Chapter 16
Downloaded by KTH ROYAL INST OF TECHNOLOGY on December 3, 2015 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch016
Heat-Induced Flavor Formation from Peptides George P. Rizzi Miami Valley Laboratories, The Procter & Gamble Company, Cincinnati, OH 45239-8707
Peptides can degrade during food processing to form novel taste compounds like diketopiperazines (DKPs) or react with reducing sugars to produce volatile Maillard products. Eleven DKPs were detected in commercial cocoas and model studies substantiated a DKP formation mechanism involving intramolecular cyclization of linear peptide precursors. Model Maillard reactions of peptides and fructose generated Strecker degradation products from amino acids with blocked amine and carboxyl functionalities.
P e p t i d e s have l o n g been r e c o g n i z e d a s i m p o r t a n t f l a v o r compounds i n p r o c e s s e d f o o d s . The t a s t e o f p e p t i d e s p e r s e i s v e i l known i n cheeses ( 1 ) , meat ( 2 ) , h y d r o l y z e d v e g e t a b l e p r o t e i n i n c l u d i n g s o y p r o d u c t s ( 3 ) , cocoa ( 4 , 5 ) and t o a l e s s e r e x t e n t i n r o a s t e d malt ( 6 ) , c o r n s t e e p l i q u o r ( 7 ) and aged sake ( 8 ) . S t r u c t u r a l l y , food p e p t i d e s c a n o c c u r a s l i n e a r p r o t e i n fragments ( 1 - 3 , 5 ) , c y c l i c d i m e r s ( d i k e t o p i p e r a z i n e s , DKPs)[4, 6-8] and c y c l i c t r i m e r s ( 7 ) . P e p t i d e s formed e n z y m i c a l l y o r by m i n e r a l a c i d h y d r o l y s i s o r t h e r m a l d e g r a d a t i o n o f h i g h e r m o l e c u l a r weight p r o t e i n c a n a l s o s e r v e a s f l a v o r p r e c u r s o r s i n t h e r m a l l y i n d u c e d r e a c t i o n s . The r e a c t i v i t y o f p e p t i d e s i s e v i d e n c e d by t h e i r b e h a v i o r d u r i n g p y r o l y s i s / G C ( 9 ) , h e a t i n g i n a i r ( 1 0 ) , r e a c t i o n s w i t h mono- ( 1 1 ) , and d i c a r b o n y l (12, 13) compounds and r e a c t i o n s i n hot a c e t i c a c i d ( 1 4 ) . The types o f r e a c t i o n s observed f o r p e p t i d e s i n c l u d e : s i d e - c h a i n t h e r m o l y s i s , f r a g m e n t a t i o n i n t o amino a c i d s , DKP f o r m a t i o n and M a i l l a r d r e a c t i o n w i t h ambient c a r b o h y d r a t e s . Besides t h e i r general f l a v o r forming p o t e n t i a l peptides a r e a l s o r e p o r t e d t o be u n i q u e p r e c u r s o r s o f c o m p o s i t e f o o d aromas. P e p t i d e s formed i n the f e r m e n t a t i v e s t a g e o f cacao p r o c e s s i n g have been l i n k e d t o r o a s t g e n e r a t e d c h o c o l a t e aroma ( 5 ) . A l s o , a m e t h i o n i n e r i c h p o l y p e p t i d e has been a s s o c i a t e d w i t h r o a s t e d peanut v o l a t i l e s (15). 0097-6156/89/0409-0172$06.00/0 ο 1989 American Chemical Society
In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
16.
RIZZI
Heat-Induced Flavor Formation from Peptides
173
The purpose o f t h i s work was t o i n v e s t i g a t e the o c c u r r e n c e and h e a t - i n d u c e d o r i g i n o f c y c l i c d i p e p t i d e s (DKPs) i n cocoa; and s e p a r a t e l y , t o s t u d y t h e mechanism o f DKP f o r m a t i o n i n s i m p l i f i e d r e a c t i o n systems. A l s o , the f o r m a t i o n o f v o l a t i l e s was measured i n a s e r i e s o f model M a i l l a r d r e a c t i o n s o f p e p t i d e s , amino a c i d m i x t u r e s and f r u c t o s e .
