16 Heparin Covalently Bonded to Polymer Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch016
Surface B. DAVID HALPERN and RIICHIRO SHIBAKAWA Polysciences, Inc., Warrington, Pa. 18976
Cross-linked
polystyrene beads were para-nitrated
surface then reduced to the aminopolystyrene
on
the
and finally
converted by phosgenation to isocyanato-polystyrene.
Cou-
pling to sodium heparin was achieved at room temperature in formamide.
The covalently bound heparin beads were
non-clotting for twenty-four hours when tested by method.
Special antithrombogenic
hydrogel
Lee-White
tubes were
used for the tests since other surfaces induced clotting. similar
synthetic
sequence
to
surface
modify
A
injection
molded polystyrene rings for in v i v o testing in canine hearts yielded badly distorted pieces which were only moderately antithrombogenic.
The roughened surface was thought to
have contributed to clot formation. copolymers
of
N-vinylphthalimide
The use of cross-linked later reduced
to
the
amine was shown to be a route which allowed distortion-free polymers containing pendant isocyanate groups for heparin coupling.
T i J " u c h w o r k o n h e p a r i n - q u a t e r n a r y a m m o n i u m complexes ITX
has
been
r e p o r t e d as a n o u t g r o w t h of the o r i g i n a l p u b l i c a t i o n s b y G o t t
(2,
3 ) w h i c h s h o w e d t h e i r v a l u e as a n t i t h r o m b o g e n i c surfaces for prosthetic heart valves. T h e G B H surfaces ( g r a p h i t e - b e n z a l k o n i u m c h l o r i d e - h e p a r i n coating)
of G o t t h a v e s u p e r i o r a n t i t h r o m b o g e n i c properties w h e n
p a r e d w i t h glass, p o l y c a r b o n a t e s , a n d silicone. L e i n i n g e r et al. ( 8 ) M e r r i l l et al. ( 9 )
further developed
comand
this a p p r o a c h b y u s i n g c a t i o n i c
modifications of a n u m b e r of p o l y m e r surfaces i n c l u d i n g p o l y p r o p y l e n e , p o l y s t y r e n e , a n d p o l y e t h y l e n i m i n e grafted onto cellulose as substrates for c o m p l e x i n g the h e p a r i n . 197 In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
198
INTERACTION
OF
LIQUIDS
AT
SOLID
SUBSTRATES
O n e of t h e most difficult p r o b l e m s yet to b e o v e r c o m e i n t h e d e v e l o p m e n t of a w o r k a b l e artificial heart is t h a t of t h r o m b o s i s o n t h e surface of t h e p r o s t h e t i c m a t e r i a l s ( 2 ) u s e d i n its c o n s t r u c t i o n .
A l t h o u g h the
G B H t y p e surfaces of G o t t a n d later w o r k e r s are of research p r o m i s e , there is c o n c e r n that f o r l o n g t e r m i m p l a n t a t i o n t h e h e p a r i n w h i c h is
Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch016
electrostatically c o m p l e x e d
to t h e surface m a y u l t i m a t e l y b e c o m e d e -
p l e t e d o w i n g to d i s s o c i a t i o n ( 5 , 6 ) .
T h u s , the prosthetic device m a y
b e c o m e susceptible to c l o t t i n g . I f h e p a r i n w e r e to b e c o v a l e n t l y b o n d e d to a substrate i n a b i o l o g i c a l l y stable m a n n e r w h i c h d i d n o t cause a loss of its a n t i t h r o m b o g e n i c n a t u r e , w e w o u l d t h e n h a v e a n o n - m i g r a t a b l e f o r m of h e p a r i n .
