15 Heparin Bearing Coatings or Surfaces: Downloaded via AUBURN UNIV on April 20, 2019 at 12:04:25 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Quantitative Relations L Y M A N F O U R T , A. M . SCHWARTZ, R. H . B E C K E R , and E I L A O. K A I R I N E N Harris Research Laboratories, Division of Gillette Research Institute, Inc., 1413 Research Boulevard, Rockville, M d . 20850
The amounts of heparin removed from solution,
and of
heparin adsorbed on cationic surfaces, were determined using
S labelled heparin.
35
The averages agree in order of
magnitudes but the surface shows large local variation, con firmed by autoradiographs.
Initial strike effects do not level
out in 48 hours exposure to aqueous heparin solution.
How
ever, uniform heparin deposit is obtained by dipping
the
cationic surface at a steady rate. Minimum heparin loading for
anticoagulant
effect (clotting
min.) approximates 0.3 μg./cm.
2
time longer than
100
for graphite-benzalkonium
-heparin and polyvinylpyridine-heparin
surfaces, and also for
cellulose nitrate lacquers containing
benzalkonium-heparin
complex.
Electrolyte
in the heparin solution reduces the
amount adsorbed, with greater effect on than on graphite-benzalkonium
polyvinylpyridine
surfaces.
' T p h e d i s c o v e r y b y G o t t , W h i f f en, a n d D u t t o n (4) t h a t h e p a r i n a d s o r b e d u p o n a s u i t a b l y r e c e p t i v e surface c o u l d p r e v e n t b l o o d f r o m c l o t t i n g has i n s p i r e d m u c h w o r k o n t h e p r e p a r a t i o n of h e p a r i n b e a r i n g p l a s t i c surfaces.
C o a g u l a t i o n tests, in vitro or in vivo, t e n d to b e "go-no g o "
tests a n d h a v e s e l d o m b e e n u s e d to d e t e r m i n e q u a n t i t a t i v e relations b e t w e e n the a m o u n t of h e p a r i n o n the surface, the m e c h a n i s m of b i n d i n g to t h e surface, a n d the a n t i c o a g u l a n t effectiveness.
Q u a n t i t a t i v e d a t a are
n e e d e d to g i v e e v i d e n c e o n t h e t h e o r e t i c a l q u e s t i o n , w h e t h e r h e p a r i n i n t r o d u c e d o n a surface acts there, or b y g o i n g i n t o s o l u t i o n ; a n d the p r a c t i c a l questions, of the most s u i t a b l e m o d e s of b i n d i n g h e p a r i n to a surface for l o n g t e r m in vivo effectiveness a n d for f a b r i c a t i o n of p r o s t h e t i c systems. 186 Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
15.
FOURT
ET
AL.
Heparin Bearing Coatings
187
E a r l i e r q u a n t i t a t i v e estimates of the a m o u n t of h e p a r i n i n i t i a l l y present o n a n t i c o a g u l a n t surfaces are s u m m a r i z e d i n T a b l e I.
These
estimates s h o u l d b e r e g a r d e d as i n d i c a t i n g orders of m a g n i t u d e r a t h e r t h a n p r e c i s e measurements. Table I.
Reported Amounts of Heparin on Anticoagulant Surfaces Method
Heparin lig'/cm*
Reference
S , direct Chemical, depletion H , direct H , direct S , direct S , direct
3 or less 0.24 2 3 toi 1.6 1 to 15.7
10,11,12 3 6,7 5 2 2
Chemical, depletion H , direct
3 4 to 700
3 6,7
Surface Graphite-benzalkonium
3 5
3
3
3 5
Cation grafted to silicone rubbers or polypropylene Polyvinylpyridine Cellulose, ethyleneimine
3 5
3
Materials Heparin Bearing Surfaces. G B H . G r a p h i t e - b e n z a l k o n i u m surfaces ( G B ) h a v e b e e n t r e a t e d w i t h s o d i u m h e p a r i n to m a k e the g r a p h i t e b e n z a l k o n i u m - h e p a r i n ( G B H ) surfaces d e s c r i b e d b y G o t t ( 4 ) . The g r a p h i t e ( D a g 154, A c h e s o n C o l l o i d s , 1 p a r t , p l u s 3 parts e t h y l a l c o h o l ) w a s a p p l i e d to films of polyester ( M y l a r ) b y p a i n t i n g , s p r a y i n g , o r d i p ping and draining. P V P Y R H Poly-4-vinylpyridine ( P V P y r ) prepared by conventional persulfate c a t a l y z e d p o l y m e r i z a t i o n w a s d i s s o l v e d i n e t h y l a l c o h o l o r m e t h y l C e l l o s o l v e ( 2 to 3 % s o l u t i o n ) for a p p l i c a t i o n to polyester film substances. T h e s e films adsorb h e p a r i n f r o m solutions of s o d i u m h e p a r i n to