Heat-Resistant Polyarylsulfone Exhibiting Improved Flow during

at equivalent processing temperatures. The flow improve ment is demonstrated by comparison with Brabender data, injection-molding conditions, and melt...
0 downloads 7 Views 678KB Size
9

Heat-Resistant Polyarylsulfone Exhibiting Improved Flow during Processing

Downloaded by EAST CAROLINA UNIV on January 3, 2018 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch009

R O B E R T J. C O R N E L L Uniroyal Chemical, Division of Uniroyal, Inc., Naugatuck, Conn. 06770

The

reaction of bis(4-chlorophenyl)sulfone with the anhy­

drous dialkali salt of α,α'-bis(4-hydroxyphenyl)-p-diisopropyl benzene, which is dissolved in an aprotic solvent, leads to a new heat-resistant polyarylsulfone. monomer

and

polymer

physical and mechanical The

polyarylsulfone

A general discussion of

preparation

is given as well as

properties of this polyarylsulfone.

thermoplastic exhibits essentially the

same heat resistance of the polyarylsulfone based on bis­ (4-chlorophenyl)sulfone

and

2,2-bis(4-hydroxyphenyl)pro-

pane, along with the added plus of a lower melt viscosity at equivalent processing temperatures.

The flow improve­

ment is demonstrated by comparison with Brabender data, injection-molding conditions, and melt-viscosity data.

J n

recent years, there has b e e n a c o n s i d e r a b l e a m o u n t of interest i n high-molecular-weight polyarylsulfone polymers

(1-3).

These poly­

m e r i c materials possess heat-deflection temperatures of 165°-260°C p l u s excellent t h e r m a l s t a b i l i t y at the h i g h p r o c e s s i n g temperatures r e q u i r e d . T h i s p a p e r deals w i t h the synthesis a n d the p h y s i c a l a n d m e c h a n i c a l properties of a n e w heat-resistant p o l y a r y l s u l f o n e .

This new polyaryl­

sulfone t h e r m o p l a s t i c exhibits a significant r e d u c t i o n i n a p p a r e n t

(melt)

viscosity w i t h o n l y a s l i g h t r e d u c t i o n i n heat deflection t e m p e r a t u r e w h e n c o m p a r e d w i t h the p o l y a r y l s u l f o n e b a s e d o n bis ( 4 - c h l o r o p h e n y l )sulfone a n d 2,2-bis ( 4 - h y d r o x y p h e n y l ) p r o p a n e .

Experimental R e a g e n t . T e t r a h y d r o t h i o p h e n e 1,1-dioxide ( c o m m o n l y c a l l e d s u l f o l a n e ) was o b t a i n e d f r o m S h e l l C h e m i c a l c o n t a i n i n g 3% w a t e r . A n h y ­ drous sulfolane was o b t a i n b y d i s t i l l a t i o n u n d e r r e d u c e d pressure. Re131 Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

132

POLYMERIZATION

REACTIONS AND N E W

POLYMERS

Downloaded by EAST CAROLINA UNIV on January 3, 2018 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch009

agent g r a d e p o t a s s i u m h y d r o x i d e , c h l o r o f o r m , a n d b e n z e n e w e r e u s e d without further purification. M o n o m e r s . B I S ( 4 - C H L O R O P H E N Y L ) S U L F O N E . W e p r e p a r e d bis ( 4 c h l o r o p h e n y l ) s u l f o n e ( I i n R e a c t i o n 1) b y d r o p w i s e a d d i t i o n of c h l o r o s u l f o n i c a c i d (0.4 m o l e ) to c h l o r o b e n z e n e (0.2 m o l e ) at 0 ° C . One h o u r after the c h l o r o s u l f o n i c a c i d a d d i t i o n was c o m p l e t e d , a n a d d i t i o n a l q u a n t i t y of c h l o r o b e n z e n e (0.16 m o l e ) was a d d e d to the c o l d s o l u t i o n .