Downloaded by KTH ROYAL INST OF TECHNOLOGY on December 3, 2015 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch016
Experimental
Part
Amino a c i d s and p e p t i d e s were a n a l y t i c a l grade c o m m e r c i a l samples o b t a i n e d from Sigma C h e m i c a l Company, S t . L o u i s , MO. S o l v e n t s and c h e m i c a l r e a g e n t s were a l l c o m m e r c i a l , a n a l y t i c a l grade m a t e r i a l s . Commercial cocoa powders were d e f a t t e d w i t h hexane a t room t e m p e r a t u r e and a i r d r i e d b e f o r e a n a l y s i s . D r i e d , u n r o a s t e d cocoa beans were e x t r a c t e d w i t h m e t h a n o l - v a t e r a c c o r d i n g t o Rohan and S t e w a r t (16) and a l i q u o t s o f f r e e z e - d r i e d bean e x t r a c t s were s e a l e d i n t o g l a s s v i a l s and r o a s t e d i n a t h e r m o s t a t e d o i l b a t h . P r i o r to DKP a n a l y s i s cacao p r o d u c t s were c l e a n e d up t o remove theobromine, p o l y p h e n o l s and f i b e r by t h e method o f P i c k e n h a g e n e t a l . ( 4 ) , but o m i t t i n g the s i l i c a - g e l chromatography s t e p . DKPs were a n a l y z e d by h i g h r e s o l u t i o n gas chromatography (HRGC) on a R e s t e k (RTX-5) 60 M X 0.32 mm i . d . f u s e d s i l i c a column ( l u DB-5 f i l m ) i n t e r f a c e d t o a F i n n e g a n model 4500 mass s p e c t r o m e t e r w i t h an INCOS d a t a p r o c e s s i n g system. Mass s p e c t r a were o b t a i n e d a t 1 s e c . s c a n speed w i t h n o m i n a l mass r e s o l u t i o n o f 1.0 amu. I n l e t and t r a n s f e r l i n e t e m p e r a t u r e s were 250 and 3 0 0 C r e s p e c t i v e l y . A t y p i c a l s e p a r a t i o n o f DKP homologs and c i s / t r a n s isomers i s shown i n F i g u r e 1. DKPs were q u a n t i t a t e d u s i n g peak a r e a i n t e g r a l s and r e f e r e n c e t o a complete s e t o f e x t e r n a l s t a n d a r d s . S t a n d a r d DKPs w i t h two r i n g s u b s t i t u e n t s were m i x t u r e s o f c i s / t r a n s i s o m e r s t h e r e b y a l l o w i n g q u a n t i t a t i o n o f i s o m e r i c DKPs i n c o c o a . Model r e a c t i o n s i n v o l v i n g p e p t i d e s and amino a c i d s i n a c e t i c a c i d were worked up by d i l u t i n g the p r o d u c t s w i t h w a t e r and removing unchanged s t a r t i n g m a t e r i a l s w i t h B i o - r a d AG 50V-X8 c a t i o n exchange r e s i n (50-100 mesh, H - f o r m ) . A l i q u o t s were a n a l y z e d f o r DKPs a f t e r a d d i n g c ( A l a - G l y ) as an i n t e r n a l s t a n d a r d . DKP s t a n d a r d s were s y n t h e s i z e d by r e f l u x i n g 1.3 M s o l u t i o n s o f d i p e p t i d e s i n a c e t i c a c i d f o r two h o u r s . Treatment w i t h a c e t i c a c i d l e d t o p a r t i a l r a c e m i z a t i o n o f e n a n t i o m e r i c a l l y pure p e p t i d e s . A f t e r removal o f unchanged s t a r t i n g m a t e r i a l s w i t h c a t i o n exchange r e s i n , p r o d u c t s were i s o l a t e d by vacuum e v a p o r a t i o n and p u r i f i e d by r e c r y s t a l l i z a t i o n . R e c r y s t a l l i z a t i o n p r o v i d e d a n a l y t i c a l l y pure p r o d u c t s , but DKPs w i t h two r i n g s u b s t i t u e n t s s t i l l c o n t a i n e d m i x t u r e s o f c i s / t r a n s isomers. S t r u c t u r e s o f p u r i f i e d p r o d u c t s were v e r i f i e d by e l e m e n t a l a n a l y s i s and by r e f e r e n c e t o p u b l i s h e d MS d a t a ( 1 7 ) . F o r M a i l l a r d r e a c t i o n s , aqueous s o l u t i o n s o f amino a c i d s , p e p t i d e s and f r u c t o s e were f r e e z e - d r i e d i n 50 mL serum b o t t l e s and septum-sealed b e f o r e i n c u b a t i n g i n a t h e r m o s t a t e d o i l b a t h . C o o l e d m i x t u r e s were t r e a t e d w i t h w a t e r t o make 10X w/v m i x t u r e s and e q u i l i b r i u m headspaces were sampled a t 50°C f o r HRGC a n a l y s i s a c c o r d i n g t o p r o c e d u r e s d e v e l o p e d by Haynes and S t e i m l e ( 1 8 ) . e
+
In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by KTH ROYAL INST OF TECHNOLOGY on December 3, 2015 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch016
174
THERMAL GENERATION OF AROMAS
ι
456 I I I
1
2
Peak No.
