Halogen Bond Distance as a Function of Temperature Alessandra Forni,*,† Pierangelo Metrangolo,‡ Tullio Pilati,† and Giuseppe Resnati‡ C.N.R. - Institute of Molecular Science and Technology, University of Milan, Via C. Golgi 19, 20133 Milan, Italy, and Department of Chemistry, Materials, and Chemical Engineering “G. Natta”, Polytechnic of Milan, Via L. Mancinelli 7, 20131 Milan, Italy Received July 24, 2003;
CRYSTAL GROWTH & DESIGN 2004 VOL. 4, NO. 2 291-295
Revised Manuscript Received September 24, 2003
ABSTRACT: The halogen bond, that is, the attractive interaction between a halogen atom and an electron lone pair, was studied as a temperature function in the range 90-292 K. Three model structures containing the bonds Ar-I‚‚‚N, Ar-I‚‚‚O, and Ar-Br‚‚‚N, where Ar is a perfluorinated aromatic residue, were considered: (E)-1,2-bis(4-pyridyl)ethylene 1,4-diiodo-2,3,5,6-tetrafluorobenzene (bpe‚F4dIb), (E)-1,2-bis-(4-pyridyl)ethylene 1,4-dibromo2,3,5,6-tetrafluorobenzene (bpe‚F4dBrb), and 4,4′-dipyridyl-N,N′-dioxide 1,4-diiodo-2,3,5,6-tetrafluorobenzene (bpNO‚ F4dIb). All three Ar-X‚‚‚B systems (B ) lone pair donor) are nearly linear, and the change of X‚‚‚B bond lengths spans from 0.030 to 0.059 Å in the studied temperature range; the least change is found in bpNO‚‚‚F4dIb where the interaction between the two molecules is enforced by the presence of an H‚‚‚O hydrogen bond. Other weak packing features, present in all the three structures, such as H‚‚‚F, show larger variations in the same temperature range. Introduction The noncovalent interaction between halogen atoms and Lewis bases such as nitrogen, oxygen, sulfur, and halide anions has drawn particular attention in recent years.1 To emphasize the strict analogies of this interaction with the universally known hydrogen bond, the name halogen bond has been proposed and is currently used.2 Such an interaction has been extensively used to design new supramolecular structures and new highvalue materials.3 Iodo- or bromoperfluorinated compounds are particularly well positioned to function as halogen bond donor modules. In fact, thanks to the electron-withdrawing ability of fluorinated residues,4 the electron-accepting ability of halogen atoms in perfluorocarbon (PFC) halides is definitely higher than in the corresponding hydrocarbon (HC) halides. Moreover, haloperfluoroalkanes allow the halogen bond potential in crystal engineering to be studied free from interference of other interactions. This is due to the very weak tendency of C-F groups in PFC derivatives to give rise to any attractive interactions.5 Thanks to their peculiar physical and chemical properties (chemical inertia, very low surface energy, water and oil repellency),6 PFC derivatives are of great industrial and applicative importance. These properties are also responsible for the poor tendency of PFC derivatives to give crystalline solids. To obtain PFCs containing crystals becomes consequently a target of particular relevance, and the incorporation of PFC derivatives into halogen-bonded cocrystal matrixes with suitable interacting partners is a protocol of general applicability.7 As expected for an n f σ* interaction,8 the halogen bond is highly directional. It in fact occurs along directions, which roughly coincide with the axes of the
lone pairs orbitals in the noncomplexed donor molecule. As for the D‚‚‚X distance (D ) electron pair donor, X ) halogen), statistical studies carried out on the Cambridge Structural Database (CSD) have confirmed the directionality of the halogen bond in the range 2.6-3.3 and 2.5-3.2 Å, for X ) I and Br, respectively.9 Few reports on the influence of temperature on the D‚‚‚X distance are present in the literature. Nevertheless, the halogen bond length seemed to be strongly dependent on temperature. For example, the morpholine‚ p-iodophenylacetylene complex at 150 K shows an N‚‚‚I interaction distance of 2.712(2),10 vs. 2.9 Å found at room temperature.11 It was shown that the N‚‚‚I shorter ( Br‚‚‚N > H‚‚‚F > residual. bpNO‚F4dIb shows a little more complex behavior. The ribbons are snakelike and the directions of I‚‚‚O, O‚‚‚H, and H‚‚‚F forces are not really parallel to u, v,
294
Crystal Growth & Design, Vol. 4, No. 2, 2004
Table 2. Packing Variations with Temperature for bpe‚F4dIb T ) 90 K
T ) 145 K T ) 200 K T ) 292 K
I‚‚‚Na (Å) 2.768(2) 2.776(2) 2.798(2) 2.820(2) C3‚‚‚F1b (Å) 3.137(2) 3.152(2) 3.176(2) 3.196(2) C1‚‚‚F2c (Å) 3.448(2) 3.456(2) 3.479(2) 3.496(2) inter-ribbonsd (Å) 6.305(2) 6.317(2) 6.349(1) 6.366(3) interlayerse (Å) 3.128(1) 3.151(1) 3.187(1) 3.236(2) H3‚‚‚F1b (Å) 2.46(2) 2.46(2) 2.54(2) 2.56(3) H1‚‚‚F2c (Å) 2.54(2) 2.54(2) 2.54(2) 2.60(2) C7-I‚‚‚Na (°) 179.3(1) 179.4(1) 179.3(1) 179.3(1) C3-H3‚‚‚F1b (°) 131.(2) 130.(2) 128.(2) 123.(2) C1-H1‚‚‚F2c (°) 151.(2) 149.(2) 152.(2) 150.(2) a -1 -x, 1 - y, -1 - z. b -1 + x, y, z. c 1 + x, y, -1 + z. Distance between two bonded ribbons in the same layer. e Distance between the layers defined in Figure 3.