p r o d u c e a n t i c o a g u l a n t surfaces ( P V P y r H ) . F i l m s w e r e p a i n t e d o n , or s p r e a d b y k n i f e c o a t i n g . C B H . T h e s p a r i n g l y w a t e r s o l u b l e c o m p o u n d of h e p a r i n w i t h a n o r g a n i c base ( B H ) , s u c h as b e n z a l k o n i u m — e . g . , " Z e p h i r a n " ( W i n t h r o p ) or c e t y l t r i m e t h y l a m m o n i u m b r o m i d e or o c t a d e c y l a m i n e c a n b e d i s s o l v e d i n e t h y l a l c o h o l a n d m i x e d w i t h a n o r g a n i c p o l y m e r matrix—e.g., c o l l o d i o n i n ether a n d a l c o h o l (4). S u c h l a c q u e r m i x t u r e s are d e s i g n a t e d CBH. Methods Adsorption Studies. S A C K S . G B or P V P y r surfaces w e r e m a d e i n t o flat sacks, sealed o n three sides b y a heat s e a l i n g polyester film c o a t e d w i t h a p o l y o l e f i n i c adhesive ( S e a l - L a m i n , S e a l Inc., S h e l t o n , C o n n . ) . T h e f o u r t h side w a s s i m i l a r l y sealed after i n t r o d u c i n g the s o l u t i o n c o n t a i n i n g h e p a r i n l e a v i n g a n a i r b u b b l e enclosed. S u c h flat sacks, w i t h t w o c o a t e d faces e a c h 12 X 12 c m . (288 c m . for a d s o r p t i o n ) a n d o v e r a l l d i m e n s i o n s of 14 X 14 c m . w e r e h e l d b e t w e e n flat discs at a s p a c i n g s u c h t h a t the 2
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
188
INTERACTION
OF
LIQUIDS A T
SOLID
SUBSTRATES
enclosed a i r b u b b l e w o u l d t r a v e l a r o u n d the i n s i d e edge, t a k i n g u p a b o u t 1 / 3 of the e n c l o s e d v o l u m e , thus s t i r r i n g the contents w h e n the d i s c a s s e m b l y w a s r o t a t e d . A n assembly of sacks a n d discs w a s r o t a t e d i n a thermostat for 20 hours or longer. T h e sacks w e r e p a r t i a l l y o p e n e d b y s n i p p i n g off one corner, d r a i n e d , a n d r i n s e d , t h e n o p e n e d b y s l i t t i n g a l o n g the sealed edges. D I P P E D F I L M S . Short t e r m a d s o r p t i o n effects w e r e e x a m i n e d b y d i p p i n g films, c o a t e d onto one or b o t h sides of a polyester sheet, i n t o h e p a r i n solutions. I n s e r t i o n a n d r e m o v a l w a s either b y h a n d or i n s p e c i a l cases b y a constant rate m e c h a n i s m . T h e films w e r e let h a n g w i t h o u t s t i r r i n g i n the s o l u t i o n for a n i n t e r v a l after d i p p i n g . N a r r o w containers w e r e u s e d to m i n i m i z e v o l u m e of s o l u t i o n r e q u i r e d . Determination of Heparin. C H E M I C A L . M o d i f i c a t i o n s of the m e t h o d s of W a r r e n a n d W y s o c k i ( 9 ) a n d B a s s i o u n i ( I ) w e r e u s e d . W h e r e p l a s m a or b l o o d w a s not i n v o l v e d , a d i r e c t t i t r a t i o n of the h e p a r i n w i t h a z u r e A , either m e a s u r i n g the d y e r e m o v a l or r e d i s s o l v i n g the p r e c i p i t a t e , w a s u s e d . RADIO TRACER. H e p a r i n l a b e l l e d o n the N - s u l f a t e w i t h S was o b t a i n e d f r o m C a l b i o c h e m C o . Specific a c t i v i t y w a s 0.65 m c . / g r a m s , 140 U h e p a r i n / m g . T h i s c o u l d be c o u n t e d i n a l i q u i d s c i n t i l l a t i o n system, to d e t e r m i n e d e p l e t i o n f r o m s o l u t i o n . I n t e r n a l standards of C comp o u n d s w e r e u s e d to d e t e r m i n e efficiency. T h e l a b e l l e d h e p a r i n a d s o r b e d o n a surface c o u l d b e c o u n t e d o n a 2 X 2 c m . or 1 i n c h d i a m e t e r p o r t i o n s u p p o r t e d o n a p l a n c h e t i n a gas flow G e i g e r counter. A c a l i b r a t i o n c u r v e was p r e p a r e d b y e v a p o r a t i n g k n o w n amounts of l a b e l l e d h e p a r i n o n a s i m i l a r area of the a d s o r b i n g surface. T h e c a l i b r a t i o n c u r v e w a s l i n e a r over a greater r a n g e , a n d w i t h a h i g h e r c o u n t p e r m i c r o g r a m of l a b e l l e d h e p a r i n , for P V P y r surfaces t h a n for G B surfaces, w h i c h i n d i