60 m χ 0.32 mm RTX-5 2 0 0 ° C @ 4 ° / m i n t o 280°C
3
11 1 0
in
1 2 3 4 5 6 7 8 9 10 11
DKP Ala-Gly Ala-Val Ala-Leu Ala-Pro Gly-Leu Gly-Pro Leu-Pro Ala-Phe Gly-Phe Phe-Val Pro-Phe
1 1
U 10
15
20
25
30
35
Retention Time (minutes) F i g u r e 1. Separation
HRGC Chromatogram o f S y n t h e t i c DKPs S h o v i n g o f C i s / T r a n s Isomers
In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
40
16.
RIZZI
Heat-Induced Flavor Formation from Peptides
175
Downloaded by KTH ROYAL INST OF TECHNOLOGY on December 3, 2015 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch016
Discussion of Results O c c u r r e n c e and F o r m a t i o n o f DKPs i n Cacao P r o d u c t s . Thermal d e g r a d a t i o n o f p e p t i d e s ( o r p r o t e i n s ) d u r i n g c o c o a bean r o a s t i n g i s e v i d e n c e d by the p r e s e n c e o f DKPs i n c o c o a powder ( 4 , 1 7 ) . Cocoa DKPs a r e i m p o r t a n t f l a v o r components t h a t have been shown t o produce a c h a r a c t e r i s t i c b i t t e r t a s t e i n c o n j u n c t i o n w i t h n a t u r a l l y o c c u r r i n g theobromine ( 4 ) . I n t h i s s t u d y we u t i l i z e d HRGC a n a l y s i s c o u p l e d w i t h a s e n s i t i v e n i t r o g e n s e l e c t i v e d e t e c t o r and a mass s p e c t r o m e t e r t o compare t y p e s and amounts o f DKPs i n v a r i o u s l y processed cocoas. S i m i l a r a n a l y t i c a l t e c h n i q u e was used t o f o l l o w the f o r m a t i o n o f DKPs d u r i n g i n v i t r o r o a s t i n g o f c h o c o l a t e f l a v o r p r e c u r s o r s i s o l a t e d from u n r o a s t e d beans. Q u a n t i t a t i v e d a t a ranges f o r DKPs found i n f o u r cocoas a r e e x p r e s s e d i n mg o f DKP/Kg o f f a t f r e e - c o c o a as f o l l o w s : c ( G l y - L e u ) , 0-25; c ( G l y - P r o ) , 2-7; c ( G l y - P h e ) , 0-11; c ( A l a - G l y ) , 0-12; c ( A l a - V a l ) , 56-143, c ( A l a - L e u ) , 22-69; c ( A l a - P r o ) , 19-44; c ( A l a - P h e ) , 2-19; c ( L e u - P r o ) , 39-115 and c ( P h e - P r o ) , 0-26. Toward the end o f the s t u d y an e l e v e n t h DKP was q u a l i t a t i v e l y i d e n t i f i e d i n c o c o a and showed to be c ( V a l - P h e ) . Our r e s u l t s c o n f i r m e d the DKPs found by p r e v i o u s a u t h o r s (4, 17) e x c e p t f o r c ( A s p - P r o ) and c ( A s p - P h e ) which were a p p a r e n t l y not amenable t o d i r