 4, 3579. (5) (a) Liu, R.; Lin, Z.; Zhu, T.; Fang, Y.; Gu, Q.; Zhu, W. J. Nat. Prod. 2008, 71, 1127. (b) Wang, S.-K.; Huang, M.-J.; Duh, C.-Y. J. Nat. Prod. 2006, 69, 1411. (c) Chen, F.-C.; Peng, C.-F.; Tasi, I.-L.; Chen, I.-S. J. Nat. Prod. 2005, 68, 1318. (d) Liu, Y.-B.; Su, E.-N.; Li, J.-L.; Yu, S.-S.; Qu, J.; Liu, J.; Li, Y. J. Nat. Prod. 2009, 72, 229.

500

Published on Web 12/27/2010

J. Org. Chem. 2011, 76, 500–511

DOI: 10.1021/jo101995g r 2010 American Chemical Society

Ghosh et al.

FIGURE 1. Examples of natural products containing R-hydroxy methyl ketones.

Combinations of toxic mercury salts (HgO) with Brønsted or Lewis acids (H2SO4 or BF3-OEt2 etc.) are the reagents commonly used to perform hydration of alkynes.6 Addition of water and oxygen-bearing nucleophiles to activated as well as nonactivated alkynes has been carried out with use of transition metal catalysts and acid promoters.7,8 Alkyne hydrations in the absence of metals generally require harsh conditions.9 Addition of oxygen-bearing nucleophiles to (6) (a) Nishizawa, M.; Skwarczynski, M.; Imagawa, H.; Sugihara, T. Chem. Lett. 2002, 12. (b) Killian, D. B.; Hennion, G. F.; Nieuwland, J. A. J. Am. Chem. Soc. 1936, 58, 80. (c) Killian, D. B.; Hennion, G. F.; Nieuwland, J. A. J. Am. Chem. Soc. 1934, 56, 1786. (d) Hennin, G. F.; Killian, D. B.; Vaughn, T. H.; Nieuwland, J. A. J. Am. Chem. Soc. 1934, 56, 1130. (e) Nieuwland, J. A.; Vogt, R. R.; Foohey, W. L. J. Am. Chem. Soc. 1930, 52, 1018. (f) Kutscheroff, M. G. Chem. Ber. 1909, 42, 2759. (g) Kutscheroff, M. Chem. Ber. 1884, 17, 13. (7) For selected references on transition metal-catalyzed addition of water to alkynes, see: (a) Kribber, T.; Labonne, A.; Hintermann, L. Synthesis 2007, 2809. (b) Chang, H.-K.; Datta, S.; Das, A.; Odedra, A.; Liu, R.-S. Angew. Chem., Int. Ed. 2007, 46, 4744. (c) Chang, H.-K.; Lioa, Y.-C.; Liu, R.-S. J. Org. Chem. 2007, 72, 8139. (d) Ackermann, L.; Kaspar, L. T. J. Org. Chem. 2007, 72, 6149. (e) Labonne, A.; Kribber, T.; Hintermann, L. Org. Lett. 2006, 8, 5853. (f) Grotjahn, D. B.; Lev, D. A. J. Am. Chem. Soc. 2004, 126, 12232. (g) Suzuki, T.; Tokunaga, M.; Wakatsuki, Y. Tetrahedron Lett. 2002, 43, 7531. (h) Grotjahn, D. B.; Incarvito, C. D.; Rheingold, A. L. Angew. Chem., Int. Ed. 2001, 40, 3884. (i) Tokunaga, M.; Suzuki, T.; Koga, N.; Fukushima, T.; Horiuchi, A.; Wakatsuki, Y. J. Am. Chem. Soc. 2001, 123, 11917. (j) Suzuki, T.; Tokunaga, M.; Wakatsuki, Y. Org. Lett. 2001, 3, 735. (k) Francisco, L. W.; Moreno, D. A.; Atwood, J. D. Organometallics 2001, 20, 4237. (l) Tokunaga, M.; Wakatsuki, Y. Angew. Chem., Int. Ed. 1998, 37, 2867. (m) Baidossi, W.; Lahav, M.; Blum, J. J. Org. Chem. 1997, 62, 669. (n) Hartman, J. W.; Hiscox, W. C.; Jennings, P. W. J. Org. Chem. 1993, 58, 7613. (o) Blum, J.; Huminer, H.; Alper, H. J. Mol. Catal. 1992, 75, 153. (p) Hiscox, W.; Jennings, P. W. Organometallics 1990, 9, 1997. (q) Halpern, J.; James, B. R.; Kemp, A. L. W. J. Am. Chem. Soc. 1961, 83, 4097. (8) For selected references on transition metal-catalyzed intermolecular addition of oxygen nucleophiles to alkynes, see: (a) Zhang, M.; Jiang, H.-F.; Neumann, H.; Beller, M.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2009, 48, 1681. (b) Kato, K.; Motodate, S.; Mochida, T.; Kobayashi, T.; Akita, H. Angew. Chem., Int. Ed. 2009, 48, 3326. (c) Kianmehr, E.; Tabatabai, K.; Abbasi, A.; Mehr, H. S. Synth. Commun. 2008, 38, 2529. (d) Zhao, L.; Lu, X.; Xu, W. J. Org. Chem. 2005, 70, 4059. (e) Yoshida, M.; Morishita, Y.; Ihara, M. Tetrahedron Lett. 2005, 46, 3669. (f) Imahori, T.; Hori, C.; Kondo, Y. Adv. Synth. Catal. 2004, 346, 1090. (g) Asao, N.; Nogami, T.; Takahashi, K.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 764. (h) Tzalis, D.; Koradin, C.; Knochel, P. Tetrahedron Lett. 1999, 40, 6193. (i) Rotem, M.; Shvo, Y. J. Organomet. Chem. 1993, 448, 189. (j) Imi, K.; Imai, K.; Utimoto, K. Tetrahedron Lett. 1987, 28, 3127. (k) Ruppin, C.; Dixneuf, P. H. Tetrahedron Lett. 1986, 27, 6323. (l) Ishino, Y.; Nishiguchi, I.; Nakao, S. Chem. Lett. 1981, 641. (9) For selected references on metal-free addition of water to alkynes, see: (a) Bras, G. L.; Provot, O.; Peyrat, J.-F.; Alami, M.; Brion, J.-D. Tetrahedron Lett. 2006, 47, 5497. (b) Wan, Z.; Jones, C. D.; Mitchell, D.; Pu, J. Y.; Zhang, T. Y. J. Org. Chem. 2006, 71, 826. (c) Olivi, N.; Thomas, E.; Peyrat, J. F.; Alami, M.; Brion, J. D. Synlett 2004, 2175. (d) Vasudevan, A.; Verzal, M. K. Synlett 2004, 631. (e) Tsuchimoto, T.; Joya, T.; Shirakawa, E.; Kawakami, Y. Synlett 2000, 1777. (f) Menashe, N.; Shvo, Y. J. Org. Chem. 1993, 58, 7434. (g) Menasha, N.; Reshef, D.; Shvo, Y. J. Org. Chem. 1991, 56, 2912. (h) Allen, A. D.; Chiang, Y.; Kresge, A. J.; Tidwell, T. T. J. Org. Chem. 1982, 47, 775. (i) Smith, J. M., Jr.; Stewart, H. W.; Roth, B.; Northey, E. H. J. Am. Chem. Soc. 1948, 70, 3997.