T h e m e t h o d u s e d to b o n d h e p a r i n c o v a l e n t l y t o a
p o l y m e r substrate a n d a p r e l i m i n a r y d e m o n s t r a t i o n of t h e a n t i t h r o m b o g e n i c v a l u e in vitro of s u c h a surface constitute t h e basis f o r this p a p e r . W e also b o n d e d h e p a r i n i o n i c a l l y to a p o l y m e r substrate i n m u c h t h e same w a y as L e i n i n g e r d i d ( 8 ) since this surface is k n o w n to h a v e g o o d in vivo a n t i t h r o m b o g e n i c character a n d c o u l d thus serve as a g o o d in vitro c o n t r o l . Covaient Linking
Reaction
I n o r d e r that t h e h e p a r i n r e m a i n b i o l o g i c a l l y a c t i v e after fixation to a p o l y m e r substrate, t h e c o v a l e n t b o n d m u s t b e a c h i e v e d via f u n c t i o n a l groups o n t h e h e p a r i n m o l e c u l e , w h i c h are non-essential f o r its b i o l o g i c a l activity. F u r t h e r , the b i n d i n g reaction should be performed under react i o n c o n d i t i o n s w h i c h themselves d o n o t cause loss of t h e a n t i t h r o m b o g e n i c c h a r a c t e r of t h e h e p a r i n . T h e f u n c t i o n a l groups of h e p a r i n s u i t a b l e for f o r m a t i o n of a covalent b o n d i n c l u d e t h e a l c o h o l , c a r b o x y l i c a c i d , a n d a m i n o groups. T h e s t r u c t u r e of h e p a r i n is s h o w n i n F i g u r e 1. T h e a m i n o groups r e a d i l y react w i t h
H
NHSOg
H
OH
Figure 1.
H
NHSO3
H
0S0"
Proposed heparin molecule
Molecular weight: 12,000 Sulfate group: 4-5 per unit a c y l a t i n g a n d a l k y l a t i n g agents a n d a l d e h y d e s a n d isocyanates as w e l l as w i t h d i a z o n i u m salts. T h e h y d r o x y groups react w i t h a c y l a t i n g agents,
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
16.
HALPERN
AND
SHiBAKAWA
199
Heparin
isocyanates; a n d t h e y also c o u p l e w i t h d i a z o n i u m salts. C o v a l e n t b o n d s c a n also b e e s t a b l i s h e d b e t w e e n c a r b o x y l i c a c i d groups i n h e p a r i n a n d a p o l y m e r substrate c o n t a i n i n g a n u c l e o p h i l i c g r o u p s u c h as a n a m i n o g r o u p , b y e m p l o y i n g c r o s s - l i n k i n g agents. T h e d i c y c l o h e x y l c a r b o d i i m i d e a n d diisocyanates are t y p i c a l examples of c r o s s - l i n k i n g agents w h i c h c a n
Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch016
react u n d e r m i l d e n v i r o n m e n t a l c o n d i t i o n s .
Sample
Standard
Sample
Phenol Phenol f
||Naphth I Naphth I
Figure 2.
Gas chromatographic identification for isocyanate group
I n one of the recent studies o n the c h e m i c a l c o u p l i n g r e a c t i o n , A x e n ( I ) s u c c e e d e d i n b o n d i n g a n e n z y m e c o v a l e n t l y onto a n i n s o l u b l e p o l y mer by
e m p l o y i n g the isothiocyanate as the c h e m i c a l coupler.
The
e n z y m e r e t a i n e d a l l its c a t a l y t i c activities. T h e m e t h o d u s e d b y us to a t t a c h h e p a r i n onto a p o l y m e r substrate m a d e use of a p e n d a n t isocyanate
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch016
200
INTERACTION
OF
LIQUIDS A T
SOLID
SUBSTRATES