e c t GC analysis. Two new DKPs , c ( G l y - L e u ) and c ( A l a - L e u ) were o b s e r v e d f o r the f i r s t time i n c o c o a . Cocoas c o n t a i n e d s i m i l a r k i n d s o f DKPs, however q u a n t i t a t i v e d i f f e r e n c e s s u g g e s t e d t h a t DKP p r o f i l e s o b t a i n e d by HRGC might s e r v e as a s e n s i t i v e f i n g e r p r i n t t e c h n i q u e . A l s o , dutched cocoas t y p i c a l l y had lower l e v e l s o f DKPs compared to o r d i n a r y processed cocoas. HRGC p r o v i d e d a second a n a l y t i c a l d i m e n s i o n by r e s o l v i n g c i s / t r a n s DKP i s o m e r s i n compounds c o n t a i n i n g two r i n g substituents. F o r s i x o f the DKPs found i n c o c o a p a i r s o f compounds c o r r e s p o n d i n g t o g e o m e t r i c i s o m e r s were o b s e r v e d and they were c o n f i r m e d t o be i s o m e r s by t h e i r i d e n t i c a l mass s p e c t r a . I t was i n t e r e s t i n g t h a t c ( A l a - V a l ) , c ( A l a - L e u ) , c ( A l a - P r o ) and c ( P h e - P r o ) o c c u r r e d as s i n g l e geometic i s o m e r s i n some c o c o a s , a r e s u l t that i s i n d i c a t i v e of s t e r e o r e t e n t i v e p r o t e i n degradation during roasting. I n d u t c h p r o c e s s c o c o a the l a t t e r DKPs appeared as m i x t u r e s o f i s o m e r s a p p a r e n t l y due t o p a r t i a l r a c e m i z a t i o n caused by more a l k a l i n e p r o c e s s c o n d i t i o n s . Heat Induced DKP F o r m a t i o n i n Cocoa Bean E x t r a c t s . E x t r a c t s of d r i e d , u n r o a s t e d cocoa beans were p r e p a r e d by the method o f Rohan and Stewart ( 1 6 ) , r o a s t e d a t 120°C f o r 30 minutes and a n a l y z e d by HRGC to p r o v i d e the d a t a i n T a b l e I . DKPs were found f o r the f i r s t time i n u n r o a s t e d beans, p o s s i b l y as a r e s u l t o f h e a t o r enzyme a c t i o n d u r i n g f e r m e n t a t i o n o r d r y i n g . I n g e n e r a l , DKP l e v e l s i n c r e a s e d a f t e r r o a s t i n g and more DKPs were produced i n e x t r a c t s o f the more h i g h l y fermented Ghana and B a h i a v a r i e t i e s . I t was c u r i o u s t h a t c ( A l a - P h e ) and c ( P h e - P r o ) d i s a p p e a r e d d u r i n g Ghana e x t r a c t r o a s t i n g but e v i d e n t l y s u r v i v e d a s i m i l a r t r e a t m e n t i n the Bahia extract.
