9
Heat-Resistant Polyarylsulfone Exhibiting Improved Flow during Processing
Downloaded by EAST CAROLINA UNIV on January 3, 2018 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch009
R O B E R T J. C O R N E L L Uniroyal Chemical, Division of Uniroyal, Inc., Naugatuck, Conn. 06770
The
reaction of bis(4-chlorophenyl)sulfone with the anhy
drous dialkali salt of α,α'-bis(4-hydroxyphenyl)-p-diisopropyl benzene, which is dissolved in an aprotic solvent, leads to a new heat-resistant polyarylsulfone. monomer
and
polymer
physical and mechanical The
polyarylsulfone
A general discussion of
preparation
is given as well as
properties of this polyarylsulfone.
thermoplastic exhibits essentially the
same heat resistance of the polyarylsulfone based on bis (4-chlorophenyl)sulfone
and
2,2-bis(4-hydroxyphenyl)pro-
pane, along with the added plus of a lower melt viscosity at equivalent processing temperatures.
The flow improve
ment is demonstrated by comparison with Brabender data, injection-molding conditions, and melt-viscosity data.
J n
recent years, there has b e e n a c o n s i d e r a b l e a m o u n t of interest i n high-molecular-weight polyarylsulfone polymers
(1-3).
These poly
m e r i c materials possess heat-deflection temperatures of 165°-260°C p l u s excellent t h e r m a l s t a b i l i t y at the h i g h p r o c e s s i n g temperatures r e q u i r e d . T h i s p a p e r deals w i t h the synthesis a n d the p h y s i c a l a n d m e c h a n i c a l properties of a n e w heat-resistant p o l y a r y l s u l f o n e .
This new polyaryl
sulfone t h e r m o p l a s t i c exhibits a significant r e d u c t i o n i n a p p a r e n t
(melt)
viscosity w i t h o n l y a s l i g h t r e d u c t i o n i n heat deflection t e m p e r a t u r e w h e n c o m p a r e d w i t h the p o l y a r y l s u l f o n e b a s e d o n bis ( 4 - c h l o r o p h e n y l )sulfone a n d 2,2-bis ( 4 - h y d r o x y p h e n y l ) p r o p a n e .
Experimental R e a g e n t . T e t r a h y d r o t h i o p h e n e 1,1-dioxide ( c o m m o n l y c a l l e d s u l f o l a n e ) was o b t a i n e d f r o m S h e l l C h e m i c a l c o n t a i n i n g 3% w a t e r . A n h y drous sulfolane was o b t a i n b y d i s t i l l a t i o n u n d e r r e d u c e d pressure. Re131 Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
132
POLYMERIZATION
REACTIONS AND N E W
POLYMERS
Downloaded by EAST CAROLINA UNIV on January 3, 2018 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch009
agent g r a d e p o t a s s i u m h y d r o x i d e , c h l o r o f o r m , a n d b e n z e n e w e r e u s e d without further purification. M o n o m e r s . B I S ( 4 - C H L O R O P H E N Y L ) S U L F O N E . W e p r e p a r e d bis ( 4 c h l o r o p h e n y l ) s u l f o n e ( I i n R e a c t i o n 1) b y d r o p w i s e a d d i t i o n of c h l o r o s u l f o n i c a c i d (0.4 m o l e ) to c h l o r o b e n z e n e (0.2 m o l e ) at 0 ° C . One h o u r after the c h l o r o s u l f o n i c a c i d a d d i t i o n was c o m p l e t e d , a n a d d i t i o n a l q u a n t i t y of c h l o r o b e n z e n e (0.16 m o l e ) was a d d e d to the c o l d s o l u t i o n .
