High-Energy Processes in Organometallic Chemistry - ACS Publications

Gas phase transition metal cluster chemistry lies along critical connecting paths ... Previous studies in laser welding and drilling clearly described...
3 downloads 0 Views 2MB Size
Chapter 3

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

Gas-Phase Transition Metal Cluster Chemistry 1

D. J. Trevor and A. Kaldor Corporate Research Laboratory, Exxon Research and Engineering, Annandale, NJ 08801

This chapter reviews reactions of Fe, Nb, V, Co, Ni , and Pt clusters with H , Co and Nb clusters with N , a variety of transition metals clusters with CO, Fe and Pt with O and Pt with a variety of C hydrocarbons carried out with laser vaporization sources and fast flow chemical reactors. A trend i s observed in which only the dissociative reactions appear to depend strongly upon cluster size. This suggests an explanation for certain size dependent behavior. The charge transfer model for bond activation i s further developed. The issue of metal cluster structure and its influence on reactivity i s discussed as well as the possibility of elucidating this structure through chemical reactivity studies. 2

2

2

6

Gas phase t r a n s i t i o n metal c l u s t e r c h e m i s t r y l i e s along c r i t i c a l c o n n e c t i n g paths between d i f f e r e n t f i e l d s o f c h e m i s t r y and p h y s i c s . For example, from t h e p h y s i c i s t ' s p o i n t of v i e w , s t u d i e s o f c l u s t e r s as t h e y grow i n t o metals w i l l present new t e s t s o f t h e t h e o r y o f metals. Questions l i k e : How i t i n e r a n t a r e t h e bonding e l e c t r o n s i n t h e s e systems? and Is t h e r e a metal t o non-metal phase t r a n s i t i o n as a f u n c t i o n o f s i z e ? a r e f r e q u e n t l y a d d r e s s e d . On t h e o t h e r hand from a chemist p o i n t o f view very s i m i l a r q u e s t i o n s a r e asked but u s i n g d i f f e r e n t t e r m i n o l o g y : How l o c a l i z e d i s t h e s u r f a c e chemical bond? and What i s t h e d i f f e r e n c e between s u r f a c e c h e m i s t r y and small c l u s t e r c h e m i s t r y ? C l u s t e r s c i e n c e i s f i l l i n g t h e v o i d between t h e s e d i f f e r e n t p e r s p e c t i v e s w i t h a new s e t o f m a t e r i a l s and measurements of p h y s i c a l and chemical p r o p e r t i e s . 1

Current address: AT&T Bell Laboratories, Murray Hill, NJ 07974

0097-6156/87/0333-0043$07.75/0 © 1987 American Chemical Society

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

H I G H - E N E R G Y P R O C E S S E S IN O R G A N O M E T A L L I C

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

44

CHEMISTRY

C l u s t e r c h e m i s t r y has l o n g been an a c t i v e area of i n o r g a n i c chemistry. T h i s f i e l d has developed a l a r g e data base and a good u n d e r s t a n d i n g of the c h e m i s t r y of the s t a b l e or p a r t i a l l y u n s a t u r a t e d complexes. The newer area of gas phase t r a n s i t i o n metal c l u s t e r c h e m i s t r y s t a r t s w i t h t h e f u l l y coordi n a t i v e l y u n s a t u r a t e d metal cluster. T h i s s p e c i e s i s h i g h l y r e a c t i v e y e t , demonstrates some interesting selectivity. The o r i g i n of t h i s s e l e c t i v i t y i s k i n e t i c and s e t s t h e p e r s p e c t i v e of t h i s r e v i e w . Three l a b o r a t o r i e s have been t h e primary c o n t r i b u t o r s i n t h e area of gas phase t r a n s i t i o n metal c l u s t e r c h e m i s t r y and t h e i r work forms t h e c e n t e r p i e c e of t h i s m i n i - r e v i e w . These are t h e Rice(_l) group, t h e Argonne(_2) group, and t h e Exxon(_3) g r o u p . Other g r o u p s , however are r a p d i l y e n t e r i n g t h i s a c t i v e f i e l d . The m a j o r i t y of the references are s i m i l a r l y grouped t o g e t h e r . P h o t o - and t h e r m a l c h e m i s t r y of s t a b l e gas phase c l u s t e r complexes are not covered i n t h i s paper. Attempts are made t o make c o n n e c t i o n s and use of t h i s data whenever p o s s i b l e . In a d d i t i o n , c l u s t e r i o n c h e m i s t r y i s not covered. These reactions have j u s t recently been extended to c l u s t e r s of a v a r i e t y of s i z e s and a l r e a d y shows some s u r p r i s i n g s i m i l a r i t y t o n e u t r a l chemi s t ry( 4 - 7 ) . T h i s o v e r v i e w i s o r g a n i z e d i n t o s e v e r a l major s e c t i o n s . The f i r s t i s a d e s c r i p t i o n of t h e c l u s t e r s o u r c e , r e a c t o r , and the general mechanisms used t o d e s c r i b e t h e r e a c t i o n k i n e t i c s t h a t w i l l be s t u d i e d . The next two s e c t i o n s d e s c r i b e the r e l a t i v e l y s i m p l e r e a c t i o n s of hydrogen, n i t r o g e n , methane, carbon monoxide, and oxygen reactions with a v a r i e t y of metal c l u s t e r s , f o l l o w e d by t h e more c o m p l i c a t e d dehydrogenation r e a c t i o n s of hydrocarbons w i t h p l a t i n u m clusters. The l a s t s e c t i o n develops a model t o r a t i o n a l i z e the observed chemical b e h a v i o r and d e s c r i b e s s e v e r a l p r e d i c t i o n s t h a t can be made from t h e m o d e l . Cluster

Source

P r e v i o u s l y , i n t e n s e beams of metal c l u s t e r s c o u l d o n l y be produced f o r t h e most v o l a t i l e m e t a l s . The l i m i t a t i o n arose from s i g n i f i c a n t m a t e r i a l s problems i n v o l v e d i n t h e c o n s t r u c t i o n of high temperature ovens. The development of a source t h a t u t i l i z e s l a s e r v a p o r i z a t i o n and subsequent c o n d e n s a t i o n i n a r a p i d l y f l o w i n g gas e l i m i n a t e d t h e m a t e r i a l s problem and has enabled j u s t about any m a t e r i a l t o be studied(la,8). Method. The laser vaporization source eliminates the material constraints inherent in conventional oven sources. This is accomplished by l o c a l i z i n g t h e h e a t i n g t o a very small area at t h e s u r f a c e of t h e sample and by e n t r a i n i n g t h e vapor produced i n a r a p i d flow of high p r e s s u r e g a s . F i g u r e 1 i s a schematic of t h e l a s e r v a p o r i z a t i o n s o u r c e . This diagram d e p i c t s a p u l s e d v a l v e on t h e l e f t which s u p p l i e s high p r e s s u r e h e l i u m flow d i r e c t l y towards t h e r i g h t . Several workers have a l s o chosen t o use c o n t i n u o u s h e l i u m f l o w s ( 2 , 6 , 9 ) . In general these sources are m o d i f i c a t i o n s of c o n v e n t i o n a l s u p e r s o n i c beam sources. A v a r i e t y of l a s e r s have been s u c c e s s f u l l y employed i s t h i s t y p e of s o u r c e . The o n l y i m p o r t a n t c r i t e r i o n i s t h a t t h e l a s e r must have s u f f i c i e n t i n t e n s i t y t o heat t h e s u r f a c e f o r v a p o r i z a t i o n . A goal at

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

3.

TREVOR A N D K A L D O R

Gas-Phase Transition Metal Cluster Complexes

45

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

one t i m e i n t h i s area was t o maximize t h e amount o f m a t e r i a l removed by t h e l a s e r . P r e v i o u s s t u d i e s i n l a s e r w e l d i n g and d r i l l i n g c l e a r l y d e s c r i b e d how t h i s can be a c h i e v e d . Use of l o n g e r p u l s e s avoids t h e c r e a t i o n of a plasma t h a t i s opaque t o t h e l a s e r , t h u s s h i e l d i n g t h e target surface. C u r r e n t l y , however, t h e l i m i t a t i o n appears t o be t h e amount o f m a t e r i a l t h a t can be c o n v e r t e d i n t o c l u s t e r s and not t h e amount v a p o r i z e d . Doubled Q-switched YAG(1,3) e x c i m e r ( 2 , 9 ) , and more r e c e n t l y copper vapor l a s e r s ( j 6 ) are t h e most p o p u l a r . Sample. T h i s source p l a c e s no r e s t r i c t i o n s on t a r g e t material. C l u s t e r s of m e t a l s , produced. For example, p o l y e t h y l e n e and alumina have been s t u d i e d as w e l l as r e f r a c t o r y metals l i k e t u n g s t e n and niobium. M o l e c u l a r s o l i d s , l i q u i d s , and s o l u t i o n s c o u l d a l s o be used. However t h e c o m p l e x i t y of t h e v a p o r i z a t i o n process and plasma c h e m i s t r y makes f o r even more complex m i x t u r e s i n t h e gas p h a s e . To date t h e t r a n s i t i o n m e t a l s ( 1 - 3 ) and e a r l y members of group 13 ( I I I A ) and 14 ( I V A ) ( 1 1 - 1 6 ) have been t h e most a c t i v e l y s t u d i e d . Clusteri ng. A f t e r a small p i e c e of t h e metal sample i s v a p o r i z e d by t h e l a s e r , t h e next step i s t o c o n t r o l i t s c o n d e n s a t i o n i n t o c l u s t e r s without significant loss to the w a l l s . This i s a c h i e v e d by v a p o r i z i n g t l i e metal i n t o a h i g h p r e s s u r e (10-3000 t o r r ) gas t h a t i s f l o w i n g ( 1 0 - 1 0 ^ cm/sec) down t h e extender tube shown i n F i g . 1. The m a j o r i t y o f t h e s m a l l (3 t o - 6 atoms) and a l l of t h e l a r g e c l u s t e r s a r e produced by c o n d e n s a t i o n i n t h i s t u b e . The h i g h p r e s s u r e not o n l y a l l o w s f o r r a p i d c o o l i n g but a l s o l i m i t s t h e d i f f u s i o n o f t h e metal atoms keeping t h e high d e n s i t y necessary f o r rapid c l u s t e r formation. Helium i s t h e best gas t o use because of i t s high thermal c o n d u c t i v i t y , chemical i n e r t n e s s and i t s s u p e r i o r p r o p e r t i e s f o r p r o d u c i n g s u p e r s o n i c beams. C l u s t e r growth appears t o be dominated by atom o r small c l u s t e r a d d i t i o n onto a few seed " c l u s t e r s " as f o l l o w s : M

n-1

+

M

< ~ " >

k" He ~ ^ ~ >




t

=

k

dnm

=

a) e x p ( - E ( n , m ) / k T ) d

B

American Chemical Society, Library 1155 in16th St., N.W„Chemistry; Suslick, K.; In High-Energy Processes Organometallic ACS Symposium Series; American Chemical Washington, D.C. Society: 20036 Washington, DC, 1987.