g r o u p o n a p o l y m e r b a c k b o n e . W e find that t h e isocyanate c o u p l i n g r e a c t i o n for b o n d i n g t h e h e p a r i n ( w h i c h is i n its s o d i u m salt f o r m ) m u s t p r o c e e d u n d e r v e r y m i l d c o n d i t i o n s . E x t r e m e s of p H a n d h i g h r e a c t i o n temperatures m u s t b e a v o i d e d i n o r d e r to m i n i m i z e t h e h y d r o l y s i s of t h e n a t u r a l l y o c c u r r i n g sulfate a n d a m i d o s u l f a t e groups i n h e p a r i n . F o r m a m i d e w a s u n i q u e a m o n g m a n y solvents tested i n b e i n g able t o dissolve s o d i u m h e p a r i n at r o o m t e m p e r a t u r e . C r o s s - l i n k e d p o l y s t y r e n e beads w e r e u s e d as t h e starting p o i n t for t h e f o r m a t i o n of polystyrene-isocyanate. T h e a m o u n t of h e p a r i n w h i c h b o n d e d to this substrate w a s d e t e r m i n e d b y s u l f u r m i c r o a n a l y s i s of t h e final p r o d u c t after i t h a d b e e n w a s h e d exhaustively w i t h w a t e r . It is d e s i r a b l e to use c r o s s - l i n k e d p o l y s t y r e n e rather t h a n h o m o p o l y m e r styrene, as t h e latter has a t e n d e n c y to s w e l l a n d dissolve i n some of t h e reactions a n d a d i s t o r t e d surface m a y result. Materials and Methods. T h e stepwise sequence f o r t h e synthesis o f polystyrene-isocyanate a n d subsequent r e a c t i o n w i t h h e p a r i n is s h o w n below:
c
' (Cross-linked with 1% divinyl benzene)
-jCH-CFyn-
QV)
-(CH-CH )n2
(Where R is heparin attached through its hydroxy I group)
PREPARATION OF P-NITROPOLYSTYRENE (I). A p o l y s t y r e n e w h i c h is c r o s s - l i n k e d to t h e extent of 1 % w i t h d i v i n y l b e n z e n e a n d passed t h r o u g h a screen of 2 4 m e s h , a n d r e t a i n e d o n a screen size of 5 0 m e s h , w a s u s e d as a p o l y m e r substrate. T o a s o l u t i o n of 5 m l . of c o n c e n t r a t e d n i t r i c a c i d w a s a d d e d 1 5 grams of t h e c r o s s - l i n k e d p o l y s t y r e n e beads. T h e r e a c t i o n w a s c a r r i e d o u t at 6 0 ° C . f o r h a l f a n h o u r w i t h s t i r r i n g . T h e p r o d u c t w a s filtered a n d w a s h e d w i t h w a t e r several times a n d t h e n t h o r o u g h l y w a s h e d w i t h methanol on a Buchner funnel. T h e product was dried under vacu u m f o r 2 4 hours. M i c r o a n a l y s i s s h o w e d t h a t 0 . 7 % b y w e i g h t of n i t r o g e n
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
16.
HALPERN
A N D SHIBAKAWA
Heparin
201
Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch016
was i n c o r p o r a t e d . T h e I R spectra of p - n i t r o p o l y s t y r e n e s h o w e d a m e d i u m a b s o r p t i o n at 7.5 m i c r o n s because o f t h e n i t r o g r o u p . A different p a t t e r n of a b s o r p t i o n peaks f r o m that of p o l y s t y r e n e w a s also o b s e r v e d i n t h e h i g h e r w a v e l e n g t h area. PREPARATION OF P-AMINOPOLYSTYRENE ( I I ) . R e d u c t i o n of t h e p n i t r o p o l y s t y r e n e w a s a c c o m p l i s h e d b y u s i n g s o d i u m d i t h i o n i t e or stannous c h l o r i d e as the r e d u c i n g agent. F i v e grams of p - n i t r o p o l y s t y r e n e ( I ) w a s s u s p e n d e d i n a s o l u t i o n c o n t a i n i n g 20 m l . of w a t e r , 2 5 m l . c o n c e n t r a t e d a m m o n i u m h y d r o x i d e , a n d a n excess a m o u n t of s o d i u m d i t h i o n i t e . T h e m i x t u r e w a s refluxed for 24 h o u r s w i t h s t i r r i n g . T h e p r o d u c t w a s filtered out a n d w a s h e d w i t h d i s t i l l e d w a t e r several times. T h e resultant p - a m i n o p o l y s t y r e n e w a s d i a z o t i z e d w i t h nitrous a c i d . W e w e r e a b l e to s h o w t h e presence of p - a