II T h e r e a c t i o n m i x t u r e was a l l o w e d to w a r m g r a d u a l l y to 5 0 ° C . The r e a c t i o n was q u e n c h e d b y p o u r i n g into ice w a t e r . T h e aqueous sus p e n s i o n was h e a t e d to h y d r o l y z e p - c h l o r o b e n z e n e s u l f o n y l c h l o r i d e ( I I ) to the w a t e r - s o l u b l e s u l f o n i c a c i d . T h e d e s i r e d p r o d u c t was filtered a n d w a s h e d w i t h w a t e r u n t i l essentially n e u t r a l . B i s ( 4 - c h l o r o p h e n y l )sulfone was p u r i f i e d b y r e c r y s t a l l i z a t i o n f r o m b e n z e n e — m . p . 145°-147°C ( 4 ) . E x t r e m e l y l o w y i e l d s w e r e o b t a i n e d b y this process. B y contrast, y i e l d s i n excess of 90% have b e e n r e p o r t e d i n processes t h a t i n v o l v e the r e a c t i o n of c h l o r o b e n z e n e w i t h s u l f u r t r i o x i d e a n d d i m e t h y l or d i e t h y l sulfate (5, 6). a,a -Bls(4-HYDROXYPHENYL)-p-DIISOPROPYLBENZENE. «,a:'-Bis(4-hydrOXyphenyl)-p-diisopropylbenzene ( I I I i n R e a c t i o n 2 ) was p r e p a r e d b y /
III
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by EAST CAROLINA UNIV on January 3, 2018 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch009
9.
CORNELL
Heat-Resist ant
133
Polyarylsulfone
d r o p w i s e a d d i t i o n of p - d i i s o p r o p e n y l b e n z e n e i n toluene to a 3 M excess of p h e n o l s a t u r a t e d w i t h gaseous h y d r o g e n c h l o r i d e . A f t e r a f e w h o u r s , the b u l k of the a,a'-bis ( 4 - h y d r o x y p h e n y l ) - p - d i i s o p r o p y l b e n z e n e f o r m e d c r y s t a l l i z e d out. T h e excess p h e n o l c a n b e r e m o v e d b y steam s t r i p p i n g . T h e c o m p o u n d was p u r i f i e d b y r e c r y s t a l l i z a t i o n f r o m a c e t o n e — m . p . 191°-192°C (7). T h e b i s p h e n o l c a n also b e p r e p a r e d f r o m a , a ' - d i h y droxy-p-diisopropylbenzene and phenol (8,9). P o l y m e r i z a t i o n . T y p i c a l l y , the d i h y d r i c p h e n o l ( 1 m o l e ) a n d aqueous a l k a l i m e t a l h y d r o x i d e (2 m o l e s ) are m i x e d u n d e r a n i n e r t at m o s p h e r e i n sulfolane a n d benzene. T h e w a t e r f r o m the aqueous s o l u t i o n p l u s m e t a l p h e n o x i d e f o r m a t i o n is r e m o v e d b y d i s t i l l a t i o n of a b e n z e n e - w a t e r azeotrope b e t w e e n 110° a n d 140°C. A f t e r w a t e r r e m o v a l has b e e n c o m p l e t e d , the excess b e n z e n e is d i s t i l l e d off, t h e a n h y d r o u s salt i n sulfolane c o o l e d to 7 0 ° - 8 0 ° C , a n d bis ( 4 - c h l o r o p h e n y l ) sulfone ( I ) a d d e d . T h e t e m p e r a t u r e is i n c r e a s e d g r a d u a l l y to 2 0 0 ° C a n d h e l d for f o u r t o five hours. M e t h y l c h l o r i d e is b u b b l e d i n at the e n d of the p o l y m e r i z a t i o n to convert a n y t e r m i n a l p h e n o x i d e groups to m e t h y l ethers (10). CH
3
CH
3
IV T h e r e s i n ( I V ) c a n b e i s o l a t e d f r o m the mass b y filtration of t h e a l k a l i m e t a l c h l o r i d e a n d s t r i p p i n g of t h e solvent, or b y p r e c i p i t a t i o n i n a nonsolvent. A s e c o n d m e t h o d involves d i s p e r s i o n of t h e p o l y m e r mass i n w a t e r to r e m o v e the a l k a l i m e t a l h a l i d e , f o r m e d d u r i n g the p o l y m e r i z a t i o n , a n d the sulfolane. D r y i n g m a y b e a c c o m p l i s h e d b y heat i n g the p o l y a r y l s u l f o n e to 100°-120°C in vacuo for 8 to 12 h o u r s . T h e d r i e d p o l y a r y l s u l f o n e ( I V ) is s o l u b l e i n h a l o g e n a t e d h y d r o c a r bons s u c h as c h l o r o f o r m , c h l o