48

H I G H - E N E R G Y P R O C E S S E S IN O R G A N O M E T A L L I C

CHEMISTRY

a minimum bond s t r e n g t h of 16 kcal/mole i s set f o r detectable products. Any r e a c t i o n p r o d u c t s bond l e s s s t r o n g l y t h a n 16 kcal/mole will l i k e l y desorb before e x i t i n g t h e r e a c t o r and are t h u s not detected.

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

D e t e c t i on Photoioni z a t i o n t i m e - o f - f l i ght mass spectrometry is almost e x c l u s i v e l y t h e method used i n chemical r e a c t i o n s t u d i e s . The mass s p e c t r o m e t e r s , d e t e c t o r s and e l e c t r o n i c s are almost i d e n t i c a l . A major distinction is the choice of ionizing frequency and intensity. For many s t a b l e molecules m u l t i p h o t o n i o n i z a t i o n a l l o w e d for almost unit detection efficiency with controllable fragmentati on ( 2 0 ) . For c l u s t e r systems t h i s has been more d i f f i c u l t because h i g h HTser i n t e n s i t i e s g e n e r a l l y cause e x t e n s i v e d i s s o c i a t i o n of n e u t r a l s and i o n s ( 2 1 ) . T h i s has f o r c e d t h e use of s i n g l e photon ionization. T h i s works very w e l l f o r low i o n i z a t i o n p o t e n t i a l metals ( 25 atoms) c l u s t e r s are showing s i z e s e l e c t i v i t y . The Exxon group has also reported reactivities of vanadi um(3e). These are shown i n F i g . 3 . Again t h e p a t t e r n i s s i z e selective but not i d e n t i c a l t o niobium c l u s t e r s . Vanadi urn has s p e c i f i c i n e r t c l u s t e r s l i k e V , which i s s i m i l a r t o n i o b i u m ' s 8 and 10 but t h e p a t t e r n i s b e t t e r d e s c r i b e d by an even/odd a l t e r n a t i o n . This suggests p o s s i b l e a n a l o g i e s w i t h t h e one e l e c t r o n metals l i k e 6

p

+

+

6

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

52

H I G H - E N E R G Y P R O C E S S E S IN O R G A N O M E T A L L I C

CHEMISTRY

t h e a l k a l i s or c o p p e r . The r e a c t i v i t y of ^ l e v e l s o f f around n = 15, which i s e a r l i e r i n s i z e than f o r F e . The l a r g e r r a t e c o n s t a n t s f o r vanadium and niobium suggest s m a l l e r a c t i v a t i o n e n e r g i e s than found f o r i r o n . Both vanadi urn and niobium metals form di h y d r i d e s o n l y at high p r e s s u r e s ( 2 7 ) , and numerous phases w i t h hydrogen c o m p o s i t i o n s less than o n e ( 2 8 ) . Experiments were performed to saturate vanadium c l u s t e r s with deuterium. F i g u r e 4 i s a p l o t of t h e number of deuterium molecules found i n t h e p r o d u c t s . The s o l i d s t r a i g h t l i n e s are f o r D:V r a t i o s of 1 and 2 . The c o r r e s p o n d i n g curved dashed l i n e s i n c l u d e c o r r e c t i o n s f o r some bulk a t o m s ( 2 c ) . The best f i t t o t h e data i n c l u d i n g o n l y s u r f a c e atoms i n d i c a t e a s t o i chi ometry of 1.5. It i s l i k e l y t h a t t h i s high s u r f a c e s t o i chi ometry i s an i n d i c a t i o n of bulk i n c o r p o r a t i o n of d e u t e r i u m . Cobalt shows a d r a m a t i c s i z e d e p e n d e n c e ( l b , c ) t h a t resembles t h e b e h a v i o r of i r o n more so than t h a t of vanadium or n i o b i u m . The s m a l l e s t c l u s t e r t o react i s t h e t r i m e r and t h e 5-9 atom c l u s t e r s are s i g n i f i c a n t l y more i n e r t than any of t h e l a r g e r c l u s t e r s . Cobalt a l s o has a s i g n i f i c a n t d i p i n r e a c t i v i t y between 19 and 2 2 . A t h e o r e t i c a l c a l c u l a t i o n r a t i o n a l i z e d t h e onset i n r e a c t i v i t y at t h e trimer to be associated with energetic stability of the products(29). Ni c k e T r e a c t i v i t i es are r e l a t i v e l y f l a t w i t h c l u s t e r s i z e ( l c ) . For c l u s t e r s s m a l l e r than the decamer a weak even odd p a t t e r n e x i s t s down t o t h e t r i m e r , t h e s m a l l e s t c l u s t e r r e p o r t e d t o r e a c t . This p a t t e r n might be s u g g e s t i v e of a o n e - e l e c t r o n bonding scheme as used i n very e a r l y c a l c u l a t i o n s on Ni clusters(30). The Exxon group has attempted s t u d i e s "o? deuterium chemi s o r p t i on on p l a t i n u m c l u s t e r s ( 3 k ) . The high mass, l a r g e number of n a t u r a l l y o c c u r r i ng i sotopes and hi gh i oni z a t i on p o t e n t i a l s make r e a c t i vi t y experiments i m p o s s i b l e f o r p l a t i n u m . However an e s t i m a t e of t h e extent of the r e a c t i o n near s a t u r a t i o n can be made by l o o k i n g at peak broadening w i t h l e a s t - s q u a r e s - f i t t i ng p r o c e d u r e s . The average number of deuterium atoms chemi sorbed per p l a t i n u m atom i s found t o be l e s s than one f o r t h e c l u s t e r s i n t h i s s t u d y . No r e a c t i o n i s observed on t h e atom through t h e t e t r a m e r . Hydrogen chemi s o r p t i on on p l a t i n u m s u r f a c e s i s g e n e r a l l y weak and even on a stepped surface(31) H2 i s desorbed by 450 K. The expected s t o i chi ometry f o r p l a t i n u m i s one hydrogen per s u r f a c e a t o m ( 3 2 ) . T h i s i s a commonly used number i n s a t u r a t i o n chemi s o r p t i on measurements of the d i s p e r s i o n of supported metal c a t a l y s t s . It i s l i k e l y t h a t t h e temperature of the c l u s t e r s i n t h i s study i s s u f f i c i e n t t o cause s i g n i f i c a n t d e s o r p t i o n thus e x p l a i n i n g t h e i r low hydrogen a f f i n i t y . Copper c l u s t e r s , as r e p o r t e d by the Rice g r o u p ( l c ) , do not react with hydrogen. Hydrogen chemi s o r p t i on on copper s u r f a c e s i s a l s o an activated process. Surface beam s c a t t e r i n g experiments p l a c e t h i s b a r r i e r between 4-7 k c a l / m o l e ( 3 3 ) . This l a r g e value i s c o n s i s t e n t with the activated nature cT~ hydrogen chemi s o r p t i on on metal c l u s t e r s , and t h e t r e n d toward bulk b e h a v i o r f o r r e l a t i v e l y small c l u s t e r s (>25 atoms i n s i z e ) .

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

p

n

Nitrogen. The Rice group r e p o r t e d t h a t t h e r e a c t i o n s of di n i t r o g e n wi t h ni obi urn and c o b a l t c l u s t e r s (_lc_) e x h i b i t r e a c t i v i t y p a t t e r n s very s i m i l a r t o di h y d r o g e n . Iron has not yet been observed t o r e a c t i n the gas phase w i t h di n i t r o g e n . The Rice group d i d r e p o r t some

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

3.

Gas-Phase Transition Metal Cluster Complexes

TREVOR AND KALDOR I

I

I

|

I

I

- 0-OV I O—GNb

I

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

n

n

I

|

I

I

I

I

|

> !

I

I

[

I

I

I

I

[

I

53

I I

Exxon Exxon

125L' . • l • • • • I • ... I , ... i .... I • • . 5 10 15 20 25 number

of

atoms

in cluster

F i g u r e 3. L o g a r i t h m o f the r e a c t i v i t i e s o f n i o b i u m and vanadium clusters. The Exxon d a t a ( c i r c l e s ) a r e s c a l e d r e l a t i v e t o the Argonne Fe^o r e a c t i v i t y , and the R i c e d a t a ( c r o s s e s ) a r e n o r m a l i z e d to Nbg.

20 -

V+mD.

15-

10



•0

5

10

-j—1_

_L_

15

_J

I

I

20

I

I—I—L

25

30

number of vanadium atoms in cluster F i g u r e 4. The number o f d e u t e r i u m m o l e c u l e s found i n p r o d u c t s on V c l u s t e r s produced w h i l e a t t e m p t i n g t o s a t u r a t e the r e a c t i o n . The s o l i d l i n e s a r e p l o t s o f D2:V r a t i o s o f 1 and 0.5, i n c l u d i n g all vanadium atoms. The dashed lines a r e c o r r e c t e d , assuming g l o b u l a r shaped c l u s t e r s . The b e s t l e a s t - s q u a r e s f i t t o the d a t a , D2:V = 0.68, i s a l s o p l o t t e d as a dashed l i n e . x