JOC Article alkynes through active alkynophilic gold complexes has been extensively investigated.10,11 Utility of cationic gold complexes in alkyne hydrations has also been reported.12 For example, terminal and internal alkynes undergo hydration in acid-free condition when refluxed in aqueous methanol with NaAuCl4.12o Teles,12n Hayashi and Tanaka,12m Laguna,12l and others12a,b,e,g-k,p,q have reported the addition of methanol and water to alkynes in the presence of gold catalysts and acid promoters. Nonregioselective Au(I)-catalyzed hydration of propargylic alcohols resulted in mixtures of methyl ketones and R,β-unsaturated aldehydes.12d,m A highly efficient [(NHC)AuI]-catalyzed hydration of nonactivated alkynes at 120 °C was demonstrated by Nolan and co-workers.12c Survey of the gold-catalyzed hydration of alkynes reveals that the reactions invariably require mineral acid as promoters, higher temperature, or both.12 As these harsh conditions are detrimental to the survival of acid-labile protecting groups, the utility of these catalytic systems in the synthesis of complex molecules would be limited.12 Recently, Leyva and Corma have demonstrated the hydration of terminal alkynes at room temperature in the presence of air-stable AuSPhosNTf2; the reaction required 24 h for completion.12f This scenario has prompted us to envisage an alternative strategy for the efficient hydration of alkynes keeping in view the following significant aspects: (1) use of commercially available and air stable gold catalysts, (2) elimination of acid promoters, (3) ambient temperature reaction, (4) tolerance (10) For recent and selected reviews of gold catalysis, see: (a) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2010, 49, 5232. (b) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. (c) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239. (d) Arcadi, A. Chem. Rev. 2008, 108, 3266. (e) JimenezNunez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (f) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (g) Hashmi, A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766. (h) Skouta, R.; Li, C.-J. Tetrahedron 2008, 64, 4917. (i) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. (j) Gorin, D. J.; Toste, D. Nature 2007, 446, 395. (k) Frustner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. (l) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896. (m) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2005, 44, 6990. (n) Hashmi, A. S. K. Gold Bull. 2004, 37, 51. (o) Hashmi, A. S. K. Gold Bull. 2003, 36, 3. (11) For recent and selected gold-catalyzed intermolecular addition of oxygen nucleophiles to alkynes, see: (a) Kuram, M. R.; Bhanuchandra, M.; Sahoo, A. K. J. Org. Chem. 2010, 75, 2247. (b) Corma, A.; Ruiz, V. R.; PerezLeyva, A.; Sabater, M. J. Adv. Synth. Catal. 2010, 352, 1701. (c) Cui, D.-M.; Meng, Q.; Zheng, J.-Z.; Zhang, C. Chem. Commun. 2009, 1577. (d) Santos, L. L.; Ruiz, V. R.; Sabater, M. J.; Corma, A. Tetrahedron 2008, 64, 7902. (e) Zhang, C.; Cui, D.-M.; Yao, L.-Y.; Wang, B.-S.; Hu, Y.-Z.; Hayashi, T. J. Org. Chem. 2008, 73, 7811. (f) Marion, N.; Carlqvist, P.; Gealageas, R.; Fremont, P.; de.; Maseras, F.; Nolan, S. P. Chem.—Eur. J. 2007, 13, 6437. (g) Tian, G.-Q.; Shi, M. Org. Lett. 2007, 9, 4917. (h) Mizushima, E.; Cui, D.-M.; Nath, D. C. D.; Hayashi, T.; Tanaka, M. Org. Synth. 2006, 83, 55. (i) Jung, H. H.; Floreancig, P. E. Org. Lett. 2006, 8, 1994. (j) Norman, R. O. C.; Parr, W. J. E.; Thomas, C. B. J. Chem. Soc., Perkin Trans. 1 1976, 1983. (12) For selected gold-catalyzed hydration of alkynes, see: (a) Wang, W.; Jasinski, J.; Hammond, G. B.; Xu, B. Angew. Chem., Int. Ed. 2010, 49, 7247. (b) Wang, W.; Xu, B.; Hammond, G. B. J. Org. Chem. 2009, 74, 1640. (c) Marion, N.; Ram on, R. S.; Nolan, S. P. J. Am. Chem. Soc. 2009, 131, 448. (d) Ram on, R. S.; Marion, N.; Nolan, S. P. Tetrahedron 2009, 65, 1767. (e) Oh, C. H.; Karmakar, S. J. Org. Chem. 2009, 74, 370. (f) Leyva, A.; Corma, A. J. Org. Chem. 2009, 74, 2067. (g) Sakaguchi, K.; Okada, Y.; Shinada, T.; Ohfune, Y. Tetrahedron lett. 2008, 49, 25. (h) Yang, C.-Y.; Lin, G.-Y.; Liao, H.-Y.; Datta, S.; Liu, R.-S. J. Org. Chem. 2008, 73, 4907. (i) Sanz, S.; Jones, L. A.; Mohr, F.; Laguna, M. Organometallics 2007, 26, 952. (j) Marion, N.; Carlqvist, P.; Gealageas, R.; Fremont, P. D.; Maseras, F.; Nolan, S. P. Chem.—Eur. J. 2007, 13, 6437. (k) Roembke, P.; Schmidbaur, H.; Cronje, S.; Raubenheimer, H. J. Mol. Catal. A: Chem. 2004, 212, 35. (l) Casado, R.; Contel, M.; Laguna, M.; Romero, P.; Sanz, S. J. Am. Chem. Soc. 2003, 125, 11925. (m) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem., Int. Ed. 2002, 41, 4563. (n) Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int. Ed. 1998, 37, 1415. (o) Fukuda, Y.; Utimoto, K. J. Org. Chem. 1991, 56, 3729. (p) Fukuda, Y.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991, 64, 2013. (q) Imi, K.; Imai, K.; Utimoto, K. Tetrahedron Lett. 1987, 28, 3127.