cates m o r e a b s o r p t i o n of r a d i a t i o n b y the g r a p h i t e layer. A U T O R A D I O G R A P H S . T h e surfaces b e a r i n g a d s o r b e d l a b e l l e d h e p a r i n w e r e d r i e d , t h e n p l a c e d i n d i r e c t contact w i t h " N o S c r e e n " x - r a y film ( K o d a k N S - 2 ) . T h e a d s o r p t i o n sacks c o u l d b e o p e n e d o n three sides, t h e n t w o film sheets i n s e r t e d so that a u t o r a d i o g r a p h s of b o t h surfaces c o u l d b e o b t a i n e d . " R e g i s t e r " of the t w o films w a s e s t a b l i s h e d b y m a k i n g i d e n t i f y i n g notches after assembly. D a r k e n i n g w a s seen o n l y o n t h e side i n contact w i t h h e p a r i n , i n d i c a t i n g t h a t a l l the S b e t a r a d i a t i o n w a s a b s o r b e d i n t h e film a n d its cellulose acetate base, t o t a l thickness 9 m i l s . T r i a l s w i t h the p l a n c h e t c o u n t e r s h o w that a 5 m i l polyester film reduces the c o u n t to 6 to 7 % of that w i t h d i r e c t exposure; w i t h a representative P V P y r film o n polyester the count falls to 4 % , a n d w i t h a G B film o n polyester, to 1.6%. H e n c e , e v e n i n a u t o r a d i o g r a p h s w i t h a d s o r p t i o n of h e p a r i n o n b o t h surfaces, the effect o b s e r v e d is m o r e t h a n 9 0 % f r o m the adjacent surface. A u t o r a d i o g r a p h s s h o w n o effect, w i t h i n the t i m e of exposure u s e d , of l a b e l l e d h e p a r i n a d s o r b e d o n a polyester c o n t r o l , although a small adsorption can be detected b y direct planchet counting. T h e a u t o r a d i o g r a p h s w e r e m a d e at different stages i n the d e c a y of the S ; t h e exposure times therefore v a r i e d , i n order to o b t a i n t h e p a t t e r n , f r o m 3 to 45 days. D Y E I N G O F H E P A R I N O N P V P Y R . T h e transparent films of p o l y v i n y l p y r i d i n e p e r m i t d e m o n s t r a t i o n of the presence of h e p a r i n , a n d some j u d g m e n t of the u n i f o r m i t y of a d s o r p t i o n , b y s t a i n i n g w i t h a b a s i c d y e s u c h as t o l u i d i n e b l u e o r a z u r e A , w h i c h c o m b i n e w i t h h e p a r i n to f o r m 3 5
1 4
3 5
3 5
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
15.
FOURT
ET
AL.
Heparin Bearing Coatings
189
r e l a t i v e l y i n s o l u b l e c o m p o u n d s . A P V P y r film s t a i n e d w i t h either d y e is f a i n t l y b l u e ; i f h e p a r i n has b e e n a b s o r b e d , a r e d d i s h color appears i n m u c h greater strength. T h e redness ( m e t a c h r o m a t i c effect) i n d i c a t e s that this is the c o m p o u n d of the d y e w i t h h e p a r i n . S o m e h e p a r i n also leaves the surface a n d forms a p r e c i p i t a t e i n the s o l u t i o n . C O A G U L A T I O N T E S T S . F r e s h , c i t r a t e d n o r m a l "non-contact a c t i v a t e d " h u m a n p l a s m a , u s e d w i t h i n 6 hours of d r a w i n g the b l o o d , w a s u s e d t h r o u g h o u t unless s p e c i a l l y i n d i c a t e d . T h i s w a s p l a t e l e t r i c h p l a s m a . T h e p l a s m a w a s k e p t i n a n ice b a t h u n t i l just before use, w h e n i t w a s w a r m e d i n s m a l l lots to r o o m t e m p e r a t u r e . A l l h a n d l i n g a n d tests w e r e c o n d u c t e d i n p l a s t i c ( p o l y s t y r e n e , p o l y e t h y l e n e , p o l y ( v i n y l c h l o r i d e ) ) or i n s i l i c o n i z e d glass unless specifically n o t e d . T h e first 5 m i l of b l o o d w a s d i s c a r d e d , to m i n i m i z e tissue or t r a u m a t i c influence. T y p i c a l r e c a l c i f i c a t i o n c l o t t i n g t i m e i n p l a s t i c w a s 20 m i n u t e s ; i n glass, 8 m i n u t e s ; i n glass w i t h 5 m i n u t e s of d e l i b e r a t e a c t i v a t i o n b y r o l l i n g as a film o n the glass w a l l b e f o r e r e c a l c i f i c a t i o n , 3 m i n u t e s , s h o w i n g that the contact a c t i v a t i o n system ( F a c t o r s X I I , X I ) w a s present r e a d y for a c t i v a t i o n .