m i n o p o l y s t y r e n e b y c o u p l i n g w i t h p h e n o l a n d a n i l i n e t o g i v e intense y e l l o w i s h a n d r e d colors r e s p e c t i v e l y . CONVERSION T O ISOCYANATE DERIVATIVES ( I I I ) . T h e a m i n o groups w e r e c o n v e r t e d to isocyanate groups b y treatment of t h e a m i n o - p o l y m e r w i t h phosgene gas i n hexane. I n t o the suspension of 5 grams of w e l l d r i e d p - a m i n o p o l y s t y r e n e ( I I ) i n 300 m l . hexane, a constant stream of p h o s g e n e gas w a s passed for 6 hours after w h i c h t h e m i x t u r e w a s refluxed. A f t e r c o o l i n g t o r o o m t e m p e r a t u r e , t h e p r o d u c t w a s filtered u n d e r n i t r o g e n a t m o s p h e r e a n d w a s h e d t h o r o u g h l y w i t h hexane. I t w a s u s e d d i r e c t l y f o r t h e c o u p l i n g r e a c t i o n . T h e isocyanate content w a s d e t e r m i n e d b y gas c h r o m a t o g r a p h y u s i n g n a p h t h a l e n e as a n o n - r e a c t i v e i n t e r n a l s t a n d a r d a n d p h e n o l as a c o u p l i n g agent b o t h d i s s o l v e d i n toluene. F i g u r e 2 shows t h e d u p l i c a t e s of t h e q u a n t i t a t i v e i d e n t i f i c a t i o n of t h e isocyanate groups. T h e " S t a n d a r d " consists of p h e n o l as a c o u p l i n g reagent, n a p h t h a l e n e as a n i n t e r n a l s t a n d a r d a n d t o l u e n e as a solvent. T h e " S a m p l e " consists of t h e s t a n d a r d s o l u t i o n a n d t h e isocyanate-polystyrene. I t w a s o b s e r v e d that t h e h e i g h t difference b e t w e e n n a p h t h a l e n e a n d p h e n o l i n the " S t a n d a r d " a p p r e c i a b l y d i m i n i s h e d c o m p a r e d to t h e " S a m p l e " i n w h i c h phenol a n d isocyanate-polystyrene reacted for a f e w minutes. T h e m i n i m u m content of t h e isocyanate g r o u p w a s c a l c u l a t e d f r o m t h e d e p l e t i o n of p h e n o l as b e i n g 244 p . p . m . b y w e i g h t of isocyanate p e r g r a m of p o l y m e r . F I X A T I O N O F H E P A R I N ( I V ) . H e p a r i n w a s c o u p l e d to p - i s o c y a n a t o p o l y s t y r e n e b y t h e f o l l o w i n g p r o c e d u r e . F i v e h u n d r e d m g . of h e p a r i n w a s d i s s o l v e d i n 50 m l . of f r e s h l y d i s t i l l e d f o r m a m i d e at r o o m t e m p e r a t u r e w i t h s t i r r i n g . I n t o this clear s o l u t i o n , 100 grams of f r e s h l y m a d e p - i s o c y a n a t o - p o l y s t y r e n e ( I I I ) w a s a d d e d a n d t h e r e s u l t i n g suspension s t i r r e d f o r 24 h o u r s at r o o m t e m p e r a t u r e u n d e r a n i t r o g e n atmosphere. A t t h e e n d of this p e r i o d , t h e r e a c t i o n p r o d u c t w a s c o l l e c t e d o n a filter a n d exhaust i v e l y w a s h e d w i t h w a t e r to r e m o v e a l l u n r e a c t e d h e p a r i n . F i n a l l y , i t w a s w a s h e d f u r t h e r w i t h m e t h a n o l a n d d r i e d u n d e r v a c u u m for 24 h o u r s . M i c r o a n a l y s i s i n d i c a t e d that t h e s u l f u r content of t h e final p r o d u c t w a s 0 . 1 9 % b y w e i g h t . T h i s corresponds to 1.7% of h e p a r i n fixed to t h e p o l y styrene surface. P a r a l l e l controls s h o w that w h e n isocyanate groups are absent, n o s u l f u r is f o u n d i n t h e p r o d u c t . T h e a b o v e result is i n t e r p r e t e d as e v i d e n c e of covalent b o n d i n g of t h e h e p a r i n t o t h e p o l y s t y r e n e backbone.