r o b e n z e n e , a n d m e t h y l e n e c h l o r i d e . M o l d i n g . T e s t specimens w e r e either c o m p r e s s i o n m o l d e d i n a h y d r a u l i c press at 2 4 5 ° C or i n j e c t i o n m o l d e d at 2 7 5 ° C u s i n g a 2-ounce A n k e r w e r k , M o d e l 75. P h y s i c a l P r o p e r t y M e a s u r e m e n t s . F l e x u r a l m o d u l u s a n d strength w e r e m e a s u r e d a c c o r d i n g to A S T M M e t h o d D - 7 9 0 . I m p a c t resistance was m e a s u r e d b y the I z o d n o t c h A S T M D - 2 5 6 , a n d R o c k w e l l H a r d n e s s
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by EAST CAROLINA UNIV on January 3, 2018 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch009
134
POLYMERIZATION
REACTIONS AND N E W POLYMERS
a c c o r d i n g to A S T M D - 7 8 5 . H e a t - d i s t o r t i o n temperatures w e r e deter m i n e d b y A S T M M e t h o d D - 6 4 8 at 264 p s i stress l o a d i n g . M i x i n g or t o r q u e generation d a t a w e r e o b t a i n e d u s i n g a B r a b e n d e r P l a s t i C o r d e r . T h e B r a b e n d e r P l a s t i C o r d e r has a s m a l l m i x i n g c a v i t y c o n t a i n i n g t w o r o t a t i n g m i x i n g b l a d e s ; the s p e e d of t h e m i x i n g blades m a y b e v a r i e d . T h e m i x i n g c a v i t y has a jacket t h r o u g h w h i c h h e a t e d o i l m a y b e c i r c u l a t e d . T h e p o l y m e r to b e e x a m i n e d is a d d e d to the c a v i t y . T h e r o t a t i n g blades exert a t o r q u e t h a t c a n b e m e a s u r e d a n d d e p e n d s o n the viscosity of the p o l y m e r . A p p a r e n t v i s c o s i t y d a t a w e r e o b t a i n e d o n the I n s t r o n C a p i l l a r y R h e o m e t e r , M o d e l T T . F o r this p u r p o s e , rods 5 inches b y % i n c h w e r e p r e p a r e d b y c o m p r e s s i o n m o l d i n g f r o m m a t e r i a l to b e tested. E a c h r o d was h e a t e d to 260° or 2 7 5 ° C i n the b a r r e l of the rheometer for five m i n u t e s . A p i s t o n p l u n g e r is t h e n pressed d o w n o n t o p of the h e a t e d r o d , f o r c i n g the r o d to flow t h r o u g h a 0.060-inch d i a m e t e r c a p i l l a r y , h a v i n g a l e n g t h - t o - d i a m e t e r r a t i o of 33. T h e p i s t o n p l u n g e r descends at a constant s p e e d of f r o m 0.005 to 5 inches p e r m i n u t e . T h e force r e q u i r e d to e x t r u d e the r o d t h r o u g h the c a p i l l a r y is m e a s u r e d . M o l e c u l a r - w e i g h t d i s t r i b u t i o n s of resins I V a n d V (see R e a c t i o n 4 ) were determined on an A n a p r e p gel permeation chromatograph. F o u r c o l u m n s w e r e u s e d : 1 0 A , 1 0 A , 1 0 A , a n d 1 0 A . T w o - m i l l i l i t e r samples of a 0.25% s o l u t i o n i n o - d i c h l o r o b e n z e n e at 1 0 0 ° C w e r e i n j e c t e d . The s o l u t i o n was c o l l e c t e d at a rate of 2 m l p e r m i n u t e . 6
Results
and
5
4
3
Discussion
Polymer Evaluation.
P h y s i c a l properties, m e l t - v i s c o s i t y d a t a , a n d
g e l p e r m e a t i o n c h r o m a t o g r a p h y d a t a of our p o l y a r y l s u l f o n e I V a n d the p o l y a r y l s u l f o n e V b a s e d o n bis ( 4 - c h l o r o p h e n y l )sulfone h y d r o x y p h e n y l ) p r o p a n e (11)
a n d 2,2-bis(4-
are l i s t e d i j i T a b l e s I t h r o u g h I V a n d F i g
ures 1 t h r o u g h 3.
(4)
V R e s i n I V has a l o w e r specific g r a v i t y t h a n does r e s i n V ( T a b l e I ) , p r o b a b l y e x p l a i n e d b y the presence of t w o i s o p r o p y l i d e n e groups p e r mer unit.
T h e s e r e d u c e the a b i l i t y of the p o l y m e r i c chains to b e as
t i g h t l y p a c k e d as i n r e s i n V .