II T h e r e a c t i o n m i x t u r e was a l l o w e d to w a r m g r a d u a l l y to 5 0 ° C . The r e a c t i o n was q u e n c h e d b y p o u r i n g into ice w a t e r . T h e aqueous sus­ p e n s i o n was h e a t e d to h y d r o l y z e p - c h l o r o b e n z e n e s u l f o n y l c h l o r i d e ( I I ) to the w a t e r - s o l u b l e s u l f o n i c a c i d . T h e d e s i r e d p r o d u c t was filtered a n d w a s h e d w i t h w a t e r u n t i l essentially n e u t r a l . B i s ( 4 - c h l o r o p h e n y l )sulfone was p u r i f i e d b y r e c r y s t a l l i z a t i o n f r o m b e n z e n e — m . p . 145°-147°C ( 4 ) . E x t r e m e l y l o w y i e l d s w e r e o b t a i n e d b y this process. B y contrast, y i e l d s i n excess of 90% have b e e n r e p o r t e d i n processes t h a t i n v o l v e the r e a c t i o n of c h l o r o b e n z e n e w i t h s u l f u r t r i o x i d e a n d d i m e t h y l or d i e t h y l sulfate (5, 6). a,a -Bls(4-HYDROXYPHENYL)-p-DIISOPROPYLBENZENE. «,a:'-Bis(4-hydrOXyphenyl)-p-diisopropylbenzene ( I I I i n R e a c t i o n 2 ) was p r e p a r e d b y /

III

Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

Downloaded by EAST CAROLINA UNIV on January 3, 2018 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch009

9.

CORNELL

Heat-Resist ant

133

Polyarylsulfone

d r o p w i s e a d d i t i o n of p - d i i s o p r o p e n y l b e n z e n e i n toluene to a 3 M excess of p h e n o l s a t u r a t e d w i t h gaseous h y d r o g e n c h l o r i d e . A f t e r a f e w h o u r s , the b u l k of the a,a'-bis ( 4 - h y d r o x y p h e n y l ) - p - d i i s o p r o p y l b e n z e n e f o r m e d c r y s t a l l i z e d out. T h e excess p h e n o l c a n b e r e m o v e d b y steam s t r i p p i n g . T h e c o m p o u n d was p u r i f i e d b y r e c r y s t a l l i z a t i o n f r o m a c e t o n e — m . p . 191°-192°C (7). T h e b i s p h e n o l c a n also b e p r e p a r e d f r o m a , a ' - d i h y droxy-p-diisopropylbenzene and phenol (8,9). P o l y m e r i z a t i o n . T y p i c a l l y , the d i h y d r i c p h e n o l ( 1 m o l e ) a n d aqueous a l k a l i m e t a l h y d r o x i d e (2 m o l e s ) are m i x e d u n d e r a n i n e r t at­ m o s p h e r e i n sulfolane a n d benzene. T h e w a t e r f r o m the aqueous s o l u ­ t i o n p l u s m e t a l p h e n o x i d e f o r m a t i o n is r e m o v e d b y d i s t i l l a t i o n of a b e n z e n e - w a t e r azeotrope b e t w e e n 110° a n d 140°C. A f t e r w a t e r r e ­ m o v a l has b e e n c o m p l e t e d , the excess b e n z e n e is d i s t i l l e d off, t h e a n h y d r o u s salt i n sulfolane c o o l e d to 7 0 ° - 8 0 ° C , a n d bis ( 4 - c h l o r o p h e n y l ) sulfone ( I ) a d d e d . T h e t e m p e r a t u r e is i n c r e a s e d g r a d u a l l y to 2 0 0 ° C a n d h e l d for f o u r t o five hours. M e t h y l c h l o r i d e is b u b b l e d i n at the e n d of the p o l y m e r i z a t i o n to convert a n y t e r m i n a l p h e n o x i d e groups to m e t h y l ethers (10). CH

3

CH

3

IV T h e r e s i n ( I V ) c a n b e i s o l a t e d f r o m the mass b y filtration of t h e a l k a l i m e t a l c h l o r i d e a n d s t r i p p i n g of t h e solvent, or b y p r e c i p i t a t i o n i n a nonsolvent. A s e c o n d m e t h o d involves d i s p e r s i o n of t h e p o l y m e r mass i n w a t e r to r e m o v e the a l k a l i m e t a l h a l i d e , f o r m e d d u r i n g the p o ­ l y m e r i z a t i o n , a n d the sulfolane. D r y i n g m a y b e a c c o m p l i s h e d b y heat­ i n g the p o l y a r y l s u l f o n e to 100°-120°C in vacuo for 8 to 12 h o u r s . T h e d r i e d p o l y a r y l s u l f o n e ( I V ) is s o l u b l e i n h a l o g e n a t e d h y d r o c a r ­ bons s u c h as c h l o r o f o r m , c h l o r o b e n z e n e , a n d m e t h y l e n e c h l o r i d e . M o l d i n g . T e s t specimens w e r e either c o m p r e s s i o n m o l d e d i n a h y d r a u l i c press at 2 4 5 ° C or i n j e c t i o n m o l d e d at 2 7 5 ° C u s i n g a 2-ounce A n k e r w e r k , M o d e l 75. P h y s i c a l P r o p e r t y M e a s u r e m e n t s . F l e x u r a l m o d u l u s a n d strength w e r e m e a s u r e d a c c o r d i n g to A S T M M e t h o d D - 7 9 0 . I m p a c t resistance was m e a s u r e d b y the I z o d n o t c h A S T M D - 2 5 6 , a n d R o c k w e l l H a r d n e s s

Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

Downloaded by EAST CAROLINA UNIV on January 3, 2018 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch009

134

POLYMERIZATION

REACTIONS AND N E W POLYMERS

a c c o r d i n g to A S T M D - 7 8 5 . H e a t - d i s t o r t i o n temperatures w e r e deter­ m i n e d b y A S T M M e t h o d D - 6 4 8 at 264 p s i stress l o a d i n g . M i x i n g or t o r q u e generation d a t a w e r e o b t a i n e d u s i n g a B r a b e n d e r P l a s t i C o r d e r . T h e B r a b e n d e r P l a s t i C o r d e r has a s m a l l m i x i n g c a v i t y c o n t a i n i n g t w o r o t a t i n g m i x i n g b l a d e s ; the s p e e d of t h e m i x i n g blades m a y b e v a r i e d . T h e m i x i n g c a v i t y has a jacket t h r o u g h w h i c h h e a t e d o i l m a y b e c i r c u l a t e d . T h e p o l y m e r to b e e x a m i n e d is a d d e d to the c a v i t y . T h e r o t a t i n g blades exert a t o r q u e t h a t c a n b e m e a s u r e d a n d d e p e n d s o n the viscosity of the p o l y m e r . A p p a r e n t v i s c o s i t y d a t a w e r e o b t a i n e d o n the I n s t r o n C a p i l l a r y R h e o m e t e r , M o d e l T T . F o r this p u r p o s e , rods 5 inches b y % i n c h w e r e p r e p a r e d b y c o m p r e s s i o n m o l d i n g f r o m m a t e r i a l to b e tested. E a c h r o d was h e a t e d to 260° or 2 7 5 ° C i n the b a r r e l of the rheometer for five m i n u t e s . A p i s t o n p l u n g e r is t h e n pressed d o w n o n t o p of the h e a t e d r o d , f o r c i n g the r o d to flow t h r o u g h a 0.060-inch d i a m e t e r c a p i l ­ l a r y , h a v i n g a l e n g t h - t o - d i a m e t e r r a t i o of 33. T h e p i s t o n p l u n g e r descends at a constant s p e e d of f r o m 0.005 to 5 inches p e r m i n u t e . T h e force r e q u i r e d to e x t r u d e the r o d t h r o u g h the c a p i l l a r y is m e a s u r e d . M o l e c u l a r - w e i g h t d i s t r i b u t i o n s of resins I V a n d V (see R e a c t i o n 4 ) were determined on an A n a p r e p gel permeation chromatograph. F o u r c o l u m n s w e r e u s e d : 1 0 A , 1 0 A , 1 0 A , a n d 1 0 A . T w o - m i l l i l i t e r samples of a 0.25% s o l u t i o n i n o - d i c h l o r o b e n z e n e at 1 0 0 ° C w e r e i n j e c t e d . The s o l u t i o n was c o l l e c t e d at a rate of 2 m l p e r m i n u t e . 6

Results

and

5

4

3

Discussion

Polymer Evaluation.

P h y s i c a l properties, m e l t - v i s c o s i t y d a t a , a n d

g e l p e r m e a t i o n c h r o m a t o g r a p h y d a t a of our p o l y a r y l s u l f o n e I V a n d the p o l y a r y l s u l f o n e V b a s e d o n bis ( 4 - c h l o r o p h e n y l )sulfone h y d r o x y p h e n y l ) p r o p a n e (11)

a n d 2,2-bis(4-

are l i s t e d i j i T a b l e s I t h r o u g h I V a n d F i g ­

ures 1 t h r o u g h 3.

(4)

V R e s i n I V has a l o w e r specific g r a v i t y t h a n does r e s i n V ( T a b l e I ) , p r o b a b l y e x p l a i n e d b y the presence of t w o i s o p r o p y l i d e n e groups p e r mer unit.