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
202
INTERACTION
Synthesis of Τrimethylaminopolystyrene Its Reaction with
OF
LIQUIDS A T
SOLID
SUBSTRATES
Iodide and
Heparin
Reaction Scheme: (VT)
(V) Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch016
-(CH-CHjn-
9
-(CH-CH )n-
-(CH-CHJn-
2
5%CH
I 3 — in C H , OH
( C H , ) , N Heparin
PREPARATION PROCEDURES. F i v e grams of p - a m i n o p o l y s t y r e n e ( I I ) p r e p a r e d as before f r o m c r o s s - l i n k e d p o l y s t y r e n e w a s refluxed w i t h 5 % CH3I i n C H 3 O H for 1 0 hours. T h e p r o d u c t was filtered, w a s h e d w i t h water and methanol, and then dried under vacuum. This quaternary a m m o n i u m p o l y m e r f u r t h e r r e a c t e d w i t h 5 0 m g m . of h e p a r i n i n w a t e r s o l u t i o n to f o r m the c o m p l e x ( V I ) . T h e s u l f u r m i c r o a n a l y s i s s h o w e d 0 . 9 % by weight.
Determination Covalently
of Anti-Clotting
Bound Heparin
Activities
of
Beads
T h e a b o v e samples w e r e
sent to the U n i v e r s i t y of P e n n s y l v a n i a
H o s p i t a l for in vitro testing of the a n t i t h r o m b o g e n i c c h a r a c t e r of
the
c o v a l e n t l y b o u n d h e p a r i n a n d the i o n i c a l l y b o u n d h e p a r i n o n p o l y s t y r e n e . T h e p r o c e d u r e u s e d for d e t e r m i n a t i o n of c l o t t i n g t i m e is a m o d i f i c a t i o n of a L e e - W h i t e C l o t t i n g Test. B e f o r e e a c h test w a s u n d e r t a k e n , the surface of e a c h s a m p l e w a s t h o r o u g h l y w a s h e d w i t h d i s t i l l e d w a t e r a n d o v e n d r i e d . B l o o d u s e d i n these tests w a s o b t a i n e d f r o m a n o r m a l h u m a n v o l u n t e e r a n d w a s u s e d as d r a w n w i t h o u t c i t r a t i o n . T h e t w e n t y cc. of b l o o d u s e d for e a c h test w e r e d r a w n f r o m a n a n t e c u b i t a l v e i n . I n o r d e r to ensure that the b l o o d w h i c h w a s u s e d i n e a c h test w a s of a l o w tissue thromboplastin concentration, a two syringe technique was used a n d o n l y the last 6 cc. of b l o o d t a k e n w e r e u s e d i n the test; the first 1 4 cc. were discarded.
T i m e m e a s u r e m e n t w a s started as soon as the
blood
entered the t u b e a n d s t o p p e d u p o n the onset of clot f o r m a t i o n .
Occa
s i o n a l l y , w h e n the s a m p l e was o b s e r v e d not to h a v e c l o t t e d w i t h i n t h i r t y m i n u t e s , a p o r t i o n of the b l o o d w a s r e m o v e d f r o m the t u b e a n d p l a c e d o n a p i e c e of gauze a n d c a r e f u l l y e x a m i n e d for s l i g h t e v i d e n c e of clot formation.
T h e samples w h i c h w e r e u s e d for the a b o v e test w e r e as
follows:
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
16.
H A L P E R N A N D SHiBAKAWA
(1) Polystyrene benzene. (2)
beads
203
Heparin
(50
mesh),
1%
cross-linked b y d i v i n y l -
A m i n o p o l y s t y r e n e s y n t h e s i z e d f r o m 1.
(3) Trimethylaminopolystyrene-heparin ionically bonded beads s y n t h e s i z e d f r o m 1.