In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
176
THERMAL GENERATION OF AROMAS T a b l e I . Heat Induced DKP F o r m a t i o n
Downloaded by KTH ROYAL INST OF TECHNOLOGY on December 3, 2015 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch016
DKP Observed
Arriba U R
Bean Sanchez U R
i n Cocoa Bean E x t r a c t s Variety Ghana R U
U
Bahia R
480 1560 940 c(Ala-Val) 450 0 0 0 470 c(Ala-Leu) 880 560 0 0 270 0 0 0 1160 730 480 42 c(Ala-Pro) 125 450 116 430 120 0 69 c(Gly-Leu) 0 0 0 0 0 1720 1110 1000 c(Leu-Pro) 146 800 63 190 470 280 c(Ala-Phe) 104 T r a c e T r a c e 0 0 0 0 480 0 240 T r a c e T r a c e c(Phe-Pro) 0 0 0 6200 1960 105 3410 Totals 271 2040 306 1640 U = U n r o a s t e d , R = Roasted a t 120°C f o r 30 min.; d a t a i n mg/kg o f unheated e x t r a c t rounded t o t h r e e s i g n i f i c a n t f i g u r e s
DKP F o r m a t i o n i n Model P e p t i d e Systems. The f a c t t h a t DKPs a r e formed a t r e l a t i v e l y low temperatures suggested t h a t c a t a l y z e d p e p t i d e d e c o m p o s i t i o n o c c u r s i n the weakly a c i d i c m i l i e u produced by cacao f e r m e n t a t i o n . R e a c t i o n s o f s i m p l e p e p t i d e s were f o l l o w e d a t 0.02 M ( i n i t i a l c o n c e n t r a t i o n ) i n r e f l u x i n g a c e t i c a c i d (120°C) t o s i m u l a t e t h e i n t e r i o r o f a bean d u r i n g r o a s t i n g ( T a b l e II)· Under these c o n d i t i o n s V a l - A l a was almost q u a n t i t a t i v e l y c o n v e r t e d i n t o c ( V a l - A l a ) a c c o r d i n g t o t h e p o s t u l a t e d r e a c t i o n mechanism ( 4 ) , F i g u r e 2 whereas an e q u i m o l a r m i x t u r e o f v a l i n e and a l a n i n e f a i l e d t o r e a c t . The i n t r a m o l e c u l a r n a t u r e o f DKP f o r m a t i o n was f u r t h e r e s t a b l i s h e d by r e a c t i o n s o f t r i p e p t i d e s . Each t r i p e p t i d e s t u d i e d produced a s i n g l e DKP t h a t had t o r e s u l t from a t t a c k o f t h e N - t e r m i n a l amino group a c c o r d i n g t o F i g u r e 2. DKP f o r m a t i o n by
Table I I .
DKP F o r m a t i o n
i n Model Systems
Initial Reactant(s) Conc.(M) Time, h r s Phe-Val 1.9 2.0 Phe, V a l 1.9 2.0 Val-Ala 0.020 0.50 Val, Ala 0.020 0.50 Gly-Leu-Ala 0.020 0.50 Ala-Leu-Gly 0.020 0.50 Leu-Gly-Phe 0.020 0.50 Pro-Gly-Gly 0.50 0.020 S o l v e n t = A c e t i c A c i d , Temperature * normal
Product c(Phe-Val) c(Phe-Val) c(Val-Ala) No R e a c t i o n c(Gly-Leu) c(Ala-Leu) c(Leu-Gly) c(Pro-Gly) reflux
X Yield 74 0.076 94 0 7.1 20 23 15
In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by KTH ROYAL INST OF TECHNOLOGY on December 3, 2015 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch016
16. RIZZI
Heat-Induced Flavor FormationfromPeptides
F i g u r e 2.
DKP F o r m a t i o n Mechanism
In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
177
178
THERMAL GENERATION OF AROMAS
Downloaded by KTH ROYAL INST OF TECHNOLOGY on December 3, 2015 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch016