T h e l o w e r specific g r a v i t y of I V c a n n o t b e
e x p l a i n e d b y the p e r cent c r y s t a l l i n i t y present i n b o t h p o l y m e r s I).
(Table
If c r y s t a l l i n i t y w e r e the major force, the specific g r a v i t y of r e s i n
I V w o u l d be higher.
T h e r e m a i n i n g properties of resins I V a n d V l i s t e d
i n T a b l e I e x h i b i t little v a r i a t i o n .
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
9.
Heat-Resistant
CORNELL
Table I.
Physical Properties of Polyarylsulfone Resins I V and V Property
Rockwell " R " Specific G r a v i t y H D T 264 p s i (°C) I z o d M" ( R T ) (ft. l b s . / i n . notch) I z o d \i" ( - 2 9 ° C ) Izod % " ( R T ) Izod V" ( - 2 9 ° C ) T e n s i l e S t r e n g t h (psi) T e n s i l e M o d u l u s (psi) X 1 0 T e n s i l e E l o n g a t i o n (%) a t break ° F l e x u r a l S t r e n g t h (psi) X 1 0 F l e x u r a l M o d u l u s (psi) P e r cent C r y s t a l l i n i t y s
6
Downloaded by EAST CAROLINA UNIV on January 3, 2018 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch009
135
Polyarylsulfone
5
Resin IV
Resin V
127 1.19 158 0.8 0.8 0.8 0.8 11,350 3.7 10 16,730 4.0 4.1
128 1.24 166 1.1 1.3 1.3 1.3 10,370 3.5 6.7 14,370 3.4 ~0.0
° Samples annealed 120°C for 100 hours.
Table II.
Torque-Generation D a t a Obtained During Brabender Mixing of Resins I V and V
Material
RPM
Melt Temp. (°C)
Torque (gram-meters)
Mixing time (minutes)
Resin I V
50 50 60
227 235 235
2,300 1,500 1,800
4 10 8
Resin V
50 60
235 250
3,800 2,600
12 15
Table III.
Injection-Molding Conditions for Polyarylsulfone Resins I V and V Resin IV
Resin V
M e l t Temperature (°C):
290
290
Injection Cylinder Temp. Nozzle (°C): Zones 1 a n d 2 ( ° C ) :
275 275,
I n j e c t i o n Pressure T - b a r (psi) Shots (psi) M o l d Temperature (°C): B a c k Pressure (psi)
275
275 275,
1300 550
1600 800
85
85
200
200
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
275
136
POLYMERIZATION
REACTIONS AND N E W
POLYMERS
T h e significant i m p r o v e m e n t i n flow properties of r e s i n I V vs. V is e v i d e n t f r o m the d a t a .
F i r s t , the t o r q u e f r o m B r a b e n d e r m i x i n g i n d i
cates that r e s i n I V is a n easier-flowing m a t e r i a l ( T a b l e I I ) .
T h e lower
t o r q u e values for I V i n d i c a t e the necessity of a l o w e r - e n e r g y i n p u t to m i x the p o l y m e r m e l t .
T h i s l o w e r r o t a t i o n a l force therefore
the p o l y m e r m e l t has a l o w e r m e l t viscosity. ing
conditions
demonstrate
the i m p r o v e d
( T a b l e III) i n comparison w i t h resin V .
indicates
Secondly, injection-mold processability
of
resin I V
A t the same i n j e c t i o n c y l i n d e r
temperatures, the injection pressure for the tensile b a r a n d
Izod/heat
Downloaded by EAST CAROLINA UNIV on January 3, 2018 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch009
d i s t o r t i o n b a r m o l d s is l o w e r e d b y 300 p s i a n d 250 p s i , respectively. F i n a l l y , the a p p a r e n t viscosity, at v a r i o u s shear rates, of r e s i n I V at 500° a n d 5 2 5 ° F is l o w e r e d b y a factor of 3 to 4 ( T a b l e I V a n d Figures 1 and 2).
T h e a p p a r e n t viscosity of r e s i n I V at 5 0 0 ° F s t i l l is
l o w e r t h a n r e s i n V at 5 2 5 ° F . Table IV.