d
Table 3. Packing Variations with Temperature for dpe‚F4dBrb T ) 90 K
T ) 145 K T ) 200 K T ) 292 K
Br‚‚‚Na
(Å) 2.814(2) 2.829(2) 2.841(2) 2.873(2) C1‚‚‚F1b (Å) 3.480(2) 3.500(2) 3.511(2) 3.557(3) c C7‚‚‚F2 (Å) 3.161(2) 3.178(2) 3.194(2) 3.228(3) H1‚‚‚F1b (Å) 2.58(2) 2.64(2) 2.63(2) 2.64(3) H7‚‚‚F2c (Å) 2.47(2) 2.47(2) 2.51(2) 2.54(3) inter-ribbonsd (Å) 6.342(3) 6.362(2) 6.369(2) 6.401(1) interlayerse (Å) 3.058(2) 3.084(1) 3.106(1) 3.159(1) C7-Br‚‚‚Na (°) 179.1(1) 179.1(1) 179.0(1) 178.6(1) C1-H1‚‚‚F1b (°) 160.(2) 161.(2) 159.(2) 163.(2) C7-H7‚‚‚F2c (°) 128.(2) 130.(2) 129.(2) 136.(2) a -1 + x, 1 + y, 1 + z. b 1 - x, -y, 1 - z. c -1 + x, y, -1 + z. Distance between two bonded ribbons in the same layer. e Distance between the layers defined in Figure 3.
d
Table 4. Packing Variations with Temperature for bpNO‚F4dIb T ) 90 K I‚‚‚Oa (Å) C5‚‚‚Oa (Å) C2‚‚‚F2b (Å) C1‚‚‚F2c (Å) inter-ribbonsd (Å) interlayerse (Å) BpNO∧F4dIbf (°) H5‚‚‚Oa (Å) H2‚‚‚F2b (Å) H1‚‚‚F2c (Å) C6-I‚‚‚Oa (°) C5-H5‚‚‚Oa (°) C2-H2‚‚‚F2b (°) C1-H1‚‚‚F2c (°)
2.723(2) 3.183(2) 3.409(2) 3.110(2) 6.310(2) 3.201(2) 13.8(1) 2.26(2) 2.57(2) 2.62(3) 169.8(1) 169.(2) 146.(2) 114.(2)
T ) 145 K T ) 200 K T ) 292 K 2.728(2) 3.187(2) 3.427(2) 3.124(2) 6.309(2) 3.218(2) 14.6(1) 2.27(3) 2.59(3) 2.62(3) 169.9(1) 172.(2) 148.(2) 114.(2)
2.736(2) 3.194(3) 3.445(3) 3.136(3) 6.312(2) 3.238(2) 15.3(1) 2.25(3) 2.63(3) 2.67(3) 169.9(1) 171.(2) 145.(2) 112.(2)
2.753(2) 3.213(4) 3.483(4) 3.173(4) 6.327(3) 3.281(3) 16.6(1) 2.28(4) 2.64(4) 2.68(4) 170.2(1) 172.(3) 144.(3) 113.(2)
a -2 - x, -1 - y, -z. b x, y, -1 + z. c -1 + x, y, -1 + z. Distance between two bonded ribbons in the same layer. e Distance between the layers defined in Figure 3. f Dihedral angle between bpNO and F4dIb molecules.