T w o types of surfaces w e r e m a d e : " C o n e s " — a p o r t i o n of film w a s f o l d e d t w i c e , as i n p r e p a r i n g filter p a p e r for a f u n n e l , t h e n o p e n e d o u t to f o r m a cone. " F l a t s u r f a c e s " — a c o n v e n i e n t area of film, u s u a l l y the 2 X 2 c m . s p e c i m e n o n w h i c h the a d s o r b e d h e p a r i n h a d b e e n d e t e r m i n e d b y the p l a n c h e d counter, w a s p l a c e d i n a P e t r i d i s h , a l o n g w i t h a separate p o r t i o n of cotton or filter p a p e r saturated w i t h w a t e r . C i t r a t e d p l a s m a (0.2 m l . ) w a s p i p e t t e d onto the center of the s p e c i m e n ; t h e n 0 . 0 5 M C a C l s o l u t i o n (0.2 m l . ) w a s a d d e d , a n d the m i x t u r e w a s s t i r r e d w i t h a T e f l o n s t i r r i n g r o d w i t h o u t t o u c h i n g the film a n d w i t h the least p o s s i b l e s p r e a d i n g of the large d r o p . T h e P e t r i d i s h c o v e r w a s t h e n u s e d to p r e v e n t e v a p o r a t i o n or a i r - b o r n e c o n t a m i n a t i o n . D i r e c t v i s u a l o b s e r v a t i o n , or o b s e r v a t i o n w i t h a l o w p o w e r , l o n g w o r k i n g d i s t a n c e stereo m i c r o s c o p e p e r m i t t e d d e t e r m i n a t i o n of the first a p p e a r a n c e of fibrin. T h e l i q u i d o r gel c o n d i t i o n c o u l d b e c h e c k e d b y t i p p i n g the P e t r i d i s h . I n some w o r k , t h e p l a s m a w a s r e c a l c i f i e d i n a p l a s t i c test t u b e , t h e n q u i c k l y t r a n s f e r r e d to the film, w i t h g e n e r a l l y s i m i l a r results, b u t shorter c l o t t i n g times. 2
Results U n i f o r m i t y of A d s o r p t i o n . R e g r e t t a b l y , a u t o r a d i o g r a p h i c testing of u n i f o r m i t y of a d s o r p t i o n was b e g u n s o m e w h a t late i n the w o r k , after the necessity f o r this w a s r e c o g n i z e d f r o m i r r e g u l a r i t i e s of d y e i n g , of c o a g u l a t i o n tests, a n d of p l a n c h e t counts o n s m a l l areas. P l a n c h e t counts s h o w ratios as h i g h as 3 0 : 1 b e t w e e n areas of strong adsorption a n d weak adsorption.
T h e average of a l a r g e n u m b e r
of
2 χ 2 c m . areas, h o w e v e r , shows a g e n e r a l c o r r e s p o n d e n c e to t h e o v e r - a l l average as d e t e r m i n e d b y d e p l e t i o n , as s h o w n i n T a b l e I I . H e n c e , some general guidance on adsorption can be obtained from depletion measure ments, a l t h o u g h for a n y great degree of p r e c i s i o n , u n i f o r m a d s o r p t i o n is required.
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
190
INTERACTION
OF
LIQUIDS
AT
SOLID
SUBSTRATES
Table II. Comparison of Adsorption of Heparin on P V P y r - M y l a r Surface, by Depletion (Indirect, Average for 288 cm. ) and by Planchet Count (Direct, for 4 cm. ) 4
2
2
Initial Heparin Available in Solution pg./cm. 0
2
B
Adsorbed Heparin on 2 X 2 cm. Squares
Adsorbed Heparin by Depletion ^g. /cm.
3.4
1.87
0.34
0.34
0.17
0.17
0.034
0.034
Average ILg./cm.
Individual fig./cm.
2
2
2
2.28,1.96, 0.92 1.26,1.90 0.07, 0.46, 0.53 0.10, 0.49, 0.61 0.76, 0.45, 0.05 0.06, 0.07 0.29, 0.21, 0.24 0.30, 0.23 0.050, 0.060, 0.020 0.087, 0.082
1.66 0.29
0.25 0.060
Amount in original solution divided by area. A u t o r a d i o g r a p h s of G B H surfaces sometimes s h o w a " s t r i k e " w h e r e
the a q u e o u s s o l u t i o n of h e p a r i n w a s d e l i v e r e d b y a p i p e t t e , a n d r a n d o w n t h e film, as seen i n F i g u r e 1, w h i c h shows the t w o sides of a n a d s o r p t i o n sack w i t h g r a p h i t e - b e n z a l k o n i u m surface.