J. Org. Chem. Vol. 76, No. 2, 2011

501

JOC Article TABLE 1.

Ghosh et al.

Optimization of Reaction Conditionsa

entry

catalyst (mol %)

cocatalyst (mol %)

solvent (0.5 mL)

water (equiv)

time (h)

yield (%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

5% AuCI3 5% AuCI3 5% AuBr3 5% AuCI 5% Ph3PAuCI 5% Ph3PAuCI 5% Ph3PAuCI 1% Ph3PAuCI 0.1% Ph3PAuCI 2% Ph3PAuCI 2% Ph3PAuCI 2% Ph3PAuCI 5% Ph3PAuCI Nil 1% Ph3PAuCI 1% Ph3PAuCI 1% Ph3PAuCI

5% AgOAc 5% AgSbF6 5% AgSbF6 5% AgSbF6 5% AgSbF6 5% AgSbF6 5% AgSbF6 1% AgSbF6 0.1% AgSbF6 2% AgOTf 2% AgBF4 2% AgOOCCF3 Nil 5% AgSbF6 1% AgSbF6 1% AgSbF6 1% AgSbF6

dioxane dioxane dioxane dioxane dioxane dioxane dioxane dioxane dioxane dioxane dioxane dioxane dioxane dioxane CH2CI2 MeOH DMF/DMSO

3 3 3 3 3 5 2 3 3 3 3 3 3 3 3 3 3

36 36 36 36 3 4 7 8 70 28 22 36 36 36 24 36 36