complex
Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch016
( 4 ) P o l y - p - i s o c y a n a t o s t y r e n e - h e p a r i n c o v a l e n t l y b o n d e d beads s y n t h e s i z e d f r o m 1. E a c h different test w a s c o n d u c t e d b o t h i n glass tubes a n d i n h y d r o g e l tubes ( 4 ) . I t w a s a p p a r e n t that a glass t u b e w a s n o t s u i t a b l e f o r c o n d u c t i n g t h e b l o o d c l o t t i n g test f o r e v a l u a t i n g t h e p o l y s t y r e n e beads, since t h e glass t u b e itself i n d u c e s c l o t t i n g . I n o r d e r to o b v i a t e t h e c l o t t i n g effect b y glass, w e chose a h y d r o g e l t u b e w h i c h w a s s h o w n to b e n o n - c l o t t i n g to w h o l e b l o o d after 24 hours of contact ( 4 ) . T h e h y d r o g e l u s e d f o r t h e a b o v e test w a s a c o p o l y m e r
hydrogel of 1 6 . 4 % acrylamide a n d 5 %
dimethylaminoethyl methacrylate, cross-linked b y 0 . 1 % methylenebisacrylamide. T o p r e v e n t h e m o l y s i s of t h e b l o o d i n t h e h y d r o g e l tubes, i t w a s necessary to k e e p t h e g e l p H a n d s a l i n i t y e q u i v a l e n t t o that of b l o o d . T h i s w a s d o n e b y a d j u s t i n g t h e p H of t h e m o n o m e r s o l u t i o n to 7.38 b y p h o s p h a t e buffer s o l u t i o n a n d 0 . 8 5 % of s o d i u m c h l o r i d e w a s a d d e d . F i v e m g . a n d fifty m g . of e a c h p o l y m e r s a m p l e w e r e p l a c e d i n t h e h y d r o g e l tubes a n d t h e c l o t t i n g tests c o n d u c t e d i n d u p l i c a t e . T h e results are presented i n T a b l e I . Table I.
Lee-White Clotting
Test
In Glass Tube (minutes) Polystyrene beads (5.0 mg.) Polystyrene beads (50 mg.) Aminopolystyrene (50 mg.) Aminopolystyrene ( 50 mg. ) Trimethylaminopolystyrene-heparin ionic complex (5 mg.) Trimethylaminopolystyrene-heparin ionic complex (50 mg.) Isocyanate-polystyrene-heparin covalent (5mg.) Isocyanate-polystyrene-heparin covalent (50 mg.) Hydrogel-control
11; 11; 11; 11;
11 11 11 11
11; 11 11; 11 11; 11 11; 11
In Hydrogel* (minutes) 26; 16; 38; 21;
36 16 34-1/2 19-1/2
2811/2; 24 21; 16-1/2 720; 41 (owing to air bubbles) 16; 16 720; 720
16.4% Acrylamide, 5% Dimethylaminoethyl methacrylate, and 0.1% Methylenebisacrylamide copolymer hydrogel. 0.85% NaCl added and pH 7.38 buffered. α
W h e n glass tubes w e r e u s e d as containers f o r t h e beads, a l l of t h e samples c l o t t e d w i t h i n eleven m i n u t e s .
T h e r a p i d c l o t t i n g is a s c r i b e d
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
204
INTERACTION
OF
LIQUIDS
AT
SOLID
SUBSTRATES
to t h e o v e r r i d i n g effect of t h e glass surface of t h e tube. H o w e v e r , w h e n these same b e a d samples w e r e p l a c e d i n t h e h y d r o g e l tubes, significant differences
i n clotting time were obtained.
It was observed
that t h e
p o l y s t y r e n e beads, t h e p o l y a m i n o s t y r e n e beads, a n d t h e p o l y t r i m e t h y l a m i n o s t y r e n e - h e p a r i n i o n i c a l l y b o n d e d beads c a u s e d c l o t t i n g i n less t h a n
Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch016
35 m i n u t e s .
H o w e v e r , one of t h e p o l y - p - i s o c y a n a t o s t y r e n e - h e p a r i n co-
v a l e n t l y b o n d e d b e a d samples gave a greater t h a n 720 m i n u t e s c l o t t i n g t i m e , w h i c h is a p p r e c i a b l y longer t h a n t h e i o n i c a l l y b o n d e d h e p a r i n i z e d surface a n d c o m p a r a b l e to t h e n o n - c l o t t i n g b e h a v i o r of t h e g e l surface itself. T h e s a m p l e of b l o o d w a s n o t c l o t t e d after 24 hours, a l t h o u g h t h e a c t u a l L e e - W h i t e test w a s c a r r i e d o u t for o n l y 12 hours ( 7 2 0 m i n . ) . O n e of t h e samples w h i c h c o n t a i n e d 5 m g . of c o v a l e n t l y
bonded
h e p a r i n i z e d beads h a d o n l y 41 m i n u t e s c l o t t i n g t i m e w h i c h is v e r y m u c h shorter t h a n t h e other s a m p l e , b u t still l o n g e r t h a n t h e i o n i c a l l y b o n d e d h e p a r i n c o m p l e x beads.