T h e m a t c h of the a d s o r p t i o n
p a t t e r n o n the t w o surfaces indicates t h a t i t w a s a m a t t e r of i n i t i a l contact w i t h s o l u t i o n , not a p r o p e r t y of the surfaces. o n a n i n i t i a l l y d r y G B surface. tagged
T h i s pattern was
produced
T h e solution was 9 0 % cold heparin, 1 0 %
h e p a r i n , at 67 μ%. t a g g e d
heparin/ml.
a d s o r p t i o n , c a l c u l a t e d as t o t a l ( 1 0 χ
The
average
radioactive heparin
f r o m d e p l e t i o n of the s o l u t i o n , was 2.7 / x g . / c m .
2
heparin
adsorption)
S a c k w a s r o t a t e d 20
h o u r s , w i t h a b u b b l e , at 3 7 ° C . F i g u r e 2 shows t w o sides of a G B H sack w h i c h w a s w e t w i t h w a t e r b e f o r e i n t r o d u c i n g the h e p a r i n s o l u t i o n . T e n m l . of h e p a r i n s o l u t i o n w e r e i n t r o d u c e d i n t o 5 m l . of w a t e r , a v o i d i n g i n i t i a l contact w i t h the w a l l s . T h e p a t t e r n appears to b e r e l a t e d to the c i r c u l a r r o t a t i o n of t h e b u b b l e . O t h e r i n i t i a l l y w e t or d r y sacks s h o w e d s i m i l a r r o t a t i o n - s u g g e s t i n g terns, not t h e
flow-strike
patterns of F i g u r e 1.
pat
H e p a r i n concentration
w a s 648 / x g . / m l . i n the i n i t i a l 15 m l . m i x t u r e ; sacks w e r e r o t a t e d 48 h o u r s w i t h b u b b l e at 37 ° C .
A v e r a g e a d s o r p t i o n of h e p a r i n , b y d e p l e t i o n
of
s o l u t i o n , is 4.0 / x g . / c m . . 2
F i g u r e 3 shows one side of a p o l y v i n y l p y r i d i n e sack, i n i t i a l l y d r y . T e n m l . of h e p a r i n s o l u t i o n w e r e i n t r o d u c e d i n t o the d r y sack, f o l l o w e d b y 5 m l . w a t e r , a v o i d i n g contact w i t h the w a l l s . same e x p e r i m e n t as F i g u r e 2 ) .
( T h i s was p a r t of the
T h e p a t t e r n was m a t c h e d o n the other
side a n d appears to be r e l a t e d to the b u b b l e , its l o c a t i o n i n e a r l y stages
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
15.
FOURT
ET
AL.
191
Heparin Bearing Coatings
Figure 1. Autoradio graphs showing uneven adsorption of heparin on an initially dry graphite-benzalkonium surface. A and Β are the two sides of a flat adsorption sack. Flow from the point of initial contact of the solution is indicated with an initial "strike" which did not level in 20 hours rotation, with a bubble, at 37°C. Average heparin adsorption 2.7 μg./cm. 2
Figure 2. Autoradio graphs showing uneven adsorption on an initially wet graphite-benzalkonium surface. A and Β are two sides of a flat adsorption sack, 10 ml. heparin solution intro duced into 5 ml. water, avoiding contact with the walls. Sack rotated 48 hours with bubble at 37°C; initial heparin concen tration 638 ^g./ml. in 15 ml.; average heparin adsorption 4.0 μg./cm. ; autoradiograph exposure 72 hours 2
of exposure p r i o r to r o t a t i o n , a n d its p a t h d u r i n g r o t a t i o n (48 h o u r s at 37°C).
A f o l d or c r a c k i n the h e p a r i n a d s o r b i n g film c a n also b e seen
i n the l o w e r t h i r d . T h e g e n e r a l l y d a r k e r tone, for the same s o l u t i o n c o n c e n t r a t i o n , age of h e p a r i n , a n d t i m e of a u t o r a d i o g r a p h exposure agrees w i t h the d e p l e t i o n a n d p l a n c h e t c o u n t measurements i n i n d i c a t i n g m o r e h e p a r i n a d s o r b e d p e r u n i t area o n the P V P y r films t h a n o n the G B
films,
at least as w e p r e p a r e t h e m . T h i s m a y i n d i c a t e m o r e c a t i o n i c sites a v a i l a b l e o n P V P y r , b u t w e l a c k i n f o r m a t i o n to c o m p a r e t o t a l cations a v a i l a b l e or the specific surface areas a n d d e p t h of p e n e t r a t i o n , so this o b s e r v a t i o n Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
192
INTERACTION
OF
LIQUIDS
AT
SOLID
SUBSTRATES
is p u r e l y e m p i r i c a l r e l a t i n g o n l y to the p a r t i c u l a r w a y i n w h i c h these films have been prepared.