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

54

HIGH-ENERGY PROCESSES IN ORGANOMETALLIC CHEMISTRY

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

d e p l e t i o n ( l c ) but at o n l y very high r e a c t a n t flows and p r o d u c t s were not observed. Even i r o n h y d r i d e c l u s t e r s d i d not r e a c t with di n i t r o g e n i n an attempt t o study low p r e s s u r e ammonia s y n t h e s i s on gas phase i r o n c l u s t e r s ( 3 4 ) . The s i m i l a r i t y o f t h e r e a c t i v i t y p a t t e r n s f o r niobium and c o b a l t and the non-reacti v i t y of iron with nitrogen suggests that dissociative chemi s o r p t i on is taking place. D i s s o c i a t i o n of m o l e c u l a r l y chemi sorbed n i t r o g e n i s an a c t i v a t e d process on a l l m e t a l s ( 3 5 ) and i s most e x o t h e r m i c f o r t h e e a r l y metals i n t h e periodic table(36). The l i m i t e d o b s e r v a t i o n s on c l u s t e r s seems t o be consistent with these t r e n d s . Methane. Both i r o n (3b) and alumi num(3g) c l u s t e r s a r e i n e r t towards methane. M o l e c u l a r a E s o r p t i o n i s l i k e T y t o o weak f o r t h e p r o d u c t s t o be d e t e c t e d , making t h i s t e c h n i q u e o n l y s e n s i t i v e t o d i s s o c i a t i v e absorption. Although t h e C-H bond i s comparable i n s t r e n g t h t o H-H, a c t i v a t i o n o f t h e former s h o u l d be f u r t h e r c o n s t r a i n e d by s t e r i c e f f e c t s (_37) • In a d d i t i o n , f o r t h e r e a c t i o n t o be p o s s i b l e t h e sum o f the bond s t r e n g t h s of M -CH3 and M - H must exceed t h a t o f CH3-H. F o r i r o n M - H i s 67 kcal/moie r e q u i r i n g t h e M - C H bond t o at l e a s t be 33 kcal/mole. C r y o g e n i c m a t r i x s t u d i e s have found e l e c t r o n i c e x c i t a t i o n of metal atoms e s s e n t i a l f o r t h e i r i n s e r t i o n i n t o m e t h a n e ( 3 8 ) . These o b s e r v a t i o n s i m p l y at l e a s t a h i g h l y a c t i v a t e d p r o c e s s , i f not one that i s endothermic. Based on t h e l i m i t e d l i t e r a t u r e v a l u e s o f M-CH3 bond e n e r g i e s Co and Ni a r e t h e o n l y 3d t r a n s i t i o n metal atoms t h a t form sufficiently strong bonds for this reaction to be exothermi c ( 3 9 ) . Recent m o l e c u l a r beam s t u d i e s a l s o f i n d large b a r r i e r s f o r methane a c t i v a t i o n on t u n g s t e n ( 4 0 ) and ni c k e l ( 4 1 ) . p

n

n

3

Carbon monoxide. T h i s chemi s o r p t i on was f i r s t s t u d i e d on niobium and c o b a l t c l u s t e r s by t h e R i c e g r o u p ( l c ) . Although n i t r o g e n and CO a r e i s o e l e c t r o n i c t h e y behave q u i t e d i f f e r e n t l y on t h e s e m e t a l s . The d i s t i n c t s i z e s e l e c t i v e r e a c t i v i t y p a t t e r n s d i s p l a y e d by niobium and c o b a l t f o r hydrogen and n i t r o g e n c h e m i s o r p t i o n were c o m p l e t e l y absent f o r CO where a l l c l u s t e r s s t u d i e d r e a c t e d w i t h comparable r a t e s . CO r e a c t i o n s were r e c e n t l y extended t o a t o t a l o f t w e l v e t r a n s i t i o n metals by t h e Exxon g r o u p ( 3 j ) . No wide v a r i a t i o n o f r e a c t i o n r a t e a c r o s s t h e p e r i o d i c t a b l e was o b s e r v e d . F i g u r e 5 i s a bar graph of these r e s u l t s . The h e i g h t o f each r e c t a n g l e r e p r e s e n t s t h e measured r e a c t i v i t y o f a s p e c i f i c s i z e c l u s t e r w i t h CO. Almost a l l t h e metal c l u s t e r s w i t h more than t h r e e atoms r e a c t i n a f a c i l e f a s h i o n . U n l i k e hydrogen t h e s e r e a c t i o n s do not appear t o be a c t i v a t e d . In a d d i t i o n t h e p r o d u c t s d i s t r i b u t i o n s observed i n d i c a t e comparable r a t e s f o r m u l t i p l e adduct f o r m a t i o n . The mass c o m p l e x i t y , r e l a t i v e l y h i g h i o n i z a t i o n p o t e n t i a l s , and t h e known p r e v a l e n t dissociative i o n i z a t i o n o f t h e f u l l y s a t u r a t e d c a r b o n y l s ( 4 2 ) has p o s s i b l y caused t h e f a i l u r e of some i n i t i a l s a t u r a t i o n e x p e r i m e n t s ( 4 3 ) . The a b i l i t y t o s y n t h e s i z e t h e s t a b l e c a r b o n y l complexes w i l l h e l p t h i s field significantly due t o t h e vast amount o f i n f o r m a t i o n available, especially their structures. The small c l u s t e r t h r e s h o l d b e h a v i o r , suggested by t h e k i n e t i c s scheme p r e s e n t e d e a r l i e r , i s apparent i n t h i s data s e t . Assuming (1) t h e RRK form f o r k _ , (2) t h e a d d i t i o n r e a c t i o n s are not a c t i v a t e d , and (3) t h e number o f p a r t i c i p a t i n g modes a r e independent o f t h e element t y p e , t h e M-CO bond s t r e n g t h s can be grouped by e n e r g y . F o r n

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

3.

TREVOR A N D K A L D O R

55

Gas-Phase Transition Metal Cluster Complexes

M2-CO t h e f i r s t adduct bond e n e r g i e s are g r e a t e r f o r C o , R u , P d , W, I r , and Pt t h a n V, F e , N i , Nb, and Mo. For t h e t r i m e r s , i r o n has a weaker bond t h a n t h e o t h e r metals s t u d i e d . For t h e t e t r a m e r and l a r g e r c l u s t e r s t h e r e a c t i v i t y i s c o n t r o l l e d by t h e v a l u e o f k and no l o n g e r by t h e c o m p e t i t i o n between u n i m o l e c u l a r d e c o m p o s i t i o n and c o l l i s i onal s t a b i l i z a t i o n . The l a r g e c l u s t e r regime i s not covered by t h i s model used t o make t h e c o r r e l a t i o n between k i n e t i c s and energeti c s . T h i s o r d e r i n g of Mg-CO bond s t r e n g t h s i s c o n s i s t e n t w i t h t h e t r e n d o f i n c r e a s i n g M-CO average bond s t r e n g t h s i n metal c a r b o n y l complexes as one goes down a column i n t h e p e r i o d i c t a b l e ( 4 4 ) . The n o n - r e a c t i v i t y o f Ni 2 i s i n c o n s i s t e n t w i t h t h e t r e n d of t h e c a r b o n y l complexes going a c r o s s a row. However, f o r p o l y c r y s t a l l i ne f i l m s t h e heat of a d s o r p t i o n of CO g e n e r a l l y decrease going a c r o s s a r o w ( 4 5 ) . In f a c t , groups 3 (11 IB) and 4 (IVB) have t h e l a r g e s t v a l u e s . These large v a l u e s a r e a s s o c i a t e d w i t h t h e t r e n d of e a r l y t r a n s i t i o n elements t o d i s s o c i a t e CQ(46). By groups 8-10 ( V I I I 8 ) t h e s u r f a c e and o r g a n o m e t a l l i c complexes have comparable v a l u e s . The average MC0 bond d i s s o c i a t i o n energy i n Ni (CO)4 i s 35 kcal/mole(44) which l i e s near t h e t o p of t h e range of heats of a d s o r p t i o n o f CO on n i c k e l surfaces(47). T h e r e f o r e , t h e s e measurements i n d i c a t e t h a t w i t h t h e e x c e p t i o n o f n i c k e l t h e bond e n e r g i e s f o r t h e f i r s t CO bonded t o t h e metal dimers s t u d i e d f o l l o w a s i m i l a r g l o b a l t r e n d as t h e average bond d i s s o c i a t i o n e n e r g i e s of t h e metal c a r b o n y l s . Carbon monoxide e v e n t u a l l y d i s s o c i a t e s at room t e m p e r a t u r e on a l l but some of t h e group 8-10 ( V I I IB) metals ( 4 4 ) . This d i s s o c i a t i o n occurs o n l y f o r metal s u r f a c e s which form s u f f i c i e n t l y s t r o n g m e t a l carbon p l u s metal-oxygen bonds t o break t h e 257 kcal/mole CO bond. The known v a l u e s f o r gas phase metal atoms predict t h e same trend(48). The s i m i l a r i t y i n t h e b e h a v i o r of s u r f a c e s and atoms i m p l i e s f o r t h e most p a r t t h a t t h e c l u s t e r s s h o u l d behave l i k e w i s e . This a l s o i m p l i e s h i g h l y l o c a l i z e d bonding. The n o n - r e a c t i v i t y observed f o r V2, Nbo and Moof which based on t h e s e p r i o r assumptions s h o u l d d i s s o c i a t e u ) , c o u l a mean t h a t t h e dimers a r e t o o s m a l l t o form a s t r o n g bond t o both carbon and oxygen atoms.

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

n

Di oxygen and Carbon D i o x i d e . Remarkable i n a way, a r e t h e very few r e a c t i o n s t u d i e s r e p o r t e d w i t h di o x y g e n ( 3 b ) . For most t r a n s i t i o n metals t h e monooxides produced from surTace o x i d a t i o n o r p u r i t y problems a r e u b i q u i t o u s and d i f f i c u l t to eliminate. In e a r l y experiments t h e Argonne group r e p o r t e d r e a c t i o n s of oxygen w i t h i r o n c l u s t e r s ( 2 a ) by having t h e r e a c t a n t present d u r i n g t h e v a p o r i z a t i o n and c l u s t e r i n g p r o c e s s . T h i s a l l o w e d f o r very h i g h energy plasma processes t o p o s s i b l y d o m i n a t e , and no r e a c t i v i t y measurements were reported. In addition the ionization laser i n t e n s i t y was s u f f i c i e n t l y high t o cause s i g n i f i c a n t f r a g m e n t a t i o n . They found t h e c o m p o s i t i o n of t h e products t o be oxygen p o o r . More r e c e n t l y t h e Exxon group r e p o r t e d i r o n r e a c t i o n s w i t h di oxygen. The d a t a was p r e s e n t e d assuming e q u i l i b r i u m i n t h e flow r e a c t o r . T h i s d a t a even w i t h t h i s q u e s t i o n a b l e assumption showed no d i s t i n c t s i z e selective behavi o r . P l a t i n u m c l u s t e r s , n = 2-11 r e a c t w i t h di oxygen at a r a t e t h a t i s w i t h i n an o r d e r of magnitude of gas k i n e t i c . There i s no d i s t i n c t size selective behavior. Products of t h e s e gas phase reactions observed w i t h 7.87 eV i o n i z a t i o n l a s e r , a r e P t p O ^ where f o r m=l,