d
and w, so that it is quite difficult to separate the different contributions. Notwithstanding this intricacy, the strongest interactions (O‚‚‚H and O‚‚‚I) act in the plane of ribbons and influence the expansions which are 0.030 for O‚‚‚C5 (we prefer to consider this parameter rather than O‚‚‚H5 because of the bias of H atom position in an X-ray crystallographic experiment), 0.030 for O‚‚‚I, and 0.080 Å for the interlayers distance (Table 4). Few examples directly comparable to our data are available in the literature. In the interesting paper on 4-isopropylphenol13e the main intermolecular interaction is an Ophenol-H‚‚‚Ophenol hydrogen bond. The O‚‚‚O distance lengthens from 2.750 to 2.818 Å passing from 95 to 300 K, and this variation (0.068 Å) is greater than
Forni et al.
those we found for D‚‚‚X (D ) N, O; X ) I, Br) halogen bonds in a comparable range of temperatures. The structure of quinolinic acid13b is somewhat similar to that of bpNO‚F4dIb. In fact, the crystals of this compound consist of ribbons of Naromatic-H‚‚‚O bonded molecules; the ribbons, parallel to a, are linked together (parallel to c) by three Caromatic-H‚‚‚O hydrogen bonds. Two of these attractive interactions, namely, H2‚‚‚O1x,y,1+z and H2‚‚‚O31+x,y,1+z, contribute to enforce the interaction along the ribbon so that, in the 100300 K range, the N‚‚‚O distance lengthens by 0.014 Å, the inter-ribbon distance lengthens by 0.013, and the interplanar distance lengthens by 0.072 Å. The first change is smaller than the lengthening of I‚‚‚O halogen bond in bpNO‚F4dIb (0.030 Å), and the second and third ones are not too different from the corresponding one in bpNO‚F4dIb. The comparison of our structures with the ureaphosphoric acid complex13e is more difficult. In the urea complex, strong O-H‚‚‚O and moderate N-H‚‚‚O hydrogen bonds are simultaneously present, and it is difficult to evaluate if a bond varies according to its own strength or as a consequence of some other concurrent interaction. Nevertheless, it is remarkable that the elongation of the three shortest O‚‚‚O distances, corresponding to the strongest hydrogen bonds, is 0.002, 0.008, and 0.021 Å in the range 150-350 K. Conclusions While the halogen bond was first reported some 140 years ago,21 only recently it has been systematically studied as a new and strong noncovalent interaction for driving intermolecular recognition processes. The availability of new interactions opens the opportunity for innovative methodologies in future crystal engineering projects and their reliability rests on a detailed understanding of these new interactions. Data presented in this paper represent a new contribution to the understanding of the energetic and geometric properties of the halogen bond. These data show that, despite the significant differences among the nature of the involved atoms (e.g., volume, polarizability), the change of the halogen bond distance with temperature is as large as the variation of hydrogen bond having a comparable strength. This new evidence further supports the existence of strong similarities between the two interactions.22 Supporting Information Available: X-ray crystallographic information files (CIF) for compounds bpe‚F4dIb, bpe‚F4dBrb, and bpNO‚F4dib. This material is available free of charge via the Internet at http://pubs.acs.org.
References (1) (a) Metrangolo, P.; Resnati, G. Chem. Eur. J. 2001, 7, 25112519. (b) Bailey Walsh, R.; Padgett, C. W.; Metrangolo, P.; Resnati, G.; Hanks, T. W.; Pennington, W. T. Cryst. Growth Des. 2001, 1, 165-175. (2) (a) Dumas, J. M.; Gomel, L.; Guerin, M. Molecular interactions involving organic halides. In The Chemistry of Functional Groups, Suppl. D; Wiley: New York, 1983; pp 9851020. (b) Legon, A. C. Angew. Chem., Int. Ed. 1999, 38, 2686-2714. (3) (a) Imakubo, T.; Tajima, N.; Tamura, M.; Kato, R.; Nishio, Y.; Kajita, K. Synth. Met. 2003, 133-134, 181-183. (b) Bertani, R.; Metrangolo, P.; Moiana, A.; Perez, E.; Pilati, T.; Resnati, G. Adv. Mater. 2002, 14, 1197-1201. (c) Jay, J.