T h e s e r e d u c e the a b i l i t y of the p o l y m e r i c chains to b e as

t i g h t l y p a c k e d as i n r e s i n V .

T h e l o w e r specific g r a v i t y of I V c a n n o t b e

e x p l a i n e d b y the p e r cent c r y s t a l l i n i t y present i n b o t h p o l y m e r s I).

(Table

If c r y s t a l l i n i t y w e r e the major force, the specific g r a v i t y of r e s i n

I V w o u l d be higher.

T h e r e m a i n i n g properties of resins I V a n d V l i s t e d

i n T a b l e I e x h i b i t little v a r i a t i o n .

Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

9.

Heat-Resistant

CORNELL

Table I.

Physical Properties of Polyarylsulfone Resins I V and V Property

Rockwell " R " Specific G r a v i t y H D T 264 p s i (°C) I z o d M" ( R T ) (ft. l b s . / i n . notch) I z o d \i" ( - 2 9 ° C ) Izod % " ( R T ) Izod V" ( - 2 9 ° C ) T e n s i l e S t r e n g t h (psi) T e n s i l e M o d u l u s (psi) X 1 0 T e n s i l e E l o n g a t i o n (%) a t break ° F l e x u r a l S t r e n g t h (psi) X 1 0 F l e x u r a l M o d u l u s (psi) P e r cent C r y s t a l l i n i t y s

6

Downloaded by EAST CAROLINA UNIV on January 3, 2018 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch009

135

Polyarylsulfone

5

Resin IV

Resin V

127 1.19 158 0.8 0.8 0.8 0.8 11,350 3.7 10 16,730 4.0 4.1

128 1.24 166 1.1 1.3 1.3 1.3 10,370 3.5 6.7 14,370 3.4 ~0.0

° Samples annealed 120°C for 100 hours.

Table II.

Torque-Generation D a t a Obtained During Brabender Mixing of Resins I V and V

Material

RPM

Melt Temp. (°C)

Torque (gram-meters)

Mixing time (minutes)

Resin I V

50 50 60

227 235 235

2,300 1,500 1,800

4 10 8

Resin V

50 60

235 250

3,800 2,600

12 15

Table III.

Injection-Molding Conditions for Polyarylsulfone Resins I V and V Resin IV

Resin V

M e l t Temperature (°C):

290

290

Injection Cylinder Temp. Nozzle (°C): Zones 1 a n d 2 ( ° C ) :

275 275,

I n j e c t i o n Pressure T - b a r (psi) Shots (psi) M o l d Temperature (°C): B a c k Pressure (psi)

275

275 275,

1300 550

1600 800

85

85

200

200

Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

275

136

POLYMERIZATION

REACTIONS AND N E W

POLYMERS

T h e significant i m p r o v e m e n t i n flow properties of r e s i n I V vs. V is e v i d e n t f r o m the d a t a .

F i r s t , the t o r q u e f r o m B r a b e n d e r m i x i n g i n d i ­

cates that r e s i n I V is a n easier-flowing m a t e r i a l ( T a b l e I I ) .

T h e lower

t o r q u e values for I V i n d i c a t e the necessity of a l o w e r - e n e r g y i n p u t to m i x the p o l y m e r m e l t .

T h i s l o w e r r o t a t i o n a l force therefore

the p o l y m e r m e l t has a l o w e r m e l t viscosity. ing

conditions

demonstrate

the i m p r o v e d

( T a b l e III) i n comparison w i t h resin V .

indicates

Secondly, injection-mold­ processability

of

resin I V

A t the same i n j e c t i o n c y l i n d e r

temperatures, the injection pressure for the tensile b a r a n d

Izod/heat

Downloaded by EAST CAROLINA UNIV on January 3, 2018 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch009

d i s t o r t i o n b a r m o l d s is l o w e r e d b y 300 p s i a n d 250 p s i , respectively. F i n a l l y , the a p p a r e n t viscosity, at v a r i o u s shear rates, of r e s i n I V at 500° a n d 5 2 5 ° F is l o w e r e d b y a factor of 3 to 4 ( T a b l e I V a n d Figures 1 and 2).

T h e a p p a r e n t viscosity of r e s i n I V at 5 0 0 ° F s t i l l is

l o w e r t h a n r e s i n V at 5 2 5 ° F . Table IV.