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

56

H I G H - E N E R G Y P R O C E S S E S IN O R G A N O M E T A L L I C

CHEMISTRY

n = 5 , 7 - l l and f o r m=2, n = 8 - l l . There was a very weak product f o r Pt 02 although t h e d e p l e t i o n of t h e metal was e q u i v a l e n t t o t h e other metal c l u s t e r s . An i n c r e a s e i n i o n i z a t i o n p o t e n t i a l s upon o x i d a t i o n may be r e s p o n s i b l e f o r t h i s p a t t e r n of d e t e c t e d p r o d u c t s . P r e l i m i n a r y s t u d i e s of carbon d i o x i d e r e a c t i o n s w i t h niobium and cobalt c l u s t e r s by t h e R i c e group( l e ) have found another size selective reaction. The r e a c t i o n proceeds on small c l u s t e r s (^37) v i a d i s s o c i a t i o n , producing N b _ 0 + CO. For l a r g e r c l u s t e r s Nb C0o i s f o u n d . D i s s o c i a t i o n i m p l i e s a metal-oxygen bond s t r e n g t h > 12/ k c a l / m o l e , which i s c o n s i s t e n t w i t h t h e heat of a b s o r p t i o n on p o l y c r y s t a l l i ne f i 1ms (49) and t h e d i s s o c i a t i o n energy o f Nb-0 di atomi c ( 5 0 ) . S t u d i e s such as these extended t o o t h e r r e a c t a n t s such as N 0 and NO w i l l act t o survey metal c l u s t e r - o x y e n bond s t r e n g t h s a c r o s s t h e t r a n s i t i o n metal s e r i e s . 6

3

7

n

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

2

Lewi s B a s e s . A v a r i e t y of o t h e r l i g a n d s have been s t u d i e d , but w i t h o n l y a few of t h e t r a n s i t i o n m e t a l s . There i s s t i l l a l o t of room f o r s c o p i n g work i n t h i s d i r e c t i o n . Other r e a c t a n t systems r e p o r t e d are ammonia(2e), methanol ( 3 h ) , and hydrogen s u l f i de(3b) w i t h i r o n , and benzene w i t h t u n g s t e n (Tf) and p l a t i num(3a). In a q u a l i t a t i v e sense a l l of these r e a c t i o n s appear t o o c c u r a t , o r near gas k i n e t i c rates w i t h o u t d i s t i n c t s i z e s e l e c t i v i t y . The ammonia chemi sorbs on each c o l l i s i o n w i t h no s i z e s e l e c t i v e b e h a v i o r . These complexes have lower i o n i z a t i o n p o t e n t i a l i n d i c a t i v e of t h e donor type l i g a n d s . S a t u r a t i o n s t u d i e s have i n d i c a t e d a v a r i e t y of a b s o r p t i o n s i t e s on a single size cluster(51). The Exxon d a t a T o r i r o n w i t h methanol a l s o does not show s i z e s e l e c t i v e behavi o r ( 5 2 ) . The Exxon group has been a b l e t o show by i n f r a r e d m u l t i p l e photon d i s s o c i a t i o n t h a t t h e 0-H bond breaks forming methoxy on these small i r o n c l u s t e r s ( 3h). T h i s i s c o n s i s t e n t with t h e behavior of methanol at room temperature on i r o n surfaces(53). This i s t h e f i r s t example i n which t h e chemi s o r p t i on i s confirmed t o be d i s s o c i a t i v e and t h e r e a c t i o n i s not s i z e selective. However t h e Lewis a c i d i t y of t h e oxygen atom lone p a i r i n methanol i s l i k e l y s u f f i c i e n t t o cause t h e i n i t i a l product t o be m o l e c u l a r l y chemi s o r b e d . Benzene reacts at gas kinetic rates with platinum c!usters(3a). The products produced have s i g n i f i c a n t l y lower I P ' s than t h e r e a c t a n t s . This change can be very s i g n i f i c a n t . For example both t h e p l a t i n u m atom and benzene have ( - I P ' s - ) g r e a t e r than 8.9 eV w h i l e t h e P t ( C D ) s p e c i e s has an IP l e s s than 7.87 e V , i n d i c a t i n g at l e a s t a drop o f one e l e c t r o n v o l t i n i o n i z a t i o n potential. Arene complexes a l l have s i m i l a r l y low I P ' s ( 5 4 ) . With 7.87 eV i o n i z a t i o n l a s e r no dehydrogenation i s observed f o r benzene r e a c t i o n s w i t h p l a t i n u m c l u s t e r s out t o P t (the l a r g e s t c l u s t e r f o r which t h e adduct mass c o u l d be s t u d i e d r e l i a b l y ) and t h e low i o n i z a t i o n p o t e n t i a l of t h e p r o d u c t s , suggest TT bonded s t r u c t u r e s versus o x i d a t i v e a d d i t i o n t o C-H bonds. F i g u r e 6 shows t h e mass spectrum o f p l a t i n u m at t h e e a r l y stages of i t s r e a c t i o n w i t h benzene. The i n i t i a l r e p o r t (3a) of p l a t i n u m c l u s t e r c h e m i s t r y w i t h Cg hydrocarbons showed mi nor dehydrogenati on of benzene s t a r t i n g beyond the t r i m e r . These new s t u d i e s suggest that the dehydrogenation was caused by f r a g m e n t a t i o n i n d u c e d by e i t h e r t o o high o f an i o n i z a t i o n l a s e r i n t e n s i t y (work was c a r r i e d out u s i n g only 100-400 y0 of 6.42 eV photons) o r high v a p o r i z a t i o n laser -

6

6

2

7

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

3.

TREVOR A N D K A L D O R

57

Gas-Phase Transition Metal Cluster Complexes

F i g u r e 5 . A bar graph of metal c l u s t e r r e a c t i v i t i e s w i t h CO on a linear scale. C l u s t e r s i z e i n c r e a s e s going i n t o t h e page and metal t y p e s a c r o s s . Once beyond a few atoms i n s i z e most a l l c l u s t e r s r e a c t at r a t e s w i t h i n an o r d e r of magnitude of each other.

500

1500

1000 mass

(amu)

Figure 6. Ti m e - o f - f l i ght mass spectrum o f CgD r e a c t i n g w i t h platinum c l u s t e r s . The peak l a b e l s r e p r e s e n t m i n P t ( C D ) . There i s a s c a l e change between n=2, m=2 and m=3. 6

n

6

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

6

m

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

58

H I G H - E N E R G Y P R O C E S S E S IN O R G A N O M E T A L L I C C H E M I S T R Y

intensity. The l a t t e r may y i e l d c l u s t e r s of high enough temperature t o cause t h e r m a l l y induced d e h y d r o g e n a t i o n . In summary, r e a c t i o n s w i t h l i g a n d s t h a t r e q u i r e a bond t o be broken before chemi s o r p t i on is completed show size selective behavior. This applies to hydrogen and n i t r o g e n and l i k e l y methane. Ligands that can form bonds with these highly coordi n a t i v e l y u n s a t u r a t e d metal c l u s t e r s do so w i t h f a s t r a t e s and w i t h l i t t l e s i z e d i s c r i m i n a t i o n . T h i s a p p l i e s even t o systems t h a t e v e n t u a l l y do d i s s o c i a t e l i k e methanol and most l i k e l y the CO adducts on t h e e a r l y t r a n s i t i o n m e t a l s . Once t h e r e i s a s i g n i f i c a n t a t t r a c t i v e i n t e r a c t i o n any b a r r i e r i n t h e e n t r a n c e channel i s a b a t e d , thus e l i m i n a t i n g the size selective behavior. The c l u s t e r r e a c t i v i t i e s are n e i t h e r i d e n t i c a l t o s u r f a c e c h e m i s t r y nor c l u s t e r i n o r g a n i c c h e m i s t r y , but smoothly i n t e r p o l a t e between t h e s e fields w i t h t h e n o t a b l e e x c e p t i o n of t h e d r a m a t i c s i z e s e l e c t i v e c h e m i s t r y a s s o c i a t e d w i t h bond a c t i v a t i o n on t h e small metal c l u s t e r s . These very s i m p l e but very i n f o r m a t i v e measurements are s e n s i t i v e t o j u s t t h e i n i t i a l chemi s o r p t i on s t e p and not subsequent rearrangements and i someri z a t i o n s . Techniques t o measure of t h e f o l l o w i n g s t e p s i n r e a c t i o n s on gas phase c l u s t e r s are j u s t now being deve!oped( 3 h ) . P l a t i n u m dehydrogenation

reactions

P l a t i n u m f i l m s , c l u s t e r s and s u r f a c e s under t h e c o n d i t i o n s i n t h e flow reactor are expected to rapidly dehydrogenate most al kanes (55_). The r a t e l i m i t i n g step i s t h e i n i t i a l chemi s o r p t i on of t h e a l k a n e t o t h e metal ( 5 6 ) . These s t u d i e s are q u i t e s e n s i t i v e t o the f i r s t step and t h u s are expected t o be i n f o r m a t i v e . U n l i k e most of t h e r e a c t i o n s a l r e a d y r e p o r t e d t h e s e dehydrogenation reactions i n v o l v e d e s o r p t i o n of hydrogen from t h e metal c l u s t e r a d d u c t . This g i v e s t h e c o l l i s i o n complex a way t o remove i t s excess energy and become s t a b i l i z e d . However i f t h i s d e s o r p t i o n process becomes c o m p e t i t i v e w i t h chemi s o r p t i on then the r e a c t i v i t y observed w i l l be harder t o i n t e r p r e t . For p l a t i n u m t h e d i f f i c u l t y i n making hydrogen s t i c k s t r o n g l y suggest t h a t t h i s w i l l not be a p r o b l e m . Cyclohexane. In q u a l i t a t i v e terms small p l a t i n u m c l u s t e r s r a p i d l y and n o n - s e l e c t i v e l y chemi sorbs c y c l o h e x a n e . The p r o d u c t s are h i g h l y dehydrogenated w i t h C:H r a t i o s r a p i d l y approaching o n e . Figure 7 shows t h e g a i n i n mass upon r e a c t i o n f o r the f i r s t adduct and t h e second minus t h e f i r s t . The p l a t i n u m atom w i t h i n t h e errors dehydrogenates C^D-^ t o C^Dg. The second adduct on t h e p l a t i n u m atom does not dehydrogenate s i g n i f i c a n t l y . However by Ptg t h e p l a t i n u m c l u s t e r s appear t o be a b l e t o convert two cyclohexane molecules i n t o chemi sorbed s p e c i e s w i t h a C:D r a t i o near one. Thi s f aci 1 e dehydrogenati on i s consi s t e n t wi t h t h e ki n e t i c models derived from catalytic conversion of cyclohexane to benzene(57). These models p r e d i c t an ensemble s i z e f o r t h e a c t i v e s i t e of o n l y one atom. On t h e o t h e r hand f a c i l e dehydrogenation of cyclohexane on metal s u r f a c e under UHV c o n d i t i o n s are d e s c r i b e d u s i n g a model t h a t extends over s e v e r a l metal atoms and suggests a s p e c i f i c t y p e of i n t e r a c t i o n i s necessary f o r an e f f i c i e n t r e a c t i on ( 5 8 ) . This is obviously not t h e case for t h e very s m a l l p l a t i n u m metal clusters.