i n t e r m o l e c u l a r r e a c t i o n o f amino a c i d s was d e t e c t e d f o r a m i x t u r e o f p h e n y l a l a n i n e and v a l i n e , but o n l y under e x a g g e r a t e d r e a c t i o n c o n d i t i o n s o f 2 h r s . r e f l u x and i n i t i a l c o n c e n t r a t i o n s o f 1.9 M. S t e r e o c h e m i s t r y o f DKP F o r m a t i o n . C y c l i z a t i o n o f peptides that c o n t a i n c h i r a l c a r b o n atoms c a n y i e l d c i s / t r a n s DKP i s o m e r s which a r e s e p a r a b l e by HRGC. E n a n t i o m e r i c a l l y pure p e p t i d e s w i l l t h e o r e t i c a l l y form s i n g l e g e o m e t r i c i s o m e r s , i . e . D ( L ) - D ( L ) d i p e p t i d e s ==> c i s DKPs and D ( L ) - L ( D ) d i p e p t i d e s « > t r a n s DKPs. A c c o r d i n g t o o u r o b s e r v a t i o n s some c o c o a DKPs were p r e s e n t a s n e a r l y pure, s i n g l e geometric isomers. Our r e s u l t s s u g g e s t e d a s t e r e o r e t e n t i v e c y c l i z a t i o n o f p e p t i d e s c o n t a i n i n g o p t i c a l l y pure ( p r e s u m a b l y L ) amino a c i d s d u r i n g bean r o a s t i n g . An attempt t o d u p l i c a t e s t e r e o r e t e n t i v e DKP f o r m a t i o n i n a model system was o n l y p a r t i a l l y s u c c e s s f u l . C y c l i z a t i o n s t u d i e s on L - P h e - L - A l a i n a c e t i c a c i d s t r o n g l y s u g g e s t e d t h a t t h e L - A l a m o i e t y had undergone p a r t i a l racemization. The t o t a l DKP p r o d u c t ( 6 1 % y i e l d ) was a 91/9 i s o m e r i c mixture c o n t a i n i n g mostly c i s c(L-Phe-L-Ala) as evidenced by i t s o p t i c a l r o t a t i o n and m e l t i n g p o i n t ( 1 9 ) . The h i g h o p t i c a l p u r i t y o f the e n r i c h e d c i s product precluded the presence o f a s i g n i f i c a n t amount o f c(D-Phe-D-Ala) w h i c h would have r e s u l t e d by p a r t i a l r a c e m i z a t i o n o f b o t h L-Phe and L - A l a . The t r a n s isomer o b s e r v e d by HRGC was t h e r e f o r e c ( L - P h e - D - A l a ) ( 1 9 ) r e s u l t i n g from p a r t i a l racemization of alanine prior to or during c y c l i z a t i o n . In a s e p a r a t e e x p e r i m e n t c ( L - P h e - L - A l a ) d i d n o t i s o m e r i z e under c y c l i z a t i o n c o n d i t i o n s . The h i g h d e g r e e o f i s o m e r i c p u r i t y f o r some c o c o a DKPs i s n o t y e t e x p l a i n e d b u t i t may be a r e s u l t o f p r e c u r s o r s t h a t c o n t a i n s e v e r a l c o n t i g u o u s o p t i c a l l y pure amino acids. Formation o f V o l a t i l e s i n Peptide/Fructose Reactions. Typical M a i l l a r d r e a c t i o n v o l a t i l e s were o b s e r v e d when v a r i o u s f o o d p r o t e i n s were r o a s t e d a t 250°C (20) o r a u t o c l a v e d i n water a t 121-140°C (21, 2 2 ) . S i n c e p r o t e i n i s known t o b r e a k down i n t o amino a c i d s and p e p t i d e s under s i m i l a r c o n d i t i o n s ( 2 3 ) , i t seemed r e a s o n a b l e t h a t p e p t i d e s c o u l d be r e a c t i v e i n t e r m e d i a t e s i n t h e M a i l l a r d process. I n view o f t h e l a t t e r p o s s i b i l i t y e x p e r i m e n t s were d e s i g n e d t o t e s t t h e e x t e n t o f S t r e c k e r d e g r a d a t i o n f o r s p e c i f i c amino a c i d s c o n t a i n e d w i t h i n s m a l l p e p t i d e s . Mixtures c o n t a i n i n g f r u c t o s e and e q u i m o l a r amounts o f p e p t i d e s o r m i x t u r e s o f c o r r e s p o n d i n g f r e e amino a c i d s were r o a s t e d a t 120°C f o r 30 m i n u t e s and headspace v o l a t i l e s were a n a l y z e d by HRGC ( T a b l e I I I ) . I n g e n e r a l , d i - and t r i p e p t i d e s r e a c t e d d i f f e r e n t l y than m i x t u r e s o f amino a c i d s a s e v i d e n c e d by t o t a l FID a r e a s and v o l a t i l e profiles. D i p e p t i d e s c o n t a i n i n g v a l i n e o r l e u c i n e produced s i g n i f i c a n t amounts o f S t r e c k e r a l d e h y d e s , 2 - m e t h y l p r o p a n a l and 3 - m e t h y l b u t a n a l i n s p i t e o f b l o c k e d amino o r c a r b o x y l g r o u p s . A l s o , 3 - m e t h y l b u t a n a l was a major p r o d u c t i n r e a c t i o n s o f t r i p e p t i d e s c o n t a i n i n g l e u c i n e as t h e c e n t r a l amino a c i d . P y r a z i n e s were minor r e a c t i o n p r o d u c t s t h a t were more e a s i l y