A p p a r e n t V i s c o s i t y D a t a of P o l y a r y l s u l f o n e R e s i n s I V a n d V Apparent Viscosity (Dynes sec/cm ) 2
Resin IV ir rate (sec ) -1
Resin V
—
0.173 0.433 0.865 1.73 4.33 8.65 17.3 43.3 86.5 173 433 865 1730
8.70 X 9.81 9.25 8.08 7.78 7.10 6.50 5.67 5.06
— — —
10
— —
4
2.71 X 3.54 3.90 3.81 3.67 3.25 3.17 2.40 1.44 0.96 0.70
275°C
260°C
175° C
260°C
10
4
35.3 X 34.7 31.5 30.0 28.2 27.8 28.3 48.8
— — — — —
10
—
4
16.8 X 10 15.2 13.3 11.8 10.8 10.1 8.90 X 10 7.39 5.71 4
4
— — —
F i g u r e 1, shows a r a p i d increase i n a p p a r e n t viscosity for r e s i n V as the shear rate reaches
17.3 s e c . -1
T h e s h a r p increase i n a p p a r e n t
viscosity is not any c h e m i c a l change, s u c h as c r o s s l i n k i n g of p o l y m e r i c chains.
T h e a p p a r e n t viscosity c u r v e c a n be r e t r a c e d b y l o w e r i n g the
shear rate.
T h i s increase i n a p p a r e n t viscosity c a n b e e l i m i n a t e d b y
i n c r e a s i n g t h e m e a s u r e m e n t t e m p e r a t u r e , as s h o w n i n F i g u r e 2. same p h e n o m e n o n Porter
(12).
The
This
has b e e n r e p o r t e d for p o l y s t y r e n e b y P e n w e l l a n d e x p l a n a t i o n of
t h e a p p a r e n t v i s c o s i t y increase i n
c a p i l l a r y flow of p o l y s t y r e n e was q u a n t i t a t i v e l y e x p l a i n e d t h r o u g h the
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
9.
Heat-Resistant
CORNELL
137
Polyarylsulfone
pressure d e p e n d e n c e of glass t r a n s i t i o n , T .
T h e same e x p l a n a t i o n c o u l d
g
a c c o u n t f o r t h e increase i n a p p a r e n t v i s c o s i t y o f r e s i n V . l a r y pressure increases w i t h i n c r e a s i n g shear rate, T
A s the c a p i l
approaches t h e
g
m e a s u r e m e n t t e m p e r a t u r e , c a u s i n g a r a p i d rise i n viscosity. T h e a b o v e d a t a substantiate this e x p l a i n its o c c u r r e n c e . I0 P
I
6
flow
I I I I Mil
I
I
I
I I 11IIII
I III!
Downloaded by EAST CAROLINA UNIV on January 3, 2018 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch009
J
•o
|0
improvement b u t do not
A possible reason f o r the i m p r o v e m e n t i n flow I I I 11111
I
I I
Resin 3 £
S
Resin TSL
5 I0
4
|Q3
•
•
I
I I I M i l
10"'
I
10°
'
|
* * M i l l
|
| | | Mil
10'
|
I I lllll
|
10*
I
I
10*
Shear Rote ( sec." ) 1
Figure
1.
10*
s
, 0
viscosity vs. shear rate of resins IV and V at 260° C
Apparent
i
Ml
i i
I
1 I I I Mil
'e
I—I
I I I III
Resin 3 £
Resin HZ. > 10" c a> QL
1—i—i—i—r-
15
10
3. Molecular-weight distribution of resins IV and V determined by gel permeation chromatography
w o u l d b e t h e looser p a c k i n g a r r a n g e m e n t o f t h e p o l y m e r c h a i n s .
I t is
v e r y difficult to b e l i e v e that this is t h e major c o n t r i b u t o r t o t h e flow improvement.
A n o t h e r p o s s i b i l i t y c o u l d b e a d r a s t i c difference i n t h e
molecular weight distribution or weight-average ( M ) molecular weight w
( o r b o t h ) o f the t w o resins.
G e l permeation chromatography data indi
cate that this is n o t t h e case.
A s s h o w n i n F i g u r e 3, t h e m e l e e u l a r -
w e i g h t d i s t r i b u t i o n s are q u i t e s i m i l a r . W o r k i n g o n t h e a s s u m p t i o n that p o l y s t y r e n e standards a r e v a l i d c a l i b r a t i o n standards f o r p o l y a r y l s u l f o n e s , t h e m o l e c u l a r w e i g h t s
(M ) w
for resins I V a n d V w e r e c a l c u l a t e d f r o m the m o l e c u l a r - w e i g h t d i s t r i b u t i o n curves b y the f o l l o w i n g e q u a t i o n . M
w
= XWiMi] Wi =
Hi/ZHi
Hi = height of c u r v e a t v a r i o u s counts 2Hi = t o t a l of a l l heights measured Mi = m o l e c u l a r weight of p o l y s t y r e n e a t v a r i o u s counts.