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

3.

Gas-Phase Transition Metal Cluster Complexes

59

Other hydrocarbons. The dehydrogenation of normal hexane and 2 , 3 di methyl butane a l s o proceeds but not as v o r a c i o u s l y on small platinum c l u s t e r s . F i g u r e 8 i s a p l o t o f t h e hydrogen content i n t h e first adduct as a f u n c t i o n o f t h e s i z e o f t h e p l a t i n u m metal cluster. The metal atom r e a c t s v i a di hydrogen e l i m i n a t i o n t o produce 6 12 P p l a t i n u m t r i m e r i s now t h e s m a l l e s t c l u s t e r t h a t w i l l produce a C:H near o n e . The s i m i l a r i t y of s i z e dependent dehydrogenation o f t h e normal hexane and t h e branched molecule suggest t h a t t h e s e systems may not r e a d i l y a r o m a t i z e t h e s e a l k a n e s . F u r t h e r s t r u c t u r a l s t u d i e s a r e needed t o i d e n t i f y the reaction products. Chemistry s t u d i e s of a l k a n e s on p l a t i n u m s u r f a c e s under UHV conditions are l i m i t e d by t h e very weakly bound molecularly chemisorbed s t a t e ( 5 9 ) . The low s u r f a c e temperatures required to adsorb t h e molecule are i n s u f f i c i e n t t o a c t i v a t e C-H bonds. However at higher pressures at room temperature and above, extensive dehydrogenation i s e x p e c t e d . T h i s process i s t h e r m a l l y a c t i v a t e d on s u r f a c e s but i n t h e gas phase on small p l a t i n u m c l u s t e r s o c c u r s at a p p r o x i m a t e l y 1-10% gas k i n e t i c . T h i s r a p i d r e a c t i o n suggests f o r very small p l a t i n u m c l u s t e r s t h a t t h e a c t i v a t i o n b a r r i e r f o r a l k a n e s i n t h e gas phase i s at most j u s t a few k i l o c a l o r i e s per mole, and does not i n v o l v e a high degree of s t e r i c h i n d r a n c e . P t C

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

TREVOR A N D K A L D O R

H

r o d u c t s

T

n

e

Models of s i z e s e l e c t i v e

reactivity

The i n i t i a l goal of a successful model i s t o r a t i o n a l i z e t h e s i g n i f i c a n t and s u r p r i s i n g o b s e r v a t i o n s . The f i r s t o b j e c t i v e w i l l be t o e x p l a i n t h e s i z e dependence found i n t h i s s i m p l e c h e m i s t r y i . e . why i n going from F e i y t o F e 2 does t h e r a t e c o n s t a n t i n c r e a s e by a f a c t o r of a thousand/ The second goal i s t o r a t i o n a l i z e t h e s t r i k i n g c o r r e l a t i o n , f i r s t made by t h e Exxon g r o u p , between t h e v a r i a t i o n i n i o n i z a t i o n p o t e n t i a l s and t h e l o g a r i t h m o f t h e r a t e c o n s t a n t f o r chemi s o r p t i on o f di hydrogen ( 3 c ) . F i n a l l y s i n c e many o f t h e r e a c t i o n s are f a c i l e t h e minimum c r i t e r i a i n l i g a n d e l e c t r o n i c s t r u c t u r e w i l l be sought t h a t w i l l a s s u r e n o n - a c t i v a t e d chemi s o r p t i o n . The above o b s e r v a t i o n suggests t h a t t h e e l e c t r o n i c s t r u c t u r e must play a significant role in determining s i z e - s e l e c t i ve chemistry. An i o n i z a t i o n potential i n a simple one-electon a p p r o x i m a t i o n measures only the o r b i t a l energy o f t h e h i g h e s t o c c u p i e d m o l e c u l a r o r b i t a l (HOMO). T h i s e n e r g y , e s p e c i a l l y as t h e system gets l a r g e , i s o n l y one o f t h e numerous o r b i t a l s t h a t contribute to the c l u s t e r ' s t o t a l s t a b i l i t y . Both t h e success of frontier fragment-orbital analysis i n organometallic reactivity s t u d i e s ( 6 0 ) and t h e r e l a t i v e l y small changes i n a c t i v a t i o n e n e r g i e s n e c e s s a r y t o e x p l a i n t h e observed variations i n rate constants, suggest e l e c t r o n i c s t r u c t u r e p l a y s t h e p i v o t a l r o l e . In a d d i t i o n t h e recent successes i n e x p l a i n i n g a l k a l i metal c ! u s t e r ( 6 1 ) d i s t r i b u t i o n s and IPs based on a j e l l i u m model suggest e l e c t r o n i c e f f e c t s are d i r e c t l y apparent and do not n e c e s s a r i l y d e p i c t themselves i n terms of s p e c i f i c geometric s t r u c t u r e s . An a l t e r n a t i v e approach i s t o r e l a t e v a r i a t i o n s i n r e a c t i v i t y w i t h metal c l u s t e r s ' s t r u c t u r e s . U n f o r t u n a t e l y even l e s s i s known about t h e i r geometric arrangement than t h e i r e l e c t r o n i c s t r u c t u r e . Suggestions made i n t h e l i t e r a t u r e w i l l be summarized and s i m p l e i d e a s of t h e degree of coordi n a t i ve u n s a t u r a t i o n w i l l be p r e s e n t e d . 2

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

60

H I G H - E N E R G Y P R O C E S S E S IN O R G A N O M E T A L L I C C H E M I S T R Y

88 86

X \

84

X





H^ • • X N K a _ B B E X X X X •



x

—B



76

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

(second-first) adduct

X

-e 80

74

first adduct

\X

82

78

• X

J

L

2

4

_J_ 6

_l 8

L_ 10

J_

12

14

number of platinum atoms

F i g u r e 7. A p l o t o f t h e adduct masses (product - bare m e t a l ) produced i n r e a c t i n g p l a t i n u m c l u s t e r s w i t h c-CgD-jo. The l i n e s f o r t h e f i r s t adduct ( s o l i d ) and s e c o n d - f i r s t (dashed) adduct masses a r e drawn t o h e l p guide t h e eye through t h e s c a t t e r i n t h e data.

n

1

1

1

I

l

Pt +m((CH ) CHCH(CH ) )— > n

1

2

3

4

5

Number of Platinum Atoms

6

J 1

3

2

3

I

I

L_

2

3

4

2

5

6

Number of Platinum Atoms

Figure 8 . P l o t s o f t h e number o f hydrogens r e t a i n e d i n t h e p r o d u c t s formed i n r e a c t i n g p l a t i n u m c l u s t e r s w i t h n - C g H i * and (CH ) CHCH(CH ) . 3

2

3

2

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

3.

TREVOR A N D K A L D O R

Gas-Phase Transition Metal Cluster Complexes

61

Empirical f i t and Charge T r a n s f e r . F i g u r e 9 i s a p l o t of t h e logarithm of the bi m o l e c u l a r rate constants for deuterium chemi s o r p t i on as a f u n c t i o n of s i z e f o r i r o n , niobium and vanadi urn clusters. The dashed l i n e i s a p l o t of t h e i o n i z a t i o n p o t e n t i a l s of t h e s e same c l u s t e r s s c a l e d by an e m p i r i c a l charge t r a n s f e r m o d e l . The s u r p r i s i n g o b s e r v a t i o n of a s i g n i f i c a n t a n t i c o r r e l a t i on between a metal c l u s t e r s ' i o n i z a t i o n p o t e n t i a l and t h e i r r a t e of r e a c t i o n w i t h deuterium/hydrogen s t r o n g l y suggested charge t r a n s f e r from t h e metal cluster to was e s s e n t i a l i n a c t i v a t i n g t h e bond. The IPs are scaled according to

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

k

n

= A exp(-e(IP(n)-E )/k T) 0

B

where E Q and e are determined from a l e a s t - s q u a r e s f i t t o t h e r a t e c o n s t a n t s , assuming A i s independent of c l u s t e r s i z e . The A f a c t o r used i s o b t a i n e d by assuming t h a t t h e l a r g e c l u s t e r p l a t e a u i n t h e i r o n and vanadi urn c l u s t e r r e a c t i v i t i e s corresponds t o zero a c t i v a t i o n energy. The same value i s then used f o r niobium as f o r vanadi urn clusters. With t h i s assumption any c l u s t e r h a v i n g an i o n i z a t i o n p o t e n t i a l l e s s than E Q w i l l have zero a c t i v a t i o n e n e r g y . The e s c a l e f a c t o r can be i n t e r p r e t e d i n terms of t h e amount of charge t r a n s f e r or as w i l l be shown l a t e r a c l u s t e r e l e c t r o n e g a t i v t y d i f f e r e n c e . The i n c l u s i o n o f t h e kgT f a c t o r i n t h e exponent was chosen t o draw a c l o s e analogy w i t h t h e A r r h e n i us e x p r e s s i o n s i n c e t h e Argonne group has observed thermal a c t i v a t i o n f o r t h e i r o n s y s t e m . The c o r r e l a t i o n i n F i g . 9 i s best f o r i r o n , e s p e c i a l l y f o r d u s t e r w i t h more than e i g h t atoms. The o p p o s i t e behavior i s observed for the smaller clusters of niobium and i r o n . This departure along with (1) o b s e r v a t i o n s by t h e Rice group that p o s i t i v e l y charged i o n s of niobium have s i m i l a r r e a c t i v i t y p a t t e r n s as t h e n e u t r a l c l u s t e r s ( l e , g ) and (2) t h e report by t h e Argonne group of size selective behavi o r on ammoni ated clusters that have s i g n i f i c a n t l y lower i o n i z a t i o n p o t e n t i a l s than t h e bare c l u s t e r s ( 6 2 ) , n e c e s s i t a t e s t h e i n t e r p r e t a t i o n of e i n terms more general t h a n T h e f r a c t i o n a l charge t r a n s f e r . E l e c t r o n i c s t r u c t u r a l model. The s i z e s e l e c t i v e r e a c t i v i t y of t h e s e metal c l u s t e r s T~s s u r p r i s i n g . C e r t a i n l y t h e metal c l u s t e r are coordi n a t i v e l y unsaturated. It appears that coordi n a t i v e u n s a t u r a t i o n i s e s s e n t i a l t o s a t i s f y t h e e n e r g e t i c c r i t e r i a but more s p e c i f i c aspect of t h e e l e c t r o n i c s t r u c t u r e must play a r o l e i n c o n t r o l l i n g t h e a c t i v a t i o n energy of t h e p r o c e s s . A series of papers by Shustorovi ch(63) and/or Baetzo1d(64) summarized i n a recent a r t i c l e ( 6 5 ) have addressed t h e problem of chemi s o r p t i on on metal s u r f a c e s i n terms of e l e c t r o n a c c e p t i n g and donating interactions. Saillard and Hoffmann (66) developed q u a l i t a t i v e l y i d e n t i c a l p i c t u r e s of t h e s e i n t e r a c t i o n s but s t a r t i n g from fragment o r b i t a l t y p e a n a l y s i s . These papers are o n l y a few o f the theoretical discussions that consider hydrogen activation, however we w i l l use t h e i r approach because i t address t h e problem i n a f a s h i o n t h a t can i n t e r p o l a t e between t h e o r g a n o m e t a l l i c c l u s t e r and the b u l k . S t a r t i n g from t h e p o i n t of view of d i s c r e t e molecules t h e r e are four f r o n t i e r orbital and two primary i n t e r a c t i o n s . The f i r s t