In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
16. RIZZI
Heat-Induced Flavor Formation from Peptides
179
Downloaded by KTH ROYAL INST OF TECHNOLOGY on December 3, 2015 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch016
T a b l e I I I . Headspace A n a l y t i c a l Data f o r R e a c t i o n s o f F r u c t o s e P l u s P e p t i d e s o r Amino A c i d s
T o t a l FID Peptide or Amino A c i d s Area/1000 41.0 Val,Gly 14.9 Val-Gly 83.0 Gly-Val Leu,Gly 890 343 Leu-Gly 134 Gly-Leu Ala,Leu,Gly 710 Ala-Leu-Gly 600 12.0 Gly-Leu-Ala 2-MP = 2 - m e t h y l p r o p a n a l , 3-MB ionization detector
X o f FID A r e a Major P y r a z i n e s S t r e c k e r RCH0 2,5 + 2,6-DiMe 3-MB 2-MP 0.1 1.2 81 Trace 2.4 16 Trace Trace 10 0.001 Trace 93 Trace 97 Trace Trace 90 Trace 0.005 88 Trace 0.01 1.2 4.3 0.2 69 Trace = 3-me t h y l b u t a n a l , FID = flame
measured by a n i t r o g e n s e l e c t i v e d e t e c t o r ( T a b l e I V ) . P e p t i d e r e a c t i o n s l e d t o d i f f e r e n t p y r a z i n e d i s t r i b u t i o n s f o r each s u b s t r a t e suggesting that p a r t i c u l a r peptides could, at l e a s t i n t h e o r y s e r v e a s u n i q u e p r e c u r s o r s o f c o m p o s i t e f o o d aromas. C h e m i c a l l y , i t v a s i n t e r e s t i n g t h a t the p e p t i d e s G l y - V a l , G l y - L e u and A l a - L e u - G l y produced r e l a t i v e l y more p y r a z i n e s than r e s p e c t i v e amino a c i d m i x t u r e s . Based on t h e e x t e n s i v e S t r e c k e r a c t i v i t y i t v o u l d appear t h a t f r u c t o s e r e a c t i o n s f a c i l i t a t e p e p t i d e h y d r o l y s i s , a n o r m a l l y s l o v p r o c e s s a t 120°C. Paper c h r o m a t o g r a p h i c a n a l y s i s o f p e p t i d e / f r u c t o s e r e a c t i o n m i x t u r e s shoved o n l y t r a c e s o f u n r e a c t e d s t a r t i n g m a t e r i a l and no e v i d e n c e f o r f r e e amino a c i d s . A l s o , c o n t r o l r e a c t i o n s i n v h i c h s o r b i t o l vas s u b s t i t u t e d f o r f r u c t o s e l e d t o no e v i d e n c e f o r S t r e c k e r d e g r a d a t i o n .
T a b l e IV. Headspace A n a l y t i c a l D a t a f o r R e a c t i o n s o f F r u c t o s e P l u s P e p t i d e s o r Amino A c i d s Peptide or T o t a l NPD Amino A c i d s Area/1000 4.8 Val,Gly 2.4 Val-Gly 4.2 Gly-Val 5.7 Leu,Gly 2.0 Leu-Gly 4.0 Gly-Leu 8.5 Ala,Leu,Gly 10.5 Ala-Leu-Gly 2.8 Gly-Leu-Ala NPD = N i t r o g e n - p h o s p h o r u s
A l k y l p y r a z i nés (X o f NPD) TetraMe TriMe Me DiMe(3) E t h y l 0.8 1.1 12 0.3 5.1 0.4 0 0 2.7 0 10 3.1 1.3 25 3.8 2.5 0.2 7.6 4.1 11 0.5 1.3 0 5 0 0.9 9.4 27 1.3 3.7 0 9.6 0 15 4.6 0 13 57 0 3.5 0 14 27 0 0 detector
In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Total 19 3 47 31 9 46 38 84 44
180
THERMAL GENERATION OF AROMAS
Acknowledgment t s I thank L. V. Haynes and A. R. S t e i m l e f o r HRGC method development and a n a l y s e s , P. R. K e l l e r and G. J . Harvey f o r o b t a i n i n g t h e mass s p e c t r a and P. R. Bunke f o r t e c h n i c a l a s s i s t a n c e .