Halogen Bond Distance as a Function of Temperature
(4) (5) (6)
(7)
(8) (9)
(10) (11) (12)
I.; Padgett, C. W.; Walsh, R. D. B.; Hanks, T. W.; Pennington, W. T. Cryst. Growth Des. 2001, 1, 501-507. (d) Thaimattam, R.; Sharma, C. V. K.; Clearfield, A.; Desiraju, G. R. Cryst. Growth Des. 2001, 1, 103-106. (e) Garden, S. J.; Fontes, S. P.; Wardell, J. L.; Skakle, J. M. S.; Low, J. N.; Glidewell, C. Acta Crystallogr. 2002, B58, 701-709. Bratsch, S. G. J. Chem. Educ. 1985, 62, 101-103. (a) Hildebrand, J.; Cochran, D. R. F. J. Am. Chem. Soc. 1949, 71, 22-25. (b) Dorset, D. L. Macromolecules 1990, 23, 894901. Wakselman, C.; Lanz A. In Organofluorine Chemistry: Principles and Commercial Applications; Banks, R. E., Smart, B. E., Tatlow, J. C. F., Eds.; Plenum Press: New York, 1994. (a) Liantonio, R.; Metrangolo, P.; Pilati, T.; Resnati, G. Cryst. Growth Des. 2003, 3, 355-361. (b) Liantonio, R.; Metrangolo, P.; Pilati, T.; Resnati, G.; Stevenazzi, A. Cryst. Growth Des. 2003, 3, 799-803. Prout, C. K.; Kamenar, B. Molecular Complexes; Elek Science: London, 1973; Vol. 1, pp 151-207. (a) Lommerse, J. P. M.; Stone, A. J.; Taylor, R.; Allen, F. H. J. Am. Chem. Soc. 1996, 118, 3108-3116. (b) Fontana, F.; Forni, A.; Metrangolo, P.; Panzeri, W.; Pilati, T.; Resnati, G. Supramol. Chem. 2002, 14, 47-55. Batsanov, A. S.; Howard, J. K. A. Acta Crystallogr. 2000, C56, 252-253. Baughman, R. H. J. Org. Chem. 1964, 29, 441-451. (a) Corradi, E.; Meille, S. V.; Messina, M. T.; Metrangolo, P.; Resnati, G. Angew. Chem., Int. Ed. 2000, 39, 1782-1786. (b) Valerio, G.; Raos, G.; Meille, S. V.; Metrangolo, P.; Resnati, G. J. Phys. Chem. 1999, A104, 1617-1620.
Crystal Growth & Design, Vol. 4, No. 2, 2004 295 (13) (a) Ku¨ppers, H.; Takusagawa, F.; Koetzle, T. F. J. Chem. Phys. 1985, 82, 5636-5647. (b) Takusagawa, F.; Koetzle, T. F. Acta Crystallogr. 1979, B35, 2126-2135. (c) Wilson, C. C.; Shankland, N.; Florence, A. J. J. Chem. Soc., Faraday Trans. 1996, 92, 5051-5057. (d) Wilson, C. C.; Shankland, K.; Shankland, N. Zeit. Kristallogr. 2001, 216, 303-306. (e) Wo´jcik, G.; Holband, J. Acta Crystallogr. 2002, B58, 684689. (14) (a) De Santis, A.; Forni, A.; Liantonio, R.; Metrangolo, P.; Pilati, T.; Resnati, G. Chem. Eur. J. 2003, 9, 3974-3983. (b) Messina, M. T.; Metrangolo, P.; Panzeri, W.; Pilati, T.; Resnati, G. Tetrahedron 2001, 57, 8543-8550. (15) Bianchi, R.; Forni, A.; Pilati, T. Chem. Eur. J. 2003, 9, 16311638. (16) Sheldrick, G. M. SHELXL-97. Program for the Refinement of Crystal Structures; University of Go¨ttingen, Germany, 1997. (17) Hirshfeld, F. L. Acta Crystallogr. 1976, A32, 239-244. (18) Schomaker, V.; Trueblood, K. N. Acta Crystallogr. 1968, B24, 63-76. (19) Burnett, M. N.; Johnson C. K. ORTEPIII, Report ORNL6895; Oak Ridge National Laboratory, Tennessee, USA, 1996. (20) Kempe, R.; E.Kessenich, E.; Schulz, A. Inorg. Chem., 2001, 40, 5182-5187. (21) Guthrie, F. J. Chem. Soc. 1863, 16, 239-244. (22) Corradi, E.; Meille, S. V.; Messina, M. T.; Metrangolo, P.; Resnati, G. Angew. Chem., Int. Ed. 2000, 39, 1782-1786.
CG034138F