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

62

HIGH-ENERGY PROCESSES IN ORGANOMETALLIC CHEMISTRY

i n t e r a c t i o n i s d o n a t i o n from t h e metal c l u s t e r t o t h e l i g a n d through t h e c l u s t e r ' s HOMO and t h e r e a c t a n t ' s lowest unoccupied m o l e c u l a r o r b i t a l (LUMO). The o t h e r i n t e r a c t i o n i s f o r t h e c l u s t e r t o a c t as t h e a c c e p t o r u s i n g i t s LUMO and t h e r e a c t a n t ' s HOMO. The e n e r g i e s o f these o r b i t a l s o b t a i n e d by EHT f o r a v a r i e t y of r e a c t a n t s and a c a n o n i c a l c l u s t e r a r e shown i n F i g . 1 0 . From t h i s diagram i t i s i m m e d i a t e l y obvious why t h e t r a n s i t i o n metals a r e e f f e c t i v e i n bond rearragements. These metals s u p p l y e l e c t r o n d e n s i t y t h a t b r i d g e s t h e H0M0-LUM0 gap which i s a s s o c i a t e d w i t h t h e h i g h s t a b i l i t y o f t h e closed shell reactants. Interactions i n v o l v i n g these electrons supply paths t h a t a v o i d high a c t i v a t i o n b a r r i e r s . The e l e c t r o n r i c h c h a r a c t e r o f metals i m p l y t h a t they should be very e f f e c t i v e d o n o r s , i n s p i t e o f t h e l a r g e energy s e p a r a t i o n between t h e metal-HOMO and t h e LUMO o f t h e r e a c t a n t . C o n s i d e r t h e hydrogen molecule approaching a metal c l u s t e r . The l o n g - r a n g e i n t e r a c t i o n w i l l be r e p u l s i v e because t h e m a j o r i t y o f t h e e l e c t r o n s i n t h e c l u s t e r a r e s p i n - p a i r e d and h o l d i n g t h e c l u s t e r together. This long-range repulsion creates a barrier to the reaction. As t h e hydrogen molecule gets c l o s e r , t h e c l u s t e r a c t s as an e " d o n o r , i n t e r a c t i n g w i t h a of H and as an a c c e p t o r w i t h t h e bonding molecular orbital of the absorbate. Both of these i n t e r a c t i o n s weaken t h e absorbate bond and s t r e n g t h e n t h e bonding t o the c l u s t e r . Thus i f t h e a t t r a c t i v e i n t e r a c t i o n overwhelms t h e repulsion, dissociative chemi s o r p t i on w i l l occur with a small a c t i v a t i o n b a r r i e r i n t h e entrance c h a n n e l . The a c t i v a t i o n energy w i l l depend upon a compromise between t h e r e p u l s i o n and t h e l o n g e s t range a t t r a c t i o n . The donor i n t e r a c t i o n i s l o n g e r - r a n g e and w i l l i n c r e a s e as o r b i t a l s e p a r a t i o n d e c r e a s e s . T h e r e f o r e t h e lower IP c l u s t e r s a r e b e t t e r l o n g - r a n g e donors than a c c e p t o r s and t h u s have smaller activation energies. T h i s i s e x a c t l y what i s needed t o r a t i o n a l i z e t h e c o r r e l a t i o n between a c l u s t e r ' s IP and i t s a b i l i t y t o a c t i vate h y d r o g e n . T h i s s i m p l e model p r e d i c t s f o r a s u f f i c i e n t l y low IP c l u s t e r t h a t bonds can be broken without a b a r r i e r and t h a t metals on t h e l e f t end o f t h e p e r i o d i c t a b l e s h o u l d be t h e most f a c i l e , both i n agreement w i t h our o b s e r v a t i o n s . I f t h e a n t i bondi ng a t y p e o r b i t a l i n t h e reactant i s s i g n i f i c a n t l y higher i n energy, t h e b a r r i e r could be s u f f i c i e n t t o prevent r e a c t i o n s from being d e t e c t e d . This i s a p p a r e n t l y t h e case f o r methane. These arguments change when extended t o ^ b o n d e d r e a c t a n t s l i k e N , CO, and CgHg where now t h e LUMO has TT character. Small populations i n t h e LUMO w i l l no l o n g e r guarantee dissociation. Instead a s t a b l e m o l e c u l a r chemi s o r p t i on bond can f o r m . Since t h e s e experiments have a much h i g h e r s e n s i t i v i t y f o r a c t i v a t i o n e n e r g i e s ( a few ki l o c a l o r i e s / m o l e ) than f o r s t a b l e bonds (16 kcal/mole) m o l e c u l a r bonding dominates t h e r e a c t i v i t y . The LUMO o f n i t r o g e n i s high enough t h a t m o l e c u l a r s t a t e s do not form (even on t h e bulk s u r f a c e t h e y need t o be s t a b i l i z e d by a l k a l i promotion) and f o l l o w the same p a t t e r n as i n h y d r o g e n . Iron c l u s t e r s appear t o be on t h e verge o f r e a c t i n g w i t h n i t r o g e n i n t h e s e e x p e r i m e n t s - l i k e l y higher temperatures or a l k a l i promotion will test t h i s simple model. F i n a l l y m o l e c u l a r oxygen w i l l look l i k e a di radi c a l t o even t h e s m a l l e s t metal c l u s t e r and s h o u l d react without s i z e s e l e c t i v i t y even i f t h e f i n a l products are d i s s o c i a t i v e . T h i s model f o r bond a c t i v a t i o n has a l r e a d y f a i l e d s e v e r a l s i m p l e 2

2

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

TREVOR A N D K A L D O R

Gas-Phase Transition Metal Cluster Complexes

63

dorter size (number of atoms)

F i g u r e 9. P l o t s o f t h e r a t e c o n s t a n t s (X) o f i r o n , vanadi urn and niobium c l u s t e r s r e a c t i n g w i t h di hydrogen/di d e n t e r i urn, and t h e i r r e s p e c t i v e bare c l u s t e r i o n i z a t i o n p o t e n t i a l s ( s o l i d l i n e s ) s c a l e d as d e s c r i b e d i n t h e t e x t .

Figure 10. I n d i c a t e d a r e t h e HOMO and LUMO o r b i t a l e n e r g i e s o b t a i n e d form EHT c a l c u l a t i o n s f o r a v a r i e t y o f r e a c t a n t s . In t h e center are estimated orbital energies f o r a canonical metal cluster.

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

64

HIGH-ENERGY PROCESSES IN ORGANOMETALLIC CHEMISTRY

tests. First, reactions o f t h e charged c l u s t e r s show s i m i l a r p a t t e r n s , which i n d i c a t e s i m p l e charge t r a n s f e r i s i n a d e q u a t e . In a d d i t i o n t h e r e p u l s i v e i n t e r a c t i o n t h a t caused t h e b a r r i e r i n t h e first place i s l i k e l y i n s i g n i f i c a n t compared t o t h e a t t r a c t i v e charge-induced d i p o l e i n t e r a c t i o n . In t h e o t h e r d i r e c t i o n t h e model f a i l s as w e l l . The Argonne group has found s i z e - s e l e c t i v e reactivity of hydrogen on i r o n c l u s t e r s t h a t are s a t u r a t e d w i t h ammonias. These ammine-Fe c l u s t e r s have s i g n i f i c a n t l y lower i o n i z a t i o n potentials and s t i l l show s i z e s e l e c t i v i t y ; again c o n f l i c t i n g w i t h a s i m p l e charge t r a n s f e r m o d e l . The s i m p l e s t e x t e n s i o n of t h i s model i s t o i n c l u d e both donor and a c c e p t o r i n t e r a c t i o n s . The r e l e v a n t parameter i s the Mulliken electronegativity which averages t h e t h e IP and e l e c t r o n a f f i ni t y ( E A ) . U n f o r t u n a t e l y at t h i s time i n s u f f i c i e n t EA data i s a v a i l a b l e f o r m e a n i n g f u l l t e s t s . As seen i n F i g . 9 t h e c o r r e l a t i o n between IP and r e a c t i v i t y changes s i g n i f i c a n t l y f o r small c l u s t e r s . In f a c t f o r many o f t h e c l u s t e r s under e i g h t atoms i n s i z e t h e c o r r e l a t i o n i s i n t h e o p p o s i t e sense. The c o n s i d e r a t i o n s given so f a r have been based on e n e r g e t i c s and have not i n c l u d e d any d e t a i l valency or symmetry. The assumption i s t h a t t h e d e n s i t y o f s t a t e s i s s u f f i c i e n t l y high t h a t at any energy there i s an o r b i t a l that could s a t i s f y any o f t h e s e further restrictions. As t h e c l u s t e r gets s m a l l e r t h i s becomes more d i f f i c u l t and t h u s d e p a r t u r e s from t h e " b u l k " model s h o u l d o c c u r . In a d d i t i o n t h e c l u s t e r IPs a l s o i n c r e a s e s i g n i f i c a n t l y making a c c e p t o r i n t e r a c t i o n s more i m p o r t a n t .