A p p a r e n t V i s c o s i t y D a t a of P o l y a r y l s u l f o n e R e s i n s I V a n d V Apparent Viscosity (Dynes sec/cm ) 2

Resin IV ir rate (sec ) -1

Resin V



0.173 0.433 0.865 1.73 4.33 8.65 17.3 43.3 86.5 173 433 865 1730

8.70 X 9.81 9.25 8.08 7.78 7.10 6.50 5.67 5.06

— — —

10

— —

4

2.71 X 3.54 3.90 3.81 3.67 3.25 3.17 2.40 1.44 0.96 0.70

275°C

260°C

175° C

260°C

10

4

35.3 X 34.7 31.5 30.0 28.2 27.8 28.3 48.8

— — — — —

10



4

16.8 X 10 15.2 13.3 11.8 10.8 10.1 8.90 X 10 7.39 5.71 4

4

— — —

F i g u r e 1, shows a r a p i d increase i n a p p a r e n t viscosity for r e s i n V as the shear rate reaches

17.3 s e c . -1

T h e s h a r p increase i n a p p a r e n t

viscosity is not any c h e m i c a l change, s u c h as c r o s s l i n k i n g of p o l y m e r i c chains.

T h e a p p a r e n t viscosity c u r v e c a n be r e t r a c e d b y l o w e r i n g the

shear rate.

T h i s increase i n a p p a r e n t viscosity c a n b e e l i m i n a t e d b y

i n c r e a s i n g t h e m e a s u r e m e n t t e m p e r a t u r e , as s h o w n i n F i g u r e 2. same p h e n o m e n o n Porter

(12).

The

This

has b e e n r e p o r t e d for p o l y s t y r e n e b y P e n w e l l a n d e x p l a n a t i o n of

t h e a p p a r e n t v i s c o s i t y increase i n

c a p i l l a r y flow of p o l y s t y r e n e was q u a n t i t a t i v e l y e x p l a i n e d t h r o u g h the

Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

9.

Heat-Resistant

CORNELL

137

Polyarylsulfone

pressure d e p e n d e n c e of glass t r a n s i t i o n , T .

T h e same e x p l a n a t i o n c o u l d

g

a c c o u n t f o r t h e increase i n a p p a r e n t v i s c o s i t y o f r e s i n V . l a r y pressure increases w i t h i n c r e a s i n g shear rate, T

A s the c a p i l ­

approaches t h e

g

m e a s u r e m e n t t e m p e r a t u r e , c a u s i n g a r a p i d rise i n viscosity. T h e a b o v e d a t a substantiate this e x p l a i n its o c c u r r e n c e . I0 P

I

6

flow

I I I I Mil

I

I

I

I I 11IIII

I III!

Downloaded by EAST CAROLINA UNIV on January 3, 2018 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch009

J

•o

|0

improvement b u t do not

A possible reason f o r the i m p r o v e m e n t i n flow I I I 11111

I

I I

Resin 3 £

S

Resin TSL

5 I0

4

|Q3





I

I I I M i l

10"'

I

10°

'

|

* * M i l l

|

| | | Mil

10'

|

I I lllll

|

10*

I

I

10*

Shear Rote ( sec." ) 1

Figure

1.

10*

s

, 0

viscosity vs. shear rate of resins IV and V at 260° C

Apparent

i

Ml

i i

I

1 I I I Mil

'e

I—I

I I I III

Resin 3 £

Resin HZ. > 10" c a> QL


1—i—i—i—r-

15

10

3. Molecular-weight distribution of resins IV and V determined by gel permeation chromatography

w o u l d b e t h e looser p a c k i n g a r r a n g e m e n t o f t h e p o l y m e r c h a i n s .

I t is

v e r y difficult to b e l i e v e that this is t h e major c o n t r i b u t o r t o t h e flow improvement.

A n o t h e r p o s s i b i l i t y c o u l d b e a d r a s t i c difference i n t h e

molecular weight distribution or weight-average ( M ) molecular weight w

( o r b o t h ) o f the t w o resins.

G e l permeation chromatography data indi­

cate that this is n o t t h e case.

A s s h o w n i n F i g u r e 3, t h e m e l e e u l a r -

w e i g h t d i s t r i b u t i o n s are q u i t e s i m i l a r . W o r k i n g o n t h e a s s u m p t i o n that p o l y s t y r e n e standards a r e v a l i d c a l i b r a t i o n standards f o r p o l y a r y l s u l f o n e s , t h e m o l e c u l a r w e i g h t s

(M ) w

for resins I V a n d V w e r e c a l c u l a t e d f r o m the m o l e c u l a r - w e i g h t d i s t r i b u ­ t i o n curves b y the f o l l o w i n g e q u a t i o n . M

w

= XWiMi] Wi =

Hi/ZHi

Hi = height of c u r v e a t v a r i o u s counts 2Hi = t o t a l of a l l heights measured Mi = m o l e c u l a r weight of p o l y s t y r e n e a t v a r i o u s counts.

Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

9.

Heat-Resist ant

CORNELL

139

Polyarylsulfone

E v e n i f the a s s u m p t i o n that p o l y s t y r e n e standards c a n b e u s e d is not c o m p l e t e l y v a l i d , the error i n the d e t e r m i n e d M

molecular weights

w

w o u l d b e a constant, a n d s h o u l d not alter the p e r c e n t difference i n m o l e c u l a r w e i g h t of the t w o p o l y a r y l s u l f o n e s .

The M

w

M

w

molecular weight

for resins I V a n d V are 46,100 a n d 52,300, r e s p e c t i v e l y .

T h i s 10% differ­

ence c o u l d b e significant i f resins I V w e r e to l i e b e l o w the c r i t i c a l m o l e c ­ u l a r w e i g h t (Mj))

for p o l y m e r c h a i n e n t a n g l e m e n t a n d r e s i n V l i e above.

M u c h e x p e r i m e n t a l d a t a are a v a i l a b l e for the v i s c o s i t y of p o l y m e r m e l t s . T h e s e d a t a , w i t h o u t exception, o b e y this e q u a t i o n for M greater t h a n

Downloaded by EAST CAROLINA UNIV on January 3, 2018 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch009

some c r i t i c a l m o l e c u l a r w e i g h t M&:

T h i s r e l a t i o n s h i p is s h o w n i n F i g u r e 4 f o r p o l y s t y r e n e ( 1 3 ) .

Figure 4. polystyrene

T h e l i n e for M greater t h a n M

h

Variation of melt viscosity of as a function of molecular weight at 217°C

has a slope of 3.5.

If resins I V a n d

V do, i n fact, l i e o n o p p o s i t e sides of the c r i t i c a l m o l e c u l a r w e i g h t ( M ) , 6

a 10% increase i n M

w

m o l e c u l a r w e i g h t c o u l d b e a c c o m p a n i e d b y a 40%

or h i g h e r increase i n m e l t viscosity.

T o substantiate this possible e x p l a ­

n a t i o n for the significant differences i n m e l t viscosity of resins I V a n d V , Mb f o r b o t h resins w o u l d h a v e to b e d e t e r m i n e d .

Acknowledgment T h e a u t h o r wishes to t h a n k the entire P o l y m e r P h y s i c s G r o u p f o r helpful

assistance

on

polymer

characterization, Peter

M . Byra

for

h a n d l i n g the i n j e c t i o n - m o l d i n g operations, a n d A n g e n e t t e G r a n t for h e r assistance i n the m o n o m e r a n d p o l y m e r syntheses.

Literature

Cited

1. Lee, H., Stoffy, D., Neville, K., "New Linear Polymers," McGraw-Hill, New York (1967). 2. Rose, J. B., Jennings, B. E., Jones, M. E. B., J. Polym. Sci., Part C (1967) 715. 3. Vogel, H. A., J. of Polym. Sci., Part A-1 (1970) 8, 2035.

Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

140

4. 5. 6. 7. 8. 9. 10. 11.

Downloaded by EAST CAROLINA UNIV on January 3, 2018 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch009

12. 13.

POLYMERIZATION

REACTIONS A N D N E W POLYMERS

Erickson, A., U.S. Patent 2,860,168 (1958). Joyl, R., Bucourt, R., Fabignon, C., U.S. Patent 2,971,985 (1961). Keogh, M. J., Ingberman, A. K., U.S. Patent 3,415,887 (1968). Ruppert, H., Schnell, H., British Patent 935,061 (1963). Simmons, P., Ulyatt, J. M., British Patent 932,811 (1963). Broderick, G. F., Oxenrider, B. C., Vitrone, J., U. S. Patent 3,393,244 (1968). Cornell, R. J., U.S. Patent 3,554,972 (1971). Johnson, R. N., Farnham, A. G., Clendinning, R. A., Hale, W. F., Merrian, C. N.,J.Polym.Sci.,PartA-1,(1967) 5, 2375. Penwell, R. C., Porter, R. S., Appl. Polym.Sci.,(1969) 13, 2427. Bueche, F., "Physical Properties of Polymers," Interscience, New York (1962).

RECEIVED April 10, 1972.

Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.