P V P y r sacks w h i c h w e r e i n i t i a l l y w e t s h o w s i m i l a r
patterns. I n i t i a l m i x t u r e c o n c e n t r a t i o n w a s 648 jug. h e p a r i n / m l . ; average a d s o r p t i o n , b y d e p l e t i o n , 7.6 / x g . / c m . . 2
F i g u r e 4 shows t h e r e l a t i v e l y e v e n a d s o r p t i o n o n p o l y v i n y l p y r i d i n e surfaces s p r e a d b y k n i f e c o a t i n g a n d d i p p e d i n t o r a d i o a c t i v e h e p a r i n s o l u t i o n (500 / x g . / m l . ) for 6 m i n u t e s . S i x discs e a c h 1 i n c h i n d i a m e t e r w e r e d i e c u t f r o m e a c h of t w o d u p l i c a t e p r e p a r a t i o n s w h i c h w e r e s i m i l a r i n v i s u a l evenness to the ones s h o w n .
P l a n c h e t counts g a v e t h e results
shown below: Λ lig./cm.
Β iig./cm*
1.88 1.64 1.78 1.58 1.45 1.43 1.63 0.17 12%
1.52 1.43 1.47 1.44 1.45 1.27 1.43 0.08 6%
2
Average Standard Deviation Coefficient of Variation Influence of Electrolytes.
Presence of electrolyte of l o w m o l e c u l a r
w e i g h t i n the s o l u t i o n w i t h the h e p a r i n reduces the a m o u n t of h e p a r i n a d s o r b e d , a n d promotes
l e v e l i n g , as w o u l d b e e x p e c t e d
f r o m the fact
t h a t t h e r e l a t i v e l y w a t e r - i n s o l u b l e c o m p l e x e s or c o m p o u n d s of h e p a r i n and
other
mucopolysaccharides
are
increasingly dissociated
and
m u c o p o l y s a c c h a r i d e b r o u g h t i n t o s o l u t i o n b y i n c r e a s i n g electrolyte centrations ( 8 ) .
Since Gott (4)
the con
a n d most other surgeons h a v e a p p l i e d
h e p a r i n f r o m s o l u t i o n i n 0 . 1 5 M N a C l , the p r a c t i c a l f o r m a t i o n of G B H a n t i c o a g u l a n t surfaces o n s u r g i c a l i m p l a n t s has p r o b a b l y i n v o l v e d m u c h less n o n - u n i f o r m i t y t h a n m a n y of o u r experiments. T h e t w o types of surface, G B a n d P V P y r , differ i n the effect of elec trolyte on heparin adsorption.
O n G B , the h e p a r i n a d s o r p t i o n is u n
c h a n g e d b e t w e e n 0 . 1 5 M a n d 0 . 5 M N a C l , b u t d r o p s b y h a l f at 1 . 0 M ; o n P V P y r t h e a d s o r p t i o n is u n c h a n g e d b e t w e e n 0 . 0 5 M a n d 0 . 1 5 M , b u t d r o p s to close to zero at 0 . 5 M . T h e s e results w e r e a l l o b t a i n e d i n a d s o r p t i o n sacks. A u t o r a d i o g r a p h s i n d i c a t e d that w e h a d not f o u n d the c o n d i t i o n s for u n i f o r m a d s o r p t i o n , a l t h o u g h l o g i c a l l y a d s o r p t i o n c a n b e e x p e c t e d b e m o r e u n i f o r m u n d e r c o n d i t i o n s i n w h i c h i n i t i a l strike c a n b e v e n t e d , or l e v e l e d
by
equilibrium adsorption
and desorption
to
pre
during
l o n g e r exposure. We
are e n g a g e d i n o b t a i n i n g m o r e u n i f o r m surfaces f r o m
m o r e precise a n d accurate a d s o r p t i o n isotherms c a n b e o b t a i n e d .
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
which Results
15.
FOURT
ET
AL.
Heparin Bearing Coatings
Figure 3. Autoradiograph showing uneven adsorption on an ini tially dry polyvinylpyridine surface. Rotated with bubble 48 hours at 37°C. Heparin concentration 638 μg./ml., average heparin adsorp tion 7.6 ^g./cm. . Autoradiograph exposure 72 hours (comparable with Figure 2). In the lower third there is a fold or crack line in the film, probably introduced before the sack was made 2
Figure 4. Rehtively even autoradiograph of two portions of polyvinylpyridine film, A and B. There is some gradation from top to bot tom, but the uniformity is high compared with Figure 1 through 3. This was dipped into heparin solution, held immersed 6 minutes, then withdrawn and rinsed. Planchet counts of die cut one inch circles taken from a pair of surfaces similar in visual evenness are given in the text, showing coefficients of variation of 12 and 6% for duplicates
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
193
194
INTERACTION
OF
LIQUIDS
AT
SOLID
SUBSTRATES
o b t a i n e d b y d e p l e t i o n analysis c a n o n l y i n d i c a t e the average a d s o r p t i o n over the w h o l e area. H o w e v e r , s u c h analyses i n d i c a t e that a l l the h e p a r i n a v a i l a b l e , u p to a n average of a b o u t 3 / x g / c m . , w i l l b e a d s o r b e d o n G B 2
surfaces.
T h e l e v e l for c o m p l e t e e x h a u s t i o n b y P V P y r films appears to
b e h i g h e r , ca. 10 / x g . / e m . . 2
H o w e v e r , the a u t o r a d i o g r a p h s s h o w t h a t the
true m a x i m u m m a y be m u c h higher. Effect of Thickness of Adsorbing Film.