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

n

Local coordi n a t i v e s a t u r a t i o n . For t h e very small c l u s t e r t h e i d e a oT drawi ng on fHe f i e 1 d o"f s t a b l e c l u s t e r complexes i s very attractive. Lauher(69) and Teo(70) have presented rules that d e s c r i b e t h e t o t a l bonding c a p a b i l i t i e s o f t h e metal c l u s t e r s . These work w e l l f o r s a t u r a t e d and p a r t i a l l y u n s a t u r a t e d metal c l u s t e r s . However t h e high degree of coordi nati ve u n s a t u r a t i o n i s s i g n i f i c a n t l e a v i n g t h e s e r u l e s w i t h l i t t l e p r e d i c t i v e power. However L . Brewer has t a k e n a s l i g h t l y d i f f e r e n t approach and e x p l a i n e d t h e s t r u c t u r e of a l l o y s and c r y s t a l h a b i t of t h e t r a n s i t i o n e l e m e n t s . T h i s work i s a b l e t o p r e d i c t t h e s t r u c t u r e o f most bulk metal s y s t e m s . This p o i n t s out t h a t even f o r metals t h a t a r e very m a l l e a b l e and have l i t t l e p r e f e r e n c e f o r d i r e c t i o n a l bonding s i m p l e r u l e s can s t i l l be developed and might be very a p p l i c a b l e t o c l u s t e r s . For niobium and c o b a l t c l u s t e r s s t r u c t u r e s have been proposed based upon t h e elements behavi o r ( 7 1 ) . Niobium's s p e c i f i c i n e r t n e s s has been a s s o c i a t e d w i t h s t r u c t u r e s t h a t a r e analogous t o c l o s e packed s u r f a c e o f W(110) which a l s o has an a c t i v a t i o n b a r r i e r f o r hydrogen chemi s o r p t i o n . Since t h e IPs a r e a l s o expected t o be h i g h e r f o r c l o s e d packed s t r u c t u r e s t h e s e two s e t s of o b s e r v a t i o n s a r e i n agreement. This model at i t s c u r r e n t stage of development requires different s t r u c t u r e s f o r each system and as y e t has not been u s e f u l i n making p r e d i c t i o n s . It i s i m p o r t a n t t o note t h a t none o f t h e s e arguments have addressed t h e f i r s t concern of why. B u t , have s h i f t e d the question t o what i n t h e e l e c t r o n i c s t r u c t u r e o f t h e s e c l u s t e r s i s c a u s i n g t h e IP, r e a c t i v i t y , and l i k e l y v a r i a t i o n s i n s t r u c t u r e w i t h s i z e .

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

3.

TREVOR A N D K A L D O R

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

Physical

Gas-Phase Transition Metal Cluster Complexes

65

Characterization

Through out t h i s mi n i - r e v i ew c o r r e l a t i o n s have been made between chemical and p h y s i c a l properties o f t h e metal clusters. The simultaneous study of t h e i r c h e m i s t r y and t h e a p p l i c a t i o n of s t a n d a r d molecular-beam chemical p h y s i c s probes have c o o p e r a t i v e l y enabled t h e r a p i d growth of t h i s new a r e a . Physical properties currently measurable are i o n i z a t i o n p o t e n t i a l s ( 3 d - f , 3 i ,72) photoi oni z a t i on effi ciencies(73), magnetic moments (_l£JT photof ragmentati on of i o n s ( 7 4 , 7 5 ) and i n some cases n e u t r a l s , p o l a r i z a b i 1 i t e s ( 7 6 ) , and some strong " i n f r a r e d absorpti o n s " ( 3 h ) . The number of systems s t u d i e d and t h e measurement methods a r e r a p i d l y g r o w i n g . T h i s data base i s e s s e n t i a l i n t h e u n d e r s t a n d i n g of t h e compromises t h a t are i n v o l v e d in metal bonding, as t h e m e t a l l i c state evolves from small clusters. Theory has p a r t i c i p a t e d i n a l l aspects of this area's development. The almost hand-waving arguments used t o r a t i o n a l i z e t h e i r chemical b e h a v i o r need t e s t i n g and w i l l l i k e l y be r e p l a c e d by more e l e g a n t q u a n t i t a t i v e d i s c u s s i o n s . The t h e o r e t i c a l a s p e c t s ( 7 7 ) and most p h y s i c a l p r o p e r t y measurements(78) of small metal c l u s t e r s have been r e c e n t l y r e v i e w e d . Summary The f i e l d o f gas-phase t r a n s i t i o n metal c l u s t e r c h e m i s t r y has expanded r a p i d l y due t o t h e development of t h e l a s e r vaporization source and t h e f a s t flow chemical r e a c t o r . The work from t h e t h r e e major l a b o r a t o r i e s have been r e v i e w e d . Many a d d i t i o n a l l a b o r a t o r i e s are d e v e l o p i n g c l u s t e r c h e m i s t r y programs and w i l l soon c e r t a i n l y make s i g n i f i c a n t c o n t r i b u t i o n s . In summary a few " g e n e r a l i z a t i o n s " have been f o u n d . F i r s t , s i z e selective c h e m i s t r y i s s t r o n g l y a s s o c i a t e d w i t h chemi s o r p t i on t h a t requires bond-breaking. Second, metal c l u s t e r s r e a c t r a p i d l y w i t h ligands that m o l e c u l a r l y chemisorb even when t h e eventual products i n v o l v e d i s s o c i a t i o n of t h e l i g a n d . Dehydrogenation of C - a l k a n e s on small p l a t i n u m c l u s t e r s t a k e e x c e p t i o n t o t h i s . The charge transfer model suggested to rationalize the c o r r e l a t i o n between i o n i z a t i o n p o t e n t i a l and r e a c t i v i t i e s o f i r o n , vanadium, and niobium w i t h di hydrogen fails f o r other systems. However a model that takes into account t h e f r o n t i e r orbital i n t e r a c t i o n s , although h i g h l y s i m p l i s t i c , does account f o r a v a r i e t y of observations. T h i s model suggests extensions that include e l e c t r o n a f f i n i t i e s as w e l l as IPs and t h e p o s s i b i l i t y of d e v e l o p i n g an e l e c t r o n e g a t i v t y s c a l e f o r c l u s t e r s as a f u n c t i o n of t h e i r s i z e . Geometric s t r u c t u r e of t h e bare metal c l u s t e r s and t h e complexes formed by r e a c t i o n are unknown and present a s i g n i f i c a n t e x p e r i m e n t a l challenge. Chemical s t u d i e s are s t a r t i n g t o i m p l y something about t h e s t r u c t u r e o f t h e p r o d u c t s and w i l l be i n v a l u a b l e u n t i l more d i r e c t chemical p h y s i c s probes are a v a i l a b l e . 6

Acknowledgments We wish t o thank t h e c u r r e n t and past members of t h e c l u s t e r c h e m i s t r y groups at Rice U n i v e r s i t y , Argonne N a t i o n a l L a b o r a t o r y and Exxon Research and E n g i n e e r i n g C o . Rick S m a l l e y , Steve R i l e y , E r i c

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

66

H I G H - E N E R G Y P R O C E S S E S IN O R G A N O M E T A L L I C

CHEMISTRY

P a r k s , Ken Reichmann, E r i c R o h l f i n g , Rob Whetten, M i t c h Z a k i n , and Don Cox deserve thanks f o r communication of t h e i r data before p u b l i c a t i o n and/or a l l o w i n g i t s use f o r t h e f i r s t time i n t h i s mi ni review. The open communication among t h e s e c o l l a b o r a t o r s and c o m p e t i t o r s have made t h i s an e x t r e m e l y enjoyable, e x c i t i n g , and r a p i d l y p r o g r e s s i n g area of r e s e a r c h .

Literature Cited

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

1.

2.

3.

4. 5. 6. 7. 8.

Rice: a) J . Dietz, M.A. Duncan, D.E. Powers, R.E. Smalley J . Chem. Phys. 74, 6511 (1981). b) M.E. Geusic, M.D. Morse, R.E. Smalley J . Chem. Phys. 82, 590 (1985). c) M.E. Geusic, M.D. Morse, R.E. Smalley Rev. Sci. Instrum. 56, 2123 (1985). d) M.D. Morse, M.E. Geusic, J.R. Heath, R.E. Smalley J . Chem. Phys. 83, 2293 (1985). e) P.J. Brucat, C.L. Pettiette, S. Yang, L.-S. Zheng, M.J. Craycraft, R.E. Smalley J . Chem. Phys. 85, 4747 (1986). f) M.D. Mores, M.E. Geusic, S.C. O'Brien, R.E. Smalley Chem. Phys. Lett. 122, 289, (1985). g) J.M. Alford, F.D. Weiss, R.T. Laaksonen, R.E. Smalley, J . Phys Chem in press. Argonne: a) S.J. Riley E.K. Parks, G.C. Nieman, L.C. Pobo, S. Wexler J . Chem.Phys. 80, 1360 (1984); S.J. Riley, E.K. Parks, L.G. Pobo, S. Wexler Ber. Bunsenges. Phys. Chem. 88, 287 (1984). b) S.C. Richtsmeier, E.K. Parks, K. Liu, L.G. Pobo, S.J. Riley J . Chem. Phys. 82, 3659 (1985). c) E.K. Parks, K. Liu, S.C. Richtsmeier, L.G. Pobo, S.J. Riley J . Chem. Phys. 82, 5421 (1985). d) K. Liu, E.K. Parks, S.C. Richtsmeier, L.G. Pobo, S.J. Riley J . Chem. Phys. 83, 2882,5353 (1985). e). S.J. Riley, E.K. Parks, K. Liu "Int. Symp. Optical and Optoelectronic Appl. Sci. Eng.", Quebec, 1986. Exxon: a) D.J. Trevor, R.L. Whetten, D.M. Cox, A. Kaldor J . Am. Chem. Soc. 107, 518 (1985). b) R.L. Whetten, D.M. Cox, D.J. Trevor, A. Kaldor J. Phys. Chem. 89, 566 (1985). c) R.L. Whetten, D.M. Cox, D.J. Trevor, A. Kaldor Phys. Rev. Lett. 54, 1494 (1985). d) R.L. Whetten, M.R. Zakin, D.M. Cox, D.J. Trevor, A. Kaldor J . Chem. Phys. 85, 1697 (1986). e) R.L. Whetten, M.R. Zakin, D.M. Cox, D.J. Trevor, A. Kaldor, in preparation f) A. Kaldor, D.M. Cox, M.R. Zakin, D.J. Trevor Z. Phys. Chem. D in press g) D.M. Cox, D.J. Trevor, R.L. Whetten, A. Kaldor in preparation. h) M.R. Zakin, R.O. Brickman, D.M. Cox, K.C. Reichman, D.J. Trevor, A. Kaldor, J . Chem. Phys. 85, 1198 (1986). i ) M.R. Zakin, D.M. Cox, R.L. Whetten D.J. Trevor, A. Kaldor J . Chem. Phys. submitted, j) D.M. Cox, D.J. Trevor, K. Reichmann, A. Kaldor J. Phys. Chem. submitted, k) D.J. Trevor, A. Kaldor unpublished results. P.J. Brucat, C.L. Pettiette, S. Yang, L.-S. Zheng, R.E. Smalley J . Chem. Phys. 85, 4747 (1986). M. Mandich, W.D. Reents, Jr., V.E. Bondybey, J. Phys. Chem. in press; V.E. Bondybey, W.D. Reents, Jr., M. Mandich, J . Chem. Phys. in press. S.K. Loh, D.A. Hales, P.B. Armentrout, Chem. Phys. Lett. in press. L. Sallans, K.R. Lane, R.R. Squires, B.S. Freiser, J . Am. Chem. Soc. 107, 4379 (1985) and references therein. V.E. Bondybey, J.H. English Chem. Phys. Lett. 94, 443 (1983).