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
9.
Heat-Resist ant
CORNELL
139
Polyarylsulfone
E v e n i f the a s s u m p t i o n that p o l y s t y r e n e standards c a n b e u s e d is not c o m p l e t e l y v a l i d , the error i n the d e t e r m i n e d M
molecular weights
w
w o u l d b e a constant, a n d s h o u l d not alter the p e r c e n t difference i n m o l e c u l a r w e i g h t of the t w o p o l y a r y l s u l f o n e s .
The M
w
M
w
molecular weight
for resins I V a n d V are 46,100 a n d 52,300, r e s p e c t i v e l y .
T h i s 10% differ
ence c o u l d b e significant i f resins I V w e r e to l i e b e l o w the c r i t i c a l m o l e c u l a r w e i g h t (Mj))
for p o l y m e r c h a i n e n t a n g l e m e n t a n d r e s i n V l i e above.
M u c h e x p e r i m e n t a l d a t a are a v a i l a b l e for the v i s c o s i t y of p o l y m e r m e l t s . T h e s e d a t a , w i t h o u t exception, o b e y this e q u a t i o n for M greater t h a n
Downloaded by EAST CAROLINA UNIV on January 3, 2018 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch009
some c r i t i c a l m o l e c u l a r w e i g h t M&:
T h i s r e l a t i o n s h i p is s h o w n i n F i g u r e 4 f o r p o l y s t y r e n e ( 1 3 ) .
Figure 4. polystyrene
T h e l i n e for M greater t h a n M
h
Variation of melt viscosity of as a function of molecular weight at 217°C
has a slope of 3.5.
If resins I V a n d
V do, i n fact, l i e o n o p p o s i t e sides of the c r i t i c a l m o l e c u l a r w e i g h t ( M ) , 6
a 10% increase i n M
w
m o l e c u l a r w e i g h t c o u l d b e a c c o m p a n i e d b y a 40%
or h i g h e r increase i n m e l t viscosity.
T o substantiate this possible e x p l a
n a t i o n for the significant differences i n m e l t viscosity of resins I V a n d V , Mb f o r b o t h resins w o u l d h a v e to b e d e t e r m i n e d .
Acknowledgment T h e a u t h o r wishes to t h a n k the entire P o l y m e r P h y s i c s G r o u p f o r helpful
assistance
on
polymer
characterization, Peter
M . Byra
for
h a n d l i n g the i n j e c t i o n - m o l d i n g operations, a n d A n g e n e t t e G r a n t for h e r assistance i n the m o n o m e r a n d p o l y m e r syntheses.
Literature
Cited
1. Lee, H., Stoffy, D., Neville, K., "New Linear Polymers," McGraw-Hill, New York (1967). 2. Rose, J. B., Jennings, B. E., Jones, M. E. B., J. Polym. Sci., Part C (1967) 715. 3. Vogel, H. A., J. of Polym. Sci., Part A-1 (1970) 8, 2035.
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
140
4. 5. 6. 7. 8. 9. 10. 11.
Downloaded by EAST CAROLINA UNIV on January 3, 2018 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch009
12. 13.
POLYMERIZATION
REACTIONS A N D N E W POLYMERS
Erickson, A., U.S. Patent 2,860,168 (1958). Joyl, R., Bucourt, R., Fabignon, C., U.S. Patent 2,971,985 (1961). Keogh, M. J., Ingberman, A. K., U.S. Patent 3,415,887 (1968). Ruppert, H., Schnell, H., British Patent 935,061 (1963). Simmons, P., Ulyatt, J. M., British Patent 932,811 (1963). Broderick, G. F., Oxenrider, B. C., Vitrone, J., U. S. Patent 3,393,244 (1968). Cornell, R. J., U.S. Patent 3,554,972 (1971). Johnson, R. N., Farnham, A. G., Clendinning, R. A., Hale, W. F., Merrian, C. N.,J.Polym.Sci.,PartA-1,(1967) 5, 2375. Penwell, R. C., Porter, R. S., Appl. Polym.Sci.,(1969) 13, 2427. Bueche, F., "Physical Properties of Polymers," Interscience, New York (1962).
RECEIVED April 10, 1972.
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.