E a r l i e r studies of effect of
film thickness ( 3 ) i n d i c a t e d t h a t the t r e n d b e t w e e n g r a p h i t e film t h i c k n e s s a n d a m o u n t of b e n z a l k o n i u m a d s o r b e d was s m a l l , f r o m a b o u t 2 to 4 /xg. benzalkonium per c m .
2
for v a r i a t i o n f r o m 200 to 1000 / x g . g r a p h i t e p e r
c m . . T h e analyses b y c h e m i c a l m e t h o d s for h e p a r i n a d s o r b e d w e r e not 2
precise e n o u g h to s h o w a n y t r e n d . C h e m i c a l analysis d i d s h o w that f r o m 1.5 to 7.5 /xg. of h e p a r i n w a s a b s o r b e d o n f r o m 400 to 1000 /xg. of P V P y r p e r c m . , b u t the range of h e p a r i n w a s so great at e a c h P V P y r l e v e l t h a t 2
n o clear t r e n d c o u l d b e seen.
M o r e recent a u t o r a d i o g r a p h i c studies w i t h
e a c h k i n d of film i n d i c a t e t h a t for b r i e f exposures to h e p a r i n s o l u t i o n i n d i s t i l l e d w a t e r there is i n d e e d a t r e n d for m o r e h e p a r i n to be
adsorbed
o n t h i c k e r films of either k i n d . U n i f o r m Adsorption by U n i f o r m Mechanical Exposure.
If an a d -
s o r b i n g film is i n t r o d u c e d i n t o the s o l u t i o n at a u n i f o r m rate, the " s t r i k e " effect c a n b e m a d e u n i f o r m . A u t o r a d i o g r a p h s s u c h as F i g u r e 4 s h o w t h a t this c a n b e a c c o m p l i s h e d , or at least that m u c h m o r e u n i f o r m a d s o r p t i o n c a n b e o b t a i n e d b y d i p p i n g t h a n b y exposure i n sacks.
Whether
the
h e p a r i n so a d s o r b e d is the same i n its e q u i l i b r i u m relations to solutions is yet to b e d e t e r m i n e d , b u t i t appears s i m i l a r i n a n t i c o a g u l a n t effect. Minimum Heparin Binding for Anticoagulant Effect.
U s i n g auto-
r a d i o g r a p h s as g u i d e s , selection of r e l a t i v e l y u n i f o r m areas o n w h i c h the h e p a r i n c a n b e d e t e r m i n e d b y p l a n c h e t c o u n t i n g has p e r m i t t e d estimates of r e l a t i o n to the a n t i c o a g u l a n t effect.
T a b l e I I I shows
some results,
w h i c h i n d i c a t e that for G B H surfaces, the l i m i t lies b e t w e e n 0.2 a n d 0.3 /xg. h e p a r i n / c m . . 2
T a b l e I I I also shows results o n P V P y r H
films
prepared by
d i p p i n g a n d d e m o n s t r a t e d to b e u n i f o r m b y a u t o r a d i o g r a p h s .
brief
H e r e the
effect of i n c r e a s i n g a m o u n t of h e p a r i n p e r u n i t area appears m o r e g r a d e d , b u t a g a i n close to 0.3 /xg. h e p a r i n / c m . is n e e d e d to d e l a y c l o t t i n g longer 2
t h a n 100 m i n u t e s . Minimum Heparin in a Lacquer. E a r l i e r w o r k ( 3 ) u s i n g c o a g u l a t i o n tests i n cones s h o w e d that the a n t i c o a g u l a n t effect of a l a c q u e r c o n t a i n i n g h e p a r i n - b e n z a l k o n i u m c o m p o u n d ( G B H ) d e p e n d e d not o n l y o n the t o t a l a m o u n t of h e p a r i n i n t h e l a c q u e r , b u t also r e q u i r e d a m i n i m u m c o n c e n t r a t i o n . V a r i a t i o n of h e p a r i n content at constant film thickness ( 5 m i c r o n s ) i n d i c a t e s a c r i t i c a l l e v e l b e t w e e n 0.3 a n d 0.5 / x g . / c m . ; v a r i a t i o n of 2
thickness at 0.3 or 0 . 6 %
film
B H i n the film i n d i c a t e s a s i m i l a r c r i t i c a l l e v e l ,
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
15.
FOURT
ET
AL.
195
Heparin Bearing Coatings
b u t at 0 . 0 7 5 % B H i n the G B H film, n o a m o u n t of film or h e p a r i n , u p to 1.5 / A g . / c m . or 50 m i c r o n s thickness s h o w e d a n t i c o a g u l a t i o n . 2
Table III.