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

3.

TREVOR A N D K A L D O R

Gas-Phase Transition Metal Cluster Complexes

67

9. M. Jarold, J.E. Bower J . Chem. Phys. in press. 10. E.A. Rohlfing, D.M. Cox, R. Petkovic-Luton, A. Kaldor J . Phys. Chem. 88, 6277 (1984). 11. E.A. Rohlfing, D.M. Cox, A. Kaldor, J . Chem. Phys. 81, 3322 (1984). 12. H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, Nature (London) 318, 162 (1985). 13. L.A. Bloomfield, R.R. Freeman, W.L. Brown Phys. Rev. Lett. 54, 2246 (1985); L.A. Bloomfield, M.E. Geusic, R.R. Freeman, W.L. Brown Chem. Phys. Lett. 121, 33 (1985). 14. J.R. Heath, Y. Liu, S.C. O'Brien, Q.-L. Zhang, R.F. Curl, F.K. Kittle, R.E. Smalley J . Chem. Phys. 83, 5520 (1985); S.C. O'Brien, Y. Lin, Q. Zhang, J.R. Neath, F.K. Tittel, R.F. Curl, R.E. Smalley J . Chem. Phys. 84, 4074 (1986). 15. D.M. Cox unpublished results. 16. R.G. Wheeler, K. LaiHing, W.L. Wilson, J.D. Allen, R.B. King, M.A. Duncan J . Am. Chem. Soc. in press. 17. L.F. Keyser J . Phys. Chem. 88, 4750 (1984). 18. J.B. Anderson, J.B. Fenn Phys. Fluids 8, 780 (1965). 19. D.M. Cox, D.J. Trevor, R.L. Whetten, E.A. Rohlfing, A. Kaldor Phys. Rev. B32, 7290 (1985). 20. D.A. Gobeli, J . J . Yang, M.A. El -Sayed Chem. Rev. 85, 529 (1985). 21. D.J. Trevor in preparation. 22. D.M. Cox unpublished results. 23. J . Benziger, R.J. Madix Surf. Sci. 94, 201 (1980). 24. G. Wedler, H.-P. Geuss, K.G. Colb, and G. McElhiney Appl. Surf. Sci. 1, 471 (1978); F. Bozso, G. Ertl, M. Grunze, M. Weiss Appl. Surf. Sci. 1, 103, (1977). 25. P.J. Brucat, L.-S. Zeng, C.L. Pettiette, S. Yang, R.E. Smalley J . Chem. Phys. 84, 3078 (1986) 26. D.I. Hagen, E.E. Donaldson Surf. Sci. 45, 61 (1974). 27. J . J . Reilly, R.H. Wiswall Inorg. Chem. 9, 1678 (1970). 28. M. Hirabayashi, H. Asano in "Metal Hydrides"; ed. G. Bambakidis; Plenum: New York, 1981, p 53. and M.A. Pi ck p 329. 29. D.P. Onwood, A.L. Companion J . Phys. Chem. 89 3777 (1985). 30. T.H. Upton, W.A. Goddard III, C.F. Melius J . Vac. Sci. Technol. 16, 531 (1979). 31. K. Christmann, G. Ertl, T. Pignet surf. Sci. 54, 365 (1976);B. Poelsema, L.K. Verheij, G. Comsa Surf. Sci. 152/153, 496 (1985). 32. J.E. Benson, M. Boudart J . Catal. 4, 704 (1965). 33. M. Balooch, M.J. Cardillo, D.R. Miller, R.E. Stickney Surf. Sci. 46, 358 (1074). 34. S.J. Riley private communication. 35. L . J . Whitman, C.E. Bartosch, W. Ho, G. Strasser, M. Grunze Phys. Rev. Lett. 56, 1984 (1986). 36. G. A. Somorjai, "Chemistry in Two Dimensions: Surfaces"; Cornell University:Ithaca, 1981. 37. C.B. Lebrilla, W.F. Maier J . Am. Chem. Soc. 108, 1606 (1986). 38. R.N. Perutz Chem. Rev. 85, 77 (1985). 39. R.G. Pearson Chem. Rev. 85, 41 (1985). 40. C.T. Rettner, H.E. Pfnur, D.J. Auerbach J . Chem. Phys. 84, 4163 (1986). 41. M.B. Lee, Q.Y. Yang, S.L. Tang, S.T. Ceyer J . Chem. Phys. 85, 1693 (1986). In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

68

H I G H - E N E R G Y P R O C E S S E S IN O R G A N O M E T A L L I C C H E M I S T R Y

42. M.A. Duncan, T.G. Dietz, R.E. Smalley Chem. Phys. 44, 415-419 (1979). 43. S.J. Riley and the Exxon group have made inital attempts, private communication. 44. G. Ertl, "The Nature of the Surface Chemical Bond"; Rhodin, T.N., Ertl, G. ed., North-Holland, New York, 1979, p 313; ref. 36. 45. G. Pilcher, H.A. Skinner "The Chemistry of the Metal-Carbon Bond"; F.R. Hartley and S. Patai ed., John Wiley & Sons, New York, 1982, p 43-90. 46. T.N. Rhodin, J.W. Gadzuk, "The Nature of the Surface Chemical Bond"; Rhodin, T.N., Ertl, G. ed., North-Holland, New York, 1979, p 113; ref. 36 47. G. Wedler, H. Poppa, G. Schroll Surf. Sci. 44, 463 (1974); C.R. Helms, R.J. Madi x Surf. Sci. 52, 677 (1975). 48. J.A. Martinho Simoes, J.L. Beauchamp Chem. Rev. in press. 49. D.Brennan, D.O. Hayward Phil. Trans. Roy. Soc. (London) A258, 375 (1965). 50. K.P. Huber, G. Herzberg "Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules"; Van Nostrand Reinhold: New York, 1979. 51. S.J. Riley private communication. 52. M.R. Zakin, D.M. Cox unpublished results. 53. P.H. McBreen, W. Erley, H. Ibac Surf. Sci. 133, 1469 (1983). 54. H.M. Rosenstock, K. Draxl, B.W. Steiner, J.T. Herron J . Phys. Chem. Ref. Data 6, sup 1 (1977). 55. G.A. Somorjai Chem. Soc. Rev. 13, 312 (1984);C.B. Lebrilla, W.F. Maier J . Am. Chem. Soc. 108, 1606 (1986). 56. L.E. Firment, G.A. Somorjai J . Chem. Phys. 66, 2901 (1977). 57. M.E. Ruiz-Vizcaya, O. Novaro, J.M. Ferreira, R. Gomez J. Catal. 51, 108 (1978). 58. M.-C. Tsai, C.M. Friend, E.L. Muetterties J . Am. Chem. Soc. 104,2539,(1982);M.-C. Tsai, E.L. Muetterties J . Phys. Chem. 86, 5067 (1982). 59. S.M. Davis, F. Zaera, G.A. Somorjai J . Cat. 85, 206 (1984). 60. T.A. Albright Tetrahedron 38, 1339 (1982) and ref. therein. 61. W.D. Knight, K. Clemenger, W.A. deHeer, W.A. Saunders, M.Y. Chou, M.L. Cohen Phys. Rev. Lett. 52, 2141 (1984). 62. S.J. Riley and E.K. Parks private communication. 63. E. Shustorovi ch, R. Baetzold, E.L. Muetterties J . Phys. Chem. 87, 1100 (1983). 64. R.C. Baetzold J . Chem. Phys. 82, 5724 (1985). 65. E. Shustorovich, R.C. Baetzold Science 227, 879 (1985). 66. J.-Y. Saillard, R. Hoffmann J . Am. Chem. Soc. 106, 2006 (1984). 67. E. Shustorovich Surf. Sci. 150, L115 (1985). 68. H.S. Johnston, "Gas Phase Reaction Rate Theory"; Ronald: New York, 1966. 69. J.W. Lauher J . Am. Chem. Soc. 101, 2604 (1979). 70. B.K. Teo Inorg. Chem. 24, 1627 (1985)., ibid 24, 4209 (1985). 71. J.C. Phillips Chem. Rev. 86, 619 (1986). 72. D.E. Powers, S.G. Hansen, M.E. Geusic, D.L. Michalopoulos, R.E. Smalley J . Chem. Phys. 78, 2866 (1983). 73. E.A. Rohlfing, D.M. Cox, A. Kaldor J . Chem. Phys. 81, 3846 (1984).

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

3.

TREVOR A N D K A L D O R

Gas-Phase Transition Metal Cluster Complexes

69

75.

P . J . Brucat, L.-S. Zheng, C.L.Pettiette, S. Yang, R.E. Smalley J . Chem. Phys. 84, 3078 (1986). L.A. Bloomfield, R.R. Freeman, W.L. Brown Phys. Rev. Lett. 54,

76.

K. Clemenger, W.D. Knight, W.A. deHeer, W.A. Saunders Phys.

74.

2246 (1985).

Rev. B31, 2539 (1985).

J . Kouteck'y, P. Fantucci Chem. Rev. 86, 539 ( 1 9 8 6 ) . 78. M.D. Morse Chem. Rev. in press.; W. Weltner, J r . , R.J. Van Zee Ann. Rev. Phys. Chem. 35, 291 (1984).

77.

November

12, 1986

Downloaded by TUFTS UNIV on December 10, 2015 | http://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch003

RECEIVED

In High-Energy Processes in Organometallic Chemistry; Suslick, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.