T h i s shortened c l o t t i n g t i m e w a s a t t r i b u t e d to
a n a i r b u b b l e w h i c h w a s t r a p p e d b y a m e c h a n i c a l error w h i l e t h e t e c h nician was a d d i n g the blood into the tube dropwise. T h e technician pred i c t e d a priori that this p a r t i c u l a r s a m p l e w o u l d h a v e a l o w v a l u e f o r clotting time. I n trials w h e r e w e g r e a t l y e x t e n d e d t h e surface area of t h e p o l y m e r beads c o n t a i n i n g c o v a l e n t l y b o n d e d h e p a r i n , w e f o u n d s i g n i f i c a n t l y l o w e r c l o t t i n g t i m e . W i t h t h e 50 m g . samples w h i c h h a d t e n times t h e surface area, r a p i d c l o t t i n g w a s o b s e r v e d i n a l l cases.
T h i s is a n i n d i c a t i o n that
either t o t a l surface o r excess h e p a r i n at t h e b l o o d i n t e r f a c e is of significance. W e h a v e h a d several occasions i n other tests w h e r e r e l a t i v e l y l a r g e amounts of h e p a r i n p o l y m e r i z e d i n t o h y d r o g e l s s h o w e d shorter c l o t t i n g times t h a n s i m i l a r gels w i t h lesser amounts of h e p a r i n .
Summary A m e t h o d of c o v a l e n t l y b o n d i n g h e p a r i n t o a p o l y m e r substrate is presented.
T h e synthetic r o u t e consists of c o u p l i n g h e p a r i n c o v a l e n t l y
w i t h p o l y i s o c y a n a t o s t y r e n e . T h i s r e a c t i o n w a s m a d e possible b y t h e fact that f o r m a m i d e is a r o o m t e m p e r a t u r e solvent f o r s o d i u m h e p a r i n a n d this a l l o w e d a l i q u i d - s o l i d interface r e a c t i o n to take place.
Lee-White
c l o t t i n g tests in vitro ( i n h y d r o g e l t u b e s ) s h o w e d these surfaces to b e n o n - c l o t t i n g after 24 hours whereas u n t r e a t e d controls a n d surfaces of G B H type clotted i n approximately 25-35 minutes. Acknowledgment W e g r a t e f u l l y a c k n o w l e d g e t h e s u p p o r t p r o v i d e d us b y t h e N a t i o n a l H e a r t Institute of t h e N a t i o n a l Institutes of H e a l t h , t h r o u g h C o n t r a c t N o .
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
16.
HALPERN
A N D SHIBAKAWA
PH-43-66-1124.
Heparin
205
T h e t e c h n i c a l assistance o f H s i u n g C h e n g a n d C o r n e l i u s
C a i n is also a p p r e c i a t e d .
Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch016
Literature Cited (1) (2) (3) (4) (5) (6) (7) (8) (9)
Axen, R., Porath, J., Nature (London) 210, 367 (1966). Gott, V. L., J. Surg. Res. 6, 274 (1966). Gott, V. L., Whiffen, J. D., Dutton, R. C., Science 142, 1297 (1963). Halpern, B. D., Shibakawa, R., Cheng, H., Am. Inst. of Chem. Eng. Sym. Biochem. Eng. Materials, Phila. Pa. (April 1, 1968). Kramer, R. S., Vasko, J. S., Morrow, A. G., J. Thorac Cardiov. Surg. 53, 130 (1967). Kramer, R. S., Vasko, J. S., Morrow, A. G., Surg. Forum 17, 136 (1966). Leininger, R. I., Cooper, C. W., Falb, R. D. et al., Science 152, 1625 (1966). Leininger, R. I., Epstein, M. M., Falb, R. D., Grode, G. Α., Trans. Am. Soc. Artif. Intern. Organs 12, 151 (1966). Merrill, E. W., Salzman, E. W., Lipps, B. J., Jr., Gilliland, E. R., Austen, W. G., Joison, J., Am. Soc. Artif. Int. Organs, 12, 139 (1966).
RECEIVED October 28, 1968.
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
OF
LIQUIDS A T
SOLID
SUBSTRATES
Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch016
INTERACTION
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.