M i n i m u m H e p a r i n B i n d i n g for A n t i c o a g u l a n t Effect
Tests: C O A G U L A T I O N T I M E : 0.2 ml. citrated plasma placed on flat surface, recalcified with 0.1 ml. M / 2 0 C a C l , stirred with a Teflon strip. Controls are Mylar polyester surfaces. H E P A R I N : determined on each test portion by planchet count. A. Relatively uniform G B H areas from long-time adsorption sacks, selected with guidance of autoradiographs 2
Coagulation Time, min.
Heparin tig./cm.
(Darkening of Film)
Fibrin
Clot
0.0 0.17 0.51 1.2
control light medium heavier
25 25 100+ 100+
25 35
2
B.
Uniform areas produced by dipping, checked for uniformity by autoradiographs Surface Control GBH
Control PVPyrH
Heparin fig./cm.
Coagulation Time, min. Fibrin
0 0.05 0.09 0.27 0 0.08 0.9 0.13 0.25 0.29 0.31
27 37 63 100+ 26 50 48 47 68 84 100+
2
Discussion E a r l i e r d a t a ( 3 ) o b t a i n e d w i t h tests i n cones a n d c h e m i c a l d e t e r m i n a t i o n suggested that the a n t i c o a g u l a n t effect of h e p a r i n i n t r o d u c e d o n the w a l l was greater t h a n that to b e e x p e c t e d if a l l the h e p a r i n w e r e d i s s o l v e d i n t h e p l a s m a . T h i s c o n c l u s i o n requires c h e c k i n g w i t h
more
u n i f o r m h e p a r i n layers a n d i m p r o v e d c o a g u l a t i o n test t e c h n i q u e s o n flat surfaces.
It is k n o w n that some h e p a r i n goes i n t o s o l u t i o n i n p l a s m a
f r o m G B H or P V P y r H surfaces, as p r e p a r e d b y us, a n d i t seems p r o b a b l e that this is g e n e r a l l y t r u e for a n y a d s o r b e d h e p a r i n system i n w h i c h the
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
196
INTERACTION
O F LIQUIDS A T SOLID
h e p a r i n is h e l d t o the surface b y i o n i c b o n d s .
SUBSTRATES
H e n c e , the effect o f the
d i s s o l v i n g h e p a r i n c o u l d b e greater i n the diffusion l a y e r near the surface t h a n i f u n i f o r m l y d i s t r i b u t e d t h r o u g h the s o l u t i o n . W e b e l i e v e t h a t the a n s w e r t o the q u e s t i o n w h e t h e r the h e p a r i n is a c t i n g w h i l e a d s o r b e d m a y b e a p p r o a c h e d either b y m o r e precise q u a n t i t a t i v e studies, the r o a d t o w h i c h n o w seems o p e n , o r b y c o n c l u s i v e s h o w i n g of effectiveness of h e p a r i n c o v a l e n t l y o r c o m p l e t e l y b o u n d to the surface. F r o m a p r a c t i c a l p o i n t o f v i e w , t h e a n t i c o a g u l a n t effectiveness
of heparin b o u n d to a
surface b y different basic g r o u p s s h o u l d b e of i m p o r t a n c e w i t h respect to d u r a t i o n o f effectiveness, a n d a m o u n t o f h e p a r i n r e q u i r e d .
Literature Cited
(1) Bassiouni, M., J. Clin. Path. 7, 330 (1954). (2) Falb, R. D., Takahashi, M. T., Grode, G. Α., Leininger, R. I.,J.Biomed. Materials Res. 1, 239 (1967). (3) Fourt, L., Schwartz, A. M., Quasius, Α., Bowman, R. L., Trans. Am. Soc. Artif. Int. Organs 12, 155 (1966). (4) Gott, V. L., Whiffen, J. D., Dutton, R. C., Science 142, 1297 (1963). (5) Kramer, R. S., Vasko, J. S., Morrow, A. G., J. Thor. Cardiovasc. Surg. 53, 130 (1967). (6) Merrill, E. W., Salzman, E. W., Lipps, B. J., Gilliland, E. R., Austen, W. G., Joison, F., Trans. Am. Soc. Artif. Int. Organs 12, 139 (1966). (7) Salzman, E. W., Austen, W. G., Lipps, B. J., Jr., Merrill, E. W., Gilliland, E. R., Joison, F., J. Surgery 61, 1 (1967). (8) Scott, J. E., "Methods of Biochemical Analysis," Vol. VIII, p. 145, D. Glick, Ed., Interscience, Ν. Y. 1960. (9) Warren, R., Wysocki, Α., Surgery 44, 435 (1958). (10) Whiffen, J. D., Gott, V. L., J. Surg. Res. 5, 51 (1965). (11) Whiffen, J. D., Trans. Am. Soc. Artif. Int. Organs 12, 164 (1966). (12) Whiffen, J. D., Beekler, D. C., J. Thor. Cardiovasc. Surg. 52, 121 (1966). RECEIVED September 25, 1968. This work is part of Contract PH 43-64-498 of the Artificial Heart Program, National Heart Institute, National Institutes of Health.
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.