Literature Cited
Downloaded by KTH ROYAL INST OF TECHNOLOGY on December 3, 2015 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch016
1.
Adda, J. In Developments In Food Flavors; Birch, G. G.; Lindley, M. G., Eds.; Elsevier : New York, 1986; p 162. 2. Mabrouk, A. F. In Phenolic, Sulfur and Nitrogen Compounds In Food Flavors; Charalambous, G.; Katz, I., Eds.; ACS Symposium Series 26; American Chemical Society: Washington, D. C. , 1976; p 157. 3. Manley, C. H. ; McCann, J. S.; Svaine, R. L. Jr. In The Quality Of Foods And Beverages, Vol. 1; Charalambous, G.; Inglett, G., Eds.; Academic Press: New York, Ν. Y., 1981; p 61. 4. Pickenhagen, V.; Dietrich, P.; Keil, B.; Polonsky, J.; Nouaille, F.; Lederer, E. Helv. Chim. Acta 1975, 58, 1078-1086. 5. Mohr, W.; Landschreiber, E.; Severin, Th. Fette Seifen Anstrichm. 1976, 78, 88-95. 6. Sakamura, S.; Furukawa, K.; Kasai, T. Agric. Biol. Chem. 1978, 42, 607-612. 7. Dansi, Α.; Dal Pozzo, Α.; Nariotti, V.; Bonferoni, B.; Piccioni, M. Die Starke 1970, 22, 305-309. 8. Takahashi, K.; Tadenuma, N.; Kitamoto, K.; Sato, S. Agric. Biol. Chem. 1974, 38, 927-932. 9. Merritt, C., Jr.; Robertson, D. H. J. Gas Chromatogr. 1967, 5, 96-98. 10. Hayase, F.; Kato, H.; Fujimaki, M. Agric. Biol. Chem. 1975, 39, 741-742. 11. Gregory, J. F.; Kirk, J. R. J. Food Sci. 1977, 42, 1554-1557. 12. Nguyen, V. C.; Kurata, T.; Fujimaki, M. Agric. Biol. Chem. 1973, 37, 327-334. 13. Piloty, M.; Baltes, W. Z. Lebensm.-Unters. Forsch. 1979, 168, 368-373. 14. Johnstone, R. Α. V.; Povall, T. J.; Baty, J. D. J. Chem. Soc.Chem. Commun. 1973, 392. 15. Basha, S. M.; Young, C. T. J. Agric. Food Chem. 1985, 33, 350-354. 16. Rohan, Τ. Α.; Stewart, T. J. Food Sci. 1967, 32, 625-629. 17. Van Der Greef, J.; Tas, A. C.; Nijssen, L. M.; Jetten, J. J. Chromatogr. 1987, 394, 77-88. 18. Haynes, L. V.; Steimle, A. R. HRC & CC 1987, 10, 441-445. 19. Nitecki, D. E.; Halpern, B.; Vestley, J. V. J. Org. Chem. 1968, 33, 864-866. 20. Kato, H.; Hayase, F.; Fujimaki, M. Agric. Biol. Chem. 1972, 36, 951-959.
In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
16. RIZZI
Heat-InducedflavorFormation from Peptides
181
21. Qvist, I. H.; Von Sydov, E. C. F. J. Agric. Food Chem. 1974, 22, 1077-1084. 22. Nakanishi, T.; Itoh, T. Agric. Biol. Chem. 1967, 31, 1066-1069. 23. Fujimaki, M.; Kato,H.;Hayase, F. Agric. Biol. Chem. 1972, 36, 416-425.
Downloaded by KTH ROYAL INST OF TECHNOLOGY on December 3, 2015 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch016
Received January 6, 1989
In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.